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NOTES ON PROBABILITY AND INDUCTION* 
 
 
 

INTRODUCTORY REMARKS 
 
I. The Three Main Conceptions of Probability 
 
 (1) The classical conception (Bernoulli, Bayes, Laplace). 
 (2) The frequency conception (Mises, Reichenbach; mathematical statistics). 
 (3). The logical conception (Keynes, Jeffreys).  
Read: Nagel [37] 
 
II. The Two Explicanda 
 
There are two explicanda, both called ‘probability’:  
 (1) logical or inductive probability (probability1),  
 (2). statistical probability (probability2). 
 Read: [Prob.] Ch. II, esp. §§ 9 and 10. 
The logical concept of probability appears in three forms ([Prob.] § 8):  
 (a) the classificatory concept (confirming evidence), 
 (b) the comparative concept (higher confirmation),  
 (c) the quantitative concept (degree of confirmation).  
 
III. Preliminary Remarks on Inductive Logic 
 
Read: [Prob.] Ch. IV. In particular: 
 (1) Logical probability (as explicandum) is explained as a fair betting quotient, and as an 
estimate of relative frequency ([Prob.] § 41). 
 (2) If logical probability is used, no synthetic assumption (e.g., uniformity of the world) is 
needed as presupposition for the validity of the inductive method ([Prob.] § 41 F). 
 (3) Comparison of inductive and deductive logic ([Prob.] § 43).  
 (4) The main kinds of inductive inference ([Prob.] § 44 B) 
  (a) direct inference (from the population to a sample), 
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  (b) predictive inference (from one sample to another),  
  (c) inference by analogy, 
  (d) inverse inference (from a sample to the population),  
  (e) universal inference (from a sample to a universal law). 
 (5) The use of inductive logic for the choice of a practical decision ([Prob.] §§ 50, 51). 
The rule of maximizing the estimate of utility. Daniel Bernoulli’s law of utility. 
 
IV. Some Concepts of Deductive Logic  
 
Read: [Prob.] §§ 14-20, esp. 18-20. 
 (1) State-descriptions (Z, § 18A; comp. individual distributions, D 26-6a). A state-
description describes a (possible) state or model. 
 (2) The requirement of the logical independence of the primitive predicates (§ 18B) can 
be abandoned if the dependences are expressed by meaning postulates (see [15].) 
 (3) Families of related primitive predicates (§ 18C).  
 (4) The range of a sentence (§§ 18D, 19). 
 (5). L-concepts (§ 20). I write ‘├ i’ for ‘i is L-true’, and hence ‘├ i ⊃ j’ for ‘i L-implies 
j’, and ‘├ i ≡ j’ for ‘i is L-equivalent to j’. 
 In simple languages (e.g., those used in [Prob.]) every model is describable by a state-
description. In richer languages this is not possible; here the definitions of L-concepts and degree 
of confirmation are to be based on models rather than state-descriptions. 
 

THE THEORY OF DEGREE OF CONFIRMATION 
 
V. Fundamental axioms (Al-A5) 
 
The axioms apply to any sentences e and h in a given language L (finite; or infinite). We 
presuppose throughout that the second argument of c (usually e) is not L-false (see [Prob.] pp. 
295f.). 
 
 Al. Range of values. 0 ≤ c (h, e) ≤ 1.  
 A2. L-implication. If ├ e ⊃ h, then c (h, e) = 1. 
 A3. Special addition principle. If e . h . h′ is L-false, then  
  c (h ∨  h′, e) = c (h, e) + c (h′, e). 
 A4. General multiplication principle. c (h, h′, e)  = c (h, e) × c (h′, e . h). 



 A5. L-equivalent arguments. If ├ e ≡ e′ and ├ h ≡ h′, then c (h, e) = c (h′, e′). 
 
(These axioms, except for A5, are those of Shimony [47]. They are together equivalent to the 
Conventions C53-1 and 2 in [Prob.] § 53. Most axiom systems of other authors are essentially 
equivalent to this one; see [Prob.] § 62.) The usual theorems of the probability calculus are 
provable on the basis of these axioms. Among them are the theorems [Prob.] T53-1a to f. (‘t’ is 
the tautology.) 
 
VI. Regular m-Functions and c-Functions (A6) 

  
 

Deductive logic 
‘e L-implies h’ means that the range of e is 
entirely contained in that of h. 
 

 
 

Inductive logic 
‘c (h, e) = 3/4’ means that three-fourths of the 
range of e is contained in that of h. ([Prob.] § 
55B.) 

 
Fig. 1. 

 
For degrees of confirmation (d. of c.) we need a measure function for the ranges of sentences. 
For this purpose we define regular m-functions ([Prob.] 55A). 
 
Dl. m is a regular m-function for LN = Df  
 (a) for every Zi in LN, m (Zi) > 0;  
 (b) ∑im (Zi) = 1; 
 (c) if j is L-false, m (j) = 0; 
 (d) if j is not L-false, m (j) = ∑m (Zi) for all Zi in the range of j. 
 
D2. c is a regular c-function for LN = Df there is a regular m-function m such that c is based 
 upon m, i.e. 
 

 c (h, e) = .
)(
).(

em
hem



 A6. Regularity. In a finite domain of individuals, c(h, e) =1 only if ├ e ⊃ h. 
 
(This axiom corresponds to [Prob.] C53-3.) 
Null confirmation is the d. of c. on the tautological evidence t ([Prob.] D57-1, where the symbol 
‘c0’ is used): 
 
 D3. ct(j) = Df c(j, t) 
 
 T1. A c-function c for LN satisfies the axioms Al-A6 if and only if c is a regular c- 
  function. 
 
Proof. 1. Let c be a regular c-function for LN. Then c satisfies Al-A6 according to [Prob.] T59-
1a, 1b, 1l, 1n, 1h and i, T59-5a, respectively. 2. Let c satisfy Al-A6. Then ct is a regular m-
function (by [Prob.] C53-3 and T53-1). c is based upon ct (comp. [Prob.] § 54B, (3)). Therefore c 
is a regular c-function. 
 According to Tl, the theorems stated in [Prob.] §§ 55, 57A and B, 59, 60, and 61 for 
regular c-functions in finite systems LN are provable on the basis of Al to A6. 
 If c satisfies Al to A5, but not A6, we shall call it a quasi-regular c-function (not in [Prob 
j). In this case, ct is 0 for some Zi; therefore, even in LN, c (h, e) cannot always be represented as 
ct (e · h)/ct (e).  
 (Example: the straight rule, [Prob.] p. 227.) 
 The following theorems are provable on axioms Al to A5; hence they hold for all regular 
or quasi-regular c-functions. 
 
