Class ConditionalGaussianLikelihood

java.lang.Object
edu.cmu.tetrad.search.ConditionalGaussianLikelihood

public class ConditionalGaussianLikelihood extends Object
Implements a conditional Gaussian likelihood. Please note that this this likelihood will be maximal only if the the continuous mixedVariables are jointly Gaussian conditional on the discrete mixedVariables; in all other cases, it will be less than maximal. For an algorithm like FGS this is fine.
Author:
Joseph Ramsey
  • Constructor Details

    • ConditionalGaussianLikelihood

      public ConditionalGaussianLikelihood(DataSet dataSet)
      Constructs the score using a covariance matrix.
  • Method Details

    • setRows

      public void setRows(List<Integer> rows)
    • getLikelihood

      public ConditionalGaussianLikelihood.Ret getLikelihood(int i, int[] parents)
      Returns the likelihood of variable i conditional on the given parents, assuming the continuous mixedVariables index by i or by the parents are jointly Gaussian conditional on the discrete comparison.
      Parameters:
      i - The index of the conditioned variable.
      parents - The indices of the conditioning mixedVariables.
      Returns:
      The likelihood.
    • getPenaltyDiscount

      public double getPenaltyDiscount()
    • setPenaltyDiscount

      public void setPenaltyDiscount(double penaltyDiscount)
    • setDiscretize

      public void setDiscretize(boolean discretize)
    • setNumCategoriesToDiscretize

      public void setNumCategoriesToDiscretize(int numCategoriesToDiscretize)