RUDOLF CARNAP

NOTES ON PROBABILITY AND INDUCTION*

INTRODUCTORY REMARKS

I. The Three Main Conceptions of Probability

(1) The classical conception (Bernoulli, Bayes, Laplace).

(2) The frequency conception (Mises, Reichenbach; mathematical statistics).

(3). The logical conception (Keynes, Jeffreys).

Read: Nagel [37]

II. The Two Explicanda

There are two explicanda, both called 'probability':

(1) logical or inductive probability (probability₁),

(2). statistical probability (probability₂).

Read: [Prob.] Ch. II, esp. §§ 9 and 10.

The logical concept of probability appears in three forms ([Prob.] § 8):

(a) the classificatory concept (confirming evidence),

(b) the comparative concept (higher confirmation),

(c) the quantitative concept (degree of confirmation).

III. Preliminary Remarks on Inductive Logic

Read: [Prob.] Ch. IV. In particular:

(1) Logical probability (as explicandum) is explained as a *fair betting quotient*, and as an estimate of relative frequency ([Prob.] § 41).

(2) If logical probability is used, no synthetic assumption (e.g., *uniformity* of the world) is needed as presupposition for the validity of the inductive method ([Prob.] § 41 F).

(3) Comparison of *inductive and deductive logic* ([Prob.] § 43).

(4) The main kinds of *inductive inference* ([Prob.] § 44 B)

(a) direct inference (from the population to a sample),

* University of California, Los .Angeles, Philosophy 242, Fall Semester 1955. Edited for publication by Arthur Benson.

Synthese 25 (1973) 269-298. *Copyright* © 1973 *by Hanneliese Carnap Thost. All Rights Reserved*

(b) predictive inference (from one sample to another),

(c) inference by analogy,

(d) inverse inference (from a sample to the population),

(e) universal inference (from a sample to a universal law).

(5) The use of inductive logic for the choice of a *practical decision* ([Prob.] §§ 50, 51). The rule of maximizing the estimate of utility. Daniel Bernoulli's law of utility.

IV. Some Concepts of Deductive Logic

Read: [Prob.] §§ 14-20, esp. 18-20.

(1) *State-descriptions* (*Z*, § 18A; comp. individual distributions, D 26-6a). A state-description describes a (possible) state or *model*.

(2) The requirement of the logical independence of the primitive predicates (§ 18B) can be abandoned if the dependences are expressed by *meaning postulates* (see [15].)

(3) Families of related primitive predicates (§ 18C).

(4) The *range* of a sentence (\S 18D, 19).

(5). *L-concepts* (§ 20). I write $i \models i$ for i is L-true', and hence $i \models i \supset j$ for i L-implies j, and $i \models i \equiv j$ for i is L-equivalent to j.

In simple languages (e.g., those used in [Prob.]) every model is describable by a statedescription. In richer languages this is not possible; here the definitions of L-concepts and degree of confirmation are to be based on *models* rather than state-descriptions.

THE THEORY OF DEGREE OF CONFIRMATION

V. Fundamental axioms (Al-A5)

The axioms apply to any sentences e and h in a given language L (finite; or infinite). We presuppose throughout that the second argument of c (usually e) is not L-false (see [Prob.] pp. 295f.).

- Al. Range of values. $0 \le c$ $(h, e) \le 1$.
- A2. *L-implication*. If $e \supset h$, then c(h, e) = 1.
- A3. Special addition principle. If $e \cdot h \cdot h'$ is L-false, then $c (h \lor h', e) = c (h, e) + c (h', e)$.
- A4. General multiplication principle. $c(h, h', e) = c(h, e) \times c(h', e \cdot h)$.

A5. L-equivalent arguments. If $\models e \equiv e'$ and $\models h \equiv h'$, then c(h, e) = c(h', e').

(These axioms, except for A5, are those of Shimony [47]. They are together equivalent to the Conventions C53-1 and 2 in [Prob.] § 53. Most axiom systems of other authors are essentially equivalent to this one; see [Prob.] § 62.) The usual theorems of the probability calculus are provable on the basis of these axioms. Among them are the theorems [Prob.] T53-1a to f. ('t' is the tautology.)

VI. Regular m-Functions and c-Functions (A6)

Deductive logic '*e* L-implies *h*' means that the range of *e* is entirely contained in that of *h*.

Inductive logic 'c(h, e) = 3/4' means that three-fourths of the range of e is contained in that of h. ([Prob.] § 55B.)

For degrees of confirmation (d. of c.) we need a measure function for the ranges of sentences. For this purpose we define regular *m*-functions ([Prob.] 55A).

- **DI**. *m* is a regular *m*-function for $L_N = {}_{Df}$ (a) for every Z_i in L_N , $m(Z_i) > 0$; (b) $\sum_i m(Z_i) = 1$; (c) if *j* is L-false, m(j) = 0; (d) if *j* is not L-false, $m(j) = \sum m(Z_i)$ for all Z_i in the range of *j*.
- **D2**. *c* is a regular *c*-function for $L_N = D_f$ there is a regular *m*-function *m* such that *c* is based upon *m*, i.e.

$$c(h, e) = \frac{m(e.h)}{m(e)}.$$

A6. Regularity. In a finite domain of individuals, c(h, e) = 1 only if $|e \supset h$.

(This axiom corresponds to [Prob.] C53-3.)

Null confirmation is the d. of c. on the tautological evidence t ([Prob.] D57-1, where the symbol ' c_0 ' is used):

- **D3**. $c_t(j) = {}_{\mathrm{Df}} c(j, t)$
- **T1**. A *c*-function *c* for L_N satisfies the axioms Al-A6 if and only if *c* is a regular *c*-function.

Proof. 1. Let *c* be a regular *c*-function for L_N . Then *c* satisfies Al-A6 according to [Prob.] T59-1a, 1b, 11, 1n, 1h and i, T59-5a, respectively. 2. Let *c* satisfy Al-A6. Then c_t is a regular *m*-function (by [Prob.] C53-3 and T53-1). *c* is based upon c_t (comp. [Prob.] § 54B, (3)). Therefore *c* is a regular *c*-function.

According to Tl, the theorems stated in [Prob.] §§ 55, 57A and B, 59, 60, and 61 for regular *c*-functions in finite systems L_N are provable on the basis of Al to A6.

If *c* satisfies Al to A5, but not A6, we shall call it a quasi-regular *c*-function (not in [Prob j). In this case, c_t is 0 for some Z_i ; therefore, even in L_N , c(h, e) cannot always be represented as $c_t (e \cdot h)/c_t (e)$.

(Example: the straight rule, [Prob.] p. 227.)

The following theorems are provable on axioms Al to A5; hence they hold for all regular or quasi-regular *c*-functions.

T2. $c(h, e) \times c(i, e \cdot h) = c(i, e) \times c(h, e \cdot i)$. (From A4, A5.).

T3. General division theorem, in two forms.
a. If
$$c(i, e) > 0$$
, then $c(h, e \cdot i) = \frac{c(h, e) \times c(i, e.h)}{c(i, e)}$ (From T2.)
b. If $c(i, e) > 0$ and $c(h, e) > 0$, then $\frac{c(h, e.i)}{c(h, e)} = \frac{c(i, e.h)}{c(i, e)}$ (From (a).)

The fraction on the left-hand side of the equation is known as the

relevance quotient; the numerator is the *posterior confirmation* of *h* and the denominator is the *prior confirmation* of *h*.

T4. Special division theorem. Suppose that c(i, e) > 0, c(h, e) > 0, and $c(i, e \cdot h) = 1$ (*i* is predictable or explainable by *h*). Then

$$\frac{c(h, e \cdot i)}{c(h, e)} = \frac{1}{c(i, e)}$$
 (From T3b).

See the explanations and examples for these theorems in [Prob.] §§ 60 and 61.

