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SEMIOTIC 
 

I. Semiotic and its parts 
 

On object language (L) and metalanguage (M), see Intr. Sem., sect. 1. An expression in L 
is a finite sequence of signs in L (Intr. Sem., sect. 2). On sign-events (tokens) and sign-designs, 
expression-events, and expression-designs, see Intr. Sem., sect 3. 

On the division of semiotic into three parts, viz, pragmatics, semantics, and syntax, see 
Intr. Sem., sect. 4. 

On the distinction between descriptive and pure syntax see Syntax, sections 2 and 24, and 
Intr. Sem., sect. 5. On descriptive and pure semantics, see Intr. Sem., sect. 5. We shall here be 
concerned only with pure syntax and pure semantics. 
 

II. Syntactical signs 
 

Syntactical signs used in M as names (with numerical subscripts. e.g., ‘A1’, ‘A2’ etc.) or 
as variables (with letter subscripts. e.g., ‘Ai’. ‘Aj’. etc.) for expressions of the object language: ‘A’ 
for expressions, ‘s’ for signs, ‘c’ for constants, ‘v’ for variables, ‘in’ for individual constants, 
‘inv’ for individual variables, ‘pr’ for descript- 



tive predicates, ‘prv’ for predicate variables, ‘S’ for sentential formulas (incl. sentences), ‘D’ for 
designator formulas (incl. designators), ‘K’ for classes of expressions (in most cases classes of 
sentences). 

Thus, ‘in5’ is short for ‘the individual constant No. 5’. ‘~pr2 (inv5)’ is short for ‘that 
expression (of the object language) which consists of ‘~’, followed by the predicate No. 2, 
followed by the left-hand parenthesis, followed by the individual variable No. 5, followed by the 
right-hand parenthesis’. 

0 write ‘iff for ‘if and only if’. I use as a sign of definition in M either ‘iff or ‘= Df’.) 
Ai is an open expression = Df  Ai contains a free variable.  
Ai is a closed expression = Df Ai contains no free variable.  

 
LOGICAL SYNTAX 

 
III. Propositional calculus PC 

 
A. Rules of formation 
 
1. Signs of PC: 

(a) Constants ‘B’, ‘C’, etc.  
(b) Variables: ‘p’, ‘q’, etc.  
(c) Parentheses: ‘(‘, ‘)‘. 

 
2. Sentences of PC:  

(a) Any constant.  
(b) Any variable.  
(c) If Si is a sentence, ~Si is a sentence. 
(d) If Si and Sj are sentences, (Si ∨  Sj) is a sentence.  

 
B. Rules of transformation. 
 

1. Primitive sentences of PC 
PS1. ‘~(p ∨  p) ∨  p’. 
PS2.  ‘~p ∨  (p ∨  q)’. 
PS3.  ‘~(p ∨  q) ∨  (q ∨  p)’. 
PS4.  ‘~(~p ∨  q) ∨  (~(r ∨  p) ∨  (r ∨  q) )’. 



2. Rules of inference of PC:  
(a) Rule of substitution.  
(b) Rule of modus ponens. 

2′. Formulation as definition: 
Sj is directly derivable in PC from Ki (or, from the sentences in Ki) iff either 
(a) for some Si, Ki is { Si }, and Sj is formed from Si by substituting any sentence 
for a variable, or 
(b) for some Si Ki = { Si, ~ Si ∨  Sj}. 

 
 

IV. The calculus PC′ (without variables)  
 

A. Rules of formation. 
 

1. Signs: (a), (c), (d) of PC. 
2. Sentences: (a), (c), (d) of PC.  

 
B. Rules of transformation. 

1. Primitive sentence schemata: 
PS1. ~( Si ∨  Si) ∨  Si.  
PS2. ~Si ∨  (Si ∨  Sj).  
PS3. ~(Si ∨  Sj) ∨  (Sj ∨  Si). 
PS4.  ~(~Si ∨  Sj) ∨  (~(Sh ∨  Si) ∨  (Sh ∨  Sj)).  

 
2. Rule of inference: modus ponens. 

 
 

V. Definitions in general syntax, for any calculus C. 
 
(1) Rk is a proof in C = DF Rk is a finite sequence of sentences in C such that every sentence Sj  

of Rk is either a primitive sentence of C or directly derivable in C from a subclass of 
sentences which precede Sj in Rk. 

(2) Sk is provable in C = DF Sk is the last sentence of a proof in C.  
(3) Rk is a derivation with the premise-class Kk in C = Df Rk is a finite sequence of sentences 

in C such that every sentence Sj of Rk, is either an element of Kk or a primitive sentence of 
C of directly derivable in C from a subclass Ki of the clan of sentences which precede Sj 
in Rk. 



(4) Sj is derivable from Ki in C = Df Sj is the last sentence of a derivation with the premise-
class Ki in C. 

The following concepts are often useful in syntax and semantics. 
(5)  The class K is closed with respect to the relation R (or the function f) = Df if xl, . . . , xn are 

elements of K and R (y, x1, . . . , xn) [or f (xl, . . . , xn) = y, resp.], then y is an element of K. 
(Sometimes the following form is used: “if K′⊂  K and R(y, K′), then y ε K”.) 

(6)  The closure of the class K with respect to the relations R1, …, Rm (or the functions f1, . . . , 
fm,) = Df  the intersection of all classes which contain K as a subclass and which are closed 
with respect to R1, . . . , Rm, (or f1, . . . , fm, resp.). (Tarski, 1941, sect. 47; Rosser, 1953, 
pp. 244 ff.) 

We can then define (without the terms ‘proof’ and ‘derivation’):  
(7) The class of the provable sentences in C = Df the closure of the class of primitive 

sentences with respect to direct derivability.  
(8) The class of the sentences derivable from Ki in C = Df the closure of the union of Ki with 

the class of primitive sentences with respect to direct derivability. 
 

VI. Examples for PC′ (see IV) 
 
A. Example of a proof in PC′. 
 

PS4 ~(~
876 is

B)(B∨
} }

B))B(~B))(BB(~(~B) ∨∨∨∨∨∨
ki ss

(1) 

PS1    ~(B∨ B) ∨  B (2) (2) 
(1)(2) ~(~B∨ (B∨ B)) v (~B∨ B)) (3) 
PS2                                                ~B∨  (B∨ B) (4) 

(3)(4) ~B∨ B (5) 
 
B. Example of a derivation in PC′. 
 

Premise    C∨ B (1) 
PS3 ~(C∨ B)∨ (B∨ C) (2) 
(1)(2)                    B∨ C (3) 

 
  
   
   



(For further examples of proofs and derivations, see Cooley, 1947, sections 29-31.) 
 
 

VII. Rules of transformation of PC 
 

Formulated with the null class Λ of sentences (Intr. Sem., sect. 26 ff.) 
(1) Sm is directly derivable (in PC) from Ki = Df one of the following conditions is fulfilled: 

(a) Ki is Λ, and Sm is ~(v1 ∨  v1) ∨  v1 ; 
(b) Ki is Λ, and Sm is ~ v1 ∨  (v1 ∨  v2); 
(c) Ki is Λ, and Sm is ~( v1 ∨  v2) ∨  (v2∨  v1); 
(d) Ki is Λ, and Sm is ~(~v1 ∨  v2) ∨  (~(v3

 ∨  v1) ∨  (v3 ∨  v2)),  
(e)  (substitution, as in I); 
(f)  (modus ponens, as in I). 

(2) The class of sentences derivable from Ki in PC = Df the closure of Λ with respect to direct 
derivability. 

(3) Sm is provable in PC = Df Sm is derivable from Λ.  
 
 

SEMANTICS 
 
 

VIII. Terminological remarks 
 
A. We shall deal here with the designative (or cognitive) meaning component only, leaving 

aside all others (e.g., the emotive and the motivative meaning components). The 
designative meaning component is the one that is relevant for questions of truth. Thus our 
theory is pure, designative semantics. Therefore we consider only declarative sentences 
(called simply ‘sentences’) and their parts. 

B. For the term ‘designator’, see M & N, pp. 6 ff. We shall include among designators 
sentences, individuators (e.g., individual constants and individual descriptions), and 
predicators (e.g. predicates and lambda-expressions). All designators are closed 
expressions. Designators and open expressions of similar forms we call ‘designator 
formulas’. 



C, Terminology for kinds of expressions (compare M & N, pp. 6 ff and footnote 6). 
 

 Closed 
Expressions Constants Variables 

(1) designator 
formulas 

(incl.) (2),(3),(4)) 
designators designator 

constants 
designator 
variables 

(2) sentential 
formulas sentences 

sentential 
constants (or
propositional

constants) 

sentential 
variables (or 
propositional 

variables) 
(3) individual 

formulas individuators individual 
constants 

individual 
variables 

(4) predicator 
formulas predicators predicates predicate 

variables 
 
D. Terminology of intensions and extensions. 
 

Designator Intension Extension 

individuator individual concept individual 
one-place predicator property class
n-place predicator n-adic relation class of n-tuples 

sentence proposition truth-value (T, F; 
or 0, 1) 

 
E. Connectives and operators in M.  

In rules and technical statements in M, I shall sometimes write as follows: 
1. Parentheses are used as in a symbolic language. 
2. ‘Not’ precedes its sentence; e.g., ‘not (it rains)’ for ‘it does not rain’. 



3.  ‘Or’ is used in the non-exclusive sense; e.g., ‘p or q’ for ‘p or q or (p and q)’. 
4.  I shall sometimes use symbolic quantifiers in M, e.g. ‘(∃ x)’ as short for ‘there is 

an x such that’. 
5.  I shall sometimes use in M the lambda-operator for abstract-expressions, e.g., 

‘(λx) (x is large)’ as short for the property of being large’ (or, in Me, ‘the class of 
those individuals which are large’). 
The customary rule of conversion (Church) is used for these λ-expressions (see M 
& N, p. 3.) 

 
 

IX. Semantical systems 
 
A.  A semantical system for an object language L contains at least rules of the following two 

kinds. 
(1) The rules of formation define ‘sentence in L’ (as in syntax).  
(2)  The rules of interpretation give an interpretation for (i.e., specify the meanings of) 

all designators in L. These rules may have various forms. We shall use chiefly two 
forms; 
(a)  rules of designation (Desi) or intension, 
(b)  rules of extension (Dese) including rules of truth. 