 T2. c (h, e) × c(i, e . h) = c(i, e) × c (h, e . i). (From A4, A5.). 
 
 T3. General division theorem, in two forms. 

  a. If c (i, e) > 0, then c (h, e . i) 
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  b. If c (i, e) > 0 and c(h, e) > 0, then 
),(
).,(

),(
).,(

eic
heic

ehc
iehc
=  (From (a).) 

 
The fraction on the left-hand side of the equation is known as the 



relevance quotient; the numerator is the posterior confirmation of h and the denominator is the 
prior confirmation of h. 
 
 T4. Special division theorem. Suppose that c(i, e) > 0, c(h, e) > 0, and c (i, e . h) = 1 (i 
 is predictable or explainable by h). Then  
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⋅ (From T3b). 

 
See the explanations and examples for these theorems in [Prob.] §§ 60 and 61. 
 
VII. Coherence 
 
Informal explanation. Let X be willing to accept any system of bets in which the betting 
quotients are equal to the values of a function c. If there were a betting system such that X would 
suffer a loss in every logically possible case, c would obviously be unsuitable. If there is no such 
betting system, we shall call c coherent (Ramsey, De Finetti). If, moreover, there is no betting 
system such that X would lose in at least on possible case and would not gain in any possible 
case, we shall call c strictly coherent (Shimony). 
 We assume for the following definitions that L  is an interpreted language, that e and h 
are sentences of L  , that e is not L-false, that c is a function whose value for any h, e is a real 
number, and that q and S are real numbers (and likewise for ei, hi, qi, Si). 
 We represent a bet (of the person X) on h, given e, in language L , with the betting 
quotient q and the total stake S as the ordered quintuple < L , h, e, q, S> (without reference to 
X): 
 
 Dl. B is a bet = Df for some L , h, e, q, and S, B = < L , h, e, q, S>.  
 
We represent a betting system BS based on the assumption k and comprising the bets B1, B2, ..., 
Bn in language L , in accordance with c (i.e., the betting quotients are determined by the values 
of c) as the ordered quadruple <{B1, ..., Bn}, L , k, c>: 
 
 D2. BS is a betting system = Df BS = <K, L , k, c>, where K = {Bi} (i = l, ..., n), Bi =  
  <L, hi, ei, qi, Si>, k is a non-L-false sentence in L , each ei is either k or a   
  conjunction containing k as a component and is not L-false, and qi = c(hi, ei). 



 If X regards a bet on h, given e, with betting quotient q as fair, then he is willing to make 
a corresponding bet on either side, i.e., either for h or against h. If e is true, the gains are as 
follows (with S>0): 
 
       Gain 

 h for h against h 
(a) true (1 − q) S − (1 − q) S
(b) false − qS qS 

 
Thus X’s bet against h can be regarded as a bet for h with negative S. Therefore we admit S ≤ ≥ 
0; then D3 covers both bets, for h and against h. g (B, j) is the gain which X would obtain from 
his bet B if j were true. 
 
 D3. Let B be a bet <L, h, e, q, S>. Let j be a non-L-false sentence in L which L-
implies   either e or ~e and L-implies either h or ~h. g (B, j) = Df the value u such 
that 
  either  (a) ├ j ⊃  e . h, and u = (1− q) S,  
  or  (b) ├ j ⊃  e . ~h, and u = −qS,  
  or  (c) ├ j ⊃  ~e, and u = 0. 
 
We define G (BS, j) as the total gain from the betting system BS which X would obtain if j were 
true: 
 
 D4. Let BS be <{Bi}, L, k, c> (i = 1,…, n). Let j be a non-L-false sentence in L  such  
  that, for every i, j L-implies either ei or ~ei, and j L-implies either hi or ~hi. Then  
  G (BS, j) = Df ∑ =

n
i 1 g (Bi, j). 

 
Let BS be <{Bi}, L, k, c>. Let CBS be the class of the conjunctions j such that (1) j contains as 
components, for each of the sentences e1,…, en, hl,..., hn, either the sentence itself or its negation 
but not both, and no other components, and (2) j is compatible with k. These conjunction 
represent the possible cases on the basis of the assumption k. We shall say that for a given BS 
loss is necessary if, for every conjunction j in CBS, G (BS, j) < 0; that loss is possible if, for at 
least one j in CBS, G (BS, j) < 0; and that positive gain is impossible if, for every j in CBS G (BS, 
j) ≤ 0. We shall say that BS is vacuous if, for every j, G (BS, j) = 0.



 D5. c is a coherent c-function for L = Df there is no betting system in L in accordance  
  with c for which loss is necessary (in other words, for every betting system there  
  is a possible outcome without loss). 
 
 D6. c is a strictly coherent c-function for L = Df there is no betting system in L in  
  accordance with c for which loss is possible and positive gain is impossible (in  
  other words, for every non-vacuous betting system there is a possible outcome  
  with positive gain). 
 
 T1. If c is strictly coherent, it is also coherent. 
 
 T2. (Ramsey, De Finetti.) Every coherent c-function satisfies the axioms Al to A5. In  
  other words, if c violates at least one of the axioms Al to A5, then there is betting  
  system in accordance with c for which loss is necessary. 
 
Example for A4. Suppose that c violates A4 in L. Then there are sentences e, h, and h′ in L such 
that 
 
  c (h, e) × c (h′, e . h) − c (h . h′, e) ≠ 0. 
 