VII. Coherence

Informal explanation. Let X be willing to accept any system of bets in which the betting quotients are equal to the values of a function c. If there were a betting system such that X would suffer a loss in every logically possible case, c would obviously be unsuitable. If there is no such betting system, we shall call c coherent (Ramsey, De Finetti). If, moreover, there is no betting system such that X would lose in at least on possible case and would not gain in any possible case, we shall call c strictly coherent (Shimony).

We assume for the following definitions that L is an interpreted language, that e and h are sentences of L, that e is not L-false, that c is a function whose value for any h, e is a real number, and that q and S are real numbers (and likewise for e_i , h_i , q_i , S_i).

We represent a bet (of the person X) on h, given e, in language L, with the betting quotient q and the total stake S as the ordered quintuple < L, h, e, q, S> (without reference to X):

DI. *B* is a $bet = {}_{Df}$ for some \bot , *h*, *e*, *q*, and *S*, *B* = < \bot , *h*, *e*, *q*, *S*>.

We represent a betting system BS based on the assumption k and comprising the bets $B_1, B_2, ..., B_n$ in language L , in accordance with c (i.e., the betting quotients are determined by the values of c) as the ordered quadruple $\{B_1, ..., B_n\}, L_-, k, c >:$

D2. BS is a *betting system* = $_{Df}BS = \langle K, L \rangle$, $k, c \rangle$, where $K = \{B_i\}$ (i = 1, ..., n), $B_i = \langle L, h_i, e_i, q_i, S_i \rangle$, k is a non-L-false sentence in L \rangle , each e_i is either k or a conjunction containing k as a component and is not L-false, and $q_i = c(h_i, e_i)$.

If *X* regards a bet on *h*, given *e*, with betting quotient *q* as fair, then he is willing to make a corresponding bet on either side, i.e., either for *h* or against *h*. If *e* is true, the gains are as follows (with S>0):

		Gain				
	h	for <i>h</i>	against h			
(a)	true	(1 - q) S	-(1-q)S			
(b)	false	-qS	qS			

Thus X's bet against h can be regarded as a bet for h with negative S. Therefore we admit $S \le \ge 0$; then D3 covers both bets, for h and against h. g (B, j) is the gain which X would obtain from his bet B if j were true.

D3. Let *B* be a bet < L, *h*, *e*, *q*, *S*>. Let *j* be a non-L-false sentence in L which Limplies either *e* or $\sim e$ and L-implies either *h* or $\sim h$. $g(B, j) = {}_{Df}$ the value *u* such that either (a) $\lfloor j \supset e \cdot h$, and u = (1 - q) S,

or (b) $j \supset e \cdot h$, and u = -qS, or (c) $j \supset -e$, and u = 0.

true:

We define G(BS, j) as the total gain from the betting system BS which X would obtain if j were

D4. Let BS be $\{B_i\}$, L, k, c > (i = 1, ..., n). Let j be a non-L-false sentence in L such that, for every i, j L-implies either e_i or $\sim e_i$, and j L-implies either h_i or $\sim h_i$. Then G (BS, j) = $_{\text{Df}} \sum_{i=1}^{n} g(B_i, j)$.

Let BS be $\{B_i\}$, L, k, c>. Let C_{BS} be the class of the conjunctions j such that (1) j contains as components, for each of the sentences $e_1, ..., e_n, h_1, ..., h_n$, either the sentence itself or its negation but not both, and no other components, and (2) j is compatible with k. These conjunction represent the possible cases on the basis of the assumption k. We shall say that for a given BS *loss is necessary* if, for every conjunction j in C_{BS} , G (BS, j) < 0; that *loss is possible* if, for at least one j in C_{BS} , G (BS, j) < 0; and that *positive gain is impossible* if, for every j in C_{BS} G (BS, j) ≤ 0 . We shall say that BS is *vacuous* if, for every j, G (BS, j) = 0.

- **D5**. c is a *coherent c-function* for $L = _{Df}$ there is no betting system in L in accordance with c for which loss is necessary (in other words, for every betting system there is a possible outcome without loss).
- **D6**. *c* is a *strictly coherent c-function* for $L = _{Df}$ there is no betting system in L in accordance with *c* for which loss is possible and positive gain is impossible (in other words, for every non-vacuous betting system there is a possible outcome with positive gain).
- **T1**. If *c* is strictly coherent, it is also coherent.
- **T2**. (*Ramsey*, *De Finetti*.) Every *coherent c*-function satisfies the axioms Al to A5. In other words, if *c* violates at least one of the axioms Al to A5, then there is betting system in accordance with *c* for which loss is necessary.

Example for A4. Suppose that *c* violates A4 in L. Then there are sentences *e*, *h*, and *h'* in L such that

$$c(h, e) \times c(h', e \cdot h) - c(h \cdot h', e) \neq 0.$$

Let $c_1 = c$ (*h*, *e*), $c_2 = c$ (*h'*, *e*. *h*), $c_3 = c$ (*h*. *h'*, *e*), and let $c_1 c_2 - c_3 = D$. We choose the betting system BS = $\langle \{B_i\}, L, e, c \rangle$ (*i* = 1, 2, 3),

	B_i	$g(B_i, j)$ for the four conjunctions in C_{BS}						
i	e_i	h_i	h_i S_i q_i		e.h.h'	e.h.~h'	e.~h.h' e.~h.~h'	
1	e	h	$\frac{c_2}{D}$	\mathcal{C}_{l}	$\frac{(1-c_1)c_2}{D}$	$\frac{(1-c_1)c_2}{D}$	$\frac{-c_1c_2}{D}$	
2	e.h	h'	$\frac{1}{D}$	<i>C</i> ₂	$\frac{1-c_2}{D}$	$\frac{-c_2}{D}$	0	
3	е	h . h'	$\frac{-1}{D}$	C3	$\frac{-(1-c_3)}{D}$	$\frac{c_3}{D}$	$\frac{c_3}{D}$	
G(BS,j)=				-1	-1	-1		

TABLE I Example for A4

with *e* as *k*, and with e_i , h_i , and S_i as specified in the table below. (See Table I.) By D2, $q_i = c(h_i, e_i)$. The values of *g* are determined by D3, and those of *G* by D4. We find that, for every *j*, *G* = -1. Thus for the chosen BS, loss is necessary. This betting system is described in Table I.

T3. (*Shimony*.) If *c* violates A6, then there is a betting system in accordance with *c* for which loss is possible and positive gain is impossible. Therefore every *strictly coherent c*-function satisfies the axioms Al to A6.

Proof. Suppose that *c* violates A6 in L_N . Then there are sentences *e*, *h* in L_N such that *c* (*h*, *e*) =1 but *e* does not L-imply *h*, hence *e* · ~*h* is not L-false. We take a system of one bet $< L_N$, *h*, *e*, *c* (*h*, *e*), 1>, and again *e* as *k*. The two possible cases *j* are *e* · *h* and *e* · ~*h*. The gain is 0 in the first case, and -1 in the second. Thus loss is possible and positive gain is impossible. This applies to any quasi-regular *c*-function, e.g. to the *straight rule* (VI).

T2 gives a *validation for the axioms* Al *to* A5, T3 *for* A6. The following theorem shows that an analogous validation is not possible for any further axioms. (The proof for T4 is given by Kemeny in his paper [34].)

- T4. (Kemeny) a. Every *c*-function in L which satisfies the axioms Al *to* A5, is *coherent* in L.
 b. Every *c*-function in L which satisfies the axioms Al *to* A6, is *strictly coherent* in L.
- **T5**. **a**. A *c*-function is coherent if and only if it is regular or quasi-regular. **b**. A *c*-function is strictly coherent if and only if it is regular. (From T2, T3, T4, and VI-T1.)

