
An Outline of a Theory of Semantic Information* 
 

1. THE PROBLEM 
 

 [The concepts of information and amount of information are distinguished. The 
explication of these concepts is attempted only insofar as they apply to (declarative) sentences 
or, alternatively, to propositions. Prevailing theory of communication (or transmission of 
information) deliberately neglects the semantic aspects of communication, i.e., the meaning of 
the messages. This theoretical restraint is, however, not always adhered to in practice, and this 
results in many misapplications. The theory outlined here is fully and openly of a semantic 
character and is therefore deemed to be a better approximation to a future theory of pragmatic 
information. For didactic purposes, the present theory of semantic information may be identified 
with a theory of pragmatic information for an “ideal” receiver.] 
 
It seems desirable that one should be able to say not only what information a message or an 
experiment has supplied but also how much. Hence we are going to distinguish between 
information (or content) and amount of information. 
 We shall deal with these concepts only insofar as they apply to either sentences or 
propositions, where ‘sentences’ is short for ‘declarative sentences’ or ‘statements’, and 
propositions are the nonlinguistic entities expressed by sentences. The theory we are going to 
develop will presuppose a certain language system and the basic concepts of this theory will be 
applied to the sentences of that system. These concepts, then, will be semantic concepts, closely 
connected with certain concepts of inductive logic, as we shall show below. Since inductive logic 
has been treated at length in [28; 29], we shall make extensive use of the results achieved there. 
Relevant definitions and theorems will, however, be repeated to such an extent as to make the 
present treatment stand almost completely on its own. 
__________ 
 *First appeared as Technical Report No. 247 of the Research Laboratory of Electronics, Massachusetts 
Institute of Technology, 1952. 
 



 The restriction of the range of application of the concepts to be explicated to sentences 
(or propositions) is probably not serious, since other applications seem to be reducible to this 
one. Instead of dealing with the information carried by letters, sound waves, and the like, we may 
talk about the information carried by the sentence, ‘The sequence of letters (or sound waves, etc.) 
...has been transmitted’. The situation is similar to that prevailing with regard to the concept of 
truth, which is used presystematically as applying not only to sentences or propositions but also 
to many other entities such as concepts and ideas. There, too, these latter usages seem to be 
reducible to the former ones. 
 In recent authoritative presentations of the so-called Mathematical Theory of 
Communication, or Theory of (Transmission of) Information, great care has been taken to point 
out that this theory is not interested in the semantic aspects of communication. 
 
 The following two quotations may be regarded as representative. Claude E. Shannon 
states [136:3]: “These semantic aspects of communication are irrelevant to the engineering 
problem.” E. Colin Cherry [31: 383] says: “It is important to emphasize, at the start, that we are 
not concerned with the meaning or the truth of messages; semantics lies outside the scope of 
mathematical information theory.” 
 
 It has, however, often been noticed that this asceticism is not always adhered to in 
practice and that sometimes semantically important conclusions are drawn from officially 
semantics-free assumptions. In addition, it seems that at least some of the proponents of 
communication theory have tried to establish (or to reestablish) the semantic connections which 
have been deliberately dissevered by others. 
 In 1948, Donald MacKay conceived a theory of information that should be broad enough 
to cover both theory of communication and theory of scientific information, the latter dealing 
with the formation of representations or their arrangement in the representational space of the 
observer, the former dealing with the replication of representations in the mind of the receiver, 
which were already present in the mind of the sender of a message (Cf. [92; 93]). 
 Jean Ville [147] also treats information as a basically semantic concept and develops 
functions and theorems which stand in close correspondence to some of the functions and 
theorems with which we deal in this report. A more thorough evaluation of these and other 
contributions to the foundations of information theory, as well as a comparison between the 
theory presented here and the theory of communication, is given in Chapter 16. 



 
 Our theory lies explicitly and wholly within semantics. 
 
 It does not deal, however, with what has been termed by Weaver in his contribution to the 
afore-mentioned book “ the semantic problem of communication”, which, as defined by him, is 
“concerned with the identity, or satisfactorily close approximation, in the interpretation of 
meaning by the receiver, as compared with the intended meaning of the sender.” We would 
rather prefer to consider an investigation in which sender and receiver are explicitly involved as 
belonging to pragmatics. 
 
 We shall talk about the information carried by a sentence, both by itself and relative to 
some other sentence or set of sentences, but not about the information which the sender intended 
to convey by transmitting a certain message nor about the information a receiver obtained from 
this message. An explanation of these usages is of paramount importance, but it is our conviction 
that the best approach to this explication is through an analysis of the concept of semantic 
information which, in addition to its being an approximation by abstraction to the full-blooded 
concept of pragmatic information, may well have its own independent values. 
 Anticipating later results, it will turn out, under all explications envisaged by us, that the 
amount of information carried by the sentence ‘17 × 19 = 323’ is zero and that the amount of 
information of ‘The three medians of the sides of a plane triangle intersect in one point’, relative 
to some set of sentences serving as a complete set of axioms for Euclidean geometry, is likewise 
zero. This, however, is by no means to be understood as implying that there is no good sense of 
‘amount of information’, in which the amount of information of these sentences will not be zero 
at all, and for some people, might even be rather high. To avoid ambiguities, we shall use the 
adjective ‘semantic’ to differentiate both the presystematic senses of ‘information’ in which we 
are interested at the moment and their systematic explicata from other senses (such as “amount 
of psychological information for the person P”) and their explicata. This adjective will, however, 
be dropped in those cases where ambiguities are unlikely to arise. 
 The following comparison might be of value for pointing out one of the services which a 
clarification of the semantic concept of information should render for a future theory of 
pragmatic information. The theory of so-called ideal gases is of great importance in physics 
despite the fact that no actual gas is ideal and that many gases are very far from being ideal.. The 
semantic information carried by a sentence with  respect to a certain class of sentences may well 
be regarded as the “ideal” pragmatic information which the sentence would carry for an “ideal” 
receiver whose 



only empirical knowledge is formulated in exactly this class of sentences. By an “ideal” receiver 
we understand, for the purposes of this illustration, a receiver with a perfect memory who 
“knows” all of logic and mathematics, and together with any class of empirical sentences, all of 
their logical consequences. The interpretation of semantic information with the help of such a 
superhuman fictitious intellect should be taken only as an informal indication. We shall not refer 
to this fiction in the technical part of this paper. 
 Our task can now be stated much more specifically. We intend to explicate the 
presystematic concept of information, insofar as it is applied to sentences or propositions and 
inasmuch as it is abstracted from the pragmatic conditions of its use. We shall then define, on the 
basis of this systematic concept of semantic information, various explicata for the presystematic 
concept (or concepts) of amount of semantic information and shall investigate their adequacy 
and applicability. 
 

2. GENERAL EXPLANATIONS 
 

 [The language-systems relative to which the present theory of information is developed 
are described as containing a finite number of individual constants and primitive one-place 
predicates. The following fundamental syntactic and semantic concepts are explained: atomic 
sentence, molecular sentence, basic sentence, molecular predicate, L-true, L-false, factual, L-im-
plies, L-equivalent, L-disjunct, L-exclusive, Q-predicator, Q-property, Q-sentence, state-
description, and range. Some terms and symbols of class-theory (set-theory) are introduced, 
mainly complement, sum, and product.] 
 
The language-systems relative to which our theory of information will be developed are very 
simple ones, so simple indeed that the results to be obtained will be of only restricted value with 
regard to language-systems complex enough to serve as possible languages of science. The 
restriction, however, was partly imposed by the fact that inductive logic — on which we shall 
have to rely heavily — has so far been developed to a sufficiently elaborate degree only for 
languages that are not much richer than those treated here [28: §§15, 16], and partly for the sake 
of simplicity of presentation. It is hoped that in spite of this the results will be immediately 
applicable to certain simple situations and will be suggestive with respect to more complex ones. 
 Our language-systems L π

n . contain n different individual constants which stand for n 
different individuals (things, events, or positions) and π primitive one-place predicates which 
designate primitive properties of the individuals. (n and π are finite numbers; under certain 
assumptions, however, it is easy to extend the results obtained here to systems with a de- 



 
numerably infinite number of individual constants.) In an atomic sentence, for example, ‘Pa’ 
(‘the individual a has the property P’), a primitive property is asserted to hold for an individual. 
Other molecular sentences are formed out of atomic sentences with the help of the following five 
customary connectives: 
 

~ not negation 
∨  or disjunction 
. and conjunction 
⊃  if... then (material) implication 
≡ if and only if (written iff) (material) equivalence 

 
All atomic sentences and their negations are called basic sentences. Analogously, other 
molecular predicates or predicators are formed out of primitive predicates with the help of the 
(typographically) same connectives (for example, ‘M . ~ P’ standing for ‘M and not P’). A 
sentence consisting of a predicator and an individual constant is called a full sentence of this 
predicator. Though our systems do not contain individual variables, quantifiers, or an identity 
sign, their expressive power is thereby not essentially affected. Sentences like ‘There are exactly 
three individuals having the property P’ can still be rendered in these systems, though only in the 
form of a rather clumsy disjunction of conjunctions of basic sentences. Hence absolute 
frequencies (cardinal numbers of classes or properties) and relative frequencies can be expressed 
in these systems (but not measurable quantities like length and mass). 
 Any sentence is either L-true, logically true, analytic, e.g., ‘Pa ∨  ~ Pa’, or L-false 
(logically false, self-contradictory, e.g., ‘Pa . ~ Pa’) or factual (logically indeterminate, 
synthetic, e.g., ‘Pa ∨  [M . ~N]b’). Logical relations between sentences i and j can be defined: 
 
   i L-implies j   =Df  i ⊃  j is L-true 

   i is L-equivalent to j  =Df  i ≡ j is L-true 

   i is L-disjunct with j  =Df  i ∨  j is L-true 

   i is L-exclusive of j  =Df  i . j is L-false 

We shall use ‘t’ as the name of a particular L-true sentence, a “tautology”, say, of ‘Pa ∨  ~Pa’. 
 A Q-predicator is a conjunction (of predicates) in which every primitive predicate occurs 
either unnegated or negated (but not both) and no other predicate occurs at all. The property 
designated by a Q-predicator is called 



a Q-property. A full sentence of a Q-predicator is a Q-sentence. A state-description is a 
conjunction of n Q-sentences, one for each individual. Thus a state-description completely 
describes a possible state of the universe of discourse in question1. For any sentence j of the 
system, the class of those state-descriptions in which j holds, that is, each of which L-implies j, is 
called the range of j. The range of j is null if, and only if, j is L-false; in any other case, j is L-
equivalent to the disjunction of the state-descriptions in its range. 
 The following theorems will be of use later:  
 T2-1. 
 a. The number of atomic sentences is ß = πn.  
 b. The number of Q-predicators is K = 2π. 
 c. The number of state-descriptions is z = 2ß = 2πn = (2π)n = Kn. 
 In our metalanguage, that is, the language in which we talk about our language-systems 
L π

n  (in our case a certain unspecified sublanguage of ordinary English enriched by a few 
additional symbols), we shall use some customary terms and symbols of the theory of classes (or 
sets). The class of all those entities (of a certain type) which do not belong to a certain class K 
will be called the complement (-class) of K and denoted by ‘−K’. The class of those entities 
which belong either to a class K or to a class L (or to both) will be called the (class-theoretical) 
sum of these classes and will be denoted by ‘K ∪  L’. The class of those entities which belong to 
each of the classes K and L will be called the (class-theoretical) product of these classes and 
denoted by ‘K ∩  L’. 
 
 Those readers who might not be familiar with abstract logical concepts and terms will 
profit from the following illustration, which will be carried through this whole chapter. Let a 
census be taken in a small community of only three inhabitants, and let the census be interested 
only in whether the inhabitants counted are male or non-male (female) and young or non-young 
(old), respectively. Let the three individuals be designated by ‘a’, ‘b’, ‘c’, and the properties by 
‘M’, ‘~M’ (or ‘F’), ‘Y’, and ‘~Y’ (or ‘O’), respectively. The language-system in which the 
outcome of the census can be exhaustively described is therefore a L 2

3 -system, in our notation. 
‘Ma’ is an atomic sentence, ‘Ma . F b. (Mc ⊃  Oc)’ another molecular sentence, ‘F . ~Y’ a Q-
predicator, ‘[F . ~Y]b’ a Q-sentence, ‘[M . Y]a . [~M . Y]b . [~M . ~Y]c’ a state-description. For 
later references, the list of all 64 state-descriptions is given in Table I, in abbreviated form. 
__________ 
 1 This holds, strictly speaking, only if the primitive properties are logically independent. For a discussion of 
the problems involved here, see [30] and the literature mentioned there. 



 
Line 10 of this table, for example, is to be interpreted as short for the state-description ‘[M . Y]b . 
[M . Y]c . [F . Y]a’. Later (§4), however, a different interpretation of the same table will be given. 
 