Let c1= c (h, e), c2= c (h′, e . h), c3= c (h . h′, e), and let cl c2 − c3= D.  
 We choose the betting system BS = <{Bi}, L, e, c> (i = 1, 2, 3), 
 

TABLE I 
Example for A4 

 

 Bi g (Bi, j) for the four conjunctions in CBS 

i ei hi Si qi e . h . h′ e . h . ~h′ e . ~h . h′ 
e . ~h . ~h′ 

1 e h 
D
c2  cl D

cc 211 )( −  
D

cc 211 )( −  
D

cc 21−  

2 e . h h′ D
1  c2 D

c21−  
D
c2−  0 

3 e h . h′ 
D
1−  c3 D

c )( 31−−  
D
c3  

D
c3  

G(BS,j)= −1 −1 −1 

 



with e as k, and with ei, hi, and Si as specified in the table below. (See Table I.) By D2, qi = c(hi, 
ei). The values of g are determined by D3, and those of G by D4. We find that, for every j, G = 
−1. Thus for the chosen BS, loss is necessary. This betting system is described in Table I. 
 
 T3. (Shimony.) If c violates A6, then there is a betting system in accordance with c for 
  which loss is possible and positive gain is impossible. Therefore every strictly  
  coherent c-function satisfies the axioms Al to A6. 
  
 Proof. Suppose that c violates A6 in LN. Then there are sentences e, h in LN such that c (h, 
e) =1 but e does not L-imply h, hence e . ~h is not L-false. We take a system of one bet < LN, h, 
e, c (h, e), 1>, and again e as k. The two possible cases j are e . h and e . ~h. The gain is 0 in the 
first case, and −1 in the second. Thus loss is possible and positive gain is impossible. This 
applies to any quasi-regular c-function, e.g. to the straight rule (VI). 
 
T2 gives a validation for the axioms Al to A5, T3 for A6. The following theorem shows that an 
analogous validation is not possible for any further axioms. (The proof for T4 is given by 
Kemeny in his paper [34].) 
 
 T4. (Kemeny)  a. Every c-function in L  which satisfies the axioms Al to A5, is  
  coherent in L  . 
    b. Every c-function in L  which satisfies the axioms Al to A6, is  
  strictly coherent in L  . 
 
 T5. a. A c-function is coherent if and only if it is regular or quasi-regular. 
  b. A c-function is strictly coherent if and only if it is regular. (From T2, T3, T4,  
  and VI-T1.) 
 
 The classification of c-functions defined by T4 and T5 can be presented in the form of the 
following table: 
 

Axioms satisfied Type of c-function 

A6 regular 
strictly coherent A1 to A5 

not A6 quasi-regular 
coherent 

 



VIII. Symmetrical c-Functions (A7) 
 
The system Al to A6 is very weak. It determines no value of c(h, e) except 0 or 1 in special 
cases. For any pair of factual sentences e, h such that e L-implies neither h nor ~h, the system 
does not exclude any number between 0 and 1 as a value of c(h, e) ([Prob.] T59-5f, see remark 
on p. 323). Thus additional axioms are needed. A7 is the first of several axioms of invariance of 
c(h, e) with respect to certain transformations of e and h. These axioms represent the valid core 
of the classical principle of indifference. Axiom of symmetry (with respect to individuals): 
 
 A7. c (h, e) is invariant with respect to any permutation of the individuals. 
 
 Dl. m-functions and c-functions which satisfy A7 are said to be symmetrical (with  
  respect to individuals). (See [Prob.] §§ 90, 91.) 
 
Read the definitions and explanations of the following concepts in [Prob.] : Ch. III: division 
(D25-4), isomorphic sentences (D26-3) and isomorphic state-descriptions (§ 27), individual and 
statistical distributions (D26-6), structures (§ 27) and structure-descriptions (Str, D27-1), Q-
predicates (§ 31) and Q-numbers (§ 34). 
 Henceforth it is assumed, unless the contrary is stated, that c satisfies Al to A7 and hence 
is regular and symmetrical. m is ct; hence c is based on m. 
 
 T1. Let e be isomorphic to e′, and h to h′.  
  a. c (h, e) = c (h′, e′). (From A7). 
  b. m (h) = m (h′). (From (a)). 
 
 T2. Let i be an individual distribution for n given individuals with respect to the  
  division Ml,..., Mk, with the cardinal numbers nl,..., nk. 
  a. The numbers of the individual distributions for the same n individuals which  
  are isomorphic to i is 
 

  ζi = 
!!...

!
knn

n
1

 ([Prob.] T40-32b.) 



  b. Let j be the statistical distribution corresponding to i. Then m(j) = ζi × m(i).  
  (From T1b). 
 
T3 is a special case of T2. 
 
 T3. Let LN be a language with N individual constants and k Q-predicates. Let Zi be  
  a state-description in LN

  with the Q-numbers Nj (j = l, ..., k). 
  a. The number of those state-descriptions in LN which are isomorphic to Zi is 
   

  ζi = 
!!...!

!
kNNN

N
21

. (From T2a.) 

 
  b. Let Stri be the structure-description corresponding to Zi. Then m (Stri) = ζi ×  
  m(Zi). (From T2b.) 
 
Therefore a regular and symmetrical m-function for LN is uniquely determined if we choose as its 
values for the structure-descriptions in LN arbitrary positive numbers whose sum is 1. Then, for 
any Zi, m (Zi) is determined by T3b and hence the other values by VI-D1c and d. 
 The subsequent theorems T4 to T6 on the direct inductive inference refer to the following 
situation. e is a statistical distribution for n given individuals (the ‘population’) in LN with respect 
to the division M1, M2 (which is non-M1) with the cardinal numbers n1, n2 . ri = ni/n (i =1, 2). h is 
an individual distribution for s of the n individuals (the ‘sample’) with the cardinal numbers s1, s2 
(si ≤ ni). hst is the statistical distribution corresponding to h. 
 

 T4. a. c (h, e) = 
[ ][ ]
[ ]ns

nsns 2
2

1
1 . 

  (For [ ]ns , see [Prob.] D40-3.)  
 

  b. c (hst, e) = 
( )( )
( )ns

nsns 2
2

1
1  

 



  (For ( )nm , see D40-2.)  
 
  c. For given e and s, c(hst, e) has its maximum if s1/s is equal, or as near as   
  possible, to r1. 
  d. For fixed s, let hp(p = 0,..., s) be the statistical distribution hst with s1 = p and s2  

  = s − p. Then 
 

   ∑
=

s

p 0
[p × c (hp, e)] = sr1 . 

 
  e. Let j be a full sentence of ‘N1’ with one of the n individual constants in e. Then 
 
  c(j, e) = r1. (For proofs see [Prob.] T94-1.) 
 