 
B. We distinguish two operations or investigations concerning any designator, e.g., a 

predicate pri or a sentence Sj (M & N, pp. 202 ff.): 
(1) The question of meaning or interpretation. In technical terms: “what is the 

intension of the designator?” The question is answered by an interpretation; 
technically, by the semantical rules of interpretation. 

(2) The question of factual application: e.g. “to which individuals does pri apply?”, 
“is Sj true or false?”. In technical terms, it is the question of the extension of the 
designator. The answer is (in general) found by an empirical investigation of 
facts. 



X. The semantical system L1 
 
A. Signs of L1 Examples Names in M 

 1) individual constants ‘a1’, ‘a2’, … ‘in1’, ‘in2’, … 
 2) one-place predicates ‘P1’, ‘P2’, … ‘pr1’, ‘pr2’, … 
 3) connectives ‘~’, ‘∨ ’  
 4) parentheses ‘(’, ‘)’  
 
L1 contains no variables. 
 
B. Rules of Designation (Des) for L1. The relation Des holds in all and only those cases 

which are determined by the following rules: 
R1.  Individual constants. 

(a)  Des(in1, Los Angeles), 
(b)  Des(in2, the desk in Royce Hall 242), etc.  

R2. Predicates. 
(a)  Des(pr1 (λx) (x is large)), 
(b)  Des(pr2, (λx) (x is red) ), etc.  

R3. Sentences. 
(a)  If Des(pr,, F) and Des(in;, x), then Des(pr, inp F(x) ).  
(b) If Des(Si, p), then Des(-S;, not p). 
(c) If Des(S;, p) and Des(S;, q), then Des(Sj v Sp p or q).  

(in the above rules, ‘Des’ is used in three different types. An exact formulation which 
complies with the rule of types can be obtained either by attaching type indices to ‘Des’ 
or by assigning ‘Des’ to a transfinite level; see Intr. Sem., p. 51.) 
 

C. Examples of consequences from the Des-rules for L1. From R1(a), R2(a), and R3(a): 
(1) Des(pr1 in1, (λx) (x is large) (Los Angeles), hence by conversion: 
(2) Des(pr1 in1, L.A. is large). Further, again with conversion:  
(3) Des(~ (pr1 in1, ∨  pr2 in2), not (L.A. is large or not (the desk R. H. 242 is red)) ). 



The first argument expression in (3) is a spelling description (i.e., a description 
specifying each sign) for the sentence ‘~(P1a1 ∨  ~P2a2)’ in L1. 
 
 

XI. Some definitions in general semantics for a semantical system L. 
 
A. Conditions of adequacy for designation in L. 
 

A two-place predicate ‘D’ in M is an adequate predicate for designation in L only if the 
following condition is fulfilled:  

For every designator Ai in L, a sentence in M of the form ‘D(…, ---)’, with a 
spelling description of Ai in the place of ‘. . .’ and a translation of A into M in the 
place of ‘---’. follows from the definition or the rules for ‘D’. (Intr. Sem., pp. 53 
ff.) 

On the basis of the rules in XB, ‘Des’ fulfills this condition as an adequate predicate for 
designation in L1; see the example in XC. 

 
B. General definitions of truth and falsity. 

 
‘Des’ is supposed to be an adequate predicate for designation in L. 
(1) Ai is true (in L) = Df there is a p such that Des(Ai, p) and p.  
(2) Ai is false (in L) = Df there is a p such that Des(Ai, p) and not p. 

 
Theorems. 
(3) Ai is a sentence in L iff there is a p such that Des(Ai, p).  
(4) Ai is true in L or Ai is false in L, iff Ai is a sentence in L.  

 
C. Example of a derivation in M for ‘true in L1,’. 
 

Premise  L.A. is large              (a) 
rules XB for L1 Des(pr1 in1, L.A. is large)            (b) 
(a), (b)   Des(pr1 in1, L.A. is large) and L.A. is M large          (c) 
(c), exist. gen.  (∃ p) Des(pr1 in1, p) and p            (d) 
(d), def. B(1)  pr1 in1 is true in L1             (e) 



X11. Interchangeability in sentences with ‘Des’ 
 
A. The three Des-relations. 
 

1. Suppose that ‘Des(. . ., ---)’ is directly obtained from the rules for ‘Des in L’ and 
that (in accordance with XIA), ‘…’ is a spelling description for a designator Ai in 
L and ‘---’ is a translation of Ai into M. Under what condition shall we say that 
another sentence ‘Des(…, -..-)’, with another designator (in M) ‘-..-’ in the place 
of ‘---’, holds likewise? The answer depends upon what is meant by ‘Des’. 

2.  We shall distinguish three semantical relations: Dese, Desi, and Dens, 
characterized as follows. The derivative sentence holds 
(a) with ‘Dese’, iff ‘---’ and ‘-..-’ have the same extension, 
(b)  with ‘Desi’, iff ‘---’ and ‘-..-’ have the same intension, 
(c)  with ‘Dess’, iff’‘---’ and ‘-..-’ have the same sense. 

3.  Two designators are said to have (a) the same extension iff they are materially 
equivalent, and (b) the same intension iff they are logically equivalent (see M & 
N, sections 3 and 5). 

4.  We say that two designators have the same sense or are synonymous iff the one 
can be obtained from the other by transformations of the following kind: 
(a)  replacement of a definiendum by its definiens or vice versa (or 

replacement of corresponding substitution instances); 
(b)  rewriting of a bound variable;  
(c)  lambda-conversion. 

 
B.  Examples for L1. 
 

In each of the subsequent examples (1) and (2), the sentence (a) is, directly obtained from 
the rules XB for L1 (in (2), (a) is supposed to be the rule for pr5). Therefore, (a) holds for 
Dese, Desi, 



and Dess. The second argument expression in (b) is synonymous with that in (a) 
(assuming suitable definitions for ‘desk’, ‘featherless’. and ‘biped’s Therefore, (b) holds 
likewise for all three relations. The expression in (c) is logically equivalent but not 
synonymous with that in (a). Therefore, (c) holds for Des’ and Des’, but not Dens. 
Finally, the expression in (d) is materially equivalent to that in (a). Therefore, (d) holds 
for Des’ only. 

‘Dese’ ‘Desi’ ‘Dess’
1. For a sentence in L1    
    (a) ‘Des(pr1in1∨ pr2in2, (λx) (x is large) (L.A.) 
    or (λx) (x is red) (the desk...)),   T T T 

    (b) ‘Des(pr1in1∨ pr2in2, L.A. is large or the  
    writing table in R.H. 242 is red)’   T T T 

    (c) ‘Des(pr1in1∨ pr2in2, the desk in R.H.  
    242 is red or LA. is large)’   T T F 

    (d) ‘Des(pr1in1∨ pr2in2, Paris is in France)’   T F F 
    
2. For a predicate in L1    
    (a) ‘Des(pr5, (λx) (x is featherless and x is a biped)’   T T T 
    (b) ‘Des(pr5, (λx) (x has no feathers and x has two feet)’   T T T 
    (c) ‘Des(pr5, (λx) (x is a biped and x is featherless)’  T T T 
    (d) ‘Des(prs, (.lx) (x is human)’   T F F 
With ‘Desi’ both in (1) and in (2), (a) is true but (d) is false, although the interchanged 
expressions have the same extension. Thus, sentences with ‘Desi’ are bot extensional (M & N, 
sect. 11). The same holds for ‘Dess’. Therefore, ‘Desi’ and ‘Dess’ require non-extensional 
metalanguages. The extensional metalanguage (Me) can accommodate only ‘Dese’. 
 
 

XIII. Three metalanguages : Me, Mi, Ms 
 
A. Three identity signs. 

We take Me as a metalanguage containing ‘Dese’: likewise Mi with ‘Desi’, and Ms with 
‘Dess’. 



 
We shall use ‘ = e’ in Me as a sign of identity of extensions; likewise ‘=i’ in Mi for identity 
of intensions, and ‘=s’ in Ms for identity of senses. Thus, if ‘. . .’ and ‘=’ stand for des-
ignators (either sentences or predicators or individuators), then 
(1) ‘. . . = e - - -’ is true in Me iff ‘. . .’ and ‘- - -’ are materially equivalent; 
(2) ‘.. . =i - - -’ is true in Mi iff ‘…’ and ‘- - -’ are logically equivalent; 
(3) ‘. . . =s - - -’ is true in Ms iff ‘. . .’and ‘- - -’are synonymous. (This use of ‘=s’ in Ms is 
like that of ‘=’ in the symbolic object language in M & N, sect. 3). 

 
B. Principles of interchangeability. 
 

In all three cases, if ‘. . . = °° - - -’ holds in M°° (the superscript ‘°°’, stands for ‘e’ or ‘i’ or 
‘s’), then ‘…’ and ‘- - -’ are interchangeable in any context, in accordance with the 
following principle 
(1)  If Ai and Aj are designators in M°°,- - Ai - - is a designator containing Ai, and  

- - Aj - - is formed from - - Ai - - by replacing Ai by Aj, then from Ai = Aj, - - Ai - -  
= °° - - - Aj - - is deducible in M°°. 
Therefore: 

(2)  if - - Ai - - and - - Aj - - are sentences in M°°, the following inference is valid in 
M°°: 
Ai  = Aj  
- - Ai - -  
- - Aj - -  
Hence, as a special case: 

(3)  The following inference is valid in M°°:  
Ai =°° Aj 
Des°° (. . ., Ai)  
Des°° (…, Aj) 

Thus the desired transformations of sentences with ‘Des°°’ (XII A2) are obtained. 



G General characterization of the three metalanguages for an object language L. 
 