The classification of *c*-functions defined by T4 and T5 can be presented in the form of the following table:

Axioms satisfied		Type of <i>c</i> -function			
A1 to A5	A6	regular strictly coherent	coherent		
	not A6	quasi-regular			

VIII. Symmetrical c-Functions (A7)

The system Al to A6 is very weak. It determines no value of c(h, e) except 0 or 1 in special cases. For any pair of factual sentences e, h such that e L-implies neither h nor $\sim h$, the system does not exclude any number between 0 and 1 as a value of c(h, e) ([Prob.] T59-5f, see remark on p. 323). Thus additional axioms are needed. A7 is the first of several *axioms of invariance* of c(h, e) with respect to certain transformations of e and h. These axioms represent the valid core of the classical *principle of indifference*. Axiom of symmetry (with respect to individuals):

- A7. c(h, e) is invariant with respect to any permutation of the individuals.
- **DI**. *m*-functions and *c*-functions which satisfy A7 are said to be *symmetrical* (with respect to individuals). (See [Prob.] §§ 90, 91.)

Read the definitions and explanations of the following concepts in [Prob.] : Ch. III: *division* (D25-4), *isomorphic* sentences (D26-3) and isomorphic state-descriptions (§ 27), individual and *statistical distributions* (D26-6), *structures* (§ 27) and *structure-descriptions* (*Str*, D27-1), *Q*-*predicates* (§ 31) and *Q*-*numbers* (§ 34).

Henceforth it is assumed, unless the contrary is stated, that c satisfies Al to A7 and hence is regular and symmetrical. m is c_t ; hence c is based on m.

- **T1**. Let *e* be isomorphic to *e'*, and *h* to *h'*. **a**. c(h, e) = c(h', e'). (From A7). **b**. m(h) = m(h'). (From (a)).
- T2. Let *i* be an individual distribution for *n* given individuals with respect to the division M₁,..., M_k, with the cardinal numbers n₁,..., n_k.
 a. The numbers of the individual distributions for the same *n* individuals which are isomorphic to *i* is

$$\zeta_i = \frac{n!}{n_1!...n_k!}$$
 ([Prob.] T40-32b.)

b. Let *j* be the statistical distribution corresponding to *i*. Then $m(j) = \zeta_i \times m(i)$. (From T1b).

T3 is a special case of T2.

- **T3**. Let L_N be a language with N individual constants and k Q-predicates. Let Z_i be a state-description in L_N with the Q-numbers N_j (j = 1, ..., k).
 - **a**. The number of those state-descriptions in L_N which are isomorphic to Z_i is

$$\zeta_i = \frac{N!}{N_1! N_2! \dots N_k!}$$
. (From T2a.)

b. Let *Str_i* be the structure-description corresponding to Z_i . Then $m(Str_i) = \zeta_i \times m(Z_i)$. (From T2b.)

Therefore a regular and symmetrical *m*-function for L_N is uniquely determined if we choose as its values for the structure-descriptions in L_N arbitrary positive numbers whose sum is 1. Then, for any Z_{i_i} m (Z_i) is determined by T3b and hence the other values by VI-D1c and d.

The subsequent *theorems* T4 to T6 on the direct inductive inference refer to the following situation. *e* is a statistical distribution for *n* given individuals (the 'population') in L_N with respect to the division M_1 , M_2 (which is non- M_1) with the cardinal numbers n_1 , $n_2 \cdot r_i = n_i/n$ (i = 1, 2). *h* is an individual distribution for *s* of the *n* individuals (the 'sample') with the cardinal numbers s_1 , s_2 ($s_i \le n_i$). h_{st} is the statistical distribution corresponding to *h*.

T4. a.
$$c(h, e) = \frac{\begin{bmatrix} n_1 \\ S_1 \end{bmatrix} \begin{bmatrix} n_2 \\ S_2 \end{bmatrix}}{\begin{bmatrix} n \\ S \end{bmatrix}}$$
.
(For $\begin{bmatrix} n \\ S \end{bmatrix}$, see [Prob.] D40-3.)
b. $c(h_{st}, e) = \frac{\binom{n_1}{S_1}\binom{n_2}{S_2}}{\binom{n}{S}}$

(For $\binom{n}{m}$, see D40-2.)

c. For given *e* and *s*, $c(h_{st}, e)$ has its maximum if s_1/s is equal, or as near as possible, to r_1 .

d. For fixed *s*, let $h_p(p = 0,...,s)$ be the statistical distribution h_{st} with $s_1 = p$ and $s_2 = s - p$. Then

$$\sum_{p=0}^{s} [p \times c(h_p, e)] = sr_1.$$

e. Let *j* be a full sentence of N_1 with one of the *n* individual constants in *e*. Then

 $c(j, e) = r_1.$ (For proofs see [Prob.] T94-1.)

We see from T4d that, for given *s*, the estimate of s_1 on *e* is sr_1 . Hence the estimate of s_1/s is r_1 . T4e shows that *c* for a singular prediction with 'N₁' is r_1 . Thus for the direct inference something analogous to the straight rule holds for all symmetrical regular (or quasi-regular) *c*-functions.

T5. The following holds *approximately* for sufficiently large *n*, n_1 , and n_2 . It holds exactly for lim $c (n \rightarrow \infty)$ if $\lim(n_i/n) = r_i$.

a.
$$c(h, e) = r_1^{s_1} \times r_2^{s_2}$$

b. Binomial law.
$$c(h_{st}, e) = {S \choose S_1} r_1^{s_1} r_2^{s_2}$$

For proofs and explanations, see [Prob.] § 95.

We shall use the following notations in T6: $\sigma = \sqrt{sr_1r_2}$ ('standard deviation'); $\delta = s_1 - sr_1$ (deviation of s_1 from its estimate); $\phi(u) = (1/\sqrt{2\pi})e^{-u^2/2}$ (the normal function; [Prob.] D40-4a); h_p as in T4d; h' is the disjunction of sentences h_p with p running from $sr_1 - \delta'$ (or the integer nearest to it) to $sr_1 + \delta'$ ($= s_1'$); thus h' says that s_1 deviates from its estimate sr_1 to either side by not more than δ' , in other words, that s_1/s (the relative frequency of M_1 in the sample) does not deviate from r_1 by more than δ'/s .

T6. The following holds *approximately* for sufficiently large s and n/s.

a. *The normal law*.

$$c(h_{st}, e) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\delta^2/2\sigma^2} = \frac{1}{\sigma} \phi\left(\frac{\delta}{\sigma}\right)$$

b. Bernoulli-Laplace theorem

$$c(h',e) = \int_{-\delta'/\sigma}^{+\delta'/\sigma} \phi(u) \mathrm{d}u.$$

c. *Bernoulli's limit theorem*. For fixed r_1 and fixed $q = \delta'/s$, $\lim_{s \to \infty} c(h', e) = 1$.

T6c says the following. If the sample size *s* increases but a fixed interval $r_1 \pm q$ around the given r_1 is chosen, then c(h', e) (i.e., the probability that the relative frequency of M_1 in the sample lies within the chosen interval) can be brought as near to 1 as desired by making the sample sufficiently large. For explanations and numerical examples, see [Prob.] § 96.

IX. Estimation

Read: [Prob.] § 98 about the present situation of the problem of estimation.

Definition of the general estimate function.

Suppose that, on the basis of *e*, the magnitude *u* has *n* possible values: $u_1, ..., u_n$. Let h_i say that *u* has the value u_i (i = 1, ..., n). The *c*-mean estimate of *u* is the weighted mean of the possible values, with their *c*-values as weights:

DI.
$$est(u, e) = Df \sum_{i=1}^{n} [u_i \times c(h_i, e)]$$

T1. A and B are arbitrary fixed constants. **a.** est $(Au, e) = A \times est (u, e)$. **b.** est (u + B, e) = est (u, e) + B. **c.** est $(Au + B, e) = A \times est (u, e) + B$. ([Prob.] T100-3,4, and 5).

Analogous results do not generally hold for a non-linear function of u. For example, in general $est(u^2, e) \neq est^2(u, e)$. This leads to a *paradox*

in the practical application of estimates ([Prob.] § 100 C). The paradox is eliminated if the rule for the determination of a decision refers to the estimate of only one magnitude, e.g., the gain or the utility resulting from an action.