    TABLE I     

 M . Y M . O F . Y F . O  M . Y M . O F . Y F . O 

1. a, b, c - - - 33. b - - a, c
2. - a, b, c - - 34. a - - b, c
3. - - a, b, c - 35. - c - a, b
4. - - - a, b, c 36. - b - a, c
5. a, b c - - 37. - a - b, c
6. a, c b - - 38. - - c a, b
7. b, c a - - 39. - - b a, c
8. a, b - c - 40. - - a b, c
9. a, c - b - 41. a b c - 

10. b, c - a - 42. a c b - 
11. a, b - - c 43. b a c - 
12. a, c - - b 44. b c a - 
13. b, c - - a 45. c a b - 
14. c a, b - - 46. c b a - 
15. b a, c - - 47. a b - c 
16. a b, c - - 48. a c - b 
17. - a, b c - 49. b a - c 
18. - a, c b - 50. b c - a 
19. - b, c a - 51. c a - b 
20. - a, b - c 52. c b - a 
21. - a, c - b 53. a - b c 
22. - b, c - a 54. a - c b 
23. c - a, b - 55. b - a c 
24. b - a, c - 56. b - c a 
25. a - b, c - 57. c - a b 
26. - c a, b - 58. c - b a 
27. - b a, c - 59. - a b c 
28. - a b, c - 60. - a c b 
29. - - a, b c 61. - b a c 
30. - - a, c b 62. - b c a 
31. - - b, c a 63. - c a b 
32. c - - a, b 64. - c b a 

 
The reader will easily verify that the range of the sentence ‘Ma . Ya . Fb . Yb’, which might 
profitably be rewritten in the form ‘[M . Y]a . [F . Y]b’, contains exactly 4 state-descriptions, 
namely, 9, 25, 42, and 53. The range of ‘Fa’ contains 32 state-descriptions. The range of ‘Ma ∨  
Ya∨Fb∨ Yb∨Fc∨Oc’ contains 63 state-descriptions, that is, all state-descriptions except 52. A 
reader with some training in propositional logic will see immediately that this last sentence is L-
equivalent to ‘~(Fa . Oa . Mb . Ob . Mc . Yc)’, hence to the negation of state-description 52. 
 

3. THE PRESYSTEMATIC CONCEPT OF SEMANTIC INFORMATION 
 

[A requirement of adequacy for any-proposed explication of semantic information—In—is 
stated: In(i) includes In(j) if and only if i L-implies j. 



From this requirement various theorems are derived. In addition to the absolute information 
carried by a sentence, the information carried by a sentence j in excess to that carried by some 
other sentence i is often of importance. This concept of relative information is defined by  
In(j/i) = In(i . j) − In(i). One of the theorems is: if t is any L-true sentence In(j/t) = In(j). Two 
concepts that fulfill the requirement but differ in some aspect are investigated but neither of them 
is accepted as an explicatum for In.] 
 
To disperse, at least partially, the haziness which envelops the inevitably vague discussions of 
the adequacy of the explication to be offered later for the concept of semantic information, let us 
state a requirement which will serve as a necessary condition for this adequacy. 
 Whenever i L-implies j, i asserts all that is asserted by j, and possibly more. In other 
words, the information carried by i includes the information carried by j as a (perhaps improper 
part) part. Using ‘In(...)’ as an abbreviation for the presystematic concept ‘the information 
carried by...’, we can now state the requirement in the following way: 
 R3-1. In(i) includes In(j) iff i L-implies j. 
 By this requirement we have committed ourselves to treat information as a set or class of 
something. This stands in good agreement with common ways of expression, as for example, 
“The information supplied by this statement is more inclusive than (or is identical with, or 
overlaps) that supplied by the other statement.” 
 We shall now state some theorems which hold for ‘In’ and, therefore, also for that 
concept which we shall offer, in the following section, as the explicatum for ‘In.’ These theorems 
follow from R12 and well-known theorems of the theory of classes. 
 T3-1. In(i) = In(j) iff i is L-equivalent to j. 
 If a class K of classes contains a class which is included in every member of K, this class 
will be called “the minimum class (of K)”. If K contains a class which includes every member of 
K, this class will be called “the maximum class (of K)”. The minimum class and the maximum 
class may coincide with the null-class and the universal-class (of the corresponding type), 
respectively, but need not do so. 
 Since an L-true sentence is L-implied by every sentence, and an L-false sentence L-
implies every sentence, we have: 
__________ 
 2 For the sake of brevity, theorems, definitions, or requirements, when found in the same section in which 
they are first stated, will be referred to only by the corresponding letter ‘T’,’D’, or’R’ and by their second numbers. 
Here, for instance, we have ‘Rl’ instead of the longer’R3-l’. 



 T3-2. In(i) = the minimum class of K (where K is now the class of the In-classes of 
sentences) iff i is L-true. 
 T 3-3. In(i) = the maximum class of K iff i is L-false. 
 It might perhaps, at first, seem strange that a self-contradictory sentence, hence one 
which no ideal receiver would accept, is regarded as carrying with it the most inclusive 
information. It should, however, be emphasized that semantic information is here not meant as 
implying truth. A false sentence which happens to say much is thereby highly informative in our 
sense. Whether the information it carries is true or false, scientifically valuable or not, and so 
forth, does not concern us. A self-contradictory sentence asserts too much; it is too informative 
to be true.  
 T3-4.  In(i) properly includes In(j) iff i L-implies j but j does not L-imply i. 
 T 3-5. In(i) properly includes the minimum class and is properly included in the 
maximum class iff i is factual. 
 T3-6.  In(i) includes In(i ∨  j) and is included in In(i . j). 
 When we use the term ‘information’ in ordinary language, we often refer to the 
information carried by a sentence absolutely, so to speak. At least as often, however, we intend 
to refer to the information carried by a sentence in excess of that carried by some other sentence 
(or class of sentences). If not otherwise stated or implicitly understood through the context, this 
other sentence will often be that in which the total knowledge available to the receiver of the 
information, before he receives the new information, is stated. In contradistinction to the concept 
of absolute information treated so far, we shall now define, still on the presystematic level, the 
concept of relative (or additional or excess) information of j with respect to i as the class-
theoretical difference of In(i . j) and In(i), that is, the class-theoretical product of In(i . j) with the 
complement of In(i); in symbols: 
 
 D3-1. In(j/i) =Df In(i . j) − In(i) (= In(i . j) ∩  − In(i)). 
 
 In(j/i) is again a class. Its members belong to the same type as the members of In(i). The 
following theorems follow immediately from Dl, Rl, and the previous theorems. 
 
 Complete formal proofs will be given only when an indication of the theorems, 
definitions, and requirements from which a theorem follows will not enable most readers to 
grasp the proof by inspection. In very simple cases (as in the first 8 theorems), these hints will be 
omitted. 
 
 T3-7. In(j/i) includes the null class and is included in the maximum class. 



 T3-8. If i is L-equivalent to j, then In(k/i) = In(k/j) and In(i/l) = In(j/l). 
 T3-9. If i L-implies j, then In(j/i) = the null class. 
 Proof: In this case, i . j is L-equivalent to i. The theorem follows from T1 and D1. 
 T3-10. If j is L-true, then In(j/ i) = the null class. 
 T3-11. In(j/i) properly includes the null class iff i does not L-imply j. 
 Proof: In this case, In(i . j) properly includes In(i). 
 So far, we have committed ourselves to treat the information carried by a sentence as a 
class of something and have stated one requirement which every adequate explicatum will have 
to meet. This, of course, leaves many possibilities open. With respect to the information carried 
by an L-true sentence, we were able to state only that it is a minimum and is contained in the 
information carried by any sentence. It might perhaps seem plausible to require, in addition, that 
the information carried by an L-true sentence should be empty; hence, the null-class of the 
appropriate type. But this feeling is due to the fact that we do not always distinguish carefully be-
tween information and amount of information. What we really have in mind is rather that the 
amount of semantic information carried by an L-true sentence should be zero. But this can be 
achieved by a suitable explicatum even if the information carried by such a sentence is not the 
null-class. 
 On the other hand, there also exists no good reason so far why the information of an L-
true sentence should not be the null-class. The best procedure is, therefore, to leave this decision 
open. 
 There are indeed two plausible explicata for In(i), which differ in exactly this point: 
according to the one, the information carried by an L-true sentence will be the null-class; 
according to the other, it will not. Let us denote the first concept by ‘Infl’ and the second by 
‘Inf2’. Their definitions are as follows: 
 D3-2. Inf1(i) =Df the class of all sentences (in L) which are L-implied by i and not L-true. 
 D3-3. Inf2(i) =Df  the class of all sentences (in L) which are L-implied by i. 
 We shall not dwell here on an elaborate comparison of the relative merits and faults of 
these two definitions; first, because such a comparison has already been carried out in a closely 
related context [26: §23; 28: 406]; second, because we shall adopt neither of these definitions for 
future work but a third one to be explained in the following section. 



4. CONTENT-ELEMENTS AND CONTENT 
 

 [A content-element is defined as the negation of a state-description, and the content of 
i—Cont(i)—as the class of the content-elements L-implied by i. Cont is taken as the explicatum 
for In. Cont(j/i) is defined and various theorems derived.] 
 
 In §2, we defined the range of a sentence i, R(i), as the class of all state-descriptions Z in 
which i holds or which, in other words, L-imply i. The sentence i says that the state of the 
universe (treated in L) is one of the possible states which are described by the Z in R(i). 
Alternatively formulated, i says that the universe is not in one of those states which are described 
by the Z in Vz − R(i), where Vz is the class of all Z. Just as i is L-implied by every Z in R(i), so it 
L-implies the negation of every Z in Vz − R(i). We call these negations the content-elements E of 
i and their class the content of i, in symbols Cont(i). In general, we call the negations of the Z in 
a given system L the E of this system [28: §73]. 
 In our L 2

3  there are, of course, 64 content-elements, namely, the negations of its 64 state-
descriptions. These content-elements appear in Table I, when interpreted in a different way from 
that given before. We can now read line 10, for example, as ‘[M ∨  Y]b ∨  [M ∨  Y]c ∨  [F ∨  
Y]a’, a content-element which is L-equivalent to the negation of state-description 37, as the 
reader will verify for himself. 
 The content of the sentence ‘Ma . Ya . Fb . Yb’ contains 60 content-elements, namely, the 
negations of all state-descriptions except 9, 25, 42, and 53. 
 The following theorem, T4-1, can be deduced from the theorems concerning state-
descriptions and L-concepts in [28: §§18A, 18D,19, 20, 21B].  
 T4-1. For every E; the following holds: 
 a. Ei is factual [28: T20-5b, T20-6]. 
 b. If Ej is distinct from Ei, then Ei and Ej are L-disjunct. 
 
 Proof: ~Ei . ~Ej is L-false [28: T21-8a]. Therefore the negation of this conjunction is L-
true. But this negation is L-equivalent to Ei ∨  Ej.  
 c. The conjunction of all Ei is L-false. 
 
 Proof: Let d be the disjunction of the negations of the Ei, hence L-equivalent to the 
disjunction of all Z. Therefore d is L-true [28: T21-8b]; hence ~d is L-false. But ~d is L-
equivalent to the conjunction of all Ei. 
 
 d. If Ei L-implies j, then j is either L-true or L-equivalent to Ei; in other words, Ei is a 
weakest factual sentence. 
 Just as a state-description says the most that can be said in the given universe of 
discourse, short of self-contradiction, so a content-element says 



the least, beyond a tautology. ‘a is male and young, b is female and young, and c is female and 
old’ is a strongest factual sentence in the census; its negation ‘a is female or old (or both), or b is 
male or old, or c is male or young’ (where ‘or’ is always to be understood in its nonexclusive 
sense) a weakest one. 
 
 T4-2. 
 a. Cont(i) =the null-class of E, ΛE, iff i is L-true.  
 b. Cont(i) = the class of all E, VE, iff i is L-false.  
 c. Cont(i) = neither ΛE nor VE iff i is factual. 
 d. Cont(i) includes Cont(j) iff i L-implies j.  
 e. Cont(i) = Cont(j) iff i is L-equivalent to j. 
 f. Cont(i) and Cont(j) are exclusive (i.e., have no members in common) iff i and j are L-
disjunct [28: D20-1e]. 
 
 The contents of ‘Ma’ and of ‘Fa ∨  Mb’ are exclusive since ‘Ma ∨  Fa ∨  Mb’ is L-true. 
The reader can verify from Table I, in its second interpretation, that these contents have indeed 
no members in common.  
 
 T4-3. 
 a. Cont(~i) = − Cont(i) (short for ‘VE − Cont(i)’ [28: T18-1e]).  
 b. Cont(i ∨  j) = Cont(i) ∩Cont(j). 
 
 Proof: Let R (...) be the class of the negations of the members of R(...). Then 
Cont(i∨  j)= R  (~(i ∨  j)) = R  (~i . ~j) = R  (~i) ∩ R  (~j) = Cont(i) ∩Cont(j).  
 c. Cont(i . j) = Cont(i) ∪  Cont(j). 
 
 Proof: Cont(i . j) = −Cont(~(i . j)) = −Cont(~i ∨  ~) = − (Cont(~i) ∩Cont(~j)) = − 
(−Cont(i) ∩ −Cont(j)) = Cont(i) ∪  Cont(j). 
 To verify T3b, c take, for instance, i as ‘Ma ∨  Fb ∨  [M ∨  Y]c’ and j as ‘Fa ∨  Mb’. 
 T2d shows that Cont fulfills requirement R3-1. We decide to take Cont as our explicatum 
for In. The explication of the information carried by a sentence j as the class of the negations of 
all those Z which are excluded by j, is intuitively plausible and in accordance with the old 
philosophical principle, “omnis determinatio est negatio.” Our main reason, however, for giving 
it preference over the two explicata mentioned in the previous section, Inf1 and Inf2, lies in the 
fact that an explanation of amount of information will turn out to be rather simple if based on 
Cont, in accordance with the fourth requirement for a good explication stated in [28: 7]. 
 Let us notice that according to T2a, Cont shares with Infl the property that their value for 
an L-true sentence as argument is the null-class. 