 Me Mi Ms 
1. Designators in M°° 

    are interchangeable 
   

   (a) iff they are materially equivalent 
(in Me) 

logically equivalent 
(in Mi) 

synonymous 
(in Ms) 

   (b) iff they have the 
        same extension intension sense 
2. The values of the 
    variables in M°° are extensions intensions senses 
3. The semantics of L,  
    formulated in M°°     
    can be based on a    
    relation Dese Desi Dess 
4. Des°° assigns to   
    each designator in   
    L an entity, namely an extension an intension a sense 
5. Des°° assigns the   
    same entity to two  
    designators in L if 
    they are 

materially equivalent 
(in L) 

logically equivalent 
(in L) 

synonymous 
(in L) 

 
D. Example for C5 in Mi. 
E.  

pr1in1∨ pr2in2 (S1) and pr2in2∨ pr1in1 (S2) are logically equivalent in L1. From the rules of L1 
(XB): 

Desi (S2, the desk . . . is red or L.A. is large). 
By (XIIB) 1(C): Desi (S1, the desk . .. is red or L.A. is large). Thus Desi assigns the same entity 
to S1 and to S2. 



 
XIV. The vocabulary of the semantical metalanguage 

 
A. Semantical metalanguage M. 
 

 
 
B. The vocabulary of the semantical metalanguage M consists of the following four parts 

(the above diagram shows only some constants of the parts (2). (3). and (4)): 
(1)  The logical vocabulary: logical constants (‘not, ‘or’, ‘every’, etc.) and general  

variables (‘x’, ‘F’, ‘p’, etc.). 
(2)  The syntactical vocabulary: Names of the signs in L, and a notation for 

concatenation. Thus a spelling description for any expression in L can be 
formulated. Further, syntactical variables (e.g., ‘pr,’, ‘A;’, etc. 

(3)  The non-semiotical vocabulary (translation vocabulary): descriptive constants  
referring to non-linguistic entities (e.g., things in the worlds This vocabulary, 
together with (1), must be sufficient for a translation of all sentences in L. 

(4)  The semantical vocabulary. The semantical terms are defined on the basis of the  
terms of the three other parts. 
 

C. The semantical theory (pure semantics) contains only those sentences of M which 
(a) contain at least one term of the semantical vocabulary (4), and 



(b) are logically true. 
(Thus the theory does not include ‘pr1in1 is true in Ll’. This sentence is not a theorem of 
semantics but one of geography; it is factually true and logically equivalent to the 
sentence ‘L.A. is large’ in M and to ‘P1a1’ in L1. 

 
 

XV. The uniqueness of the designatum 
 
A.  The rules of Des°°  for L1 are as in XB. But now we can replace the formulation “Des 

holds in all and only these cases…” by a more exact one with ‘x°°’, in M°°, adding the 
following rules to R1, R2, and R3. 
R1 (a). For any ini, x, and y, if Des°°  (ini, x), then Des°°  (ini, y) only if x = °°y. 
R2 (a). For any pri, F, and G, if Des°°  (pri, F), then Des°° (pri, G) only if F = °°G. 
R3 (a). For any Ai, p, and q, if Des°°  (Ai, p) then Des°°  (Ai, q) only if p = °°q. 

 
B. Theorems. based on the above rule for L,. 

(1)  For any ini, x, and y, if Des°° (ini, x), then Des°° (ini, y) iff x = °°y. 
(2)  For any pri, F, and G, if Des°° (pri, F), then Des°° (pri, G) iff  F = °°G. 
(3)  For any Ai, p, and q, if Des°° (Ai, p), then Des°° (Ai, q) iff p =°°q. 
These theorems together with the rules XB say that, for each designator in L1, there is 
exactly one designatum°° (i.e., entity assigned to it by Des°°  ). 

 
C. Sufficient and necessary condition of adequacy for designation in L. 

A two-place predicate ‘D’ in M°° is an adequate predicate for designation” in L iff the 
following two conditions are fulfilled: 
(1) the condition in XIA (which is only a necessary condition of adequacy), 
(2) the condition of the uniqueness of the designatum°°: Every 



 
sentence in M°° of the form ‘if D(. . . , - - -)and D(. . . , - . -)’ then ‘--- =°° - . -’ 
follows from the definition or the rules for ‘D’. 

On the basis of the theorems under (B), Des°°   for L1 fulfills also the condition (2) and 
therefore is an adequate predicate in M°°   for designation°° in L1. 
 
D. Theorems. 
Henceforth, when we refer to a relation Des°° for a system L it is assumed that the rules 
for it in M°° are such that the adequacy condition (C) is fulfilled. Then the following holds 
for L. 
(1)  For any Ai and p, if Des°° (Ai, p), then  

(a) Ai is true iff p; 
(b) Ai is false iff not p. 

(2)  For any Ai, if Ai is true, Ai is not false. (Indirect proof. The assumption that Ai is 
both true and false leads to the conclusion that, for some p, p and not p, which is 
impossible.) 

(3)  For any sentence Si, Si is false iff Si is not true.  
 
 

XVI. Truth 
 
A. Rules of truth for L1. 

The following rules may take the place of the rules of Des°°  for sentences (XB, R3 and 
XVA) and the definition of truth (XI B (1)); they lead to the same results concerning truth 
in L1.) R3’. 
(a) If Des°°(pri, F) and Des°° (inj, x) then priinj is true (in L1) iff F(x). 
(b) ~Si is true iff Si is not true. 
(c) Si∨ Sj is true iff Si is true or SJ is true. 
The usual truth-tables for sentential connectives are diagram formulations of rules of 
truth, corresponding to formulations in words like (b) and (c) above. 
The rules R3′ give a recursive definition for ‘true in L1’. (An equivalent explicit 
definition can be formulated with the help of the concept of closure, V (6).) 



B. Sufficient and necessary condition of adequacy for truth in a system L. 
A one-place predicate ‘T’ in M is an adequate predicate for truth in L iff the following 
condition is fulfilled. For every sentence Si in L, a sentence in M of the form ‘T(…) iff - - 
-: with a spelling description of Si in the place of ‘. . .’ and a translation of Si into M in the 
place of ‘- - -’. follows from the definition of the rules for ‘T’. (This is the so-called 
Lesniewski requirement; see Tarski, “Wahrheitsbegriff”. p. 305, “Konvention W”; 
Tarski, “The semantic conception of truth”. sect. 4; Carnap, Intr. Sem. pp. 26-29.) 
Suppose that ‘T’ fulfills the above condition. Then ‘T’(. . .) iff - - -’ is logically true. 
Therefore, the sentence ‘T(…)’ in M is logically equivalent to the translation of Si into M 
and hence also to Si. 
Thus, to assert that a sentence is true means the same as to assert the sentence itself (see 
Tarski, “The semantic conception of truth”, and Carnap, “Remarks on induction and 
truth”, sect. 3). If ‘true in L1’ is introduced in either of the two ways mentioned in (A), 
then the condition of adequacy is fulfilled. 
 
 

XVII. Denotation 
 

A. Following R.M. Martin (J.S.L. 18, 1953. 1-8), we use ‘denotes’ in such a sense that ‘P1’ 
in L1 is said to denote every single individual which is large (not, as in traditional 
terminology, the class of large individuals). In M°°, we can define ‘Den’ on the basis of 
‘Des°°’: 

 
(1) Den°° (Ai, x) = °°(∃F) [Des°° (Ai, F) and Fx]. 
On the other hand, if ‘Den°°’ is introduced by Den-rules (see below), we can define 
‘Des°°’ for predicators: 

 
(2) Des°° (Ai, F) = °° (F = °° (λx)[Den°° (Ai, x)]).  
Hence we obtain: 

 
(3) For any predicator Ai, Des°° (Ai, (λx) (Den°° (Ai, x))). [The above definitions and the 
subsequent Den-rules may be 



 
used in Me and Mi. It is, however, doubtful whether the adherents of a sense-logic would admit 
them in Ms.] 
 
B.  Rules of denotation. If Des-rules for predicates are used, predicate variables are needed in 

the formulation of Des-rules for sentences (e.g., in XB, R3(a)) or of truth-rules (e.g., in 
XVIV, R3′ (a)). If, instead, Den-rules for predicates are used, predicate variables are not 
needed (unless the object language contains predicate variables). [However, predicate 
variables are needed for an explicit definition of truth with the help of closure.] 
Furthermore, Den-rules do not contain λ-expressions. We can then obtain results of the 
simple form (d) in the examples in (D) and (E) below without the use of λ -conversion 
(compare XC(2)). We may then drop λ-conversion in the definition of synonymy 
(XIIA4(c)), which seems preferable. 

 
C.  Den-rules for L1. The following rules may take the place of XB, R2 and XVA, R2(α): 

R2′ Den-rules for predicates in L1.  
(a)  Den°°(pr1, x) =°°(x is large).  
(b)  Den°°(pr2, x) =°°(x is red). etc. 
Then XVIA, R3′( α) is replaced by the following rule: 

R3′′ (α). If Des” (inj, x) then priinj is true (in L1) iff Den°°(pri, x).  
 
D. Example of a proof, with the rules in (C). 

XB,RI(α)   Des°°(in1, L.A.)            (a) 
R2′(α)    Den°°(pr1, L.A.) =°° (L.A. is large)          (b) 
(a), R3′′(α)   pr, in, is true in L1 iff Den°°(pr1, L.A.)           (e) 
(b), (c), XIIIB(2)  pr1in1 is true in L1 iff L.A. is large          (d)  

 
E. Des-rule for atomic sentences in L1 based on the Den-rules. On the basis of the rules R2′ 

above, the following rule takes the place of XB, R3(α), while (b) and (c) remain 
unchanged. 
R3′′′ (α). If Des°°( inj, x), then Des°° (priinj Den°°(pri, x)).  
 
Example of a proof. 
(a) and (b) as in (D). 