Truth frequency. Let *K* be a class of *s* sentences $i_1, ..., i_s$. Let tf(K) be the truth-frequency in *K*, i.e., the number of true sentences in *K*. Let rtf(K) be the relative truth-frequency in *K*, i.e., tf(K)/s.

T2. **a**. *est* (*tf*, *K*, *e*) =
$$\sum_{n=1}^{s} c(i_n, e)$$
. (For this proof. see [Prob.] T104-2a.)

b. *est* (*rtf*, *K*, *e*) =
$$\frac{1}{s} \sum_{n=1}^{s} c(i_n, e)$$
. (From (a). T1a.)

c. If all sentences in *K* have the same *c*-value on *e*, then the estimate of rtf(K) is equal to this *c*-value. (From (b).)

The frequency of a property of individuals. Let K be a class of n individuals defined by enumeration. Let af(M, K) be the absolute frequency of M in K, and rf(M, K) the relative frequency, i.e., of (M, K)/n. Let K' be the class of the full sentences of M with those individual constants which designate the individuals in K Then

$$af(M, K) = tf(K')$$
 and $rf(M, K) = rtf(K')$.

Therefore the results T2 on estimates of *tf* and *rtf* can now be applied to estimates of *af* and *rf*.

Direct estimation of frequency. This is based on the direct inference (see VIII-T4). Let *e*, n, M_1, n_1, r_1, s , and s_1 be as before (VIII-T4). Thus *e* says that the *rf* of M_1 in the population is r_1 . Let *K* be the class of the s individuals of the sample.

T3. **a**. *est* (*af*, *M*, *K*, *e*) = sr_{1} . (From VIII-T4d.) **b**. *est* (*rf*, *M*, *K*, *e*) = r_{1} . (From (a), T1a.)

Predictive estimation of frequency. Here the estimate depends on the chosen c-function. Let e be any non-L-false sentence, h a full sentence of M for a new individual, and K any finite, non-empty class of new individuals.

T4. *est* (*rf*, M, K, e) = c (h, e). (From T2c.)

Thus the confirmation of a singular prediction with M is equal to the estimate of rf of M. This relation was used earlier for an informal explanation of inductive probability ([Prob.] § 41D).

X. The Functions e^{\dagger} and c^*

In discussions on the principle of indifference, some authors have proposed to give equal *a priori* probabilities to all individual distributions (for a given domain of individuals and a given division of properties). Other authors have proposed the same for all statistical distributions. In our terminology, the controversy concerns the choice of one of the following two rules:

- (A) All individual distributions have equal *m*-values.
- (B) All statistical distributions have equal *m*-values.

However, each of these rules leads to contradictions if applied to different divisions (see the examples in [Continuum] p. 39).

Each of the rules becomes consistent if it is restricted to one division (for a given finite language), viz. the division of the *Q*-predicates, as follows:

- (A') All state-descriptions have equal *m*-values.
- (B') All structure-descriptions have equal *m*-values.

The function c^{\dagger} . There is exactly one symmetrical, regular *m*-function which fulfills (A'), viz. m^{\dagger} defined by Dl.

Let L_N be a language with N individual constants and k Q-predicates.

T1. **a**. The number of state-descriptions in L_N is $\zeta_N = k^N$. ([Prob.] T40-31c.) **b**. The number of structure-descriptions in L_N is

$$\tau_N = \binom{N+k-1}{k-1} = \frac{(N+k-1)!}{N!(k-1)!}.$$
 ([Prob.] T40-33b.)

Let Z_N be any state-description in L_N with the *Q*-numbers N_1, \ldots, N_k . We define:

$$\mathbf{D1.} \qquad m^{\dagger}(Z_N) = _{\mathrm{Df}} \frac{1}{k^N}$$

D2.
$$c^{\dagger}(h,e) = _{Df} \frac{m^{\dagger}(e,h)}{m^{\dagger}(e)}$$
.

Let e_N be an individual distribution for any N individuals for the division of the k Q-predicates with the same Q-numbers $N_1, ..., N_k$ (the same as in Z_N). Let h_j be a full sentence of Q_j for a new individual.

T2. **a**.
$$m^{\dagger}$$
 is regular and symmetrical. (From D1.)

b.
$$m^{\dagger}(e_N) = \frac{1}{k^N}$$
. (From D1, since e_N is isomorphic to Z_N .)
c. $c^{\dagger}(h_j, e_N) = 1/k$.

Proof. e_N . h_j is isomorphic to a state-description in \mathbb{L}_{N+1} , hence $m^{\dagger} = 1/k^{N+1}$ (from Dl). The result is obtained by D2 and (b).

T2c shows that *et* (*h*;, e_N) is independent of e_N . It violates the principle of learning from experience and hence is unacceptable ([Prob.] p. 565). However, this function was proposed by C. S. Peirce, Keynes, and Wittgenstein.

The function c^* . There is exactly one symmetrical, regular *m*-function which fulfills (B'), viz. m^* defined by D3.

D3.
$$m^*(Z_N) = {}_{\text{Df}} \frac{1}{\tau_N \zeta_i}$$

= $\frac{N_1!...N_k!(k-1)!}{(N+k-1)!}$. (From T1b, VIII-T3a.)

T3. **a**. For any structure-description in L*N*, $m^* = \frac{1}{\tau_N}$. Thus m^* fulfills (B). (From VIII-T3b.)

b. *m** is regular and symmetrical. (From D3.)

c.
$$m^* (e_N) = \frac{N_1!...N_k!(k-1)!}{(N+k-1)!}$$
. (From D3.)

 c^* is based on m^* :

D4.
$$c^*(h, e) = {}_{\mathrm{Df}} \frac{m^*(e,h)}{m^*(e)}.$$

T4.
$$c^*(h_j, e_N) = \frac{N_j + 1}{N + k}$$
.

Proof. e_N . h_j is isomorphic to a state-description in L_{N+1} with the *Q*-numbers $N_1, ..., N_j + 1, ..., N_k$. Therefore its *m**-value is like that of e_N in T3c, but with $N_j + 1$ instead of N_j and N + 1 instead of N. Hence the result by D4.

Let *M* be a disjunction of *w Q*-predicates $(0 \le w \le k)$ and N_M be the sum of the *Q*-numbers of these *Q*-predicates in e_N . Hence *w* is the *logical width* of *M* ([Prob.] § 32). Let h_M be a full sentence of *M* for a new individual.

T5.
$$c(h_m, e_N) = \frac{N_M + w}{N + k}$$
. (From T4 and A3.)

Consider a sequence of samples of increasing size N but such that $r = N_m/N$ remains constant. Then the value of c^* (h_m , e_N) moves from w/k (for N = 0, i.e., tautological evidence) towards r (which is the limit for $N \to \infty$).

For further explanations and theorems on c^* see [Prob.] § 110.

XI. Further Axioms of Invariance (A8-A11)

- **A8**. c(h, e) is invariant with respect to any *permutation of the predicates* of any family.
- **T1**. Let *F* be a family of *k* primitive predicates ' P_1 ', ..., ' P_k '. Let h_1 ,..., h_k be full sentences of these predicates with the same individual constant, and *h* be the disjunction of these sentences.

a. (Lemma.) For any e, c(h, e) = 1. (From A2, since h is L-true.)

b. Suppose that e' does not contain any predicate of F. Then for any i (=1, ..., k), $c(h_i, e') = 1/k$.

Proof. The *k* values $c(h_i, e')$ are equal (by A8). Their sum = $c(h_i, e')$ (by A3) = 1 (by (a)). Hence the assertion. **c**. $m(h_i) = 1/k$. (From (b).)

A9. c(h, e) is invariant with respect to any *permutation of families of the same size*.

- A10. For non-general h and e, c(h, e) is *independent of the total number of individuals*. (A10 corresponds to the requirement of a fitting *c*-sequence, [Prob.] § 57C.)
- A11. c(h, e) is independent of the existence of other families than those occurring in h or e.