We see from T4d that, for given s, the estimate of s1 on e is sr1. Hence the estimate of s1/s is r1. 
T4e shows that c for a singular prediction with ‘N1’ is r1. Thus for the direct inference something 
analogous to the straight rule holds for all symmetrical regular (or quasi-regular) c-functions. 
 
 T5. The following holds approximately for sufficiently large n, n1, and n2. It holds  
  exactly for lim c (n → ∞) if lim(ni/n) = ri.  
   

  a. c (h, e) = 
21

21
ss rr × . 

 
  b. Binomial law. c (hst, e) = ( ) 21

1 21
ss rrss . 

 
  For proofs and explanations, see [Prob.] § 95. 
 
We shall use the following notations in T6: σ = 21rsr (‘standard deviation’); δ = s1 – sr1 
(deviation of s1 from its estimate); 2221 /)/()( ueu −= πφ  (the normal function; [Prob.] D40-4a); 
hp as in T4d; h′ is the disjunction of sentences hp with p running from sr1 − δ′ (or the integer 
nearest to it) to sr1 + δ′ ( = s1′) ; thus h′ says that s1 deviates from its estimate sr1 to either side by 
not more than δ′, in other words, that s1/s (the relative frequency of M1 in the sample) does not 
deviate from r1 by more than δ′/s. 
 
 T6. The following holds approximately for sufficiently large s and n/s. 



  a. The normal law. 
 

  .),( / 


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  b. Bernoulli-Laplace theorem  
 

  ∫
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  c. Bernoulli’s limit theorem. For fixed rl and fixed q = δ′/s, lim c(h′, e) = 1. 
                    s→∞ 

T6c says the following. If the sample size s increases but a fixed interval rl ± q around the given 
r1 is chosen, then c(h′, e) (i.e., the probability that the relative frequency of Ml in the sample lies 
within the chosen interval) can be brought as near to 1 as desired by making the sample 
sufficiently large. For explanations and numerical examples, see [Prob.] § 96. 
 
IX. Estimation 
 
Read: [Prob.] § 98 about the present situation of the problem of estimation. 
 Definition of the general estimate function. 
 Suppose that, on the basis of e, the magnitude u has n possible values: ul,..., un. Let hi say 
that u has the value ui (i = 1, ..., n). The c-mean estimate of u is the weighted mean of the 
possible values, with their c-values as weights: 
 

 Dl. est(u, e) = Df ∑
=

n

i 1
[ui × c(hi, e)]. 

 T1. A and B are arbitrary fixed constants.  
  a. est (Au, e) = A × est (u, e). 
  b. est (u + B, e) = est (u, e) + B. 
  c. est (Au + B, e) = A × est (u, e) + B.  
  ([Prob.] T100-3,4, and 5). 
 
Analogous results do not generally hold for a non-linear function of u. For example, in general 
est(u2, e) ≠ est2(u, e). This leads to a paradox 



in the practical application of estimates ([Prob.] § 100 C). The paradox is eliminated if the rule 
for the determination of a decision refers to the estimate of only one magnitude, e.g., the gain or 
the utility resulting from an action. 
 Truth frequency. Let K be a class of s sentences i1,..., is. Let tf(K) be the truth-frequency in 
K, i.e., the number of true sentences in K. Let rtf (K) be the relative truth-frequency in K, i.e., tf 
(K)/s. 
 

 T2. a. est (tf, K, e) = ∑
=

s

n 1
c (in, e). (For this proof. see [Prob.] T104-2a.) 

 

  b. est (rtf, K, e) = ∑
=

s

ns 1

1 c (in, e). (From (a). T1a.)  

  
  c. If all sentences in K have the same c-value on e, then the estimate of rtf (K) is  
  equal to this c-value. (From (b).) 
 
 The frequency of a property of individuals. Let K be a class of n individuals defined by 
enumeration. Let af(M, K) be the absolute frequency of M in K, and rf (M, K) the relative 
frequency, i.e., of (M, K)/n. Let K′ be the class of the full sentences of M with those individual 
constants which designate the individuals in K Then 
 
  af (M, K) = tf (K′) and rf (M, K) = rtf (K′). 
 
Therefore the results T2 on estimates of tf and rtf can now be applied to estimates of af and rf. 
 Direct estimation of frequency. This is based on the direct inference (see VIII-T4). Let e, 
n, M1, n1, r1, s, and s1 be as before (VIII-T4). Thus e says that the rf of M1 in the population is r1. 
Let K be the class of the s individuals of the sample. 
 
 T3. a. est (af, M, K, e) = sr1. (From VIII-T4d.) 
  b. est (rf, M, K, e) = r1. (From (a), T1a.) 
 
 Predictive estimation of frequency. Here the estimate depends on the chosen c-function. 
Let e be any non-L-false sentence, h a full sentence of M for a new individual, and K any finite, 
non-empty class of new individuals. 



 T4. est (rf, M, K, e) = c (h, e). (From T2c.) 
 
Thus the confirmation of a singular prediction with M is equal to the estimate of rf of M. This 
relation was used earlier for an informal explanation of inductive probability ([Prob.] § 41D). 
 
X. The Functions e† and c* 
 
In discussions on the principle of indifference, some authors have proposed to give equal a priori 
probabilities to all individual distributions (for a given domain of individuals and a given 
division of properties). Other authors have proposed the same for all statistical distributions. In 
our terminology, the controversy concerns the choice of one of the following two rules: 
 
 (A) All individual distributions have equal m-values. 
 (B) All statistical distributions have equal m-values. 
 
 However, each of these rules leads to contradictions if applied to different divisions (see 
the examples in [Continuum] p. 39). 
 Each of the rules becomes consistent if it is restricted to one division (for a given finite 
language), viz. the division of the Q-predicates, as follows: 
 
 (A′) All state-descriptions have equal m-values. 
 (B′) All structure-descriptions have equal m-values. 
 
 The function c†. There is exactly one symmetrical, regular m-function which fulfills (A′), 
viz. m† defined by Dl. 
 Let LN be a language with N individual constants and k Q-predicates.  
 
