Package jgpml.covariancefunctions
Class CovLINard
java.lang.Object
jgpml.covariancefunctions.CovLINard
- All Implemented Interfaces:
- CovarianceFunction
Linear covariance function with Automatic Relevance Determination (ARD). The
 covariance function is parameterized as:
 
k(x^p,x^q) = x^p'*inv(P)*x^q
where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where D is the dimension of the input space. The hyperparameters are:
 [ log(ell_1)  
 log(ell_2)  
 .          
 log(ell_D) ] 
 
Note that there is no bias term; use covConst to add a bias.
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionJama.Matrixcompute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset XJama.Matrix[]compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariancesJama.MatrixcomputeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidxstatic voidintReturns the number of hyperparameters of thisCovarianceFunction
- 
Constructor Details- 
CovLINardpublic CovLINard(int inputDimension) Creates a newCovSEard CovarianceFunction- Parameters:
- inputDimension- muber of dimension of the input
 
 
- 
- 
Method Details- 
numParameterspublic int numParameters()Returns the number of hyperparameters of thisCovarianceFunction- Specified by:
- numParametersin interface- CovarianceFunction
- Returns:
- number of hyperparameters
 
- 
computepublic Jama.Matrix compute(Jama.Matrix loghyper, Jama.Matrix X) Compute covariance matrix of a dataset X- Specified by:
- computein interface- CovarianceFunction
- Parameters:
- loghyper- column- Matrixof hyperparameters
- X- input dataset
- Returns:
- K covariance Matrix
 
- 
computepublic Jama.Matrix[] compute(Jama.Matrix loghyper, Jama.Matrix X, Jama.Matrix Xstar) Compute compute test set covariances- Specified by:
- computein interface- CovarianceFunction
- Parameters:
- loghyper- column- Matrixof hyperparameters
- X- input dataset
- Xstar- test set
- Returns:
- [K(Xstar, Xstar) K(X,Xstar)]
 
- 
computeDerivativespublic Jama.Matrix computeDerivatives(Jama.Matrix loghyper, Jama.Matrix X, int index) Coompute the derivatives of thisCovarianceFunctionwith respect to the hyperparameter with indexidx- Specified by:
- computeDerivativesin interface- CovarianceFunction
- Parameters:
- loghyper- hyperparameters
- X- input dataset
- index- hyperparameter index
- Returns:
- Matrixof derivatives
 
- 
main
 
-