XII. *Learning from experience* (A12)

The intuitive *principle of learning from experience* says that, other things being equal, the more frequently a kind of event has been observed, the more probable is its occurrence in the future. This is expressed more exactly in the *axiom of instantial relevance* (first proposed in Carnap [16])

A12. Suppose that e is non-L-false and non-general, and i and h are full sentences of the same factual, molecular predicate 'M' with distinct individual constants not occurring in e.

```
a. c (h, e.i) < c (h, e). **THE '<' SYMBOL SHOULD HAVE A
VERTICAL LINE THRU IT**
```

b.
$$c(h, e \cdot i) \neq c(h, e)$$
.

Both $c^{\dagger}(X)$ and the straight rule (VI) fulfill part (a) of A12, but violate part (b). With c^{\dagger} , *i* is always irrelevant for *h*. With the straight rule, *i* is irrelevant for *h* if *e* is a conjunction of full sentences of '*M*'; in this case both *c*-values are 1.

T1. Let e, i, h, and M be as in A12. **a.** $c (h, e \cdot i) > c (h, e)$; i is positively relevant for h on e. **b.** Let j be a conjunction of n full sentences of 'M' ($n \ge 2$) with n distinct individual constants which do not occur in e or h. Then $c (h, e \cdot j) > c (h, e)$. (From (a).) **c.** $c (h, e \cdot i) < c (h, e)$; i is negatively relevant for h on e. (From (a) and [Prob.] T65-6e.) **d.** $c (h, e, i) > c (h, e \cdot i)$. (From (a), (c).)

XIII. The language L_F with one family F (Al 3)

This and the subsequent sections refer to a language L_F whose primitive predicates are k predicates P_1, \ldots, P_k of a family F (k ≥ 2). A sentence

in L_F may contain any number of individual constants but no variables. e_F is an individual distribution for *s* individuals with respect to *F* with the cardinal numbers s_i (i = 1, ..., k). $h_l, ..., h_k$ are full sentences of ' P_1 ', ..., ' P_k ', respectively, with the same individual constant, which does not occur in e_F .

A13. Meaning postulates for *F*: **a**. $\models h_1 \lor h_2 \lor \dots \lor h_k$. **b**. If $i \neq j$, $h_i \cdot h_j$ is L-false.

 $m(e_F)$ is independent of other individuals (A10) and other families (A11). It depends not on the particular individuals in e_F but only on their numbers s_i . Therefore:

T1. For any *m*-function *m* fulfilling the axioms, there is, for any *k*, a representative mathematical function M_k of *k* arguments such that, for any e_F , $m(e_F) = M_k(s_1, s_2, ..., s_k).$

T2. M_k is invariant with respect to any permutation of the k arguments. (From A8.)

 $e_F \cdot h_1$ is an individual distribution for s + 1 individuals with the cardinal numbers $s_1 + 1$, $s_2, ..., s_k$. We define:

D1.
$$C_k(s_1; s_2, ..., s_k) = {}_{\text{Df}} \frac{M_k(s_1 + 1, s_2, ..., s_k)}{M_k(s_1, s_2, ..., s_k)}$$

T3. a. For any c-function c and any k, there is a *representative mathematical function* Ck of k arguments such that, for any eF, c (hi, eF) = Ck (s1; s2, ..., sk). Analogously for h2, etc.
b. Ck is invariant with respect to any permutation of the k-1 arguments following the first.

I shall sometimes write 'M' and 'C' without subscripts.

T4. For any *k* numbers *n*, *p*, s_3 , ..., s_k whose sum is *s*, the following holds. ('---' stands for ' s_3 , ..., s_k '; this expression drops out if k = 2; in this case n + p = s.)

 $\frac{C(n; p+1,---)}{C(p; n+1,---)} = \frac{C(n; p,---)}{C9p; n,---)}$

(Here $p + n + 1 + \dots = s + 1$.)

Proof. The following holds identically:

$$\frac{M(n+1, p+1, ---)}{M(n, p+1, ---)} \times \frac{M(n, p+1, ---)}{M(n, p, ---)} = \frac{M(n+1, p+1, ---)}{M(n+1, p, ---)} \times \frac{M(n+1, p, ---)}{M(n, p, ---)}$$

According to D1, the first quotient is C(n; p + 1, ---); the second is (by T2) equal to

$$\frac{M(p+1, n, ---)}{M(p, n, ---)} = C(p; n, ---);$$

the third becomes (again with reordering of arguments) C(p; n + 1, ---), and the fourth C(n; p, ---). Hence the theorem.

T5. a.
$$\sum_{i=1}^{k} c(h_i, e_F) = 1.$$
 (From A13a.)
b. $\sum_{i=1}^{k} C(s_i; s_1, ..., s_{i-1}, s_{i+1}, ..., s_k) = 1.$ (From (a).)

XIV. The Axiom of Predictive Irrelevance (A14)

Let e_1 be formed from e_F by replacing each predicate except ' P_1 ' with ' $\sim P_1$ '. Hence e_1 is an individual distribution for the *s* individuals with respect to the division P_1 , $\sim P_1$, with the cardinal numbers s_1 and $s - s_1 \cdot e_2$, ..., e_k are formed analogously.

For given *k*, $c(h_1, e_1)$ depends only on s_1 and *s*. It can therefore be represented by a function $G_k(s_1; s)$. Analogously for i = 2, ..., k (by A8).

- **T1**. For any *c*-function *c* and any *k*, there is a *representative mathematical function* G_k such that, for i = 1, ..., k. $c(h_i, e_i) = G_k(s_i; s)$.
- **T2**. Suppose that $s_1 < s$. Let e'_1 be like e_1 but with the cardinal numbers $s_1 + 1$ and $s s_1 1$. **a**. $c(h_1, e'_1) > c(h_1, e_1)$. (From XII-Tld.) **b**. $G_k(s_1 + 1; s) > G_k(s_1; s)$ (From (a).)

The axiom of predictive irrelevance says that of the *k* cardinal numbers in e_F all except s_1 are irrelevant for h_1

A14. For k > 2, $c(h_1, e_F) = c(h_1, e_1)$.

This axiom is not a necessary condition for the adequacy of *c*. But it is a customary (usually tacit) assumption, and it leads to a great simplification of the system. If k = 2, then e_1 is the same as e_F and therefore A14 is fulfilled trivially.

T3. For any $k (\ge 2)$ any any *i*: **a**. $c(h_i, e_F) = c(h_i, e_i)$. (From A14, A8.) **b**. For any numbers $s_2, ..., s_k$ whose sum is $s - s_i, C_k(s_1; s_2, ..., s_k) = G_k(s_1; s)$. (From (a).)

I shall often write 'G' for ' G_k '.

T4. For any sequence of k numbers
$$s_1, ..., s_k$$
 whose sum is s,

$$\sum_{i=1}^k G(s_i; s) = 1. \text{ (From XIII-T5.)}$$

Special cases of T4:

T5. a.
$$G(s; s) + (k - 1) G(0; s) = 1$$
. (From T4 for the sequence s, 0, ..., 0.)
b. $G(s + 1; s + 1) = 1 - (k - 1) G(0; s + 1)$. (From (a).)
c. $G(1; 1) = 1 - (k - 1) G(0; 1)$. (From (a).)
d. $G(s; s + 1) + G(1; s + 1) + (k - 2) G(0; s + 1) = 1$. (Sequence s, 1, 0,..., 0.)

The following development has the aim to show (1) that, if all values of *G* for *s* are given, the values for s + 1 are uniquely determined, and (2) if G(0; 1) is given, all values of *G* are uniquely determined. For these results it is *presupposed that* k > 2.

T6. For
$$k > 2$$
; for any n, p, s such that $n + p \le s$.
a. $\frac{G(n; s + 1)}{G(p; s + 1)} = \frac{G(n; s)}{G(p; s)}$. (From XIII-T4.)
b. $G(n; s + 1) = G(0; s + 1) \frac{G(n; s)}{G(0; s)}$ (From (a) with $p = 0$.).

