Package edu.cmu.tetrad.search
Class IndTestCramerT
java.lang.Object
edu.cmu.tetrad.search.IndTestCramerT
- All Implemented Interfaces:
IndependenceTest
Checks conditional independence for continuous variables using Cramer's T-test formula (Cramer, Mathematical Methods
of Statistics (1951), page 413).
- Author:
- Joseph Ramsey
-
Constructor Summary
ConstructorsConstructorDescriptionIndTestCramerT
(CorrelationMatrix covMatrix, double alpha) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.IndTestCramerT
(DataSet dataSet, double alpha) Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous).IndTestCramerT
(ICovarianceMatrix covMatrix, double alpha) Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level. -
Method Summary
Modifier and TypeMethodDescriptioncheckIndependence
(Node x, Node y, List<Node> z) Determines whether variable x is independent of variable y given a list of conditioning variables z.boolean
determines
(List<Node> z, Node x) double
getAlpha()
getData()
double
double
getScore()
A score that is higher with more likely models.indTestSubset
(List<Node> vars) Creates a new IndTestCramerT instance for a subset of the variables.boolean
void
setAlpha
(double alpha) Sets the significance level for future tests.void
setVerbose
(boolean verbose) toString()
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface edu.cmu.tetrad.search.IndependenceTest
checkIndependence, getCov, getDataSets, getSampleSize, getVariable, getVariableNames
-
Constructor Details
-
IndTestCramerT
Constructs a new Independence test which checks independence facts based on the correlation matrix implied by the given data set (must be continuous). The given significance level is used.- Parameters:
dataSet
- A data set with all continuous columns.alpha
- the alpha level of the test.
-
IndTestCramerT
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level. -
IndTestCramerT
Constructs a new independence test that will determine conditional independence facts using the given correlation matrix and the given significance level.
-
-
Method Details
-
indTestSubset
Creates a new IndTestCramerT instance for a subset of the variables.- Specified by:
indTestSubset
in interfaceIndependenceTest
- Returns:
- an Independence test for a subset of the variables.
-
checkIndependence
Determines whether variable x is independent of variable y given a list of conditioning variables z.- Specified by:
checkIndependence
in interfaceIndependenceTest
- Parameters:
x
- the one variable being compared.y
- the second variable being compared.z
- the list of conditioning variables.- Returns:
- true iff x _||_ y | z.
- Throws:
RuntimeException
- if a matrix singularity is encountered.- See Also:
-
getPValue
public double getPValue()- Returns:
- the probability associated with the most recently computed independence test.
-
setAlpha
public void setAlpha(double alpha) Sets the significance level for future tests.- Specified by:
setAlpha
in interfaceIndependenceTest
-
getAlpha
public double getAlpha()- Specified by:
getAlpha
in interfaceIndependenceTest
- Returns:
- the getModel significance level.
-
getVariables
- Specified by:
getVariables
in interfaceIndependenceTest
- Returns:
- the list of variables over which this independence checker is capable of determinine independence relations-- that is, all the variables in the given graph or the given data set.
-
determines
- Specified by:
determines
in interfaceIndependenceTest
- Returns:
- the variable with the given name, or null if there is no such variable.
- Throws:
UnsupportedOperationException
-
getData
- Specified by:
getData
in interfaceIndependenceTest
- Returns:
- The data model for the independence test.
-
getScore
public double getScore()Description copied from interface:IndependenceTest
A score that is higher with more likely models.- Specified by:
getScore
in interfaceIndependenceTest
-
toString
- Specified by:
toString
in interfaceIndependenceTest
- Overrides:
toString
in classObject
- Returns:
- a string representation of this test.
-
isVerbose
public boolean isVerbose()- Specified by:
isVerbose
in interfaceIndependenceTest
-
setVerbose
public void setVerbose(boolean verbose) - Specified by:
setVerbose
in interfaceIndependenceTest
-