 T1. a. The number of state-descriptions in LN is ζN = kN. ([Prob.] T40-31c.) 
  b. The number of structure-descriptions in LN is 
 

  τN  = .
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)!(
1
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1
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 ([Prob.] T40-33b.)  

 
 Let ZN be any state-description in LN with the Q-numbers N1,.. ., Nk. We define: 
 

 D1. m† (ZN) = Df  
Nk
1  



 

 D2. c†(h,e) = Df .
)(
).(

†

†

em
hem  

 
 Let eN be an individual distribution for any N individuals for the division of the k Q-
predicates with the same Q-numbers N1,..., Nk (the same as in ZN). Let hj be a full sentence of Qj 
for a new individual.  
 
 T2. a. m† is regular and symmetrical. (From D1.) 
 

  b. m† (eN) = 
Nk
1 . (From D1, since eN is isomorphic to ZN.)  

   
  c. c† (hj, eN) = 1/k. 
 
 Proof. eN . hj is isomorphic to a state-description in LN+ 1, hence m† = 1/kN+1 (from Dl). 
The result is obtained by D2 and (b). 
 
 T2c shows that et (h;, eN) is independent of eN. It violates the principle of learning from 
experience and hence is unacceptable ([Prob.] p. 565). However, this function was proposed by 
C. S. Peirce, Keynes, and Wittgenstein. 
 The function c*. There is exactly one symmetrical, regular m-function which fulfills (B′), 
viz. m* defined by D3. 
 

 D3. m* (ZN) = Df 
iNζτ

1  

   = .
)(

)!(!!...
1
11

−+
−

kN
kNN k (From T1b, VIII-T3a.)  

 

 T3. a. For any structure-description in LN, m* = 
Nτ
1 . Thus m* fulfills (B). (From  

  VIII-T3b.) 
 
  b. m* is regular and symmetrical. (From D3.)  
 

  c. m* (eN) =  .
)(

)!(!!...
1
11

−+
−

kN
kNN k  (From D3.)  

 
c* is based on m*: 
 

 D4. c* (h, e) = Df .
)(*
).(*

em
hem



 T4. c*(hj, eN) = .
kN

N j

+

+1
 

 
  Proof. eN . hj is isomorphic to a state-description in LN+1 with the Q-numbers  
  N1,..., Nj + 1, . . ., Nk. Therefore its m*-value is like that of eN in T3c, but with Nj  

 + 1 instead of Nj and N + 1 instead of N. Hence the result by D4. 
 
 Let M be a disjunction of w Q-predicates (0 < w < k) and NM be the sum of the Q-
numbers of these Q-predicates in eN. Hence w is the logical width of M ([Prob.] § 32). Let hM be 
a full sentence of M for a new individual. 
 

 T5. c (hm, eN) = .
kN
wN M

+
+

(From T4 and A3.)  

 
 Consider a sequence of samples of increasing size N but such that r = Nm/N remains 
constant. Then the value of c* (hm, eN) moves from w/k (for N = 0, i.e., tautological evidence) 
towards r (which is the limit for N → ∞). 
 For further explanations and theorems on c* see [Prob.] § 110.  
 
XI. Further Axioms of Invariance (A8-A11) 
 
 A8. c (h, e) is invariant with respect to any permutation of the predicates of any  
  family. 
 
 T1. Let F be a family of k primitive predicates ‘P1’, …, ‘Pk’. Let hl,..., hk be full  
  sentences of  these predicates with the same individual constant, and h be the  
  disjunction of these sentences.  
  a. (Lemma.) For any e, c (h, e) = 1. (From A2, since h is L-true.) 
  b. Suppose that e′ does not contain any predicate of F. Then for any i ( = l, ...,  
  k), c(hi, e′) = 1/k. 
   Proof. The k values c(hi, e′) are equal (by A8). Their sum = c(hi, e′) (by  
  A3) = 1 (by (a)). Hence the assertion. 
  c. m(hi) = 1/k. (From (b).) 
 
 A9. c (h, e) is invariant with respect to any permutation of families of the same size. 



 A10. For non-general h and e, c(h, e) is independent of the total number of individuals. 
  (A10 corresponds to the requirement of a fitting c-sequence, [Prob.] § 57C.) 
 
 A11. c(h, e) is independent of the existence of other families than those occurring in h  
  or e. 
 
XII. Learning from experience (A12) 
 
The intuitive principle of learning from experience says that, other things being equal, the more 
frequently a kind of event has been observed, the more probable is its occurrence in the future. 
This is expressed more exactly in the axiom of instantial relevance (first proposed in Carnap 
[16]) 
 
 A12. Suppose that e is non-L-false and non-general, and i and h are full sentences of  
  the same factual, molecular predicate ‘M’ with distinct individual constants not  
  occurring in e. 
  a. c (h, e . i) < c (h, e). **THE ‘<’ SYMBOL SHOULD HAVE A 
      VERTICAL LINE THRU IT** 
  b. c (h, e . i) ≠ c (h, e). 
 
 Both c† (X) and the straight rule (VI) fulfill part (a) of A12, but violate part (b). With c†, i 
is always irrelevant for h. With the straight rule, i is irrelevant for h if e is a conjunction of full 
sentences of ‘M’; in this case both c-values are 1. 
 
 T1. Let e, i, h, and M be as in A12. 
  a. c (h, e . i) > c (h, e) ; i is positively relevant for h on e. 
  b. Let j be a conjunction of n full sentences of ‘M’ (n ≥ 2) with n distinct   
  individual constants which do not occur in e or h. Then 
   c (h, e . j) > c (h, e). (From (a).) 
  c. c (h, e . ~i) < c (h, e) ; ~i is negatively relevant for h on e. (From (a) and [Prob.] 
  T65-6e.) 
  d. c (h, e, i) > c (h, e . ~i ). (From (a), (c).)  
 
XIII. The language LF with one family F (Al 3) 
 
This and the subsequent sections refer to a language LF whose primitive predicates are k 
predicates ‘P1’,…, ‘Pk’ of a family F (k ≥ 2). A sentence 



in LF may contain any number of individual constants but no variables. eF is an individual 
distribution for s individuals with respect to F with the cardinal numbers si (i = 1,…, k). hl,..., hk 
are full sentences of ‘P1’, …, ‘Pk’, respectively, with the same individual constant, which does 
not occur in eF. 
 