T7. For k > 2.

$$G(0; s+1)\left[\frac{G(s; s)}{G(0; s)} + \frac{G(1; s)}{G(0; s)} + k - 2\right] = 1.$$

(From T5d, by transforming the first two of its G-terms according to T 6b.)

Now aim (1) has been reached. If all *G*-values for *s* are given, G(0; s + 1) is determined by T7, then the values G(n; s + 1) for n = 1, ..., s are determined by T6b, and G(s + 1; s + 1) by T5b. Thus all values for s + 1 are determined.

We have also attained aim (2). If G(0; 1) is given, G(1; 1) is determined by T5c. These are all the *G*-values for s = 1. They determine the values for s = 2, and so on. Thus all *G*-values are determined by G(0; 1). The following theorem gives the explicit form.

T8. For k > 2, for any *s* and *n* $(0 \le n \le s)$,

$$G(n; s) = \frac{n - (kn - 1)G(0; 1)}{s - (s - 1)kG(0; 1)}.$$

(This can be proved by mathematical induction with respect to s. (1) The theorem holds for s = 1 (for n = 0 it holds identically, for n = 1 by T5c). (2) If the theorem holds for a given s, it holds likewise for s + 1; this can be shown with the help of the theorems T7, T6b, and T5b, which determine the *G*-values for s + 1 on the basis of those for s. Hence the theorem holds for every s.)

Suppose that the value of G(0; 1) has been chosen. Then all values of G can be determined. The following theorem T9 shows that the *m*-value of any state-description is determined by the value of G. Thereby the *m*-values for all sentences and the *c*-values for all pairs of sentences are determined (see VI).

T9. Let Z_F be a state-description for N individuals and for the k predicates of the family F, with the cardinal numbers N_i (i = 1, ..., k). Then

$$m(Z_F) = \prod_{i=0}^{N_i-1} G(n; S_i+n),$$

where \prod_{i} runs through those values of *i* for which $N_i > 0$; $S_i = \sum_{h=1}^{i-1} N_h$, $S_1 = 0$. (For the proof see [Continuum] § 5.)

XV. The λ -system (Al 5)

We shall construct a system of all *c*-functions fulfilling our axioms. We call it the λ -system, because the *c*-functions will be characterized by the values of a parameter λ .

We have seen that, for a given k(>2), all values of *G* are determined by *G* (0; 1). The latter value can be freely chosen within certain boundaries. We shall now determine these boundaries.

From XI-T1c:

(1)
$$c(h_i, t) = 1/k$$

Hence with XII-T1c (based on A12):

(2)
$$G(0; 1) < 1/k$$

If we were to choose G(0; 1) > 1/k, then *c* would violate not only A12b but also A12a and therefore be unacceptable. If we choose G(0;1) = 1/k, then only A12b is violated. This *c* does not belong to the λ -system, but will nevertheless be discussed as a boundary case (we shall find that it is the same as c^{\dagger} in X).

The following is obvious (from Al):

(3)
$$G(0; 1) \ge 0.$$

If we choose G(0; 1) = 0, then the resulting *c* fulfills Al to A5, but violates A6. Hence it is quasi-regular. Therefore it does not belong to the λ -system. It will, however, be discussed as a boundary case; we shall see that it corresponds to the straight rule.

T1.
$$0 < G(0; 1) < 1/k$$
.

It can also be shown that, if any value between 0 and 1/k is chosen for G(0; 1), then the resulting *c*-function fulfills our axioms.

We define first an auxiliary parameter:

D1.
$$\lambda_{k}^{\prime\prime\prime} = _{\text{Df}} kG_{k}(0; 1)$$
.

From T1:

T2. $0 < \lambda_k^{\prime\prime\prime} < 1$.

I shall usually write ' λ '''' for ' $\lambda_k^{"'}$ '. From XIV-T8:

T3. For k > 2, for any *s* and $n (0 \le n \le s)$.

$$G(n; s) = \frac{n - (n - 1/k)\lambda'''}{s - (s - 1)\lambda''}$$

We shall mostly use, not λ''' , but $\lambda = \lambda''' / (1 - \lambda''')$. The use of λ leads to a simpler formula for G(n; s) (T4c). However, in the case of G(0; 1) = 1/k, $\lambda''' = 1$, while λ is infinite. Therefore in this case λ is less convenient than λ''' . But this case is not included in our system.

D2.
$$\lambda_k = {}_{Df} \frac{kG_k(0;1)}{1-kG_k(0;1)}.$$

T4. a. $\lambda''' = \lambda / (\lambda + 1).$
b. $G(0; 1) = \frac{\lambda}{k(\lambda + 1)}.$
c. For $k > 2$, $G(n; s) = \frac{n + \lambda / k}{s + \lambda}.$ (From T3, (a).)

The case k = 2. The important results at the end of XIV can be proved only if k > 2. (This seems surprising, since A14, on which the results are based, holds also for k = 2.) *A new axiom must be added for* k = 2. T4c shows that, for given k(> 2), *s*, and G(0; 1), G(n; s) is a linear function of *n*. We assume as an axiom that the same holds for k = 2:

A15. For given s and $G_2(0; 1)$, G(n; s) is a linear function of n.

Note that $G_2(n; s) = C_2(n; s - n)$ (see XVI-T3b). Therefore we have (without use of A15):

(4)
$$G_2(n; s) + G(s - n; s) = 1.$$
 (From XIII-T5b.)

(5)
$$\frac{G_2(n;s+1)}{G_2(s-n;s+1)} = \frac{G_2(n;s)}{G_2(s-n;s)}$$
. (From XIII-T4.)

From (4) and (5) we can derive with A15:

T5.
$$G_2(n; s+1) = G_2(0; s+1) \frac{G_2(n; s)}{G_2(0; s)}$$
.

This corresponds to XIV-T6b. Then, in analogy to the earlier proofs, we can now prove the analogues of T3 and of T4c for k = 2; the latter is

T6.
$$G_2(n; s) = \frac{n + \lambda/2}{s + \lambda}$$
.

For any λ , let c_{λ} be the *c*-function characterized by λ , and m_{λ} be the corresponding mfunction. Using our result for G(n; s) (T4c, T6), we obtain T7a from XIV-T9 (for the proofs of T7b and c and the notation $\begin{bmatrix} r \\ n \end{bmatrix}$, see [Continuum] § 10).

T7. **a**.
$$m_{\lambda}(Z_F) = \prod_{i \in (N_i > 0)} \prod_{n=0}^{N_i - 1} \frac{n + \lambda / k}{S_i + n + \lambda} =$$

b. $= \frac{\prod_i \left[\left(\frac{\lambda}{k} \right) \left(\frac{\lambda}{k} + 1 \right) \left(\frac{\lambda}{k} + 2 \right) \dots \left(\frac{\lambda}{k} + N_i - 1 \right) \right]}{\lambda (\lambda + 1) (\lambda + 2) \dots (\lambda + N - 1)}$
c. $= \frac{\prod_i \left[\frac{N_i + \lambda / k - 1}{N_i} \right]}{\left[\frac{N_i + \lambda - 1}{N} \right]}.$

d. Let Str_F be the structure-description corresponding to Z_F . Then

$$m_{\lambda}(Str_{F}) = \frac{\prod_{i} \begin{bmatrix} N_{i} + \lambda / k - 1 \\ N_{i} \end{bmatrix}}{\begin{bmatrix} N_{i} + \lambda - 1 \\ N \end{bmatrix}}.$$
(From (c) with VIII-T3.)