(a), R3′′′ (α)   Des°°( pr1in1, Den°°(pr1, L.A.))           (c) 
(b), (c~ XIIIB(3)  Des°°( pr1in1, L.A. is large)            (d) 

 
 

XVIII. Interpretation in the extensional metalanguage Me 
 
A. Do the rules for ‘Dese in L’ convey the intended interpretation of L? 
 

The rules are supposed to fulfill the condition of adequacy (XVC). Hence, for any 
designator Ai, the rules yield a Dese-sentence containing a translation of Ai. E.g., for L1, 
we obtain: 
(1)  Dese (pr1in1, L.A. is large). 
But the following sentence is likewise true:  
(2)  Dese (pr1in1, Paris is in France). 
This shows again that Dese is the relation between a designator and its extension, not its 
meaning. The sentence (1) does convey information about the intended meaning of 
pr1in1, but (2) does not. (1) follows logically from the rules, while for (2) the factual 
premise ‘L.A. is large = e Paris is in France’ is needed. In every sentence of the form 
‘Dese (pr1in1, - - -), which follows logically from the rules, ‘- - -’ is logically equivalent 
to ‘L.A. is large’. Therefore every sentence of this kind gives the intended interpretation 
(logical meaning, content) of pr1in1. In this sense, the intended interpretation of L is 
conveyed by the Dese -rules in Me. 

 
B. Do the rules for ‘true in L’, formulated in Me, convey the intended interpretation of L? 

The rules are supposed to fulfill the condition of adequacy (XVIB). The situation is 
analogous to that in (A). It is often said that to understand the meaning of a sentence is to 
know under what conditions it would be true. But this should be qualified as follows: a 
logically true statement of a (necessary and sufficient) truth condition for a sentence Si. 
conveys the meaning of Si. For example, (3) and (4), are both true in Me. (3) pr1in1 is true 
in L1 iff L.A. is large. 



 
(4)  pr1in1 is true in L1 iff Paris is in France. 
(3)  gives the intended meaning, (4) does not. In every sentence in Me of the form 

‘pr1in1 is true in L1 iff - - -’ which follows logically from the rules, ‘- - -’ is 
logically equivalent to ‘L.A. is large’. Thus the rules in Me for ‘true in L’ convey 
the intended interpretation of L. 

 
 

XIX. Philosophical issues concerning the semantical concept of truth 
 
A. Some philosophers commit a confusion of ‘true with ‘verified’ (or ‘known to be true’, 

‘well established’, ‘highly probable’, etc.). The distinction is important. Verification is 
relative to person and time, truth is not. Read pp. 119-123 of Carnap, “Truth and 
Confirmation”, in Feigl-Sellars. 

 
For (B) to (F), read Tarski, “The semantic conception of truth, esp. Part II “Polemical remarks”. 
 
B.  Objection: ‘true’ can be eliminated, and thus is useless. (See Tarski, sect. 16, 20-22.) 
 
C.  The question of agreement with the classical conception (correspondence theory of truth, 

e.g. Aristotle (See Tarski, sect. 17.) 
 
D.  The question of agreement with every-day usage. (See Tarski, sect. 17; compare Ness.) 
 
E. Objection: the concept has no philosophical importance. (See Tarski, sect. 18.) Later 

Black raised this objection (“The semantic definition of truth”); for his main arguments, 
see (G), (H), (J) and (K) below. 

 
F. Objection: the semantical conception of truth involves metaphysics. (See Tarski, sect. 19, 

with reference to Nagel; compare Nagel, 1944, p. 67n.) 
 
G. Objection: the concept is defined only for artificial languages. Black (sect. 6) believes 

that only a definition for colloquial English would be philosophically relevant (sect. 6) 
He admits 



that, in principle, such a definition could be given; but then objection (14) would hold. 
 
H. Objection: The definition of truth is not general, but is based on an enumeration of 

instances; any attempt to generalize the set of sentences of the form ‘. . . is true iff - - -’ 
referred to in the adequacy condition (XVI B) leads to nonsensical formulations: we seem 
to understand the general principle underlying the definition, but this principle cannot be 
formulated (Black. sect 3,4,6. 7) Answer. The definition can be stated in a general form in 
terms of designation (see XI B (1)), this was D17-C1 in Intr. Sem.). This form of the 
definition expresses the under lying principle. The definition is based on a general 
definition for ‘Des’ with respect to sentences (X B R3). This, in turn, is basest on Des-
rules for individual constants and predicates (X B, R1, R2). The latter rules proceed 
indeed by enumeration: this is inevitable because the interpretation of a language must 
ultimately go back to its dictionary. 

 
J. Objection: The semantical definition of truth is neutral with respect to the philosophical 

controversy; the adherents of the correspondence theory, the coherence theory, and the 
pragmatist theory of truth would all accept the sentences of the form ‘. . . is true iff ---’ 
specified in the adequacy condition (XVI B) (Black, sect. 8, 9). Answer. If this were the 
case, then the three theories would be based on essentially the same concept, because if 
each of two predicates fulfills the adequate condition, then they are logically equivalent. 

 
K. Objection: The philosophically important concept of truth is not, like the semantical 

concept, a property of sentences expressed in the metalanguage, but rather a concept used 
in the object language in the form “it is true that …”. (Black. sect 8. Strawson, “Truth”, 
Analysis 9, 1949, reprinted in Macdonald: “Truth is not a property of symbols; for it is 
not property.’) Answer. This use of ‘true’ seems indeed more frequent in the everyday 
language. It is useful for purpose of emphasis, opposition, and the like. But its usefulness 
for 



 
theoretical purposes, i.e., for expressing cognitive content, is nil. It can be explicated by 
the explicit definition: 

 
(1)  T(p) = Df p (Intr. Sem. D17-1). 
And analogously for “it is false that. . .”:  
(2)  F(p) = Df ~p’ 
Thus ‘T’ and ‘F are extensional connectives. ‘F’ is merely a sign of negation. ‘T’ is the 
redundant connective; its omission does not change the content. E.g., the following two 
sentences are logically equivalent: 
(3)  It is true that L.A. is large.  
(4)  L.A. in large. 
Likewise the following two:  
(5)  It is false that L.A. is large.  
(6) L.A. is not large. 
 
 

XX. Semantical system for the language L2 with individual variables 
 
A. General remarks on a language L. 

1.  Let L be an object language with individual variables. Rules of interpretation for L 
must contain a rule specifying the domain of individuals of L, i.e., the class of 
those entities which are to be taken as the values of the individual variables. The 
domain may be infinite. It is not required that L contain an individual constant for 
every individual in L. 

2.  A value assignment (VA) for the individual variables in L is a function which 
assigns to every individual variable in L one individual. We take in M ‘VA1’, 
‘VA2’, etc. as constants for VA, and ‘VAk’, ‘VAm’, etc. as variables. We write, e.g., 
‘VA2(inv4)’ as short for ‘the individual assigned by VA2 to inv4’. 

3.  An open designator formula, e.g., ‘Pl x1∨P2x3’, does by itself not designate 
anything. However, we can give an interpretation for it by specifying what the 
formula 



designates with respect to a given VAk; VAk(inv1) is then, so to speak, taken as the 
designatum of inv1. Note that a VA assigns an individual, not an individual 
constant. This has the advantage that open formulas can be interpreted even if L 
does not contain individual constants for all individuals. 

4. In the following our metalanguage will always be Me, unless the contrary is 
stated. We write briefly ‘M’ for ‘Me’, ‘=’ for ‘=e’, ‘Des’ for ‘Dese’, and ‘des’ for 
‘dese’. Because of the uniqueness of the designatum (XV), we may use a functor 
‘des’ instead of the predicate ‘Des’. We write ‘des(Ai)’ for ‘the designatum of Ai, 
i.e., ‘the entity (extension) to which Ai bears the relation Des’. We write ‘desk(Ai) 
for ‘the designatum (i.e., the extension) of Ai with respect to the value assignment 
VAk’. 

 
B.  Signs of L2. 
 

(1)  (4) like those of L1 (XA). 
(5) individual variables, e.g.’x1’,’x2’, etc. Their names in M: ‘inv1’, ‘inv2’, etc. 

 
C. Rules of formation for L2. 
 

An expression Ai in L2 is a sentential formula in L2 iff Ai has one of the following five 
forms, where Sj and Sk are sentential formulas: 
(1) priinj (atomic sentence), 
(2) priinvj (open atomic sentential formula), 
(3) ~ Sj  (negation), 
(4) (Sj ∨ Sk) (disjunction), 
(5) (invi) (Sj) (universal sentential formula). 
Ai is a sentence in L2 = Df Ai is a closed sentential formula in L2. 

 
D. Rules of interpretation for L2. 

 
R1 The individuals in L2 are the material bodies at a given time t0,. 



The subsequent rules RD 1 to 6 constitute a recursive definition which enables us to  
determine desk(Ai) for any designator formula Ai with respect to any VAk. Later the function des 
will be defined but only for designators, i.e., closed designator formulas. For any sentential 
formula Si, desk(Sj) is one of the truth-values, either T (for truth) or non-T (for falsity), (‘T’ is a 
sentential constant in M; it may be regarded as short for, say, ‘a1 = a1’.) If a rule says: “desk(Si) = 
T iff …”, this is meant to imply that, if the condition “. . .” is not fulfilled, desk(Si) = non-T. 
‘desk(S1) = T” says in effect that S1 is true with respect to VAk or that S1 is satisfied by VAk. Thus 
the rules RD yield, for any sentence Si in L2, a necessary and sufficient condition for the truth of 
Si with respect to any given VAk. While RD 1 and 2 are analogous to X BR 1 and 2 for L1, RD 4 
to 6 are analogous to the truth rules XVI R3′ (a) to (c). 
 
RD. Rules of desk for L2.  
 
RD1.  For predicates. 

(a) desk(pr1) = (λx) (x is large), etc. 
 
RD2. For individual constants.  

(a) desk(in1) = Los Angeles, etc. 
 
RD3.  For individual variables. For any invj, desk(invj) = VAk(invj). 
 
RD4.  If sj is either an individual constant or an individual variable and desk(sj) = x and desk(pri) 

= F, then desk(prisj) = T iff F(x). 
 
RD5.  desk(~Si) = T iff desk(Si) = non-T. 
 
RD6.  desk(Si∨ Sj) = T iff desk(Si) = T or desk(Sj) = T.  
 
RD7.  Let Si be (invi) (Sj). Then desk(Si) = T iff, for every value assignment VAm. that differs 

from VAk at most for invi, desm(Sj) = T. 



