Uses of Class
edu.cmu.tetrad.util.Matrix
Packages that use Matrix
Package
Description
-
Uses of Matrix in edu.cmu.tetrad.cluster
Methods in edu.cmu.tetrad.cluster with parameters of type Matrix -
Uses of Matrix in edu.cmu.tetrad.data
Methods in edu.cmu.tetrad.data that return MatrixModifier and TypeMethodDescriptionstatic MatrixDataUtils.centerData(Matrix data) static MatrixDataUtils.concatenate(Matrix... dataSets) static Matrixstatic MatrixDataUtils.getBootstrapSample(Matrix data, int sampleSize) BoxDataSet.getCorrelationMatrix()DataSet.getCorrelationMatrix()If this is a continuous data set, returns the correlation matrix.NumberObjectDataSet.getCorrelationMatrix()BoxDataSet.getCovarianceMatrix()DataSet.getCovarianceMatrix()If this is a continuous data set, returns the covariance matrix.NumberObjectDataSet.getCovarianceMatrix()TimeSeriesData.getData()BoxDataSet.getDoubleData()DataSet.getDoubleData()NumberObjectDataSet.getDoubleData()final MatrixCorrelationMatrixOnTheFly.getMatrix()final MatrixCovarianceMatrix.getMatrix()final MatrixCovarianceMatrixOnTheFly.getMatrix()final MatrixCovarianceMatrixOnTheFly.getMatrix(int[] rows) ICovarianceMatrix.getMatrix()CorrelationMatrix.getSelection(int[] rows, int[] cols) CorrelationMatrixOnTheFly.getSelection(int[] rows, int[] cols) CovarianceMatrix.getSelection(int[] rows, int[] cols) CovarianceMatrixOnTheFly.getSelection(int[] rows, int[] cols) CovarianceMatrixOnTheFly.getSelection(int[] rows, int[] cols, int[] dataRows) ICovarianceMatrix.getSelection(int[] rows, int[] cols) static MatrixDataUtils.standardizeData(Matrix data) static Matrixstatic Matrixstatic Matrixstatic MatrixMethods in edu.cmu.tetrad.data with parameters of type MatrixModifier and TypeMethodDescriptionstatic MatrixDataUtils.centerData(Matrix data) static MatrixDataUtils.concatenate(Matrix... dataSets) static booleanDataUtils.containsMissingValue(Matrix data) static Matrixstatic MatrixDataUtils.getBootstrapSample(Matrix data, int sampleSize) static Vectorstatic Vectorvoidvoidvoidvoidvoidstatic MatrixDataUtils.standardizeData(Matrix data) static Matrixstatic MatrixConstructors in edu.cmu.tetrad.data with parameters of type MatrixModifierConstructorDescriptionCorrelationMatrix(List<Node> variables, Matrix matrix, int sampleSize) Constructs a correlation matrix data set using the given information.CovarianceMatrix(List<Node> variables, Matrix matrix, int sampleSize) Protected constructor to construct a new covariance matrix using the supplied continuous variables and the the given symmetric, positive definite matrix and sample size.TimeSeriesData(Matrix matrix, List<String> varNames) Constructs a new time series data contains for the given row-major data array and the given list of variables. -
Uses of Matrix in edu.cmu.tetrad.regression
Constructors in edu.cmu.tetrad.regression with parameters of type Matrix -
Uses of Matrix in edu.cmu.tetrad.search
Methods in edu.cmu.tetrad.search that return MatrixModifier and TypeMethodDescriptionstatic @NotNull Matrixstatic @NotNull MatrixFastIca.IcaResult.getK()PermutationMatrixPair.getMatrixW()FactorAnalysis.getResidual()FastIca.IcaResult.getS()FastIca.IcaResult.getW()FastIca.getWInit()Initial un-mixing matrix of dimension (n.comp,n.comp).FastIca.IcaResult.getX()Ling.pruneEdgesByResampling(Matrix data) This is the method used in Patrik's code.FactorAnalysis.successiveFactorVarimax(Matrix factorLoadingMatrix) FactorAnalysis.successiveResidual()Successive method with residual matrix.Methods in edu.cmu.tetrad.search that return types with arguments of type MatrixMethods in edu.cmu.tetrad.search with parameters of type MatrixModifier and TypeMethodDescriptionstatic booleanTimeSeriesUtils.allEigenvaluesAreSmallerThanOneInModulus(Matrix mat) static @NotNull Matrixstatic @NotNull MatrixdoubleIndTestHsic.empiricalHSIC(Matrix Ky, Matrix Kx, int m) Empirical unconditional Hilbert-Schmidt Dependence Measure for X and YdoubleIndTestHsic.empiricalHSICincompleteCholesky(Matrix Gy, Matrix Gx, int m) Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Y using incomplete Cholesky decomposition to approximate Gram matricesdoubleIndTestHsic.empiricalHSICincompleteCholesky(Matrix Gy, Matrix Gx, Matrix Gz, int m) Empirical unconditional Hilbert-Schmidt Dependence Measure for X and Y given Z using incomplete Cholesky decomposition to approximate Gram matricesstatic doubleSemBicScore.getVarRy(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, boolean calculateRowSubsets) static doubleZhangShenBoundTest.getVarRy(int i, int[] parents, Matrix data, ICovarianceMatrix covariances, boolean calculateRowSubsets, boolean calculateSquareEuclideanNorms) doubleLing.ngFullData(int rowIndex, Matrix data, Matrix W) Ling.pruneEdgesByResampling(Matrix data) This is the method used in Patrik's code.doublevoidInitial un-mixing matrix of dimension (n.comp,n.comp).FactorAnalysis.successiveFactorVarimax(Matrix factorLoadingMatrix) Constructors in edu.cmu.tetrad.search with parameters of type MatrixModifierConstructorDescriptionConstructs an instance of the Fast ICA algorithm, taking as arguments the two arguments that cannot be defaulted: the data matrix itself and the number of components to be extracted.IndTestFisherZ(Matrix data, List<Node> variables, double alpha) Constructs a new Fisher Z independence test with the listed arguments.IndTestFisherZRecursive(Matrix data, List<Node> variables, double alpha) Constructs a new Fisher Z independence test with the listed arguments.IndTestHsic(Matrix data, List<Node> variables, double alpha) PermutationMatrixPair(List<Integer> permutation, Matrix matrixW) RecursivePartialCorrelation(List<Node> nodes, Matrix cov, int sampleSize) -