XVI. Various c-Functions in the λ -System

Let the predicate 'M' be defined as a disjunction of w predicates of $F: P_1 \vee P_2 \vee ... \vee P_w$. Hence its logical width is w. Let e_F be as before, and h_M a full sentence of 'M' for a new individual. Let e_M be $s_1 + s_2 + ... + s_w$. Then we have (from XV):

(1)
$$c_{\lambda}(h_M, e_F) = \frac{s_M + w\lambda / k}{s + \lambda}$$
.

This is

$$\frac{\frac{s_M}{s}s+\frac{w}{k}\lambda}{s+\lambda},$$

thus it is the weighted mean of the observed relative frequency s_M/s and the relative width w/k, with weights *s* and λ , respectively. s_M/s is an empirical factor in the situation, and w/k is a logical factor. λ is thus the weight of the logical factor. The greater the chosen λ , the closer to w/k is the above *c*-value.

Example. For an even k, we take a predicate 'M' with w = k/2. In e_F , let s = 10, $s_M = 1$. Then the c_{λ} -value in (1), for various choices of λ , is as follows (see [Continuum] (12-19)):

$\lambda =$	0	1	2	4	8	16	32	∞
$c_{\lambda}(h_M,e_F) =$	0.1	0.136	0.167	0.214	0.278	0.346	0.405	0.5

For $\lambda = 0$, $c = s_M/s$. This is the straight rule, which violates A6. ([Continuum] § 14.) For $\lambda = \infty$, c = w/k = c (h_M , t). This is c^{\dagger} , which violates A 12b. ([Continuum] § 13.) These are the two extreme methods, not included in the λ -system. In this system, we take

 $0 < \lambda < \infty$; hence the above *c* is between s_M/s and w/k (if these are unequal). For families of different sizes (each in a separate language) we distinguish two kinds of

For families of different sizes (each in a separate language) we distinguish two kinds of inductive methods.

Inductive methods of the first kind: a fixed value is chosen for λ , independent of k. ([Continuum] § 11.)

Inductive methods of the second kind: λ_k is dependent upon *k*. The simplest form is: $\lambda_k = C_k$, with a constant *C*. The simplest method of this form takes C = 1, hence $\lambda_k = k$; thus from (1):

(2)
$$c_{\lambda}(h_M, e_F) = \frac{s_M + w}{s + k}.$$

This is the function $c^*(\text{see } X)$ *.*

XVII. A Language with Two Families (A16)

The language L contains two families: F^1 consists of k_1 predicates: P_1^1 , P_2^1 , etc; and F^2 of k_2 predicates: P_1^2 , P_2^2 , etc. There are

 $k = k_1 k_2 Q$ -predicates; Q_{ij} is the conjunction $P_i^1 \cdot P_j^2$ $(i = 1, ..., k_1; j = 1, ..., k_2)$. Let e^1 be an individual distribution for F^1 , and e^2 for F^2 , both for the same *s* individuals.

Let e^{i} be an individual distribution for F^{i} , and e^{2} for F^{2} , both for the same *s* individuals. Let *e* be $e^{i} \cdot e^{2}$. This is an individual distribution for the *k Q*-predicates; let s_{ij} be the number of individuals with *Qij*.

We take the same λ for both families. Then we can determine $m_{\lambda}(e^{1})$ and $m_{\lambda}(e^{2})$ (by XV-T7).

Problem: What is to be taken as value of $m_{\lambda}(e)$? This is not determined by the previous axioms. We shall now consider two attempts at a solution, and then take a combination of them.

First tentative solution. We take the class of the *k Q*-predicates as the *pseudo-family* $F^{1,2}$. Then we define $m^{1,2}$ for $F^{1,2}$, as if the latter were a real family; hence, in analogy to XV-T7c

D1.
$$m_{\lambda}^{1,2}(\mathbf{e}) = {}_{\mathrm{Df}} \frac{\prod_{i=1}^{k_1} \prod_{j=1}^{k_2} \left[s_{ij} + \frac{\lambda}{k} - 1 \right]}{\left[s_{ij} + \lambda - 1 \right]}$$

 $m_{i}^{1,2}$ (e) depends only on the *Q*-numbers s_{ii} in *e*, not on the *P*-numbers in e^{1} or e^{2} .

Second tentative solution. We define $m^{1|2}(e)$ as the product of the *m*-values for the two families separately:

D2.
$$m_{\lambda}^{\parallel 2}(e) = {}_{\mathrm{Df}} = m_{\lambda}(e^1) \times m_{\lambda}(e^2)$$
.

 $m^{l|2}(e)$ depends only on the *P*- numbers, not on the *Q*-numbers.

We shall examine the two solutions with the help of the following three examples *A*, *B*, *C*, of individual distributions for s = 20 individuals, with $k_1 = k_2 = 2$ (the numerals in the four cells indicate the *Q*-numbers; the marginal numerals indicate the *P*-numbers for the two families).

The following two requirements (or desiderata) I and II seem plausible.

(I) We should have: m(A) < m(B), because B is more uniform than A.

This requirement is satisfied by $m^{1,2}$ (because the *Q*-numbers are equal in *A*, unequal in *B*), but not by $m^{1/2}$ (this has equal values for *A* and for *B*, because the *P*-numbers are the same).

(II) We should have: m(B) < m(C) because the distribution for F^1 is more uniform in *C* than in *B*, while that for F^2 is the same in *C* as in *B*.

This requirement is in accord with the customary analogy inference ('horse-donkey inference'). However, it is not satisfied by $m^{1,2}$ (this has equal values for *B* and for *C*, because the *Q*-numbers are the same). It is satisfied by $m^{1|2}$.

Thus both solutions are unsatisfactory. Generally, any solution that uses only the *P*-numbers cannot satisfy I, and any solution that uses only the *Q*-numbers cannot satisfy II. An adequate solution must use both the *P*-numbers and the *Q*-numbers. This is done in the third solution, which satisfies both requirements.

Third solution. We define $m_{\lambda,n}(e)$ as a weighted mean of the first two solutions, with the weights η and $1 - \eta$, where η is a new parameter

D3.
$$m_{\lambda,n}(e) = {}_{\mathrm{Df}} \eta \ m^{1/2}(e) + (1-\eta) \ m^{1/2}(e).$$

The parameter η may be chosen, independently of λ , such that $0 < \eta < 1$. The greater η is, the stronger is the influence by analogy (i.e., the greater is the difference between the two *c*-values in A16 below). The method can easily be extended to more than two families; no new parameter is needed. (The method was worked out in collaboration with John Kemeny.)

The requirement II can be represented in a generalized form as follows:

A16. Axiom of analogy. Let e be an individual distribution for two families (with any k_1 and k_2). Let i and j be full sentences of Q_{11} and Q_{12} , respectively, with the same individual constant not occurring in e. Let h be a full sentence of Q_{12} with another individual constant not occurring in e. Then

The generalization for other *Q*-predicates follows by A8.

XVIII. An Infinite Domain of Individuals (A17)

Let the domain of L_N contain N individuals, and that of L_∞ be denumerably infinite. According to A10, the values of c for non-general sentences are in L_∞ the same as in L_N . If either e or h or both contain variables, a new axiom is needed. We take the value of c in L_∞ as the limit of its values in finite languages (see [Prob.] § 56)

A17. Axiom of the infinite domain. Let $_Nc$ be a *c*-function for \mathbb{L}_N . Then the corresponding *c*-function $_{\infty}c$ for \mathbb{L}_{∞} is determined as follows: $_{\infty}c(h, e) = \lim_{N \to \infty} c(h, e).$

BIBLIOGRAPHY

A list of selected publications, almost all since 1950. For earlier publications, see the bibliography in Carnap [Prob.].