 
 We now have to define the relative content of j with respect to i. What has to be done is, 
of course, simply to replace ‘In’ in D3-1 by ‘Cont’.  
 D4-1. Cont(j/i) =Df Cont(i . j) − Cont(i). 
 Let us state only one theorem on the relative content:  
 T4-4. 
 a. If i is an L-true sentence, Cont(j/i) = Cont(j). 
 Proof: In this case, i . j is L-equivalent to j. The theorem follows from D1 and T2a. 
 b. Cont (j/t) = Cont (j). 
 Thus the relative content of j with respect to t equals the absolute content of j. Therefore 
it would be possible to begin with the relative content as primitive and define the absolute 
content as the value of the relative content with respect to t. However, it seems more convenient 
to begin with the simple concept of absolute content, because it has only one argument and the 
relative content can be defined on the basis of it. This is the procedure we have chosen here. 
 
 

5. THE PRESYSTEMATIC CONCEPT OF AMOUNT OF INFORMATION 
 
 [Requirements of adequacy for the explication of amount of semantic information-in-are 
stated, and theorems for in derived. No formal requirement of additivity is accepted, since the 
conditions under which additivity is to hold cannot be given unambiguously, so far. in(j/i), the 
amount of information of j relative to i, is defined and theorems derived.] Our next task is to find 
an explicatum, or perhaps various explicata, for the presystematic concept of amount of 
information. This will again be preceded by the statement of some requirements, the fulfillment 
of which will be a necessary condition for the adequacy of the explicata to be proposed. 
 We shall use ‘in’ as the symbol for the presystematic concept of amount of information 
and distinguish between the absolute amount of information of a sentence i, in(i), and the relative 
amount of information of the sentence j with respect to i, in(j/i). The relative amount is clearly 
definable on the basis of the absolute amount: 
 
 D5-1. in(j/i) =Df in(i . j) − in(i) 
 
(where the ‘−’ sign is this time the symbol for numerical difference and not, as in D3-1 or D4-1, 
for class-difference). Therefore it is sufficient to state only the requirements with respect to the 
absolute amount. It seems plausible to require that the amount of information of i should be not 
less than the amount of information of j, if the content of i includes the content of j; that the 
amount of information of an L-true sentence should be zero; and, 



for finite systems, that the amount of information of a factual sentence should be greater than 
zero. (The qualification ‘for finite systems’ might perhaps look superfluous. It can, however, be 
shown that with regard to the explicata envisaged by us, this requirement would not be fulfilled 
in an infinite system.) More formally: 
 R5-1. in(i) ≥ in(j) if (but not only if) Cont(i) includes Cont(j). 
 R5-2. in(j) = 0 if Cont(j) = ΛE. 
 R5-3. in(j) > 0 if Cont(j) properly includes ΛE. 
 Instead of R3 we might also have required the following somewhat stronger condition 
from which R3 follows immediately: 
 R5-4. in(i) > in(j) if Cont(i) properly includes Cont(j). 
 We could also have stated these requirements directly in terms of ‘L-implies’ and ‘L-
true’, without recourse to Cont. For the benefit of those who, for some reason, are not satisfied 
with our explication of ‘information’ and who therefore might try to explicate ‘amount of 
information’ on the basis of some other explicatum for ‘information’ or perhaps even without 
reference to any such explicatum (a perfectly reasonable and achievable goal), the following 
version is given: 
 R5-1*. in(i) ≥ in(j) if (but not only if) i L-implies j. 
 R5-2*. in(j) = 0 if j is L-true. 
 R5-3*. in(j) > 0 if j is not L-true. 
 The following theorems follow from R1 through R3 and the previously stated properties 
of Cont. 
 T5-1. If Cont(i) = Cont(j), then in(i) = in(j). 
 T5-2.  If i is L-false, then in(i) has the maximum in-value.  
 Proof: An L-false sentence L-implies every sentence. 
 T5-3. 0 < in(i) < the maximum in-value iff i is factual. 
 T5-4. in(i ∨  j) < in(i) ≤ in(i . j). 
 The requirements R1 through R3 are clearly rather weak, and one might look for further 
requirements. One that recommends itself immediately would be that of additivity, that is, to 
have in(i . j) = in(i) + in(j) if i and j are independent of each other in a certain sense. However, 
we shall not make this one of our formal requirements because the sense of the independence 
involved is not clear at this moment. We shall find later that each of our explicata is indeed 
additive but not all of them in the same sense, because the conditions of independence are not the 
same in the various cases. 
 The additivity holds, of course, only under certain conditions, whatever those conditions 
may be in exact terms. It is clear that, in general, 



 
in(i . j) ≠ in(i) + in(j). It is further clear that there will be cases where in(i . j) < in(i) + in(j). This 
will be the case, for example, whenever i L-implies j and j is not L-true, because under these 
circumstances i is L-equivalent to i. j, so that in(i . j) = in(i), whereas in(j) > 0, and hence in(i) < 
in(i) + in(j). So far, we can state only a lower limit for in(i . j), viz: 
 T5-5. in(i . j) ≥ max[in(i), in(j)]. 
 Does there exist a general upper limit for in(i . j) that is not trivial? No theorem to this 
effect can be deduced from the requirements of this section. They do not exclude, for instance, 
the possibility that sometimes in(i . j) > in(i) + in(j). This possibility might perhaps look so 
implausible that one would like to exclude it by the explicit additional requirement in(i . j) ≤ in(i) 
+ in(j). However, it seems better not to require this. We shall see later that the second of our 
explicata (inf) violates this condition, and we shall then make this violation plausible. If someone 
insists that the requirement just stated has to be fulfilled, then he can accept only the first of our 
explicata (cont). For this concept the requirement is indeed fulfilled (T6-4m). 
 The following theorems correspond to T3-7 through T3-11 and T4-4a.  
 T5-7. The maximum in-value ≥ in(j/i) ≥ 0. 
 T5-8. If i is L-equivalent to j, then in(k/i) = in(k/j) and in(i/l) = in(j/l). 
 T5-9. If i L-implies j, then in(j/i) = 0. 
 T5-10. If j is L-true, then in(j/i) = 0. 
 T5-11. in(j/i) > 0 iff i does not L-imply j.  
 T5-12. 
 a. If i is an L-true sentence, in(j/i) = in(j) (T4-4a, TI).  
 b.  in(j/t) = in(j). 
 
 

6. THE FIRST EXPLICATUM: CONTENT-MEASURE (CONT) 
 

 [One way of fulfilling the requirements stated in the previous section is outlined. It 
consists, essentially, in defining a measure-function over the content-elements, fulfilling certain 
conditions, and then taking as the measure of the content of a sentence the sum of the measures 
ascribed to the elements of its content. Since measure-functions over state-descriptions—m-
functions—have been treated at length before [28], a shorter way of introducing content-
measures—cont—is chosen, simply by equating Cont(i) with mP(~i), where ‘mP’ stands for 
proper m-function, i.e., m-function fulfilling certain conditions. Many theorems for Cont(i) are 
derived, among them theorems for the content-measures of basic sentences, for disjunctions and 
conjunctions of such, for Q-sentences, and for sentences in disjunctive and conjunctive normal 
form. Cont(j/i) is defined, and among others, the important theorem cont(j/i) = Cont(i ⊃  j) is 
derived.] 



 We could have defined an adequate explicatum for the amount of information carried by 
a sentence with the help of measure-functions ranging over the contents of the sentences of L and 
fulfilling the conditions laid down in the previous section. Since there exist, however, close 
relations between contents and ranges (§4), we shall make use of the fact that the definitions of 
various measure-functions over ranges have already been treated at length in [28] and define the 
functions in which we are now interested simply on the basis of those measure-functions. 
 It seems profitable to start with a kind of measure-function ranging over state-
descriptions and other sentences which has not been discussed explicitly in [28] or [29], namely, 
with proper m-functions, to be denoted by ‘mP’. 
 We define: 
 D6-1. m is a proper m-function (in L) =Df m fulfills the following nine conditions: 
 
 a. For every Zi, m(Zi) > 0. 
 b. The sum of the m-values of all Z = l. 
 c. For any L-false sentence j, m(j) = 0. 
 d. For any non-L-false sentence j, m(j) = the sum of the m-values for the Z in R(j). 
 e. If Zj is formed from Zi by replacing the individual constants of Zi by those 
correlated to them by any permutation of the individual constants, then m(Zk) = m(Zi). (Less 
strictly but more suggestively: all individuals are treated on a par.) 
 f. If Zj is formed from Zi by replacing the primitive predicates of Zi by those 
correlated to them by any permutation of the primitive predicates, then m(Zj) = m(Zi) (i.e., all 
primitive properties are treated on a par). 
 g. If Zj is formed from Zi by replacing any of the primitive predicates of Zi by their 
negations (omitting double negation signs), then m(Zj) = m(Zi) (i.e., each primitive property is 
treated on a par with its complement). 
 The last three conditions could have been stated in a somewhat weaker form, but no 
attempt was made to reduce redundancy by sacrificing psychological clarity. 
 h.  If i and j have no primitive predicates in common, then m(i . j) = m(i) × m(j). 
 i. m(i) is not influenced by the number of individuals of L not mentioned in i. (This 
condition will be used only in the derivation of formula (6) in §10.) 
 An m-function fulfilling conditions (a) through (d) is called regular [28: 295]. If it fulfills, 
in addition, condition (e), it is called symmetrical [28: 



 
485]. All theorems that hold for regular m-functions hold a fortiori for any proper m-function. 
 mP is believed to be an adequate explicatum for one of the senses in which ‘probability’ 
is used, namely that which might be termed ‘absolute logical probability’, that is, logical 
probability on no evidence (or tautological evidence or irrelevant evidence). 
 Similarly, cP, to be defined in D7-3, is believed to be an adequate explicatum of relative 
logical probability. 
 Any two sentences (not only state-descriptions) that stand in the relation stated in D1e are 
called isomorphic. 
 The following theorem holds for all regular m-functions [28: §§55A, 57A], hence also for 
all proper m-functions: 
 
 T6-1. 
 a.  0 ≤ m(i) ≤ 1. 
 b.  m(i) = 1 iff i is L-true.  
 c. m(i) = 0 iff i is L-false.  
 d. 0 < m(i) < 1 iff i is factual. 
 e. If i L-implies j, then m(i) ≤ m(j). 
 f.  If i is L-equivalent to j, then m(i) = m(j).  
 g.  m(i . j) ≤ m(i) ≤ m(i ∨ j). 
 h.  m(i ∨ j) = m(i) + m(j) − m(i . j). 
 i. m(i ∨ j) = m(i) + m(j) iff i . j is L-false (i.e., iff i and j are L-exclusive).  
 j. m(i . j) = m(i) + m(j) − m(i ∨ j) 
 k. m(i . j) = m(i) + m(j) − 1 iff i ∨ j is L-true (i.e.,iff i and j are L-disjunct).  
 1. m(~i) = 1 − m(i). 
 m.  m(i . j) ≤ m(i) + m(j). 
 
 The measure-function in which we are interested and which we shall call from now on 
content-measure and denote by ‘cont’ is defined by  
 D6-2. cont(i) =Df mP(~i). 
 From this definition it immediately follows that the cont-value of any E equals the mP -
value of the corresponding Z. 
 T6-2. For every Zi, if Ei is ~ Zi, cont(Ei) = mP(Zi).  
 
 D2 and D11 entail 
 T6-3. 
 a. cont(i) = 1 − mP(i).  
 b. mP(i) = 1 − cont(i).  
 c. cont(~i) = mP(i). 



 The following theorem follows from T1 and T3b: T6-4. 
 a. 1 ≥ cont(i) ≥ 0. 
 b.  cont(i) = 0 iff i is L-true.  
 c.  cont(i) = 1 iff i is L-false.  
 d.  1 > cont(i) > 0 iff i is factual. 
 e.  If i L-implies j, then cont(i) ≥ cont(j). 
 f. If i is L-equivalent to j, then cont(i) = cont(j).  
 g.  cont(i . j) ≥ cont(i) ≥ cont(i ∨ j). 
 h.  cont(i ∨ j) = cont(i) + cont(j) − cont(i . j). 
 i. cont(i ∨ j) = cont(i) + cont(j) − 1 iff i and j are L-exclusive. 
 j. cont(i . j) = cont(i) + cont(j) − cont(i ∨ j). 
 k.  cont(i . j) = cont(i) + cont(j) iff i and j are L-disjunct.  
 1. cont(~i) = 1 − cont(i). 
 m.  cont(i . j) ≤ cont(i) + cont(j). 
 
 T4e, b and c-d show that cont fulfills the requirements of adequacy R5-1*, R5-2*, and 
R5-3*, respectively. 
 The condition under which additivity is stated in T4k to hold for cont appears quite 
plausible at first glance. If i and j are L-disjunct, then the contents of i and j are exclusive (T4-
2f). Nothing in that which is asserted by i is simultaneously asserted by j; in other words, there is 
no factual sentence which is L-implied both by i and by j. However, we shall later (§7) present 
certain considerations which will raise some doubts with respect to this special condition of 
additivity. 
 The relative content-measure of j with respect to i is meant as the increase of the value of 
cont by adding j to i. Hence, in conformance with D5-1:  
 
 D6-3. cont(j/i) =Df cont(i . j) − cont(i). 
 T6-5. 
 a.  cont(j/i) = cont(j) − cont(i ∨ j) (D3, T4j) 
 b. = cont(j) iff i and j are L-disjunct ((a), T4b). 
 T6-6. cont(j/i) = cont(i ⊃  j). 
 