E.  Example for RD7. 
(Here and in the examples G, we shall use ‘St’, ‘S2’, etc. also as individual constants in 
M.) Let S2 be a universal sentential formula of the following form with free variables ‘x2’ 
and ‘x3’; let the operand be S,. 

   S2:     
4484476 1

..)......(..)( 3211

S

xxxx  
Individuals assigned by VAk :           a2     a3   a5 
Individuals assigned by VAm1:                   a1     a3   a5 
Individuals assigned by VAm2;          a2     a3   a5  (= VAk)  
Individuals assigned by VAm3                    a3     a3   a5 

etc. etc. 
 

VAm1, VAm2, etc. are those VA which differ from the given VAk either for no variable (e.g., 
VAm1) or for ‘x1’ only. Thus, according to RD7, S2 is true with respect to the given VAk iff 
S1 is true for those values of ‘x2’ and ‘x3’ which are assigned by VAk and for every value 
of ‘x1’. 

 
F. Definitions of designation, truth, and falsity. According to the rules RD 1 to 7, if Ai is a 

designator (and hence closed), then desk(Ai) is independent of VAk. Therefore we define 
as follows, using an arbitrarily chosen VA1. 
(1)  For any designator Ai in L2, des(Ai) = Df des1( Ai), where VA1 assigns a1 to every 

individual variable. 
(2)  Ai is true in L2 = Df Ai is a sentence and des(Ai) = T. 
(3)  Ai is false in L2 = Df Ai is a sentence and des(Ai) = non-T.  

 
G.  Examples. 
 

1. For an atomic sentence. Let S3 be pr1in1. For any VAk. hence also for VA1, we obtain 
from RD 1, 2, 4 (writing ‘a1’ for ‘Los Angeles’): 
(a)  des1(S3) = T iff a1 is large. 
By F (1) R and with ‘ = ’ for ‘iff’ (see XIII A (1)) :  
(b)  (des(S3) = T) = a1 is large. 
The following is a tautology (see, e.g., Foundations. T21 5u(1)): 



 
(c)  (p = T) = p.  
Hence from (b):  
(d)  des(S3) = a1 is large. 
This result corresponds to XC(2) for L1. From (b), with F(2) 
(e)  S3is true iff a1 is large. 

 
2.  For a universal sentence. Let S1 be ‘P1x1’ and S2 –‘( x1) (P1x1)’. Take the various VA’s as 

in the earlier example E, but now with ‘xl’ as the only free variable in S1. Then 
VAk(inv1) = a2, and, for every i, VAmi (inv1) = ai. Hence by RD 3, desk(inv1) = a2 and, for 
every i, desmi (inv1) = ai. by RD 1(a) and RD 4: 
(a)  For every i, desmi (S1) = T iff ai is large.  
Hence by RD 7: 
(b)  desk(S2) = T iff, for every VAmi, desmi (S1) = T.  
(c)  desk(S2) = T iff, for every i, ai is large. 
(d)  desk(S2) = T iff every individual is large. 
Since S2 is closed, (d) holds for every VAk, hence also for VA1. 
Then by F(1): 
(e)  des(S2) = T iff every individual is large. Hence with (c) of Example (1): 
(f)  des(S2) = every individual is large.  
From (e) with F(2): 
(g)  S2 is true iff every individual is large. 
Since ‘every individual is large is the translation of S2, the adequacy conditions for 
designation and for truth are fulfilled. 

 
 

XXI. Preliminary explanations of the language L3 with a type system 
 
A. The metalanguage M. 
 

l. We use, as before (XX A4), M (i.e., Me) and we write ‘=’ and ‘des’. 



2. We use in M numerals ‘l’, ‘2’, etc. as individual constants. They refer to 
enumerated positions in an ordered domain. (thus M is a coordinate language, see 
M & N, sect. 18.) ‘3 is blue’ is understood as ‘the position No. 3 is blue. We use 
as individual variables in M , ‘j’, ‘k’, . . . , ‘n’. Their values arc numbers (‘number 
is here meant as ‘positive integer? and. secondarily, positions (see M & N, p. 86). 

3.  We sometimes use in M ‘u’, ‘v’, etc. as variables without fixed type, (Strictly 
speaking, they should be regarded as variables of a transfinite level, see the 
remark in X B.) 

 
B. The system of types. This system serves as a classification of designator formulas of the 

object language L3, and also as a classification of the corresponding extensions. The types 
are 0, 1, 2, etc. Type 0 comprises the individuals, type 1 the classes of individuals, type 2 
the classes of classes of individuals, etc. The entire constant of type n (n = 0, 1, 2, .. . ) in 
L3 consists of the letter ‘a’ followed by n (0 or more) superscript primes, followed by m 
(one or more) subscript primes. As a convenient unofficial notation, we write numerals 
instead of the strings of primes, e.g.,‘ 2

3a ’ and ‘ 0
4a ’ . The m-th variable of type n consists 

of ‘x’ with n superscript primes and m subscript primes. The names in M of constants in 
L3 are formed with ‘c’. and the names of variables with ‘v’; e.g., ‘ 2

3c ’ is the name of ‘ 2
3a ’. 

and ‘ 0
4v ’ is the name of ‘ 0

4x ’. We use ‘n’ and ‘m’ as numerical variables in M. 
 

 
 Classification of designator formulas:  

Designator Formulas 
Class 

Open or closed Closed 
Extensions 

S sentential formulas sentences truth-values 

type 0 individual formulas individuators individuals 

type 1 

type 2 

etc. 

 
 

predicator formulas 

 
 

predicators 

 
 

classes 

 



 
C.  Other signs and expressions in L3. 

1.  L3 contains connectives for negation and disjunction. ‘≡’ is used as sign of 
identity of extensions (like ‘=e’ in Me, XII A), hence also as a biconditional connective 
(M & N, pp. 13 f.). 
2.  Variables of all types are used in L3 in three kinds of operators: 

(a) universal quantifiers: (v n
m ); 

(b) lambda-operators for class expressions (M & N, p. 3): (λv n
m ); 

(c) iota operators for descriptions: (ιv n
m ). 

3.  In order to assure that a closed iota-description Dj of the form (ιv n
m )(Sk) has a 

unique designatum even if Sk does not fulfill the uniqueness condition (i.e., if 
either no extension of type n or more than one satisfy Sk, we make the following 
convention (see M & N, sect. 8, method III b): 

 

 Type n des(Dj) in the case of non-uniqueness 

(a) 0 an arbitrarily chosen individual, say, 
the position No. 1 

(b) n (> 0) the null class of type n 
 

The rules for despr and des for L3 (in XXIV and XXVI) will be made so as to yield these 
results. 
 
 

XXII. Rules of formation for L3  

 
A.  L3 contains the following eleven signs: 
 
 

 

 Sign in L3      Explicit name of sign in M 
(1) ~      sign of negation 
(2) ∨       sign of disjunction 
(3) ≡      sign of identity (and biconditional) 
(4) α      sign of constants 
(5) x      sign of variables 



 Sign in L3      Explicit name of sign in M 

(6) λ      lambda 
(7) ι     iota
(8) (     left-hand parenthesis
(9) )     right-hand parenthesis
(10) ′     superscript prime
(11) ′      subscript prime 

 
In spelling descriptions in M, we use ‘c’ as the name of ‘a’, ‘v’ as the name of ‘x’, and 
each of the other signs as a name of itself. For convenience, we take ‘c 2

3 ’ as the name of 
‘a 2

3 ’. and ‘v 0
1 ’ as the name of ‘x 0

1 ’ etc. 
 
B. Designator formulas in L3. 

 
An expression is a designator formula in L3 iff it has one of the following ten forms, 
where D n

j  and D n
k are any designator formulas of type n, and Sj and Sk are any sentential 

formulas, i.e., formulas of class S. (For ‘designator’ and other terms. see VIII C.) 
  

      Form of Expression      Class 
(1)      c n

m       type n 
(2)      v n

m       type n 
(3)      D 1+n

j (D n
k )      S 

(4)      (D n
j = D n

k )      S 
(5)      (Sj = Sk)      S 
(6)      ~ Sj      S 
(7)      (Sj∨  Sk)      S 
(8)      (v n

m ) Sk      S 
19)      (w n

m ) Sk      type n 
(10)      (λn n

m ) Sk      type n + 1 
 
(in the actual writing of formulas, we omit parentheses in accordance with the usual 
conventions.) 



 
C.  Unofficial abbreviations in L3, introduced by definition schemata. 
 
 

Conjunction 
(1)  (Si . Sj) ≡ ~(~Si ∨ Sj).  
Conditional 
(2)  (Si ⊃ Sj) ≡ (~Si ∨  Sj).  
Existential quantifier: 
(3)  (∃ v n

m ) Si ≡ ~(v n
m )~Si.  

(4) For k ≥ 1, { v n
1 , v n

2 , …, v n
k } ≡ (λv n

k 1+ )[(v n
k 1+ ≡ v n

1 )∨ (v n
k 1+ ≡ v n

2 )∨…∨ (v n
k 1+ ≡ v n

k )]. 
 

This is the customary notation for finite classes defined by enumeration. (Note that in L3 
only homogeneous classes occur, i.e. those whose elements belong to the same type.) 
Recursive definition for iterated unit class formation: 
(5)  (a) 0(v n

m ) ≡ v n
m ; 

(b) p+1 (v n
m ) ≡ {p(v n

m )}. 
Thus, e.g., 3(a 0

1 ) is the class {{{a 0
1 }}} of type 3. 

This notation can be used for the formation of a homogeneous class expression 
out of terms of different types. An ordered k- tuple can be defined as a certain class 
expression of type n + 3, where n is the highest type of the members of this tuple. A k-
adic relation R can now be construed as a class of ordered k-tuples, thus as a class of type 
n + 4, if n is the highest type of the members of R. 