- [1] Bar-Hillel, Y., 'A Note on State-Descriptions', *Philosophical Studies* **2** (1951) 72-75.
- [2] Bar-Hillel, Y., 'A Note on Comparative Inductive Logic', *British Journal for the Philosophy of Science* **3** (1953) 308-310.
- [3] Bar-Hillel, Y., 'Comments on 'Degree of Confirmation' by Prof. K. R. Popper', *British Journal for the Philosophy of Science* **6** (1955) 155-157.
- [4] Bar-Hillel, Y., 'Further Comments on Probability and Confirmation: A Rejoinder to Prof. Popper', *British Journal for the Philosophy of Science* **7** (1956) 245-248.
- [5] Bar-Hillel, Y. and Carnap, R., 'Semantic Information', *British Journal for the Philosophy of Science* **4** (1953), 147-157. Repr. in *Language and Information* (by Y. Bar-Hillel).
- [6] Black, Max, 'The Justification of Induction', *Language and Philosophy*, Cornell University Press, Ithaca, 1949.
- [7] Braithwaite, R. B., *Scientific Explanation*, Cambridge University Press, Cambridge, 1953.
- [8] Burks, Arthur W., 'Reichenbach's Theory of Probability and Induction', *Review of Metaphysics* **4** (1951) 377-393.
- [9] Burks, Arthur W., 'The Presupposition Theory of Induction', *Philosophy of Science* **20** (1953) 177-197.
- [10] Burks, Arthur W., 'On the Significance of Carnap's System of Inductive Logic for the Philosophy of Induction', *The Philosophy of Rudolf Carnap* (ed. by P. A. Schilpp), Open Court Publ. Co., La Salle, 1963, pp. 739-760.
- [11] Carnap, Rudolf, [Prob.] *Logical Foundations of Probability*, The University of Chicago Press, Chicago, 1950.
- [12] Carnap, Rudolf, *The Nature and Application of Inductive Logic*, consisting of six sections from *Logical Foundations of Probability*, The University of Chicago Press, Chicago, 1951.

- [13] Carnap, Rudolf, 'The Problem of Relations in Inductive Logic', *Philosophical Studies* 2 (1951) 75-80.
- [14] Carnap, Rudolf, [Continuum] *The Continuum of Inductive Methods*, The University of Chicago Press, Chicago, 1952.
- [15] Carnap, Rudolf, 'Meaning Postulates', *Philosophical Studies* **3** (1952) 65-73.
- [16] Carnap, Rudolf, 'On the Comparative Concept of Confirmation', *British Journal for the Philosophy of Science* **3** (1953) 311-318.
- [17] Carnap, Rudolf, 'Inductive Logic and Science', *Proceedings of the American Academy of Arts and Sciences* **80** (1953) 189-197.
- [18] Carnap, Rudolf, 'Remarks to Kemeny's Paper', *Philosophy and Phenomenological Research* **13** (1953) 375-376.
- [19] Carnap, Rudolf, 'What is Probability?', *Scientific American* **189** (1953, September) 128-138.
- [20] Carnap, Rudolf, I. Statistical and Inductive Probability, II. Inductive Logic and Science (same as above in Proc. Amer. Acad. Arts & Sciences), Galois Institute of Mathematics and Art, Brooklyn, N.Y., 1955.
- [21] Carnap, Rudolf, 'Remarks on Popper's Note on Content and Degree of Confirmation', British Journal for the Philosophy of Science 7 (1956) 243-244.
- [22] Carnap, R. and Bar-Hillel, Y., *An Outline of a Theory of Semantic Information*, Technical Report Number 247, Research Laboratory of Electronics, M.I.T., 1952. Repr. in *Language and Information* (by Y. Bar-Hillel).
- [23] Davidson, D., McKinsey, J.C., and Suppes, P., 'Outlines of a Formal Theory of Value', *Philosophy of Science* **22** (1955) 140-160.
- [24] De Finetti, Bruno, 'Recent Suggestions for the Reconciliation of Theories of Probability', *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability* (1951) 217-225.
- [25] De Finetti, Bruno, 'La vrai et la probable', *Dialectica* **3** (1949) 79-92.
- [26] Feigl, Herbert, 'Scientific Method without Metaphysical Presuppositions', *Philosophical Studies* 5 (1954) 17-29.
- [27] Feys, R. (ed.), *Theorie des probabilités*, Exposés sur ses fondements et ses applications, 1953.
- [28] Goodman, Nelson, Fact, Fiction, and Forecast, Harvard University Press, Cambridge, 1955.
- [29] Hutten, Ernest, 'Probability-Sentences', Mind 61 (1952) 39-56.
- [30] Kemeny, John, 'Extension of the Methods of Inductive Logic', *Philosophical Studies* **3** (1952) 38-42.
- [31] Kemeny, John, 'A Contribution to Inductive Logic', *Philosophy and Phenomenological Research* **13** (1953) 371-374.
- [32] Kemeny, John, 'The Use of Simplicity in Induction', *Philosophical Review* **62** (1953),391-408.
- [33] Kemeny, John, 'A Logical Measure Function', *Journal of Symbolic Logic* 18 (1953) 289-308.
- [34] Kemeny, John, 'Fair Bets and Inductive Probabilities', *Journal of Symbolic Logic* **20** (1955) 263-273.
- [35] Kemeny, J. and Oppenheim, P., 'Degree of Factual Support', *Philosophy of Science* **19** (1952) 307-324.
- [36] Lehman, R. Sherman, 'On Confirmation and Rational Betting', *Journal of Symbolic Logic* **20** (1955) 251-262.
- [37] Nagel, Ernest, Principles of the Theory of Probability. International Encyclopedia

of Unified Science, 1, No. 6, The University of Chicago Press, Chicago, 1939.

- [38] Neyman, Jerzy, 'The Problem of Inductive Inference', *Communications On Pure and Applied Mathematics* **8** (1955) 13-45.
- [39] Pap, Arthur, *Analytische Erkenntnistheorie*. Kritische Übersicht über die neueste Entwicklung in USA und England. Springer Verlag, Wien, 1955.
- [40] Popper, Karl, 'Degree of Confirmation', *British Journal for the Philosophy of Science* **5** (1954) 143-149.
- [41] Popper, Karl, 'Two Autonomous Axiom Systems for the Calculus of Probabilities', British Journal for the Philosophy of Science 6 (1955) 51-57.
- [42] Popper, Karl, 'Content' and 'Degree of Confirmation': A Reply to Dr. Bar-Hillel', British Journal for the Philosophy of Science 6 (1955) 157-163.
- [43] Popper, Karl, 'The Demarcation Between Science and Metaphysics', *The Philosophy of Rudolf Carnap* (ed. by P. A. Schilpp), Open Court Publ. Co., La Salle, 1963, pp. 183-226.
- [44] Rubin, H. and Suppes, P., 'A Note on Two-Place Predicates and Fitting Sequences of Measure Functions', *Journal of Symbolic Logic* **20** (1955) 121-122.
- [45] Savage, Leonard J., *The Foundations of Statistics*, John Wiley, New York, 1954.
- [46] Schilpp, Paul A. (ed.), *The Philosophy of Rudolf Carnap* (The Library of Living Philosophers), Open Court Pub]. Co., La Salle, 1963.
- [47] Shimony, Abner, 'Coherence and the Axioms of Confirmation', *Journal of Symbolic Logic* **20** (1955) 1-28.
- [48] Simon, Herbert A., 'Prediction and Hindsight as Confirmatory Evidence', *Philosophy of Science* **22** (1955) 227-230.
- [49] Stegmüller, Wolfgang, 'Bemerkungen zum Wahrscheinlichkeitsproblem', *Studium Generale* **6** (1953) 563-593.
- [50] Vietoris, L., 'Zur Axiomatik der Wahrscheinlichkeitsrechnung', *Dialectica* 8 (1954) 37-47.
- [51] Will, F. L., 'Kneale's Theories of Probability and Induction', *Philosophical Review* **63** (1954) 19-42.
- [52] Wisdom, John O., *Foundations of Inference in Natural Science*, Methuen and Company, London, 1952.
- [53] von Wright, G. H., 'Catnap's Theory of Probability', *Philosophical Review* **60** (1951) 362-374.
- [54] von Wright, G. H., *A Treatise on Induction and Probability*, Harcourt, Brace and World, New York, 1951.