Package jgpml.covariancefunctions
Interface CovarianceFunction
- All Known Implementing Classes:
CovLINard,CovLINone,CovNNone,CovNNoneNoise,CovNoise,CovSEard,CovSEiso,CovSum
public interface CovarianceFunction
-
Method Summary
Modifier and TypeMethodDescriptionJama.Matrixcompute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset XJama.Matrix[]compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariancesJama.MatrixcomputeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidxintReturns the number of hyperparameters of thisCovarianceFunction
-
Method Details
-
numParameters
int numParameters()Returns the number of hyperparameters of thisCovarianceFunction- Returns:
- number of hyperparameters
-
compute
Jama.Matrix compute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset X- Parameters:
loghyper- columnMatrixof hyperparametersX- input dataset- Returns:
- K covariance
Matrix
-
compute
Jama.Matrix[] compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariances- Parameters:
loghyper- columnMatrixof hyperparametersX- input datasetXstar- test set- Returns:
- [K(Xstar, Xstar) K(X,Xstar)]
-
computeDerivatives
Jama.Matrix computeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidx- Parameters:
loghyper- hyperparametersX- input datasetindex- hyperparameter index- Returns:
Matrixof derivatives
-