 A13. Meaning postulates for F:  
  a. ├ hl ∨ h2 ∨ ... ∨  hk.  
  b. If i ≠ j, hi . hj is L-false. 
 
 m (eF) is independent of other individuals (A10) and other families (A11). It depends not 
on the particular individuals in eF but only on their numbers si. Therefore: 
 
 T1. For any m-function m fulfilling the axioms, there is, for any k, a representative 
mathematical function Mk of k arguments such that, for any eF, 
   m (eF) = Mk (s1, s2, . . ., sk). 
 
 T2. Mk is invariant with respect to any permutation of the k arguments. (From A8.) 
 
 eF . h1 is an individual distribution for s + 1 individuals with the cardinal numbers s1+ 1, 
s2, ..., sk. We define: 
 

 D1. Ck (s1; s2, . . ., sk) = Df 
)..(

)(

kk

kk

 ., s,, ssM
, ..., s, ssM

21

21 1+
. 

 
 T3. a. For any c-function c and any k, there is a representative mathematical function  
  Ck of k arguments such that, for any eF, c (hi, eF) = Ck (s1; s2, . . ., sk). Analogously 
  for h2, etc.     
  b. Ck is invariant with respect to any permutation of the k-1 arguments following  
  the first. 
 
I shall sometimes write ‘M’ and ‘C’ without subscripts. 
 
 T4. For any k numbers n, p, s3, ..., sk whose sum is s, the following holds. (‘−−−’  
  stands  for ‘s3, .. ., sk’ ; this expression drops out if k = 2; in this case n + p = s.) 
 

  
),;
),;(

),;(
),;(

−−−
−−−

=
−−−+
−−−+

npC
pnC

npC
pnC

91
1



  (Here p + n + 1 + −−− = s + 1.) 
 
  Proof. The following holds identically: 
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×
−−−+
−−−++

=
−−−
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×
−−−+
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pnM
pnM
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1
111
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  According to D1, the first quotient is C(n; p + 1, −−−); the second is (by T2) equal 
  to 
 

  );,;(
),,(

),,(
−−−=

−−−
−−−+ npC

npM
npM 1  

 
  the third becomes (again with reordering of arguments) C(p; n + 1, −−−), and the  
  fourth  C(n; p, −−−). Hence the theorem. 
 

 T5. a. ∑
=

k

i 1
c (hi, eF) = 1. (From A13a.)  

 

  b. ∑
=

k

i 1
C (si; s1, ..., si-1, si + 1, ..., sk) = 1. (From (a).)  

 
XIV. The Axiom of Predictive Irrelevance (A14) 
 
Let e1 be formed from eF by replacing each predicate except ‘Pl’ with ‘~Pl’. Hence e1 is an 
individual distribution for the s individuals with respect to the division P1, ~P1, with the cardinal 
numbers sl and s − sl . e2, ..., ek are formed analogously. 
 For given k, c(hl, el) depends only on sl and s. It can therefore be represented by a 
function Gk(s1; s). Analogously for i = 2, ..., k (by A8).  
 
 T1. For any c-function c and any k, there is a representative mathematical function Gk 
  such that, for i = 1, ..., k. 
   c (hi, ei) = Gk (si; s). 
 
 T2. Suppose that sl < s. Let e′1 be like e1 but with the cardinal numbers sl + 1 and  
  s− sl - 1. 
  a. c(hl, e′1) > c(hl, el). (From XII-Tld.)  
  b. Gk(sl + 1; s) > Gk(sl; s) (From (a).) 



 The axiom of predictive irrelevance says that of the k cardinal numbers in eF all except s1 
are irrelevant for hl 
 
 A14. For k > 2, c(h1, eF) = c(hl, e1). 
  
 This axiom is not a necessary condition for the adequacy of c. But it is a customary 
(usually tacit) assumption, and it leads to a great simplification of the system. If k = 2, then e1 is 
the same as eF and therefore A14 is fulfilled trivially. 
 
 T3. For any k (≥ 2) any any i: 
  a. c(hi, eF) = c(hi, ei). (From A14, A8.) 
  b. For any numbers s2, ..., sk whose sum is s − si, Ck(s1; s2, ..., sk) = Gk(s1; s). 
  (From (a).)  
 
I shall often write ‘G’ for ‘Gk’. 
 
 T4. For any sequence of k numbers s1,..., sk whose sum is s, 

  ∑
=

k

i 1
G (si; s) = 1. (From XIII-T5.)  

 
Special cases of T4: 
 
 T5. a. G (s; s) + (k − 1) G(0; s) =1. (From T4 for the sequence s, 0, ..., 0.) 
  b. G(s + 1; s + 1) = 1 − (k − 1) G(0; s + 1). (From (a).) 
  c. G(1; 1) = 1 − (k − 1) G(0; 1). (From (a).) 
  d. G(s; s + 1) + G (1; s + 1) + (k − 2) G (0; s + 1) = 1. (Sequence s, 1, 0,..., 0.) 
 
 The following development has the aim to show (1) that, if all values of G for s are given, 
the values for s + 1 are uniquely determined, and (2) if G(0; 1) is given, all values of G are 
uniquely determined. For these results it is presupposed that k > 2. 
 
 T6. For k > 2; for any n, p, s such that n + p ≤ s. 

  a. 
);(
);(

);(
);(

spG
snG

spG
snG

=
+
+
1
1 . (From XIII-T4.) 

  b. G (n; s + 1) = G (0; s + 1) 
);(
);(

sG
snG

0
 (From (a) with p = 0.). 



 T7. For k > 2. 
 

  G(0; s + 1) .
);(
);(

);(
);( 12

0
1

0
=








−++ k

sG
sG

sG
ssG  

 
 (From T5d, by transforming the first two of its G-terms according to T 6b.) 
 
 Now aim (1) has been reached. If all G-values for s are given, G(0; s + 1) is determined 
by T7, then the values G (n ; s + 1) for n = 1, .. ., s are determined by T6b, and G (s + 1; s + 1) by 
T5b. Thus all values for s + 1 are determined. 
 We have also attained aim (2). If G(0; 1) is given, G(1; 1) is determined by T5c. These 
are all the G-values for s = 1. They determine the values for s = 2, and so on. Thus all G-values 
are determined by G(0; 1). The following theorem gives the explicit form. 
 