 Proof: j is L-equivalent to (i ∨ j) . (~i ∨ j). The components of this conjunction are L-
disjunct. Therefore cont(j) = cont(i ∨ j) + cont(~i ∨ j) (T4k). Hence, with T5a, cont(j/i) = cont(~i 
∨ j). But ~i ∨ j is L-equivalent to i ⊃  j. 
 The last theorem is especially interesting. It shows that the relative content-measure of j 
with respect to i is the same as the absolute content-measure of the (material) implication i ⊃  j. 
If an “ideal” receiver possesses the knowledge i and then acquires the knowledge j, his 
possession of in- 



formation is only increased in the same amount as if i ⊃  j were added instead of j. This is, 
indeed, highly plausible since j is a logical consequence of the sentences i and i ⊃ j, and an 
“ideal” receiver, by definition, is able to draw such consequences instantaneously. 
 From T6 we also see that if i L-implies j, cont(j/i) = 0. We know this already since it 
holds for all our explicata for the relative amount of information in virtue of T5-9. 
 The following inequality, an immediate consequence of T5a, is of interest:  
 T6-7. cont(j/i) ≤ cont(j). 
 We can express cont(j/i) directly in terms of mP in various ways:  
 T6-8. 
 a.       cont(j/i) = mP (i) − mP (i . j) (D3, T3a) 
 b.  = mP (i . ~j) (T6, i ⊃  j is L-equivalent to (i . ~j), T3a) 
 c.  = mP (i ∨ j) − mP (j) (D3, T5a). 
 Two sentences, i and j, that fulfill the condition, mP (i . j) = mP (i) × mP (j), are called 
inductively independent (or initially irrelevant, in the terminology of [28: 356]) with respect to 
that mP. We get 
 T6-9. If i and j have no primitive predicate in common, then  
 

mP (i ∨ j) = mP (i) + mP (j) − mP (i) × mP (j) (T1h, D1h). 
 
 T6-10. 
 a.  For any basic sentence B, mP (B) = 1/2. 
 
 Proof: B ∨ ~B is L-true. Therefore, by T1b, mP (B ∨ ~B) = 1. Hence the assertion with 
D1g and T1-i. 
 b.  For any conjunction, Cn, of n basic sentences with n distinct primitive predicates, 
mP (Cn) = (1/2)n (D1h,(a)). 
 c. If i and i′ are isomorphic, then mP (i) = mP (i′) (D1e).  
 We now get 
 T6-11. If i and j have no primitive predicate in common, then  
 a.  cont(~(i . j)) = cont(~i) × cont(~j) (D1h, T3c). 
 b.  cont(i ∨ J) = cont(i) × cont(j). 
 
 Proof: i ∨ j is L-equivalent to ~(~i . ~j). ~i and ~j have no primitive predicate in common 
since i and j do not. Hence the assertion from (a). 
 c.  cont(i . j) = cont(i) + cont(j) − cont(i) × cont(j) (T4j, (b)).  
 In our L 2

3  cont(‘Ma ∨ Yb’) = cont(‘Ma ∨ Ya’) = 1/4 and cont(‘Ma . ~Yb’) = 3/4. 
 T6-12. Let Dn be a disjunction of n (≥ 2) sentences with no primitive 



predicate occurring in more than one of these sentences. Then cont(Dn) = the product of the cont-
values of the n components (T11b). 
 T6-13. 
 a.  For any basic sentence B, cont(B) = 1/2 (T3a, T10a). 
 b.  For any disjunction, Dn, of n basic sentences with n distinct primitive predicates, 
cont(Dn) = (1/2)n (T3a, T12, (a)). 
 c.  For any conjunction, Cn, of n basic sentences with n distinct primitive predicates, 
cont(Cn) = 1− (1/2)n (T3a, T10b, (a)). 
 d.  For any Q-sentence i, cont(i) = 1 − (1/2)π((c)) = 1 − 1/K (T2-1b) (K − 1)/K. 
 

cont(‘[M . ~Y]a’) = 3/4 (since a = 2, K = 4 (T2 - 1b)). 
 
 e.  Let i have the form C1 ∨  C2 ∨  … ∨  Cm, where each C is a conjunction of n basic 
sentences with n distinct primitive predicates, the same n atomic sentences occurring in all 
conjunctions. (Under these circumstances, i has disjunctive normal form. See [28: 94] or any 
textbook on Symbolic Logic.) Then 
 

cont(i) = 1 − 
n

m
2

 . 

 
 Proof: Any two distinct conjunctions are L-exclusive. Therefore, from T4i, cont(i) = 
cont(C1) + cont(C2) + … + cont(Cm) − (m − 1). Hence the conclusion with (c). 
 

cont(‘(Ma . Yb) ∨  (~Ma . Yb) ∨  (Ma . ~Yb)’) = 1 − 
4
1

2
3
2
= . 

 
 Notice that this disjunction is L-equivalent to ‘Ma ∨  Yb’, that is, a disjunction fulfilling 
(b). 
 f. Let i have the form D1 . D2 . … . Dm, where each D is a disjunction of n basic 
sentences with n distinct primitive predicates, the same n atomic sentences occurring in all 
disjunctions. (Under these circumstances, i has conjunctive normal form. See [28: 95].) Then 
 

cont(i) = 
n

m
2

. 

 
 Proof: Any two distinct disjunctions are L-disjunct. Therefore, from T4k, cont(i) = 
cont(D1) + cont(D2) + … + cont(Dm). Hence the assertion with (b). 
 

cont(‘(Ma ∨  Yb) . (~Ma ∨  Yb) . (Ma ∨  ~Yb)’) =
4
3

2
3
2
= . 



 Notice that this conjunction is L-equivalent to ‘Ma . Yb’, that is, a conjunction fulfilling 
(c). 
 T6-14. If i and i′ are isomorphic and j and j′ are isomorphic on the basis of the same 
permutation of the individual constants, then cont(j′/i′) = cont(j/i) (T8b, T10c). 
 T6-15. 
 a.  For any two basic sentences, Bi and Bj, with different primitive predicates, 
cont(Bj/Bi) = 1/4 (T13c, T10a) = 1/2 cont(Bi)(T13a). 
 

cont(‘Ya’ / ‘Ma’) = .
4
1  

 
 b.  Let B1, B2, …, Bn be basic sentences with n distinct primitive predicates. Let Cm 
be the conjunction of the first m of them, Then, for every m (m = 2, …, n − 1), 
 

cont(Bm+1 / Cm) − 
12

1
+m

. 

 
 Proof: Cm . Bm+1 = Cm+1. Hence  
 
    cont(Bm+1 /Cm) = cont(Cm+1) − cont(Cm) 
 

       = 1 − 
11 2

113
2
11

2
1
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 T6-16. Let i and j be molecular sentences with no primitive predicate in common. Then 
cont(j/i) = cont(j) − cont(i) × cont(j) (T11c) = cont(j) × (1 − cont(i)) = cont(j) × cont(~i) (T4l) = 
cont(j) × mP(i) (T3c). 
 
 

7. THE SECOND EXPLICATUM: MEASURE OF INFORMATION (INF) 
 
 [One of the theorems derived in the previous section states that if i and j are basic 
sentences with different primitive predicates, then cont(j/i)= ½ cont(i). Since basic sentences 
with different primitive predicates are inductively independent, this result makes cont look 
inadequate as an explicatum for in. It turns out that no explicatum fulfilling all our intuitive 
requirements for an amount-of-information function is possible, indicating a certain 
inconsistency between these requirements. cont fulfills a partial set of these requirements, and a 
different, though overlapping, partial set is fulfilled by another function, called measure of 
information, denoted by ‘inf’, and defined as 
 

inf(i) = Log .
)cont(i−1

1



It is shown that  

inf(h, e) = Log 
),( ehcP

1  

 
where cP(h, e) is the degree of confirmation of the hypothesis h on the evidence e, defined as 
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The last-but-one theorem of the preceding section (T6-15) may not appear entirely plausible. 
According to this theorem, if an “ideal” receiver with no previous knowledge receives a 
sequence of n basic sentences with n different primitive predicates, the amount of information he 
gets from the first sentence is 1/2, from the second only 1/4, from the third 1/8, from each only 
half as much as from the preceding one. And this will be the case despite the fact that these basic 
sentences are independent from each other not only deductively but also inductively. One has the 
feeling that under such conditions the amount of information carried by each sentence should not 
depend upon its being preceded by another of its kind. 
 An inconsistency in our intuitions, at which we already hinted above (§6), becomes now 
even more prominent. The feeling to which we referred in the preceding paragraph may be 
expressed also as a requirement that additivity should hold for the amount of information carried 
by the conjunction of two sentences if these sentences are inductively independent. We saw, 
however, that additivity holds for cont only if these sentences are L-disjunct and have no content 
in common. Now, it is clear that two basic sentences, Bl and B2, with different primitive 
predicates, have content in common: the factual sentence Bl ∨  B2, for instance, is L-implied by 
each. Nevertheless, this condition of additivity looked plausible in its context. 
 It seems best to resolve this conflict of intuitions by assuming that there is not one 
explicandum “amount of semantic information” but at least two, for one of which cont is indeed 
a suitable explicatum whereas the explicatum for the other still has to be found. 
 Let us now state the additional requirement in a formal way: 
 R7-1. If i and j are inductively independent, then in(i . j) = in(i) + in(j).  
 From R1 and D5-1 follows immediately: 
 T7-1. If Bi and Bj are two basic sentences with distinct primitive predicates, then 
in(Bj/Bi) = in(Bj). 
 Let us also decide, for the sake of normalization, to assign to each basic sentence an in-
value of 1. 



 R7-2. For any basic sentence B, in(B) = 1.  
 We have now 
 T7-2. For a conjunction of n basic sentences, Cn, with n distinct primitive predicates, 
in(Cn) = n (R1, R2). 
 T6-13c stated that cont(Cn) = 1 − (1/2)n, hence 
 

)cont( n

n

C−
=
1

12  

hence 

)cont(
Log

nC
n

−
=

1
1  

(where ‘Log’ is short for ‘logarithm to the base 2’). This, combined with T2, yields 
 T7-3. For a conjunction of n basic sentences, Cn, with n distinct primitive predicates, 
 

in(Cn) = Log
)cont( nC−1

1  . 

 
 T3 gives us the lead for defining the second explicatum for “amount of information”. 
This new function will be called measure of information and denoted by ‘inf’. Extending the 
relationship stated in T3 to hold for all sentences, we define 
 D7-1. For any sentence i, 
 

inf(i) = Log
)cont(i−1

1 . 

 D1 may be usefully transformed into 
 T7-4. 

 a.  inf(i) = − Log(1 − cont(i)) = − Log cont(~1) = Log
)cont(~ i

1  

 b.  inf(~i) = − Log cont(i).  
 c. cont(~i) = 2−inf(i). 
 d.  cont(i) = 1 − 2−inf(i). 
  
 T7-5. 

a. inf(i) = Log )(imP

1
(D1, T6-3) 

b. = − Log mP(i). 
 

 The form of T5a is analogous to the customary definition of amount of information in 
communication theory. In the place of the concept of prob- 



ability in the statistical sense (relative frequency) used in that definition, we have here the logical 
(inductive) probability mP. For a detailed discussion of the relation between these two concepts, 
see [28: §§3,10].  
 
 T7-6. mP (i) = 2-inf(i). 
 A host of other theorems for inf can easily be derived. We shall mention only a few of 
them. 

 T7-7. inf(~i) = Log
)(imP−1

1 = Log(1− mP (i)). 

 T7-8. 
 a.  0 ≤ inf(i) ≤ ∞ (T6-4a). 
 b.  inf(i) = 0 iff i is L-true (T6-4b). 
 c. inf(i) = ∞ iff i is L-false (T6-4c).  
 d.  inf(i) is positive finite iff i is factual (T6-4d).  
 e.  If i L-implies j, then inf(i) ≥ inf(j) (T6-4e).  
 f. If i is L-equivalent to j, then inf(i) = inf(i) (T6-4f).  
 g.  inf(i . j) ≥ inf(i) ≥ inf(i ∨  j) (T6-4g). 
 h.  inf(i . j) = − Log cont(~i ∨  ~j) (T4a) 
    = − Log(cont(~i) + cont(~j) − cont(~i . ~j)) (T6-4h)  
    = − Log(2-inf(i) + 2-inf(j) − 2-inf(i∨ j)) (T4c). 
 i. If i and j are L-disjunct, then inf(i . j) = − Log(2-inf(i) + 2-inf(j) − 1) ((h),(b)). 
 j. inf(i ∨  j) = − Log cont(~i . ~j)(T4a) = − Log(1 – 2-inf(~i . ~j)).  
 k.  If i and j are L-exclusive (hence ~i and ~j L-disjunct), then  
     inf(i ∨  j) = − Log(cont(~i) + cont(~j))((j),T4k) 
       = − Log(2-’”t(‘) +2_’“f(J)) (T4c).  
 1. inf(- i) = inf(i) - Log(2-inf(i) − 1) (T4b, d). 
 
 Whereas the correspondence between T8a through 9 and T6-4a through g is 
straightforward, T8h through 1 are much more complicated and much less convenient for 
computation than their corresponding theorems T6-4h through l. 
 As against the complicated formula T8i, we have, however, 
 T7-9. (Additivity) inf(i . j) = inf(i) + inf(j) iff i and j are inductively independent. 
 Proof: inf(i . j) = − Log mP(i . j) (T5b); 
  inf(i) + inf(j) = Log 2-inf(i) + Log 2-inf(j) = − Log (2-inf(i)  × 2-inf(j))  
             = − Log(mP (i) × mP (j)) (T6); 



  mP(i . j) = mP (i) × mP (j) iff i and j are inductively independent (by definition). 
 