 
 
 

XXIII. Preliminary explanations of models for L3 
 

A. The use of models. We shall later define ‘L-truth’ as an explicatum for logical truth, i.e., 
truth in all possible states (of the universe of discourse). In a simple language (e.g., L2) 
even if the domain of individuals is denumerably infinite; it is possible to represent every 
possible state by a state-description, i.e., an infinite class of sentences which contains, for 
every atomic sentence Sj, either Si or ~Sj, but not both, and no 



other sentences. (For the method of defining the L-concepts with the help of state-
descriptions, see M & N, sect. 2, and, in greater detail, Foundations, sections 18 A, D and 
20). For a language like L3, which contains constants and variables of higher levels, it is 
not possible to represent all possible states by classes of sentences. Therefore the rules 
must here refer, not to the state-descriptions, but to the possible states themselves. The 
possible states will be construed here, not as propositions (which would require a non-
extensional metalanguage, see Intr. Sem, sect, 18), but as models. A model for L3 is a 
function which assigns to every descriptive constant in L3 an extension of the 
corresponding type. [Concerning the use of models, see: Tarski, 1956, ch. VIII (concept 
of truth) and ch. XVI (logical consequence); Carnap, Syntax, ch. III C; Kemeny, 
“Models” (J.S.L 13, 1948, 16-30), 1953, and 1956. 

  
B. The individual constants in L3 are regarded as logical signs, since numbers are taken as 

individuals. Therefore the rules will assign to each cm one fixed extension (viz., the 
number m) in all models. Any identity sentence with two different c0, e.g. ‘a 0

1≡ a 0
2 ’, will 

then turn out to be logically false. 
 
C. Logical and descriptive definitions of extensions and models. 
 

1. An extension may be specified in M either in logical or in descriptive terms. For 
example, for a number (type 0): ‘4’ is logical, ‘the one number (position) which is 
blue and cold’ is descriptive; for a class of numbers (type 1): ‘{3, 5}’ (i.e., ‘(λn) (n 
= 3 or n = 5)’) is logical, ‘(λn) (n is blue)’ is descriptive. ‘(λn) (n is blue) = {3, 5}’ 
is a factual sentence, it says that the (descriptively specified) property (λn) (n is 
blue) has the (logically specified) extension {3, 5}. 

2.  A model for L3 may likewise be specified in M either in logical or in descriptive 
terms. For the definitions of the L-concepts and A-concepts (which will be given 
in XXIV) the models may be regarded as logical models (sometimes 



 
called “mathematical models”). Likewise, the value assignments for variables 
(VA, in XXIV) may be regarded as logically specified. Only later, in the rules of 
interpretation and the definition of truth, shall we refer to descriptively defined 
extensions and models. 

 
D. On A-postulates. 
 

Suppose that, by virtue of the intended meanings of the descriptive constants in L3, 
logical dependencies hold between two predicates (e.g., logical implication or incompati-
bility) or a structural property (e.g., transitivity) holds for a relational predicate. Then 
some models do not represent possible states. In this case the rules for A-truth (logical 
truth in the wider sense, analyticity) and other A-concepts must give A-postulates 
(meaning postulates) for L3, which express the dependencies and structural properties 
(XXIV B). The admissible models or A-models will then be defined as those models in 
which the A-postulates hold. The A-models represent the possible states. Therefore we 
can then define a sentence as A-true iff it holds in all A-models. Read: Carnap, “Meaning 
postulates”. 
 
 

XXIV. The A-concepts for L3 
 
A. Value assignments and models. 
 

1. A value assignment (VA) for the variables in L3 is a function which assigns to 
every variable v n

m  in L3 an extension of type n. We use ‘VAr’ and ‘VAs’ as 
variables for VA in M. We write ‘VAr (v n

m )’ for ‘the extension assigned to the 
variable v n

m  by VAr’. 
2. The value assignment VA0 is defined as follows (it assigns the same extension to 

all variables of the same typed). For any v 0
m , of type 0, VA0(v n

m ) = 1; for any 
variable v n

m of any type n > 0, VA0(v n
m ) is the null class of type n. 

3. A model for L3 is a function which assigns to every con- 



stant of every type n > 0 an extension of type n. We use in M ‘Modp’ and ‘Modq’ 
as variables for models. We write ‘Modp(c n

m )’ for ‘the extension assigned to c n
m by 

Modp’. 
 

B. The A-postulates of L3 
 

1.  The following sentences are A-postulates of L3  

(1)  (v 0
1 ) ~(c 1

2 (v 0
1 ) · c 1

3 (c 0
1 )). 

(b)  c 2
1 (c 1

2 ).  
(c)  c 2

1 (c1
3 ). 

(d)  (v 0
1 )(v 0

2 )(v 0
3 )(c 4

1
0
2

0
1 ,vv · c 4

1
0
3

0
2 ,vv ⊃  c 4

1
0
3

0
1 ,vv ). 

(e)  (v 0
1 )(v 0

2 )(c 4
1

0
2

0
1 ,vv ⊃  c 4

1
0
1

0
2 ,vv ). 

 
2.  Explanations. In what follows we shall assume that the whole class of A-

postulates of L3 has been specified, either by enumeration (if the class is finite) or 
else by schemata or rules in M. The five examples (a) to (e) given above state (a) 
the incompatibility of c 1

2  and c 1
3 ; (b) and (c) the membership of the classes 

designated by c 1
2  and c 1

3 , respectively, in the class designated by c 2
1 ; (d) the 

transitivity of c 4
1 ; (e) the asymmetry of c 4

1 . [The rules of direct designation to be 
given later (XXVI A) stipulate that the designata of the constants c 1

1 , c 1
2 , c 1

3 , c 2
1 , 

and c 4
1  are, respectively, the classes Cold, Blue, Red, Color, and the relation 

Warmer. Therefore the five A-postulates given above are in agreement with the 
interpretation of the constants stated by the rules of designation, since (a) Blue 
and Red are incompatible, (b) and (c) Blue and Red are colors, (d) acid (e) the 
relation Warmer is transitive and asymmetric; and this holds, not as a matter of 
contingent fact, but in virtue of the meanings of the terms. Note, however, that in 
out present context, i.e., the definition of the A-concepts on the basis of the A-
postulates, the rules of designation are not used.] 
 

C. Rules of relative designation for L3. 
 

For every designator formula Dm in L3, the following rules (1a) to (10) (for the forms 
listed in the rules of formation, 



XXII B) determine despr(Dm) i.e., the designators of Dm with respect to Modp and VAr. If 
Dm is of type n, despr(Dm) is an extension of type n. ‘Dn’ refers to designator formulas of 
type n. (For explanations of the rules, see D below.) 

 

     Dm     despr(Dm) 

(1a)     c 0
m      m 

(lb)     c n
m  (for any n > 0)     Modp(c n

m ) 
(2)     v n

m      VAr(v n
m ) 

(3)     D 1+n
j (D n

k )     despr(D n
k ) is an element of the class despr(D 1+n

j ).

(4)     D n
j ≡ D n

k      despr(D n
j ) = despr(D n

k ). 
(5)     Sj ≡ Sk     despr(Sj) = despr(Sk) 
(6)     ~Sj     Not despr(Sj). 
(7)     Sj ∨ Sk     despr(Sj) or despr(Sk). 

(8)     (λv n
m )Sj 

    The class (λun) (desps(Sj)), where VAs is that    
    VA which assigns to v n

m  the extension un and    
     otherwise is like VAr. 

(9)     (ιv n
m )Sj 

     The one extension un (of type n) such 
     that either (a) un is the only element 
     of the class despr((λv n

m )Sj), or (b) this 
     class does not have exactly one element and    
     un = VA0(v n

m ). 

(10)     (v n
m )Sj 

     Every extension of type n is an element 
     of despr((λv n

m )Sj). 

(11)      For a class Km of sentential formulas, despr(Km) = Df for every element     
     Sj of Km, despr(Sj). 

(12)      For a designator Dm, desp(Dm) = Df desp0(Dm) (referring to VAo, see A2 
     above.). 

(13)      For a class Km of sentences, despr (Km) = Df desp0 (Dm) 
  
D. Remarks on the rules in C. 

1.  For any Dm in L3, there is one of the rules C(1a) to (10) which yields a sentence in 
M of the form despr(Dm) = …’, 



where a designator formula Ai of M stands in the place of the three dots; if Dm is a 
designator formula of type n in L3, Ai is a formula of type n in M; and if Dm is a 
sentential formula in L3, Ai is a sentential formula in M. [For example, for the 
individual constant c 0

3 , we obtain by the rule C(la). ‘despr(c 0
3 ) = 3’. for v 0

3≡ v 0
5 , we 

obtain from C(4): despr (v 0
3  ≡ v 0

5  = (despr (v 0
3 ) = despr (v 0

5 ))’.] If the formula Ai 
contains ‘despr’ , Ai is transformed by further rules. (in the second example, C(2) 
is applied twice), until finally a formula Ai is obtained which does no longer 
contain ‘despr’. If a particular model, say Mod3, and a particular VA, say VA5, are 
defined in M in logical terms (i.e.. without the use of descriptive terms of the 
translation vocabulary, like ‘blue’), then for any Dm we obtain finally a result of 
the form ‘des3.5 (Dm) = . . .’, where a logical designator in M stands in the place of 
the three dots. 
 

2. Note that despr (Sj)’ is a sentential formula in M. We have (see XX GI (c.)) 
(a) ‘despr (Sj)’ and ‘despr (Sj) = T’ are logically equivalent in M. 
(b) ‘not despr (Sj)’ and ‘despr (Sj) = non-T’ are logically equivalent in M. 
Therefore an expression in M of the form ‘despr (Sj) = . . .’ where a sentential 
formula in M stands in the place of the three dots, may be transformed in ‘despr(Sj) 
= T) = …’: thus it may he read, not only as ‘the designatum of Sj with respect to 
Modp and VAr is . . .’, but also as ‘Sj is true with respect to Modp and VAr, iff …’ 
or as ‘Sj is satisfied by VAr and Modp iff …’. 
 

3. Remarks on particular rules. 
 

(a)  The rules C(2), (6),(7), and (10) (the latter in combination with (8)) are 
analogous to some rules for L2 (vis., XX D, RD 3, 5. 6, 7 respectively). 
C(3) is a generalized analogue to RD4. 

(b)  C(9) is in agreement with the convention on iota-descriptions stated in 
XXI D (for VAo, see A2). 