 T8. For k > 2, for any s and n (0 ≤ n ≤ s),  
 

  G (n; s) = .
);()(
);()(
101
101

kGss
Gknn

−−
−−  

 
  (This can be proved by mathematical induction with respect to s. (1) The theorem  
  holds for s = 1 (for n = 0 it holds identically, for n = 1 by T5c). (2) If the theorem  
  holds for a given s, it holds likewise for s + 1; this can be shown with the help of  
  the theorems T7, T6b, and T5b, which determine the G-values for s + 1 on the  
  basis of those for s. Hence the theorem holds for every s.) 
 
 Suppose that the value of G(0; 1) has been chosen. Then all values of G can be 
determined. The following theorem T9 shows that the m-value of any state-description is 
determined by the value of G. Thereby the m-values for all sentences and the c-values for all 
pairs of sentences are determined (see VI). 
 
 T9. Let ZF be a state-description for N individuals and for the k predicates of the  
  family F, with the cardinal numbers Ni (i = 1, …, k). Then 
 

  m(ZF) = ∏∏
−

=i

N

n

i 1

0
G (n; Si + n), 



  where ∏i
runs through those values of i for which Ni > 0; 

  Si = ∑
−

=

1

1

i

h
Nh,  S1 = 0. (For the proof see [Continuum] § 5.)  

 
XV. The λ-system (Al 5) 
 
We shall construct a system of all c-functions fulfilling our axioms. We call it the λ -system, 
because the c-functions will be characterized by the values of a parameter λ. 
 We have seen that, for a given k(> 2), all values of G are determined by G (0; 1). The 
latter value can be freely chosen within certain boundaries. We shall now determine these 
boundaries. 
 From XI-T1c: 
  
 (1) c(hi, t) = 1/k. 
 
Hence with XII-T1c (based on A12):  
 
 (2) G(0; 1) < 1/k. 
 
 If we were to choose G(0; 1) > 1/k, then c would violate not only A12b but also A12a and 
therefore be unacceptable. If we choose G(0;1) = 1/k, then only A12b is violated. This c does not 
belong to the λ -system, but will nevertheless be discussed as a boundary case (we shall find that 
it is the same as c† in X). 
 The following is obvious (from Al):  
 
 (3) G(0; 1) ≥ 0. 
 
 If we choose G(0; 1) = 0, then the resulting c fulfills Al to A5, but violates A6. Hence it 
is quasi-regular. Therefore it does not belong to the λ -system. It will, however, be discussed as a 
boundary case; we shall see that it corresponds to the straight rule. 
 
 T1. 0 < G(0; 1) < 1/k. 
 
 It can also be shown that, if any value between 0 and 1/k is chosen for G(0; 1), then the 
resulting c-function fulfills our axioms. 
 We define first an auxiliary parameter:  
 
 D1. kλ ′′′ = Df  kGk (0; 1) . 
 
From T1: 
 
 T2.  0< kλ ′′′ <1. 



I shall usually write ‘λ ′″’ for ‘ kλ ′′′ ’. From XIV-T8:  
 
 T3. For k > 2, for any s and n (0 ≤ n ≤ s). 
 

  G(n; s) = 
λ
λ
′′′−−
′′′−−

)(
)/(

1
1

ss
knn  

  
 We shall mostly use, not λ ′′′ , but λ = λ ′′′ /(1 −λ ′′′ ). The use of λ  leads to a simpler 
formula for G(n; s) (T4c). However, in the case of G(0; 1) = 1/k, λ ′′′ =1, while λ  is infinite. 
Therefore in this case λ  is less convenient than λ ′′′ . But this case is not included in our system. 
 

 D2. λk = Df 
);(

);(
101
10

k

k

kG
kG
−

. 

 
 T4. a. λ ′′′  = λ /(λ  + 1). 

  b. G(0; 1) = 
)( 1+λ

λ
k

. 

  c. For k > 2, G (n; s) =   
λ
λ
+

+
s

kn / . (From T3, (a).) 

 
 The case k = 2. The important results at the end of XIV can be proved only if k > 2. (This 
seems surprising, since A14, on which the results are based, holds also for k = 2.) A new axiom 
must be added for k = 2. T4c shows that, for given k(> 2), s, and G(0; 1), G (n; s) is a linear 
function of n. We assume as an axiom that the same holds for k = 2: 
 
 A15. For given s and G2 (0; 1), G (n; s) is a linear function of n. 
 
 Note that G2 (n; s) = C2 (n; s − n) (see XVI-T3b). Therefore we have (without use of 
A15): 
 
 (4) G2 (n; s) + G (s − n; s) = 1. (From XIII-T5b.) 
 

 (5) .
);(

);(
);(

);(
snsG

snG
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=
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+
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2

2

2

1
1  (From XIII-T4.) 

 
 From (4) and (5) we can derive with A15: 
 

 T5. G2 (n; s + 1) = G2 (0; s + 1) .
);(
);(

sG
snG

02

2



 This corresponds to XIV-T6b. Then, in analogy to the earlier proofs, we can now prove 
the analogues of T3 and of T4c for k = 2; the latter is  
 

 T6. G2 (n; s) = 
λ

λ
+

+
s

n 2/ . 

 
 For any λ, let cλ be the c-function characterized by λ, and mλ be the corresponding m-
function. Using our result for G(n; s) (T4c, T6), we obtain T7a from XIV-T9 (for the proofs of 
T7b and c and the notation [ ]rn , see [Continuum] § 10). 
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  d. Let StrF be the structure-description corresponding to ZF. Then 
 

  mλ(StrF) = .

/
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  (From (c) with VIII-T3.)  
 
XVI. Various c-Functions in the λ-System  
 
Let the predicate ‘M’ be defined as a disjunction of w predicates of F: P1∨  P2 ∨  ... ∨  Pw. Hence 
its logical width is w. Let eF be as before, and hM a full sentence of ‘M’ for a new individual. Let 
eM be s1 + s2 + …+ sw. Then we have (from XV): 
 

 (1) cλ (hM, eF) = 
λ
λ

+
+
s

kwsM /
.