 To T6-13 corresponds  
  
 T7-10. 
 a. For any basic sentence B, inf(B) = 1. 
 b.  For any disjunction, Dn, of n basic sentences with n distinct primitive predicates, 
 

inf(Dn) = Log 
12
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 c.  For any conjunction, Cn, of n basic sentences with n distinct primitive predicates, 
inf(Cn) = n. 
 d.  For any Q-sentence i, inf(i) = π. 
 e.  Let i have disjunctive normal form: C1 ∨  C2 ∨  ... ∨  Cm. Let every C be a 
conjunction of n basis sentences with n distinct primitive predicates, the same n atomic sentences 
occurring in all conjunctions. Then inf(i) = n − Log m. 
 

inf(‘(Ma . Yb) ∨  (~Ma . Yb) ∨  (Ma . ~Yb)’) = 2 − Log 3 (= 0.412). 
 
 f. Let i have conjunctive normal form: Dl . D2 . … Dm. Let every D be a disjunction 
of n basic sentences with n distinct primitive predicates, the same n atomic sentences occurring 
in all disjunctions. Then 

inf(i) = n − Log(2n − m). 
 

inf(‘(Ma . Yb) . (~Ma . Yb) . (Ma . ~Yb)’) = 2 − Log (22 - 3) = 2. 
 
 T8e, b and d show that inf fulfills R5-1* through R5-3*. T9 corresponds to R1, and T10a 
to R2. Thereby it is shown that inf fulfills all our requirements for the second explicatum for 
amount of information. 
 The following table gives approximate inf-values for D2 (T10b) through D10: 
 

TABLE II 
n inf(Dn) 
2 0.412 
3 0.192 
4 0.093 
5 0.046 
6 0.023 
7 0.0113 
8 0.0056 
9 0.0028 
10 0.0014 

 



 We define now the relative measure of information in the already familiar way: 
 
 D7-2. inf(j/i) = Df inf(i . j) − inf(i).  
 
 T7-11. 
 a. For any two basic sentences, Bi and Bj, with distinct primitive predicates, inf(Bj/Bi) = 1 
(D2, T10c, a) = inf(Bi)(T10a). 
 

inf(‘Ma’/ ‘Yb’) = inf(‘Ma’/ ‘Ya’) = 1. 
 
 b. Let B1, B2, …, Bn be basic sentences with n distinct primitive predicates. Let Cm be the 
conjunction of the first m of them. Then, for every m (m = 2, …, n − 1), 
 

inf(Bm+1 /Cm) = 1(D2,T10c,(a)). 
 
 T7-12. 
 a.  inf (j/i) = inf(j) iff i and j are inductively independent (132, T9). 
 b.  If i and j have no primitive predicates in common, inf(j/i) = inf (j) (T6-9a, (a)). 
 In [28: §55] the concept of degree of confirmation of an hypothesis h on the evidence e, 
on the basis of a given range measure m, is defined as follows: 
 

c(h, e) =
)(
).(

em
hem  . 

 
e L-implies h if, and only if, the range of e is wholly contained in the range of h. If, however, 
only a part of R(e) is contained in R(h), then none of the customary relations of deductive logic 
hold between e and h. If, say, that part of R(e) which is contained in R(h) is three fourths of R(e), 
as measured by m, if, in other words, 
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then we shall say that the hypothesis h is confirmed by the evidence e to the degree 3/4 and write 
this relation, which is fundamental for inductive logic, as ‘c(h, e) = 3/4’. c is meant as an 
explicatum for (relative) inductive probability. 
 Figure 1 might be of some help for a visualization of the difference between L-
implication and degree of confirmation as dependent upon the relations between the ranges of the 
hypothesis and the evidence. 



 

 
Figure 1 

Deductive Logic 
‘e L-implies h’ means that the range of 

e is entirely contained in that of h. 

Inductive Logic 
‘c(h, e) = 3/4’ means that three-fourths of the 

range of e is contained in that of h. 
 
 For an mP-function, we have more specifically 
 

D7-3. cP(h, e) = Df 
)(
).(

em
hem

P

P  

 
T7-13. If inf and cP are based on the same mP, then  
 

inf(h/e) = Log  
),( ehcP

1  = − Log cP (h, e). 

  
Proof: inf (h/e) = inf(e . h) − inf (e) = Log mP(e) − Log mP (e . h) 
 

= Log Log 
).(

)(
=

hem
em

P

P

),( ehcP
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 This theorem shows the strong connection that exists between the relative measure of 
information of a new message h with respect to the knowledge e and the degree of confirmation 
of an hypothesis h on the evidence e, in other words, the relative inductive probability of an 
hypothesis h on the evidence e. The characterization of h as message and e as knowledge, on the 
one hand, or as hypothesis and evidence, on the other, has deductive value only; h and e are, 
strictly speaking, simply any sentences of the given system. T13 shows that inf(h/e) is the greater 
the more improbable h is on the evidence e. That the relative amount of information carried by a 
sentence should increase with its degree of improbability seems plausible. This holds also for 
cont, if e remains fixed, as shown by the following theorem. 
  
 T7-14. If cont and cP are based on the same mP, then  
 

cont(h/e) = mP (e) × (1 − cP (h, e)) = mp(e) × cP (~h, e). 



 Proof: cont(h/e) = mP(e) − mP (e . h) (T6-8a) 

   = mP (e) × 
)(

).()(
em

hemem

P

PP −
 

   = mP (e) × (1 – cP(h, e)) (D3). 
 
Notice, however, that for variable e it need not be the case that the smaller cP(h, e) is, the larger 
cont(h/e) will be, because of the factor mP (e). (See end of §10, below.) 
 

8. COMPARISON BETWEEN CONT AND INF 
 
 [The cont and inf measures are compared in greater detail. Both exhibit properties which 
look intuitively plausible and others which look intuitively implausible. The formally most 
striking comparison is given by the following pair of theorems: 

 
    cont(h/e) = mP(e) − mP (e . h), 
    inf(h/e) = Log mP(e) − Log mP (e . h)] 
 
We are now ready for a comparison between the two explicata for amount of information. Let us 
begin with stating some corresponding theorems one beside the other for better confrontation. 
 
T6-4k. cont(i . j) = cont(i) + cont(j) iff i and j are L-
 disjunct. 
T6-4m. cont(i . j) ≤ cont(i) + cont(j).  
T6-13a. For any basic sentence B, cont(B) = 1/2. 
 
T6-13c. For any conjunction, Cn, of n basic sentences 
 with n distinct primitive predicates, cont(Cn) 
 = 1− (1/2)n.  
 
T6-15a. For any two basic sentences, Bi and Bj with 
 distinct primitive predicates, cont(Bj/ Bi) 
 =1/4 =1/2 cont(Bi).  
 
T6-15b. Let B1, B2, ..., Bn, be basic sentences with n 
 distinct primitive predicates. Let Cm be the 
 conjunction of the first m of them. Then, for 
 every m (m =2, … ,n − 1), 
 

cont(Bm+1/Cm) = (1/2)m+l. 
 
T6-5b. cont(j/i) =cont(j) iff i and j are L-disjunct. 
 
T6-7. cont(j/i) ≤ cont(i).  
 
T6-41. cont(~i) = 1 − cont(i). 
 
 
 
 
 
 

T7-9. inf(i . j) = inf(i) + inf(j) iff i and j are 
 inductively independent. 
T7-10a. For any basic sentence B, inf(B) = 1. 
 
 
T7-10c. For any conjunction, Cn, of n basic sentences 
 with n distinct predicates, inf(Cn) = n. 
 
 
T7-11a. For any two basic sentences, Bi and Bj, with 
 distinct primitive predicates, inf(Bj/ Bi) = 1 = 
 inf(Bi). 
 
T7-11b. Let B1, B2, ..., Bn,, be basic sentences with n 
 distinct primitive predicates. Let Cm be the 
 conjunction of the first m of them. Then, for 
 every m (m = 2, … ,n − 1),  
 

inf(Bm+1/Cm) = 1. 
 
T7-12a. inf(j/i) = inf(j) iff i and j are inductively 
 independent. 
T7-81. inf(~i) = inf(i) − Log(2inf(i) −1). 
 
 
 
 
 
 
 



 We see that the conditions of additivity for cont and inf are entirely different. This 
divergence is not surprising at all. On the contrary, dissatisfaction with the condition of additivity 
stated for cont in T6-4k was one of the reasons for our search for another explicatum of amount 
of information. It is of some psychological interest to notice that common sense would probably 
prefer T7-9 to T6-4k, whereas inf has no property comparable to that exhibited by cont in T6-
4m, a theorem that looks highly intuitive. 
 The counter-intuitiveness of the lack of a counterpart to T6-4m might be reduced by the 
following example. Consider a system with 6 primitive predicates, P1 to P6, hence with 26 = 64 
Q-properties. All proper m-functions have equal values for the 64 Q-sentences with the same 
individual constant, hence the value 1/64 for each. Let i be ‘P1a’. P1 is the disjunction of the first 
32 Q’s. Hence mP(i) = 1/2. Therefore inf(i) = − Log(1/2) = 1. Let M be a disjunction of 32 Q’s, 
that is, of Q1 and the last 31 Q’s. Let j be ‘Ma’. Then m(j) = 1/2 and inf(j) = 1. i . j is L-
equivalent to ‘Q1a’; hence, it is a very strong sentence. m(i . j) = 1/64. inf(i . j) = − Log(1/64) = 
6. This is three times as much as the sum of the inf-values of the two components. This result 
becomes plausible if we realize that i says merely that a has one of certain 32 Q’s, but that by the 
addition of j, which by itself also says no more than that a has one of 32 Q’s, our information 
about the situation is at once made completely specific; that is, it is specified as saying that a has 
one particular Q. 
 Continuing the comparison, we may dismiss the difference between T6-13a and T7-10a 
as inessential, the number 1 in T7-10a being only a matter of normalization. However, the 
differences between T6-13c and T7-10c, T6-15a and T7-11a, and T6-15b and T7-11b are 
decisive. Whereas the cont-value of a basic sentence relative to a conjunction of basic sentences 
with primitive predicates is always less than its absolute cont-value and decreases, moreover, 
with the number of components in the conjunction, the inf-value of a basic sentence relative to 
such a conjunction is equal to its absolute inf-value and is therefore also independent of the 
number of components in this conjunction. 
 The relation between cont and inf is exhibited in the perhaps simplest and most striking 
fashion by the following pair of formulas which appear in the proofs of T7-13 and T7-14: 
 
   inf(h/e)= Log mP(e) − Log mP (e . h),            (1) 
 
   cont(h/e) =  mP (e)  − mP (e . h).            (2)  
 
For the tautological evidence t, we get 
 
   inf(h/t) = inf(h) = − Log mP (h)            (3) 



and 
    cont(h/t) = cont(h) = 1 − mP(h),                      (4)  
 
formulas that are nothing else than variants of T7-5b and T6-3a but look now much more akin, 
especially if we write (3) as 
 
    inf(h/t) = inf (h) = Log 1 − Log mP(h).          (3′)  
 
 Let us illustrate the relation between cont and inf also in the following numerical 
example. 
 Let B1,B2, … be basic sentences with distinct primitive predicates. Let Cl be Bl, C2 be B1 . 
B2, …, Cn be B1 . B2, …, Bn, … . Then cont and inf have the following values for these C, 
according to T6-13c and T7-10c: 
 

TABLE III 

Ci cont(Ci) inf(Ci) 
C1 1/2 1 
C2 3/4 2 
C3 7/8 3 
C4 15/16 4 
. . . 
. . . 
. . . 

Cn 1 − (1/2n) n 
. . . 
. . . 
. . . 

 
 

9. D-FUNCTIONS AND I-FUNCTIONS 
 

 [Not all mP-functions can be regarded as equally adequate explicata of initial inductive 
probability. It seems that only those which fulfill the additional requirement of instantial 
relevance—mI-functions—are adequate for ordinary scientific purposes, whereas that mP -
function which exhibits instantial irrelevance—mD—has properties which make it suitable for 
situations where inductive reasoning is of minor importance. Computations with mD and the in-
functions based upon it, are relatively easy due to the fact that mD assigns equal values to all 
state-descriptions. One consequence is, for instance, that a sufficient conditions for mD(i . j) = mD 
(i) × mD (j) is already that i and j should have no atomic sentences in common, whereas only the 
much stronger condition that i and j should have no primitive predicates in common is sufficient 
for the corresponding theorem concerning mI.] 



Not every mP can serve as a basis for an inductive method that is in agreement with customary 
scientific procedures [29: §2]. There is at least one additional requirement for the adequacy of an 
m-function to serve as an explicatum for (absolute, initial) inductive probability. This is 
 
 R9-1. (Requirement of instantial relevance) Let ‘M’ be a factual, molecular predicate. Let 
e be any non-L-false molecular sentence. Let i and h be full sentences of ‘M’ with two distinct 
individual constants which do not occur in e. Then 
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(This can be formulated more simply in terms of ‘c’ as  
 

c(h, e . i) > c(h, e).) 
 
 The requirement says, in effect, that one instance of a property is positively relevant to 
(the prediction of) another instance of the same property. This seems a basic feature of all 
inductive reasoning concerning the prediction of a future event. 
 We therefore define inductive m-function (in the narrower sense), to be denoted by ‘mI’, 
as 
 D9-1. m is an inductive m-function =Df m is an mP and fulfills Rl.  
 