Uses of Matrix in edu.cmu.tetrad.search.kernel
Methods in edu.cmu.tetrad.search.kernel that return MatrixModifier and TypeMethodDescriptionstatic MatrixConstructs the centralized Gram matrix for a given vector valued sample.static MatrixConstructs Gram matrix for a given vector valued sample.static MatrixKernelUtils.constructH(int m) Constructs the projection matrix on 1/mstatic MatrixKernelUtils.incompleteCholeskyGramMatrix(List<Kernel> kernels, DataSet dataset, List<Node> nodes, double precision) Approximates Gram matrix using incomplete Cholesky factorization -
Uses of Matrix in edu.cmu.tetrad.sem
Methods in edu.cmu.tetrad.sem that return MatrixModifier and TypeMethodDescriptionSemEstimatorGibbs.getDataSet()DagScorer.getEdgeCoef()Scorer.getEdgeCoef()SemIm.getEdgeCoef()SemIm.getErrCovar()DagScorer.getErrorCovar()Scorer.getErrorCovar()ISemIm.getImplCovar(boolean recalculate) SemIm.getImplCovar(boolean recalculate) SemIm.getImplCovar(List<Node> nodes) StandardizedSemIm.getImplCovar()ISemIm.getImplCovarMeas()SemIm.getImplCovarMeas()StandardizedSemIm.getImplCovarMeas()DagScorer.getSampleCovar()Scorer.getSampleCovar()SemIm.getSampleCovar()Methods in edu.cmu.tetrad.sem with parameters of type MatrixModifier and TypeMethodDescriptiondoubledoubledoubleISemIm.getVariance(Node nodeA, Matrix implCovar) doubleSemIm.getVariance(Node node, Matrix implCovar) Constructors in edu.cmu.tetrad.sem with parameters of type Matrix -
Uses of Matrix in edu.cmu.tetrad.util
Methods in edu.cmu.tetrad.util that return MatrixModifier and TypeMethodDescriptionstatic Matrixstatic MatrixMatrixUtils.convertCovToCorr(Matrix m) Converts a covariance matrix to a correlation matrix in place; the same matrix is returned for convenience, but m is modified in the process.Matrix.copy()Vector.diag()Matrix.getPart(int i, int j, int k, int l) Matrix.getSelection(int[] rows, int[] cols) Matrix.ginverse()static MatrixMatrix.identity(int rows) static MatrixTetradAlgebra.identity(int rows) static MatrixMatrixUtils.impliedCovar(Matrix edgeCoef, Matrix errCovar) static MatrixMatrixUtils.impliedCovar2(Matrix edgeCoef, Matrix errCovar) Matrix.inverse()Matrix.like()static Matrixstatic MatrixLingUtils.normalizeDiagonal(Matrix matrix) Matrix.scalarMult(double scalar) static MatrixMatrix.serializableInstance()Generates a simple exemplar of this class to test serialization.static Matrixstatic MatrixMatrix.sparseMatrix(int m, int n) Matrix.sqrt()Matrix.symmetricInverse()Matrix.transpose()Methods in edu.cmu.tetrad.util with parameters of type MatrixModifier and TypeMethodDescriptionvoidstatic Matrixstatic MatrixMatrixUtils.convertCovToCorr(Matrix m) Converts a covariance matrix to a correlation matrix in place; the same matrix is returned for convenience, but m is modified in the process.booleanstatic MatrixMatrixUtils.impliedCovar(Matrix edgeCoef, Matrix errCovar) static MatrixMatrixUtils.impliedCovar2(Matrix edgeCoef, Matrix errCovar) static booleanLingUtils.isPositiveDefinite(Matrix matrix) static booleanMatrixUtils.isPositiveDefinite(Matrix matrix) Return true if the given matrix is symmetric positive definite--that is, if it would make a valid covariance matrix.static MatrixLingUtils.normalizeDiagonal(Matrix matrix) static doubleStatUtils.partialCorrelation(Matrix submatrix) Assumes that the given covariance matrix was extracted in such a way that the order of the variables (in either direction) is X, Y, Z1, ..., Zn, where the partial correlation one wants is correlation(X, Y | Z1,...,Zn).static doubleStatUtils.partialCorrelation(Matrix covariance, int x, int y, int... z) static doubleStatUtils.partialCorrelationPrecisionMatrix(Matrix submatrix) static doubleStatUtils.partialCovarianceWhittaker(Matrix submatrix) Assumes that the given covariance matrix was extracted in such a way that the order of the variables (in either direction) is X, Y, Z1, ..., Zn, where the partial covariance one wants is covariance(X, Y | Z1,...,Zn).static doubleStatUtils.partialCovarianceWhittaker(Matrix covariance, int x, int y, int... z) static doubleStatUtils.partialStandardDeviation(Matrix covariance, int x, int... z) static doubleStatUtils.partialVariance(Matrix covariance, int x, int... z) static Vectorstatic MatrixConstructors in edu.cmu.tetrad.util with parameters of type Matrix