 
(c)  The rules C(11) and (13) are based on the conjunctive interpretation of a 

class of sentences; a class is regarded as true iff every sentence belonging 
to it is true (Intr. Sem., p. 34). 

(d)  It is easily seen from the rules that, if Dm is a designator and thus without 
free variables, then despr(Dm) depends only on Modp but is independent of 
VAr. Therefore we may use here a function desp instead of despr. In its 
definition an arbitrarily chosen VA may be used; in C(12) we have taken 
VAo. 

 
E. L-concepts and A-concepts. 
 

The term ‘L-truth’ is here used for logical truth in the narrower sense, i.e., truth based on 
the meanings of the logical constants (e.g.,, a sentence of the form S1∨ ~S1 is L-true). I 
use the term A-truth’ for logical truth in the wider sense, or analytic truth, i.e., truth based 
on the meanings of the logical constants and on the relations between the meanings of 
descriptive constants expressed by A-postulates (e.g., a sentence of L3 saying that, if the 
position 3 is blue, it is not red, is A-true but not L-true). Since L3 contains A-postulates, 
the A-concepts are here more important than the L-concepts. We shall give only 
definitions of A-concepts. The definition of an L-concept is analogous to that of the 
corresponding A-concept ; it is obtained from the later by replacing the prefix ‘A-’ 
throughout by ‘L-’, and ‘A-model’ by ‘model’. Thus the L-concepts are based on the 
totality of all models, while the A-concepts are based on the narrower class of A-models, 
i.e., those models which satisfy all A-postulates. 

 
1.  Modp is an A-model (admissible model) for L3 = Df desp(KA), where KA is the class 

of the A-postulates in L3.  
2.  A designator Dm is an A-determinate designator = Df for any two A-models Modp 

and Modq, desp(Dm) = desq (Dm). 
3. c n

m is a logical designator constant = Df c n
m  is A-determinate. Otherwise c n

m  is 
called a non-logical or descriptive designator constant. 



4.  Dm is a descriptive designator formula = Df Dm contains at least one descriptive 
designator constant. Otherwise, Dm is a logical designator formula. 

The following definitions (5) through (8) refer to sentential formulas. 
5.  Sj is A-valid (in L3) = Df for every A-model Modp and every VAr, despr(Sj). 
6.  Sj is A-contravalid = Df ~Sj is A-valid.  
7. Sj A-implies Sk = Df ~ Sj ∨ Sk is A-valid. 
8.  Sj is A-equivalent to Sk = Df Sj ≡ Sk is A-valid.  
The following definitions refer to sentences. 
9. A sentence Sj is A-true = Df Sj is A-valid. 
10. A sentence Sj is A-false = Df ~Sj is A-true. 
11.  A sentence Sj is A-indeterminate = Df Sj is neither A-true nor A-false. 

 
F.  Theorems. 
 

On the basis of the rules and definitions stated, theorems for A-concepts hold in analogy 
to the usual theorems for L-concepts (e.g., in Intr. Sem., sect. 14, the postulates P14-5 
through 9, and 11 through 15.) 

 
We have furthermore: 
1.  A sentence Si is A-determinate iff Si is either A-true or A-false. 
2.  If the designator Dm contains no descriptive designator constant, Dm is A-

determinate (and, moreover, L-determinate). 
The definition E3 is adequate also for systems in which the models include the individual 
constants. Since this is not the case for L3 (see A3), here the theorems (3) and (4) hold: 
3. Any c 0

m , in L3 is a logical designator constant. (From C(1 a.).) 
4. If the designator Dm in L3 contains no designator constant of any type n > 0, Dm is 

A-determinate. 
5.  A sentence Sj is A-true iff, for every A-model Modp, desp(Sj). 



 
G.  Example. 

Let S1 be c 1
1  (v 0

1 ), S2 be S1 ∨ ~ S1, and S3 be (v 0
1 )(S2). By C(6) and (7), the following holds 

for any Modp, and VAr, and any VAs: 
(a)  despr(S2)  = despr (Si) or not despr (S1).  
(b)   = T. 
(c) desps(S2) = T.  
From C(8) 
(d) despr((λv 0

1 )S2) = the class of all numbers uo such that desps(S2), where VAs is that 
VA which assigns to v 0

1 the number uo and otherwise is like VAr. 
Hence with (c): 
(e)  despr((λv 0

1 )S2) = the class of all numbers uo such that T,  
(f)   = the class of all numbers. 
Hence with C(10): 
(g)  despr(S3)  = every number is an element of the class of all numbers, 
(h)   = T. 
From (b) and (h) by D2 (a):  
(i)  despr(S2), 
0)  despr(S3). 
From these with E 5 
(k)  S2 is A-valid (and, moreover, L-valid).  
(l)  S3 is A-valid. 
Hence with E 9: 
(m) S3 is A-true (and, moreover, L-true). 

 
 

XXV. Preliminary remarks on interpretation and truth for L3 
 
A. On the rules of interpretation. A complete statement of these rules (which is not intended 

here) would have to include the following specifications: 
(1)  a specification of the domain of individuals, here positions, 
(2)  a specification o£ the enumeration of the positions, i.e.„ for every n, an 

explanation as to which position is taken as the position No. n, 



(3)  a specification of the meanings of the predicate constants  
cn(n > 0). 

We shall omit here the points (1) and (2), assuming that they have been specified. We 
shall give (in XXVI A) a few examples of rules of the kind (3l, merely to illustrate the 
form of these rules. 
We assume that L3 contains only a finite number of predicate constants. For each of them 
its direct designatum is to be stated by a rule of the form ‘ddes(c n

m ) = . . .’, where ‘. . .’ is 
a predicator in M of the type n. In order to fulfill the requirement of adequacy (.see D 
below), this predicator ‘. . .’ in M must be a translation of c n

m according to the intended 
interpretation. The designata stated in the rules must furthermore be in agreement with 
the class of A-postulates for L3 (of which we have given some examples in XXIV B1); 
more specifically, all logical relations and properties which hold for the designata, and no 
others, must be expressed by the A-postulates. According to the rule XXVI A3(a) 
(below), c 4

1  designates the relation Warmer. which is logically transitive; thus this rule is 
in agreement with the A-postulate XXIV Bl(d). We assume that all the designata assigned 
by the ddes-rules for L3 are descriptive; this is the case for the rules stated in XXVI A. 

 
B. 1.  The ddes-rules constitute a definition of the function ddes for L3. This function  

assigns to every primitive constant cn in L3 (for n > O) a class of type n as its 
extension, specified in descriptive terms. Thus ddes is a model for L3 (XXIV A3). 
However, it is not a logical model, like those previously considered. but a 
descriptive model (i.e., the constant ‘ddes’ in M is not logical, but descriptive). 
Since we assume that the ddes-rules are in agreement with the A-postulates, ddes 
is an A-model. 

2.  There is exactly one logical model Modp such that Modp = ddes; that is to say, 
such that, for any primitive constant c n

m  (n > 0), the logically specified class 
assigned by Modp to c n

m happens to be identical with the descriptively specified 
class ddes(c n

m ). The identity between this logical 



 
model and ddes can only be determined on the basis of factual knowledge (see the 
example XXVI CI below). 

 
C.  On the basis of ddes, the general designation function des, applicable to all designators, 

will be defined (XXV1 B1). The function des is the special case of desp (XXIV C(12)) 
for that Modp which is identical with ddes. Thus the function des assigns to any 
designator that designatum which is based on the direct designata assigned to the 
primitive predicate constants by ddes. 

 
D. If designation is expressed by a functor, the uniqueness condition is necessarily fulfilled 

(because, from ‘des(Dm) = …’ and ‘des(Dm) = - . -’ ‘. . . = - . - follows). Therefore, the 
following sufficient and necessary condition of adequacy for designation in L takes now 
the place of the earlier one (XV C) again for all three metalanguages M°°: 
A functor ‘d’ in M°° is an adequate functor for designation°° in L iff, for every designator 
Dm in L, a sentence in M°° of the form ‘d(. . .) = - - -’, with a spelling description of Dm. in 
the place of ‘…’ and a translation of Dm into M°° in the place of ‘- - -’, follows from the 
definition or the rules for ‘d’. 

 
E.  A sentence will be said to be true iff its designatum holds (XXVI B3). This definition is 

essentially the same as XI B(l). [The earlier definiens would be reformulated with the 
functor ‘des’ for sentences as ‘there is a p such that p = des(Sj) and p’; and this is 
logically equivalent in M to ‘des(Sj)’.] 

 
 

XXVI. Rules of interpretation and truth for L3 
 
A. l.  Rules of direct designation (ddes) for L3. 

(a)  ddes(c 1
1 ) = (λx) (x is cold),  

(b)  ddes(c 1
2 ) = (λx) (x is blue),  

(c)  ddes(c1
3 ) = (λx) (x is red), etc. 

2. For predicates of type 2. 



(a)  ddes(c 2
1 ) = (λx 1

1 ) (x 1
1  is a color),  

etc. 
3. For predicates of type 4: 
(a)  ddes(c 4

1 ) = (λx 3
1 ) (λx 0

1 ) (∃ x 0
2 ) (x 3

1  = and x 0
1 is warmer than AD),  

etc. 
Similar rules may be stated for constants of other types.  

 
 
B. Definitions of designation and truth for L3. 
 

1. For any designator Dm, des(Dm) in L3 = desp(Dm) for Modp = ddes. 
2.  Theorems. 
(a)  For any primitive descriptive constant c n

m  (n > o), des(c n
m ) = ddes(c n

m ). (From (1) 
and XXIV C(1b).) 

(b)  For any c 0
m , des(c 0

m ) = m. (From XXIV C(la).)  
3.  For any sentence Sj, Sj is true in L3 = Df des(Sj). 

 
C. Examples. We assume for these examples that L3 contains only two primitive descriptive 

constants, viz., c 1
1  and c 1

2 , with the ddes-rules A I(a) and (b). (In this case, there are no A-
postulates.) 