 Among the proper m-functions which do not fulfill Rl, there is one which fulfills, so to 
speak, a requirement of instantial irrelevance. For this m-function, to be denoted by ‘mD’ (‘D’ for 
‘deductive’ since this function plays a special role in deductive logic), observed instances of a 
molecular property have no influence on the prediction of future instances of this property. 
Experience cannot teach us anything about the future if this function is applied. It has, 
nevertheless, great importance: its definition is of extreme simplicity, calculations on its basis are 
relatively easy, and results obtained by its use may have at least approximative value in cases 
where experience is estimated to be of little or no influence. 
 The definition of mD incorporates a principle which looks very plausible to untrained 
common sense, viz. the principle of assigning equal m-values to all state-descriptions. It is of 
some psychological interest that this rather obvious procedure should lead to an inductive 
method that is unacceptable as a final method. (The function designated here by ‘mD’ has been 
denoted by ‘m†’ in [28: §110A] and by ‘m∞’ in [29: §13].) 
 We define  
 
 D9-2. 
 a.  For every Zi, mD(Zi) = Df 1/z. 



 b.  For every L-false sentence j, mD(j) = Df 0. 
 c. For every non-L-false sentence j, mD (j) = Df the sum of the mD

 -values for the Z in 
R(j); this is r(j)/z, where r(j) is the number of the state-descriptions in R(j). 
 It can easily be verified that mD fulfills conditions D6-1a through D6-1g and D6-1i. That 
mD also fulfills D6-1h and is therefore an mP -function, follows from the much stronger theorem 
 
 T9-1. If i and j have no atomic sentences in common, then  
 

mD (i . j) = mD (i) × mD (j). 
 
 Proof: Let K1 be the class of those atomic sentences which occur in i, K2 the class of 
those atomic sentences which occur in j, K3 the class of all other atomic sentences. Let C1 be the 
class of those conjunctions which contain, for each atomic sentence in K1, either it or its 
negation, but not both nor any other component. Let C2 and C3 be determined analogously with 
respect to K2 and K3. Let cl be the number of the conjunctions in C1. Let c2 and c3 be determined 
analogously with respect to C2 and C3. (However, if C3 is empty, let c3 = 1.) Each Z is a 
conjunction of three conjunctions (disregarding the order) belonging respectively to C1, C2, and 
C3. Therefore 
 
    z = c1 × c2 × c3 (T2-1c).            (1)  
 
Let c1(i) be the number of those conjunctions in C1 which L-imply i, and let c2(j) be the number 
of those conjunctions in C2 which L-imply j. (Notice that i cannot be L-implied by any 
conjunction of C2 or C3, nor can j be L-implied by any conjunction of C1 or C3.) Therefore 
 
    r(i) = c1(i) × c2 × c3             (2) 
and 
    r(j) = c2(j) × c1 × c3.             (3)  
 
But for the same reason we have also 
 
    r(i . j) = c1(i) × c2(j) × c3.            (4)  
From (2) and (3) we get 
   r(i) × r(j) = c1(i) × c2 × c3 × c2(j) × c1 × c3 
       = r(i . j) × c1 × c2 × c3 (from (4))               (5) 
       = r(i . j) × z (from (1)).  
Dividing by z2 we get finally 
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from which the assertion follows, by D2c. 
 
 Since mD is an mP-function, all theorems stated in §6 for mP, hold also for mD. But some 
of them, having conditional form, can be strengthened by weakening the antecedent. We get, for 
instance, in analogy to T6-9,  
 T9-2. If i and j have no atomic sentence in common, then 
 

mD (i ∨  j) = mD(i) + mD (j) − mD(i) × mD (j), 
 
and in analogy to T6-10b, 
 
 T9-3. For any conjunction, Cn, of n basic sentences with n distinct atomic sentences, 
mD(Cn) = (1/2)n. 
 For that cont-function which is based on mD according to D6-2, contD, we have 
 
 T9-4. 
 a.  For every Ei, contD(Ei) = 1/z. 
 b.  For every sentence j, contD(j) = n/z, where n is the number of E which belong to 
Cont(j). 
 contD has advantages and disadvantages similar to those of mD. T4b points to the extreme 
simplicity, at least in principle, of its computation.  
 All theorems on cont stated in §6 also hold, of course, for contD and all contI, the cont-
functions defined on the basis of the mI, analogously to D3. With respect to contI, no additional 
theorems in the form of equalities can be derived from Rl. We shall not care to derive some 
inequalities from R1 and the previous theorems, especially since we shall treat later (§10) at 
some length a numerical example based on a specific contI -function. 
 With respect to contD, however, various theorems holding for contP can be strengthened 
by weakening the condition in the antecedent, in complete analogy to the relation between mD 
and mP. T6-11, T6-12, T6-13b, c, e, f, T6-15, and T6-16 hold for contD, even if the expression 
‘primitive predicate(s)’ in their antecedents is replaced by ‘atomic sentence(s)’. That this should 
be so is plausible in view of T1. But it is also easy to check the truth of our general assertion by 
inspecting the proofs of these theorems. 
 Let us state, however, also one theorem which is not a counterpart of a previous theorem: 
 
 T9-5. 
 a.  For every conjunction, Cn, of n distinct E, contD(Cn) = n/z (T4b).  
 b.  For every conjunction, Cn, of n distinct E, different from Ei, 



contD(Ei/Cn) = 1/z (D6-2, (a)). 
 
 The relation between infD, defined on the basis of contD following D7-1 and inf is the 
same as that between contD and cont. We shall therefore state only those theorems which are 
based on T4 and T5. 
 
T9-6. 
a.  For every E, infD(E) = β − Log (z − 1). 
 
 Proof: infDE = Log[l/(1−1/z)] (T4a) = Log(z/(z − 1)) = β − Log(z − 1) (T2-1c). 
b.  For every conjunction, Cn, of n distinct E, infD(Cn) = β − Log(z − n).  
 
 Proof: infD(Cn) = Log[1/(1− n/z)] (T5a) = Log(z/(z − n))= β − Log(z − n) (T2-1c). 
c.  For every conjunction, Cn, of n distinct E, different from Ei,  
 

infD(Ei/ Cn) = Log(z − n) − Log(z − n − 1) (D7-2, (b)). 
 
 According to the correlate of T7-10e, infD(i) = n − Log m, where i has disjunctive normal 
form: C1 ∨  CZ ∨  ... ∨  Cm, each C being a conjunction of basic sentences with n distinct atomic 
sentences, the same n atomic sentences occurring in all conjunctions. According to a well-known 
theorem in the sentential calculus, there exists for every molecular sentence a sentence in 
disjunctive normal form L-equivalent to it (see, for instance [28: D21-2]). It follows that for 
every molecular sentence i, infD(i) has the form n − Log m, where both n and m are integers. 
Hence it is easy to calculate the infD value of any molecular sentence. Such a sentence has to be 
transformed into 
 

TABLE IV 

m Log m m Log m m Log m 
1 0.0000 39 5.2853 57 5.8328 
2 1.0000 40 5.3219 58 5.8579 
3 1.5849 41 5.3575 59 5.8826 
4 2.0000 42 5.3923 60 5.9068 
5 2.3219 43 5.4262 61 5.9307 
6 2.5849 44 5.4594 62 5.9541 
7 2.8073 45 5.4918 63 5.9772 
8 3.0000 46 5.5235 64 6.0000 
9 3.1699 47 5.5545 100 6.6438 

10 3.3219 48 5.5849 128 7.0000 
16 4.0000 49 5.6147 250 7.9657 
32 5.0000 50 5.6438 251 7.9715 
33 5.0443 51 5.6724 252 7.9772 
34 5.0874 52 5.7004 253 7.9829 
35 5.1292 53 5.7279 254 7.9886 
36 5.1699 54 5.7548 255 7.9943 
37  5.2094 55 5.7813 256 8.0000 
38 5.2479 56 5.8073 1000 9.9657 

 



one of its disjunctive normal forms, according to some standard procedure available for this 
purpose. Then the number of its components has to be counted as well as the number of atomic 
sentences in one of these components. Finally, a table for Log m, for integer m, will have to be 
consulted and a simple subtraction performed. For purposes of reference, such a table (Table IV) 
is given above for some selected integral values of m. 
 Let the E in our L 2

3  be E1, E2, …, E64. Let Cm be the conjunction of the first m E. Then 
contD(Cm) = m/64 (T5a) and infD(Cm) = 6 − Log(64 − m) (T6b). Table V gives the values of the 
absolute and relative contD for the first six values of m and for the last six values of m. 
 

TABLE V 

m  contD(Cm) contD(Em/Cm=1)  infD(Cm) infD(Em/Cm=1) 
1 1/64 1/64 0.0228 0.0228 
2 2/64 1/64 0.0459 0.0231 
3 3/64 1/64 0.0693 0.0234 
4 4/64 1/64 0.0931 0.0238 
5 5/64 1/64 0.1174 0.0242 
6 6/64 1/64 0.1421 0.0247 
. . . . . 
. . . . . 
. . . . . 

59 59/64 1/64 3.6*781 0.2630 
60 60/64 1/64 4.0000 0.3219 
61 61/64 1/64 4.4151 0.4151 
62 62/64 1/64 5.0000 0.5849 
63 63/64 1/64 6.0000 1.0000 
64 1 1/64 ∞ ∞ 

 
 We see from this that if a series of messages is received, each being an E, then contD 
grows by every one of these messages by the same amount, namely, by 1/64, from 0 to l. infD, 
however, behaves in a different way. It grows from 0 to ∞ by unequal amounts. The first 
message contributes only a small fraction. Every further message contributes a little more than 
the preceding one. The last-but-three message contributes less than 1/2. The last-but-two 
contributes more than 1/2. The last-but-one contributes 1. And the last message contributes ∞. 
This behavior of infD becomes plausible when we realize that the different messages, although 
each of them is an E, nevertheless play different roles in the series of messages. When we have 
received sixty messages (in other words, when we have the knowledge C60), then we know that 
sixty of the sixty-four possible states of the universe are excluded. There still remain four 
possible states; that is, our knowledge C60 means that the universe is in one of the four remaining 
states The sixty-first message excludes among these four possible states a further one; hence, the 
range of those that are still open decreases from four to three. By the sixty-second message the 
range is further decreased 



from three to two, and this may well be regarded as a stronger addition to our knowledge than 
the decrease from four to three. At this moment, only two possibilities are left open. The sixty-
third message gives us information concerning which of these two remaining sentences is the 
actual one and hence completes our knowledge of the universe. Thus, this step has a great 
weight, more than any of those prior to it. After this step, nothing can be added to our knowledge 
in a consistent way. The sixty-fourth message is incompatible with the conjunction of the sixty-
three preceding ones. If this message is nevertheless added, then this is a still more weighty step 
which leads to contradiction. The strongest factual message, which is a state-description, a 
conjunction of 6 basic sentences, carries 6 units of information as measured by infD. The only 
messages that carry more units of information, and then by necessity infinitely many such units, 
are the messages that contradict either themselves or prior messages. 
 
 

10. CONT* AND INF* 
 
 [Two special contI and infI functions, cont* and inf*, are defined and theorems regarding 
them developed. These functions are based upon that ml—m*—which assigns equal values to all 
structure-descriptions, i.e., disjunctions of isomorphic state-descriptions. Since m* seems to have 
a special status among the various ml-functions, cont* and inf* are deemed to be of special 
importance. Various computations and tables regarding these functions are presented.] 
 We shall now define and investigate two special I-functions that might turn out to be of 
special importance. They are based on the function m* defined in [28: §110] essentially as a 
proper m-function which has the same values for all structure-descriptions, that is, disjunctions 
of isomorphic state-descriptions. 
 Recalling the definition of ‘isomorphic sentences’ given in §6, the reader will easily see 
that our L 2

3  has exactly 20 structure-descriptions. Let the Z of L 2
3 , as presented in Table I, be Z1, 

Z2, …, Z64. Then the structure-descriptions ‘T1’, ‘T2’, …, ‘T20’, are: 
 
 T1:  Z1  
 T2:  Z2  
 T3:  Z3  
 T4:  Z4  
 T5:  Z5 ∨  Z6 ∨  Z7  
 T6: Z8 ∨  Z9 ∨  Z10  
 T7: Z11∨  Z12 ∨  Z13 
 T8

: Z14∨  Z15 ∨  Z16 



T9:  Z17 ∨  Z18 ∨  Z19  
T10:  Z20 ∨  Z21 ∨  Z22  
T11:  Z23 ∨  Z24 ∨  Z25  
T12:  Z26 ∨  Z27 ∨  Z28  
T13:  Z29 ∨  Z30 ∨  Z31  
T14:  Z32 ∨  Z33 ∨  Z34  
T15:  Z35 ∨  Z36 ∨  Z37  
T16:  Z38 ∨  Z39 ∨  Z40  
T17:  Z41 ∨  Z42 ∨  Z43 ∨  Z44 ∨  Z45 ∨  Z46  
T18:  Z47 ∨  Z48 ∨  Z49 ∨  Z50 ∨  Z51 ∨  Z52  
T19:  Z53 ∨  Z54 ∨  Z55 ∨  Z56 ∨  Z57 ∨  Z58  
T20

:  Z59 ∨  Z60 ∨  Z61 ∨  Z62 ∨  Z63 ∨  Z64 
 
 For all i, m*(Ti) = 1/20, hence m*(Z1) = m*(Z2) = m*(Z3) = m*(Z4) = 1/20, m*(Z5) = ... = 
m*(Z40) = 1/60, m*(Z41) = … = m*(Z64) = 1/120.  
 In [29: §18], an argument is presented which shows that the function c* based on m* is in 
a certain sense simpler than other cP-functions. Explicata for amount of information based on m* 
would share this special status.  
 c*(h, e), cont*(e), cont*(h/e), inf*(e), and inf*(h/e) can all be expressed as simple 
functions of m*(e) and m*(e . h): 
 

   c*(h, e)  = 
)(*
).(*

em
hem (D7-3).              (1) 

 
  cont*(e) = 1 − m*(e) (T6-3a).              (2) 
 
  cont*(h/e) = m*(e) − m*(e . h) (T6-8a).            (3) 
 
  inf*(e) = − Log m*(e) (T7-5b).             (4) 
 
  inf*(h/e) = Log m*(e) − Log m*(e . h) (formula (1) in §8).          (5)  
 
 Let e be ‘Ma . Mb’ and h be ‘Mc’. Then, by inspection of Table I, we see that 
 

m*(‘Ma . Mb’) = 2 × 
120
14

60
110

20
1

×+×+ = 0.3. 

