Package edu.cmu.tetrad.search
Class Cstar
java.lang.Object
edu.cmu.tetrad.search.Cstar
An adaptation of the CStaR algorithm (Steckoven et al., 2012).
Stekhoven, D. J., Moraes, I., Sveinbjörnsson, G., Hennig, L., Maathuis, M. H., and Bühlmann, P. (2012). Causal stability ranking. Bioinformatics, 28(21), 2819-2823.
Meinshausen, N., and Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417-473.
Colombo, D., and Maathuis, M. H. (2014). Order-independent constraint-based causal structure learning. The Journal of Machine Learning Research, 15(1), 3741-3782.
- Author:
- jdramsey@andrew.cmu.edu
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic enum
static class
static enum
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionstatic LinkedList<Cstar.Record>
cStar
(LinkedList<LinkedList<Cstar.Record>> allRecords) getRecords
(DataSet dataSet, List<Node> possibleCauses, List<Node> possibleEffects, IndependenceTest test) Returns records for a set of variables with expected number of false positives bounded by q.getRecords
(DataSet dataSet, List<Node> possibleCauses, List<Node> possibleEffects, IndependenceTest test, String path) Returns records for a set of variables with expected number of false positives bounded by q.makeGraph
(List<Cstar.Record> records) Makes a graph of the estimated predictors to the effect.makeTable
(LinkedList<Cstar.Record> records, boolean printTable) Returns a text table from the given recordsvoid
setNumSubsamples
(int numSubsamples) void
setParallelized
(boolean parallelized) void
setPatternAlgorithm
(Cstar.PatternAlgorithm patternAlgorithm) void
setqFrom
(int qFrom) void
setqIncrement
(int qIncrement) void
setqTo
(int qTo) void
setSampleStyle
(Cstar.SampleStyle sampleStyle) void
setSelectionAlpha
(double selectionAlpha) void
setVerbose
(boolean verbose)
-
Constructor Details
-
Cstar
public Cstar()
-
-
Method Details
-
cStar
-
setParallelized
public void setParallelized(boolean parallelized) -
getRecords
public LinkedList<LinkedList<Cstar.Record>> getRecords(DataSet dataSet, List<Node> possibleCauses, List<Node> possibleEffects, IndependenceTest test) Returns records for a set of variables with expected number of false positives bounded by q.- Parameters:
dataSet
- The full datasets to search over.possibleCauses
- A set of variables in the datasets over which to search.possibleEffects
- The effect variables.test
- This test is only used to make more tests like it for subsamples.
-
getRecords
public LinkedList<LinkedList<Cstar.Record>> getRecords(DataSet dataSet, List<Node> possibleCauses, List<Node> possibleEffects, IndependenceTest test, String path) Returns records for a set of variables with expected number of false positives bounded by q.- Parameters:
dataSet
- The full datasets to search over.possibleCauses
- A set of variables in the datasets over which to search.possibleEffects
- The effect variables.test
- This test is only used to make more tests like it for subsamples.path
- A path where interim results are to be stored. If null, interim results will not be stored. If the path is specified, then if the process is stopped and restarted, previously computed interim results will be loaded.
-
makeTable
Returns a text table from the given records -
makeGraph
Makes a graph of the estimated predictors to the effect. -
setqFrom
public void setqFrom(int qFrom) -
setqTo
public void setqTo(int qTo) -
setqIncrement
public void setqIncrement(int qIncrement) -
setPatternAlgorithm
-
setVerbose
public void setVerbose(boolean verbose) -
setSelectionAlpha
public void setSelectionAlpha(double selectionAlpha) -
setSampleStyle
-
setNumSubsamples
public void setNumSubsamples(int numSubsamples)
-