 
1. Example for ddes and models. Let us suppose that, as a matter of fact, the 

positions 1, 2, and 3 are the only cold ones and that the positions 3 and 5 are the 
only blue ones. Thus the following two class identities hold factually (see XXIV 
cl). 
(a)  (λx) (x is cold) = {1, 2, 3},  
(b)  (λx) (x is blue) = {3, 5}.  
From these we derive with the rules A for ddes two factual sentences 
(c)  ddes(c 1

1 ) = {1, 2, 3},  
(d)  ddes(c 1

2 ) = {3, 5}.  
These sentences give the actual extensions of the two constants. Now there is in 
M a logical model constant, say 



 
‘Mod8’, which is defined by the following sentences (e) and (f): 
(e)  Mod8 (c 1

1 ) = {1, 2, 3},  
(f)  Mod8 (c 1

2 ) = {3, 5}.  
Thus the constant c 1

1  has in Mod8 the same extension as in the model ddes; and 
c 1

2 has also in both models the same extension. Hence the descriptive model ddes 
is factually identical with the logical model Mod8: 
(g)  ddes = Mod8. 
We may say that the true model (or the actual model), i.e., the model which 
ascribes to the primitive constants those extensions which they (in their intended 
interpretations) actually have, is descriptively specified in ddes, and logically 
specified in Mod8. 
Note that the interpretation of the constants is given only by the ddes-rules in A 
above, but not by the factual sentences (c) and (d) without those rules, let alone by 
the definition of the logical model constant ‘Mod8’ (in (e) and (f). 

 
2.  Example for des and truth. Let S5 be the sentence c 1

2 (c 0
3 ) in L3. 

 
From A 1(b) and B2(a) and (b):  
(a)  des(c 1

2  = (λx) (x is blue), 
(b)  des(c 0

3 ) = 3. 
Hence with XXIV C(e): 
(c)  des(S5) = (3 is an element of (λx) (x is blue) ).  
From the definition of truth (B3) 
(d)  S5 is true = des(S5), 
(e)  S5 is true iff 3 is an element of (λx) (x is blue). 
The right-hand side of (c) and of (e) is a translation of S5; thus the conditions of 
adequacy both for designation (XXV D) and for truth (XVI B) are here fulfilled. 
Now we take (b) in Ex. 1 as a factual premise. This yields:  
(f) 3 is an element of (λx)) (x is blue). 
Hence with (c)  
(g)  S5 is true. 



XXVI1. The controversy on meaning and analyticity 
 
Semantics may be divided into two parts: 

(1) the theory of extension, dealing with concepts like extension (designatione, XIII), 
denotation (in the sense of ‘Dese’, XV11), satisfaction, truth, naming, and related 
ones. 

(2) the theory of intension (or meaning) dealing with concepts like meaning (or 
intension or sense as possible explicata, and the relations Desi and Dess), logical 
truth and analyticity (L-truth as explicatum), synonymy, and related ones. 
Some philosophers, while accepting (1), reject all concepts of the kind (2). See 
Quine (1953), esp. chs. 11, III, VII and White (1960). 
Replies defending the meaning concepts: Mates (1951), Martin (1952). (Quine 
(1953), pp. 35 and 138 makes brief comments on Martin.) 
It seems advisable to distinguish two problems: 
(a)  the problem of meaning concepts for artificial language systems defined 

by their rules, 
(b)  the problem of meaning concepts for natural languages. The first problem 

and especially that of explicating logical truth in the wider sense 
(analyticity) can be solved by special semantical rules, e.g., meaning 
postulates. (See XXIII D. XXIV B and Carnap (1952). 

 
Quine (1953. ch. III) admits the possibility of laying down special semantical 
rules for meaning concepts. But he doubts whether they explicate meaning, unless 
there are, as explicanda, meaning concepts which can be applied to natural 
languages on the basis of behavioristic criteria like other concepts of empirical 
linguistics. I have discussed a concept of this kind, viz., the pragmatical concept 
of intension, in Camap (1955). 
 
 

XXVIII. Intensions and quasi-intensions 
 
A. Intensions in Mi. 
 

A few brief remarks about the intensional metalanguage Mi (XIII) will be made in this 
section. In Mi, in distinction to 



 
Me, statements about intensions can be formulated, e.g., a statement saying that the 
intension (designatum’) of a given designator is such and such. 
Since the variables in Mi have intensions as values, there are also general statements such 
as “For every proposition, . . .” or “There is a property of the type [t1] such that . . .” and 
the like. For each type, these general statements refer to a range of intensions which is 
much more comprehensive than the class of these intensions for which there are 
designators in the object language L (say, L3). 
In Mi, a system of modal logic is used. We may take ‘N’ as the primitive modal sign, a 
logical constant. “N(…)” stands for “it is logically necessary that . . . “ (M & N, ch. V). 

 
B. Quasi-intensions in Me. 
 

The sentences of Me refer directly to extensions only, not to intensions. But there is a 
one-one correspondence between the intensions and a special kind of extensions, which 
we shall call quasi-intensions, such that the logical and semantical properties of any 
intension are mirrored by those of the corresponding quasi-intension. The following 
definitions refer to L3: for other language forms, analogous definitions can be formulated. 
(1) The quasi-intensions corresponding to the type t (for L3) = Df the functions from 
admissible models (for L3) to extensions of the type t (XXI B). 
Note that the quasi-intensions corresponding to the type t are themselves extensions, not 
of the type t, but of another type of higher level. 
(2) The quasi-intension of the designator Dk (in L3) = Df that function which, for any 
admissible model Modp, has the value desp(Dk). (For desp, see XXIV C(12). ) 
[It is here assumed, for the sake of simplicity, that in Mi ‘N’ does not occur in the operand 
of a λ-operator or an ι-operator. If such occurrences are admitted, the ranges of intensions 
in Me and the corresponding ranges of quasi-intensions in Me must be still more 
comprehensive, and the definitions (1) and 



(2) must be replaced by others which are somewhat more complicated. The guiding idea 
for the translation indicated in C remains, however, the same.] 

 
C.  Translation from a modal language Li into an extensional language Le. 

If a language Li with logical modalities and intension variables (similar to Mi) is given, it 
is possible to specify an effective method by which any sentence of Li is translated into 
an L-equivalent sentence of an extensional language Le. We shall not specify the method 
here but give only rough indications of the translation for the two most important forms 
of sentential formulae. A universal formula of the form “for every intension of the type t, 
. . .” in Li is translated into one of the form “for every quasi-intension corresponding to 
the type t, . . .” in Le. And a modal formula “N(... )” is translated into one of the form “for 
every admissible model Modp,. . .”. This translation is plausible since a proposition is 
logically necessary iff it holds in every possible case, that is, in every admissible model 
(M & N, p. 186). 
Even for those who accept only an extensional language, logical modalities and intension 
variables are shown by this translation to be unobjectionable, provided that the variables 
in the extensional language Le have sufficient ranges of extension values to accommodate 
the quasi-intensions corresponding to the intensions which are values of variables in Li. 
In particular, the method indicated can be used for translating any sentence of Mi into one 
of Me. This legitimizes the semantics of intensions for an extensionalist point of view. 

 
 

XXIX. The controversy about abstract entities in semantics 
 
A. A nominalistic language is one in which all values of all variables are concrete (say, 

observable objects or events). There is a controversy among analytic philosophers today 
about the legitimacy of non-nominalistic languages. Some, e.g. Tatski, Quine and 
Goodman, deny or doubt that a language which 



 
is non-nominalistic and not translatable into a nominalistic one can be accepted as 
meaningful. (See Quine (1953), esp. ch. VI.) In this contemporary controversy sometimes 
the old terms “nominalism” and “universalism” (or “realism” or “Platonism”) are used. 
This seems to me inadvisable. The earlier controversies were formulated in a very unclear 
way, and it seems even doubtful whether the philosophical (“ontological”) assertions 
which were discussed under these labels had any cognitive content. 
Since sentences about intensions are translatable into sentences about extensions 
(XXVIII), the controversy concerns essentially the admissibility of variables for abstract 
(i.e., non-concrete) extensions of various kinds, e.g., classes (of objects), classes of 
classes (of objects), relations, numbers, functions, etc. 

 
B. In my view, the introduction of variables of a new kind is a matter of practical decision. 

Certain theoretical investigations are certainly relevant for the decision, e.g., investiga-
tions of the logical and semantical features, both the desirable and the undesirable ones, 
of the enlarged language. Among the features to be considered may be, e.g., the 
simplicity of the logical structure, the strength in means of expression and means of 
deduction, the danger of inconsistency, and the like. (There is never any absolute 
certainty of consistency, and the degree of confidence in consistency often decreases by 
the introduction of a new kind of abstract variables.) But the legitimacy of the 
introduction is not dependent upon an alleged prior metaphysical insight into the 
“existence” or “ontological reality” of the new entities. 
Read: Carnap (1950). 

 
C. To the arguments in the paper mentioned I would today add the suggestion that it might 

be advisable to regard the metalanguage M for syntax and semantics as part of the 
theoretical language, not of the observation language. (I would prefer to do this even if 
the object language is part of the observation language.) A given language community 
may well decide to 



admit in their common observation language Lo only sentences which are completely 
understood by all members of the community and, therefore, to lay down some or all of 
the following requirements for Lo: 
(1)  Requirement of observability. All primitive descriptive predicates in Mo, designate 

properties or relations which are directly observable for all members of the 
community.  

(2)  Nominalistic requirement. The values of the variables are observable objects (or 
object-moments or events). 

(3)  Wide requirement of finitism. The rules of Lo, do not state or imply that the 
domain of individuals is infinite. 

 
On the other hand, for the theoretical language LT, we can never have more than an 
incomplete interpretation. There is no reason to restrict this language by requirements 
similar to those for Lo. On the contrary, we should admit in LT all means of expression 
and of deduction which are found to be useful for the purpose of this language, which is, 
to supply a theoretical superstructure for Lo. 
This applies also to the semantical metalanguage M, now regarded as part of LT. For 
example, even if the object language is the nominalistic observation language, we should 
feel free to admit in M variables for classes of object (and, if it seems useful, also 
variables for classes of classes, for functions, for intensions or quasi-intensions) and to 
use these variables in the definitions of semantical concepts, e.g.. the concepts of 
designation, extension, intension, truth, model, L-truth, etc. 
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