 
Notice that mD(e) = 0.25. The larger value of m* is due to instantial relevance. We also have 
 

m*(‘Ma . Mb . Mc’) = 2 × 
60
16

20
1

×+ = 0.2. 

 
Hence 

c*(‘Mc’, ‘Ma . Mb’) = 
3
2

30
20
=

.

. .



cont*(‘Ma . Mb’) = 0.7. 
 

cont*(‘Mc’/ ‘Ma . Mb’) = 0.3 − 0.2 = 0.1. 
 
On the other hand, 
 

contD(‘Mc’/ ‘Ma . Mb’) = 0.125. 
 

inf*(‘Ma . Mb’) = − Log 0.3 = Log 10 − Log 3 = 1.7370, 
 
as against an infD-value of 2. Finally, 
 

inf*(‘Mc’/ ‘Ma . Mb’) = Log 
20
30
.
. = Log 3 − Log2 = 0.5849, 

 
whereas the corresponding relative infD-value is 1. 
 
 It might perhaps be worthwhile to investigate now another sample language, this time 
with only one primitive predicate and n distinct individual constants. In this case, c* yields the 
same values as Laplace’s rule of succession [28: §110C]. Let e be a conjunction of s < n basic 
sentences with s distinct individual constants, among them s1 atomic sentences with ‘P’ and s − 
s1 negations of such. Let h be ‘Pb’, where ‘b’ is an individual constant not occurring in e. Then 
the following holds (according to [28:566, formula (4)], cf. remark to D6-1i). 
 

   m*(e) = ( )s
sss

sss

1

11

1
1

1 )()!(
)!(!

+
=

+
−

.             (6) 

  m*(e . h) = .
2
1

2
1 111

+
+

×=
+

−+
s
s

em
s

sss
)(*

)!(
)()!(

            (7) 

    
2
11

+
+

=
s
s

ehc ),(* ((l),(6),(7)).            (8) 

 

  cont*(h/e) = m*(e) × (1 − 
2
11

+
+

s
s

)((3),(6),(7))= m*(e) × 
2
11

+
+−

s
ss

.         (9)  

 
To have a numerical example, assume s = 10. We get 
 

    m*(e) = ( )1011

1

1s
.           (10) 

 

    m*(e . h) = m*(e) 
12
11 +×

s
.          (11) 



 

     c*(h, e) = .
12
11 +s

          (12)  

 

    cont*(h/e) = m*(e) .
12

11 1s−×           (13) 

  

     inf*(e) =Log
)(* em

1 .          (14) 

  

     inf*(h/e) = Log 
1

12

1 +s
.         (15) 

 
 The values given in Table VI are calculated according to these formulas. 
 

TABLE VI  

s1 m*(e) m*(e . h) c*(h, e) cont*(e) cont*(h/e) inf*(e) inf*(h/e) 
0 0.09091 0.0076 0.0833 0.90909 0.08333 3.459 3.585 
1 0.00909 0.0015 0.1667 0.99091 0.00758 6.781 2.585 
2 0.00202 0.0005 0.2500 0.99798 0.00152 8.751 2.000 
3 0.00076 0.0003 0.3333 0.99924 0.00051 10.366 1.585 
4 0.00043 0.0002 0.4167 0.99957 0.00025 11.174 1.263 
5 0.00036 0.0002 0.5000 0.99964 0.00018 11.437 1.000 
6 0.00043 0.0003 0.5833 0.99957 0.00018 11.174 0.778 
7 0.00076 0.0005 0.6666 0.99924 0.00025 10.366 0.585 
8 0.00202 0.0015 0.7500 0.99798 0.00051 8.751 0.514 
9 0.00909 0.0076 0.8333 0.99091 0.00152 6.781 0.263 

10 0.09091 0.0833 0.9167 0.90909 0.00758 3.459 0.126 
 
 In addition to these formulas, we have, of course, also 
 
     m*(h) = ½.            (16) 
 
     cont*(h) = ½.           (17) 
 
     inf*(h) = 1.           (18)  
 
 A few comments on Table VI might be indicated. The columns for m*(e) and m*(e . h) 
show that this mI-function, as is to be expected from any adequate mI-function, puts a premium 
on homogeneity; that is, those states for which the absolute difference between the individuals 
having P and those not having P is higher, are treated as initially more probable. When the 
evidence states that 5 individuals have P and 5 others do not have P, the last column shows that 
the inf*-value of our hypothesis, which states that an eleventh individual has P, is just 1. Hence it 
is the same as the absolute inf*-value of this hypothesis. The greater the number of individuals 
having P, according to the evidence, the larger c*(h, e) and the 



smaller inf*(h/e). cont*(h/e), however, behaves differently. It reaches its minimum for 
intermediate values of s1 but increases both when s1 increases from 6 to 10 and when it decreases 
from 5 to 0. 
 
 

11. ESTIMATES OF AMOUNT OF INFORMATION 
 
 [A scientist is often interested in the expectation-value of the amount of information 
conveyed by the outcome of an experiment to be made. If the various possible outcomes can be 
expressed by h1, h2, …, hn, such that these sentences are pairwise exclusive and their disjunction 
L-true on the given evidence e, in short, when H = { h1, h2, …, hn } is an exhaustive system on e, 
the estimate of the amount of information carried by H with respect to e is given by the formula 
 

est(in, H, e) = ∑
=

n

p 1
c(hp, e) × in(hp/e). 

 
Various formulas for est(cont, H, e), est(inf, H, e), and other functions based upon them are 
derived. The concepts of posterior estimate of amount of information, amount of specification, 
estimate of the posterior estimate, and estimate of the amount of specification are defined, and 
various theorems concerning them proved. A simple illustrative application is given.]  
 
If an experiment is performed, the possible results of which are expressed in n sentences h1, ..., 
hn (or in n sentences L-equivalent to them), we can compute the amounts of information which 
each possible outcome would convey, assuming that an m-function has been defined for all the 
sentences of the language in which the h’s are formulated. So long as the actual outcome is not 
known, the amount of information it carries is also unknown. But, for certain purposes, it is 
important to have a good estimate of this amount. The situation is analogous to that existing very 
often in scientific investigations, where a certain magnitude is unknown and one has to work 
instead with an estimate of this magnitude. 
 To give a crude but sufficiently illustrative example: Imagine a thermometer which is 
divided rather unconventionally into three regions so that in region 1 the pointer indicates Warm, 
in region 2 Temperate, and in region 3 Cold. Let the thermometer be read in a place where, 
according to available evidence, most past readings indicated Cold, some Temperate, and only 
very few Warm. Since the same distribution (approximately) is expected for future readings, an 
adequate measure of information will assign to the sentence ‘Cold(t1)’ (where t1 is a time-point 
in the future, that is, one not mentioned in the evidence) a lower value, relative to the evidence, 
than to ‘Temperate(t1)’ which again will have a lower value than ‘Warm(t1)’. Let these sentences 
be h1, h2, and h3, respectively. What 



would be a reasonable estimate of, the amount of information a future observation is expected to 
carry? One might at first think of taking the arithmetic mean of the three amounts of information, 
that is, 
 

,
)/()/()/(

3
321 ehinehinehin ++

 

 
but a little reflection will show that this would be utterly inadequate. The amounts have to be 
weighted differently. It seems rather natural to take as appropriate weights here, as well as in 
general, the degrees of confirmation which the sentences h1, h2, and h3 have on the available 
evidence. (For a more thorough discussion of this procedure, see [28: Chap. IX].) We arrive, 
therefore, at the value 
 

c(h1, e) × in(h1/e) + c(h2, e) × in(h2/e) + c(h3, e) × in(h3/e), 
 
or, in the convenient customary shorthand, 
 

 ∑
=

3

1p
c(hp, e) × in(hp /e). 

 
 Expressions of this type are well known in the theory of probability and statistics (with 
the degree-of-confirmation subformula usually replaced by a corresponding relative-frequency-
formula) under the name ‘the mathematical expectation (or hope) of . . .’, in our case, ‘...of the 
amount of information carried by the observation to be made at t1’. 
 In general, whenever we have a class of sentences H = { h1, ..., hn } such that the 
available evidence e L-implies h1 ∨  h2 ∨  … ∨  hn as well as ~(hi . hj), for all i ≠ j, we shall say 
that H is an exhaustive system relative to e, and the expression 
 

∑
=

n

p 1
c(hp,e) × in(hp/e) 

 
will be called ‘the (c-mean) estimate of the amount of information carried by (the members of) H 
with respect to e’, symbolized by ‘est(in, H, e)’.  
 So far, our discussion has been proceeding on a partly presystematic, partly systematic 
level. To switch to a completely systematic treatment, we obviously have only to replace the 
explicandum ‘in’ by one or the other of its explicata. We define: 
 
 D11-1. Let H, hP, e be as above. Then 
 

est(cont, H, e) =Df  ∑
p

c(hp, e) × cont(hp/e). 



 D11-2. Let H, hP, e be as above. Then 
 

est(inf, H, e) = Df ∑
p

c(hP, e) × inf(hP/e). 

 
 E (Example) 11-1. Let, for example, with respect to our L 2

3 , hl = ‘Mc’, h2 = ‘Fc’, H = {hl, 
h2}, e = ‘Ma . Mb’. On the basis of Table I, some formulas in the preceding section, and the two 
following formulas which the reader will easily be able to derive for himself, namely, 
 

cont*(‘Mc’/ ‘Ma . Mb’) = 0.1 
and 

cont*(‘Fc’/ ‘Ma . Mb’) = 0.2, 
we obtain now 

est(cont*, H, e) = 
3
2  × 0.1 + 

3
1  × 0.2 = 0.133 

and 

est(inf*, H, e) = − (
3
2 × Log

3
2  + 

3
1 × Log 

3
1 )  = 0.918. 

 
est(infD, H, e), on the other hand, equals 1, of course.  
 
 E11-2. Let hl, h2, and H be as before, but let now  
 

e = ‘Ma . Mb . Ya . Yb . Yc’.  
Then 

m*(e) = ,
15
1

60
1

20
1

=+  

m*(e . hl) = 
20
1

, 

m*(e . h2) = 
60
1

 

Hence 

cont*(h1/e) = 
60
1 , 

cont*(h2/e) = 
20
1 , 

 
inf*(hl/e) = 0.4151, 

 
inf*(h2/e) = 2, 



 

*(hl, e) = 
4
3 , 

and 

c*(h2, e) = 
4
1  

Hence 

est(cont*, H, e) = 
4
3  × 

60
1  + 

4
1  × 

20
1  = 

40
1  

and 

est(inf*, H, e) = 
4
3  × 0.4151 + 

4
1  × 2 = 0.811 

(whereas est(infD, H, e) equals 1). 
 
 For the following theorems it is always assumed that H, hP, and e fulfill the above-
mentioned conditions. 
 
T11-1. 

  est(cont, H, e) = ∑
p

P

em
ehm
)(
).(  m(e) × (1 − c(hP, e)) (T7-14)  

    = ∑ m(hP . e) × (1 − c(hP, e)) 
    = ∑ m(hP .e) × c(~hP, e) 

    = ∑ )(em
1  m(hP . e) × m(~hP . e) 

    = ∑ c(hP, e) × m(~hP . e) 
    = c(e, t) ∑  c(hP, e) × c(~hP, e). 
 
 Let K = {kl, …, kn} be an exhaustive system with respect to e. Then from well-known 
theorems in the theory of inequalities, the following theorem can be derived: 
 T11-2. Let c(ki, e) = c(kj, e) for all i and j (hence = 1/n), and let there be at least one pair i 
and j such that c(hj, e) ≠ c(hj, e). Then 
 

est(cont, K, e) > est(cont, H, e). 
 
 T11-3. For fixed n, est(cont, Hi, e) is a maximum for those Hi all of whose members have 
the same c-values on e. Hence 
 

maxi[est(cont, Hi, e)] = m(e) × 
n

n 1− . 

(This is, of course, also the cont-value of each hi
P belonging to these Hi.) 



  T11-4. For fixed n, est(cont, Hi, e) is a minimum for those Hi one member of 
which has the c-value 1 on e (and hence all the other members the c-value 0 on e); hence 
 

mini[est(cont, Hi, e)] = 0. 
 
 Theorems similar to T2, T3, and T4 can be obtained for the second explicatum inf. Let us 
first state a transformation of D2, according to T7-13: 
 
 T11-5.  

est(inf, H, e) = ∑ c(hp, e) × Log c(hp, e) 
= − ∑ c(hp, e) × Log c(hp, e). 

We now get 
 T11-6. Let c(ki, e) = c(kj, e) for all i and j (hence = 1/n), and let there be at least one pair i 
and j such that c(hi, e) ≠ c(hj, e). Then 
 

est(inf, K, e) > est(inf, H, e). 
 
 T11-7. For fixed n, est(inf, Hi, e) is a maximum for those Hi all of whose members have 
the same c-values on e; hence  
 

maxi[est(inf, Hi, e)] = Log n. 
 