This is 

  ,
λ

λ

+

+

s
k
ws

s
sM

 

 
thus it is the weighted mean of the observed relative frequency sM /s and the relative width w/k, 
with weights s and λ, respectively. sM /s is an empirical factor in the situation, and w/k is a logical 
factor. λ is thus the weight of the logical factor. The greater the chosen λ, the closer to w/k is the 
above c-value. 
 Example. For an even k, we take a predicate ‘M’ with w = k/2. In eF, let s = 10, sM = 1. 
Then the cλ -value in (1), for various choices of λ, is as follows (see [Continuum] (12-19)): 
 
λ            = 0 1 2 4 8 16 32 ∞ 
cλ(hM,eF)= 0.1 0.136 0.167 0.214 0.278 0.346 0.405 0.5 
 
 
 For λ  = 0, c = sM/s. This is the straight rule, which violates A6. ([Continuum] § 14.) 
 For λ = ∞, c = w/k = c (hM, t). This is c†, which violates A 12b. ([Continuum] § 13.) 
 These are the two extreme methods, not included in the λ -system. In this system, we take 
0 < λ < ∞ ; hence the above c is between sM/s and w/k (if these are unequal). 
 For families of different sizes (each in a separate language) we distinguish two kinds of 
inductive methods. 
 Inductive methods of the first kind: a fixed value is chosen for λ, independent of k. 
([Continuum] § 11.) 
 Inductive methods of the second kind: λk is dependent upon k. The simplest form is: λk = 
Ck, with a constant C. The simplest method of this form takes C = 1, hence λk = k; thus from (1): 
 

 (2) cλ(hM, eF) = 
ks
wsM

+
+

. 

 
This is the function c*(see X). 
 
XVII. A Language with Two Families (A16) 
 
The language L contains two families: F1 consists of kl predicates: ‘ 1

1P ’ ‘ 1
2P ’, etc; and F2 of k2 

predicates: 2
1P  ‘ 2

2P ’ etc. There are 



k = k1k2 Q-predicates; Qij is the conjunction Pi
1 . Pj

2 (i = 1, ..., kl: j = 1,…, k2). 
 Let e1 be an individual distribution for F1, and e2 for F2, both for the same s individuals. 
Let e be e1. e2. This is an individual distribution for the k Q-predicates; let sij be the number of 
individuals with Qij. 
 We take the same λ for both families. Then we can determine mλ(el) and mλ (e2) (by XV-
T7). 
 Problem: What is to be taken as value of mλ (e) ? This is not determined by the previous 
axioms. We shall now consider two attempts at a solution, and then take a combination of them. 
 First tentative solution. We take the class of the k Q-predicates as the pseudo-family F1,2. 
Then we define m1,2 for F1,2, as if the latter were a real family; hence, in analogy to XV-T7c 
 

 D1. m 21,
λ (e) = Df 
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m 21,

λ (e) depends only on the Q-numbers sij in e, not on the P-numbers in el or e2. 
 Second tentative solution. We define ml|2 (e) as the product of the m-values for the two 
families separately: 
 
 D2. m 2|l

λ (e) = Df = mλ(e1) × mλ(e2) . 
 
ml|2 (e) depends only on the P- numbers, not on the Q-numbers. 
 We shall examine the two solutions with the help of the following three examples A, B, 
C, of individual distributions for s = 20 individuals, with k1 = k2 = 2 (the numerals in the four 
cells indicate the Q-numbers; the marginal numerals indicate the P-numbers for the two 
families). 
 
  A F2  B F2  C F2 
  P1

2 
10 

P2
2 

10   P1
2 

10 
P2

2 
10   P1

2 
10 

P2
2 

10 
P1

1 10 5 5  10 10 0  20 10 10 F1 P2
1 10 5 5  10 0 10  0 0 0 

 
 



 The following two requirements (or desiderata) I and II seem plausible.  
 
 (I) We should have: m (A) < m (B), because B is more uniform than A. 
 
This requirement is satisfied by m1,2  (because the Q-numbers are equal in A, unequal in B), but 
not by ml|2 (this has equal values for A and for B, because the P-numbers are the same). 
 
 (II) We should have: m (B) < m (C) because the distribution for F1 is more uniform in  
 C than in B, while that for F2 is the same in C as in B. 
 
This requirement is in accord with the customary analogy inference (‘horse-donkey inference’). 
However, it is not satisfied by m1,2 (this has equal values for B and for C, because the Q-numbers 
are the same). It is satisfied by ml|2. 
 Thus both solutions are unsatisfactory. Generally, any solution that uses only the P-
numbers cannot satisfy I, and any solution that uses only the Q-numbers cannot satisfy II. An 
adequate solution must use both the P-numbers and the Q-numbers. This is done in the third 
solution, which satisfies both requirements. 
 Third solution. We define mλ,n (e) as a weighted mean of the first two solutions, with the 
weights η and 1− η, where η is a new parameter  
 
 D3. mλ,n (e) = Df η ml|2 (e) + (1− η) ml|2(e). 
 
 The parameter η may be chosen, independently of λ, such that 0 < η < 1. The greater η is, 
the stronger is the influence by analogy (i.e., the greater is the difference between the two c-
values in A16 below). The method can easily be extended to more than two families; no new 
parameter is needed. (The method was worked out in collaboration with John Kemeny.) 
 The requirement II can be represented in a generalized form as follows:  
 
 A16. Axiom of analogy. Let e be an individual distribution for two families (with any kl  
  and k2). Let i and j be full sentences of Q11 and Q12, respectively, with the same  
  individual constant not occurring in e. Let h be a full sentence of Q12 with another  
  individual constant not occurring in e. Then  
 
   c(h, e . i) > c(h, e . j). 
 
The generalization for other Q-predicates follows by A8. 



XVIII. An Infinite Domain of Individuals (A17) 
 
 Let the domain of LN contain N individuals, and that of L∞ be denumerably infinite. 
According to A10, the values of c for non-general sentences are in L∞ the same as in LN. If either 
e or h or both contain variables, a new axiom is needed. We take the value of c in L∞ as the limit 
of its values in finite languages (see [Prob.] § 56) 
 
 A17. Axiom of the infinite domain. Let Nc be a c-function for LN . Then the   
  corresponding c-function ∞c for L∞ is determined as follows: 
  ∞c (h, e) = limN  c(h, e).  
            N→∞ 
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