(This is, of course, also the inf-value of each hi

p belonging to these Hi.)  
 
 T11-8. For fixed n, est(inf, Hi, e) is a minimum for those Hi one member of which has the 
c-value 1 on e (and hence all the other members have the c-value 0 on e). Hence 
 

mini[est(inf, Hi, e)] = 0. 
 
 An expression analogous to 
 

‘− ∑ c(hp, e) × Log c(hp, e)’ 
 
but with degree of confirmation replaced by (statistical) probability, plays a central role in 
communication theory, as well as in certain formulations of statistical mechanics, where the 
probability concerned is that of a system being in cell p of its phase space. In statistical 
mechanics, in the formulation given it by Boltzmann, this expression is said to measure the 
entropy of the system. In analogy to this, some communication-theoreticians call the 
corresponding expression, which arises when the probabilities concerned are those of the 
(expected) relative frequencies of the occurrence of certain messages, the entropy of this system 
of messages. Other terms, used synonymously, though unfortunately without any real effort for 
terminological 



clarification, were uncertainty, choice, and even simply as well as confusingly, information. 
 Let H and K be exhaustive systems with respect to e, let H contain n members, and K 
contain m members, Let ‘H . K’ be short for 
 

‘{hl . kl, h1 . k2, ..., hl . km, h2 . k1, ..., h1 . km}’.  
Then we define 

 
 D11-3. 

est(in,H . K,e) = Df ∑∑
= =

m

q

n

p1 1
c(hp . kq, e) × in(hp . kq/e).   

 
 With respect to the explicatum inf, the following theorem can be proved:  
 T11-9. est(inf, H . K, e) ≤ est(inf, H, e) + est(inf, K, e), where equality holds only if, for 
all p and q, c(hp . kq, e) = c(hp, e) × c(kq, e), in other words, when the h’s and the k’s are 
inductively independent on e (with respect to that m-function on which c is based). 
 
 E11-3. Let e = ‘Ma . Mb . Ya . Yb’, hl = ‘Mc’, h2 = ‘Fc’, kl = ‘Yc’, k2 = ‘Oc’, H = {hl, h2}, 
and K = {kl, k2}. Then, 
 

H . K = {hl . ki, hl . k2, h2 . kl, h2 . k2}. 
We have 

     m*(e) = 
10
1 , 

      m*(hl . kl . e) = 
20
1 , 

  m*(hl . k2 . e) = m*(h2 . k1 . e) = m*(h2 . k2  . e) = 
60
1 , 

        c*(hl . kl, e) = 
2
1 , 

      c*(h2 . k2, e) = c*(h2 . kl, e) = c*(h2 . k2, e) = 
6
1 , 

              cont*(hl . k1/e) =  
20
1 ,  

              cont*(h1 . k2/e) = ... =  
12
1  ,  

      inf*(hl . kl/e) = 1, 



     inf*(h1 . k2/e) = … = 2.585. 
Hence 
 

       est(cont*, H . K, e) = 
15
1  

and 
         est(inf *, H . K, e) = 1.792. 
     est(inf*, H, e) = est(inf*, K, e) = 0.918. 
We verify that 

est(inf *, H. K, e) < est(inf*, H, e) + est(inf *, K, e), 
 

the h’s and the k’s not being inductively independent on this e with respect to m*. They are, 
however, independent with-respect to mD, and indeed  
 

est(infD, H . K, e) = 2 = est(infD, H, e) + est(infD, K, e). 
 

 In general, est(in, H, e) will be different from est(in, H, e . k), where k is a sentence that 
has been added to the prior evidence e. Since ‘est(in, H, e . k)’ and similar expressions are of 
great importance, it is worthwhile to give it a special name. We shall call it the posterior estimate 
(of the amount of information carried by H on the evidence comprised of e and k). The 
expression ‘est(in, H, e)’ will then be called, for greater clarity, the prior estimate (of ... ). It is 
often important to investigate how such a prior estimate has been changed through some 
additional evidence. We shall therefore give also to the difference between the prior and the 
posterior estimate a special name, the amount of specification of H through k on e, and denote 
this function by a special symbol ‘sp(in, H, k, e)’: 
 
 D11-4. sp(in, H, k, e) = D f est(in, H, e) − est(in, H, e . k). 
 
 E11-4. Let e, H and k1 be as in E3. Then e . k1 is the e of E2. Therefore est(inf*, H, e . k1) 
= 0.811. Since est(inf *, H, e) = 0.918 (from E3), we have sp(inf*, H, k1, e) = 0.918 − 0.811 = 
0.107. 
 It can be easily seen that sp(in, H, k, e) = 0 if (but not only if) k is inductively 
independent of the h’s on e. Otherwise sp can be either positive or negative. Its maximum value 
is obviously equal to est(in, H, e) itself. This value will be obtained when e. k L-implies one of 
the h’s. In this case H is maximally specified through k on e. 
 Situations often arise in which the event stated in k has not yet occurred or, at least, in 
which we do not know whether or not it has occurred but know only that either it or some other 
event belonging to an exhaustive system of events will occur or has occurred. In such 
circumstances, it makes sense to ask for the expectation value of the posterior estimate of the 
amount 



of information carried by H on e and (some member of the exhaustive system) K. We are led to 
the (c-mean) estimate of this posterior estimate which we shall denote by ‘est(in, H/K, e)’ and 
define as 
 
 D11-5. 
 

est(in, H/K, e) =Df ∑
=

m

q 1
c(kq, e) × est(in, H, e . kq). 

 
 E11-5. Let e, H, and K be as in E3. Then 
 

est(inf *, H/K, e) = 
3
2 × 0.811 + 

3
1  × 1 = 0.847. 

 
 The stroke-notation has been chosen instead of a more neutral comma-notation because 
the following theorem, which stands in a certain analogy to the definitions of relative amounts of 
information, holds. 
 
 T11-10. est(in, H/K, e) = est(in, H . K, e) − est(in, K, e).  
 
 Proof: 
   est(in, H/K, e) =∑

q
 c(kq, e) ∑

p
 c(hp, e . kq) × in(hp/e . kq) 

     =∑
q
∑

p
c(kq, e) × c(hp, e . kq) × in(hp/e . kq) 

     =∑
q
∑

p
c(hp, kq, e) × in(hp/e . kq) 

     =∑
q
∑

p
c(hp, kq, e) × [in(hp . kq/e) − in(kq/e)] 

     = est(in, H . K, e) − ∑
q

c(kq, e) × in(kq/e) 

     = est(in, H . K, e) − est(in, K, e). 
 
 Indeed, est(inf*, H . K, e) − est(inf*, K, e) = 1.792 (from E3) − 0.918 (from E3) = 0.874 
(as in E5). 
 One will often be interested in an estimate of the amount of specification of H on e 
through K. This function will be symbolized by ‘sp(in, H, K, e)’. Its definition is 
 
 D11-6. 

sp(in, H, K, e) = Df ∑
q

c(kq, e) × sp(in, H, kq, e).  

 
 E11-6. - Let e, H, and K be as in E3. Then 



sp(inf*, H, K, e) = 2/3 × 0.107 (from E4) + 1/3 × (−0.082) (computed in the same way) = 0.044. 
 We see immediately that the following theorem holds:  
 T11-11. sp(in, H, K, e) = est(in, H, e) − est(in, H/K, e). 
 Indeed, est(inf*, H, e) − est(inf*,H/K, e) = 0.918 (E3) − 0.874 (E5) = 0.044 (as in E6). 
 Though it may happen that, for some q, sp(in, H, kq, e) is negative, it can be proved that 
sp(in, H, K, e) is never negative, in other words, that the estimate of the posterior estimate is at 
most equal to the prior estimate. 
 T11-12. sp(in, H, K, e) ≥ 0, with equality holding iff the h’s and the k’s are inductively 
independent. 
 Combining T10 and T11, we get 
 T11-13. sp(in, H, K, e) = est(in, H, e) + est(in, K, e) − est(in, H, K, e). From T13 follows 
immediately the following theorem of the symmetricity or mutuality of specification: 
 
 T11-14. sp(in, H, K, e) = sp(in, K, H, e). 
 
 To illustrate the importance and use of the functions defined in this section, let us work 
out a different numerical example, albeit an artificially simplified one, for ease of computation. 
Let hl be ‘Jones is bright’, h2 be ‘Jones is average (in intelligence)’, and h3 be ‘Jones is dull’. 
Somebody who is interested in Jones’ intelligence makes him undergo a certain test. Let now kl 
be ‘Jones achieves more than 80 percent (in his test)’, k2 be ‘Jones achieves between 60 percent 
and 80 percent’, and k3 be ‘Jones achieves less than 60 percent’. Let the following degrees of 
confirmation hold on the available evidence, according to some m-function: 

     c(h1, e) = c(h3, e) = 
4
1  

     c(h2, e) = 
2
1  

            c(kl, e . hl) = c(k2, e . hl) = c(k2, e . h2) = c(k2, e . h3) = (k3, e . h3) = 
2
1   

           c(kl, e . h2) = c(k3, e . h2) = 
4
1 . 

 
(All other c(kq, e . hp) = 0.) Figure 2 might help to visualize the situation.  
 For the following computations, the explicatum inf will be used. First we compute with 
the help of T5 the value of est(inf, H, e) in our example.  
 

est(inf, H, e) = 
4
1  Log 4 + 

2
1  Log 2 + 

4
1  Log 4 = 1.5. 



 
 

Figure 2. 
 

To evaluate est(inf, K, e) we have first to find the various c(kq, e). These can be easily read off 
the diagram. 

     c(kl, e) = c(k3, e) = 
4
1 , 

     c(k2, e) = 
2
1 . 

Since c(ki, e) = c(hi, e) for all i (this is pure coincidence), we have  
 
est(inf, K, e) = 1.5. 
 
For est(inf, H . K, e) we get, again by simple inspection of the diagram,  
 

est(inf, H . K, e) = 6 × 
8
1  Log 8 + 1 × 

4
1  Log 4 = 2.75. 

 
This verifies T9. It is obvious that not all h’s and k’s are inductively independent. 
 To find the various est(inf, H, e . kq), we compute first all c(hp, e . kq). We get 
 

   c(h1, e . k1) = c(h2, e . k1) = c(h2, e . k2) = c(h2, e . k3) = c(h3, e . k3)= 
2
1 , 

              c(h1, e . k2) = c(h3, e . k2) = 
4
1 .  

 
(All other c(hp, e . kq) = 0.) Hence we have 
 
    est(inf, H, e . kl) = est(inf, H, e . k3) = 1, 
     est(inf H, e . k2) = 1.5.  
 
Hence we get, according to D4, 
 

    sp(inf, H . k1, e) = sp(inf, H, k3, e) = 
2
1  

    sp(inf, H . k2, e) = 0. 



The last result is of special importance. And indeed, if Jones achieves between 60 percent and 80 
percent in his test, we are “so klug als wie zuvor,” we know exactly as much as we knew before. 
The addition of k2 to our evidence left the c-values of the h’s unchanged, k2 is inductively 
irrelevant to the h’s and our knowledge has not become more specific through this addition. The 
situation is different with respect to the two other outcomes of the test. In both other cases, our 
knowledge has become more specific. This appears even on the qualitative level: Before the test, 
Jones could have been bright, average, or dull. After the test, we know that he is not dull if the 
outcome is kl, and that he is not bright, if the outcome is k3. But one has to be careful with this 
argument. A reduction of the number of possibilities does not always entail an increase of 
specifity of the situation. If the probability distribution of the remaining possibilities is much 
more evenly spread than that of the initial possibilities, the situation may become, in a certain 
important sense, less specific. Examples could be easily constructed. In our case, however, there 
is a real increase in specificity, though not a large one. 
 
 It seems reasonable to measure one aspect of the effectiveness of this intelligence test by 
the estimate of the amount of specification. One might compare the effectiveness of various 
proposed tests in this way. In our case, according to D6, 
 

sp(inf, H, K, e) = 
4
1  × 

2
1  + 

2
1  × 0 + 

4
1  × 

2
1  = 

4
1  , 

 
a result that could, of course, also have been obtained from T13. Incidentally, it follows that the 
test was a pretty poor one. Whereas a direct measurement of Jones’ intelligence, were it only 
possible, could be expected to yield 1.5 units of information, the mentioned test can be expected 
to give us only 0.25 of a unit of information on Jones’ intelligence. The difference between 1.5 
and 0.25, i.e., 1.25, is the value of est(inf, H/K, e), according to T11. The same value would be 
obtained by using either D5 or T10. We may say that by applying the test instead of measuring 
the intelligence directly we must content ourselves with expecting a “loss” of 1.25 units of 
information. The correlate of this function within communication theory has been called by 
Shannon [136: 36] the equivocation. With fixed H, that test is more efficient whose K (the class 
of possible outcomes) yields the higher value for the estimate of the amount of specification of H 
on e through K, or the lower value for the estimate of the posterior estimate of the amount of 
information carried by H on e and K. 



12. SEMANTIC NOISE, EFFICIENCY OF A CONCEPTUAL FRAMEWORK 
 
 [Two usages of ‘semantic noise’ are distinguished and a more general concept of 
distortion through noise defined. Efficiency of the conceptual framework of a language is 
introduced, both with respect to some given evidence and absolutely. The symmetrical treatment 
of a predicate and its negation maximizes initial efficiency. With increasing evidence, the ef-
ficiency of a language generally decreases.] 
Whenever a receiver of a message is unable to reconstruct immediately the message as originally 
sent, the communication engineer describes the situation by saying that the message has been 
distorted by noise. To combat noise is one of his principal tasks. 
 Sometimes the receiver of a message, in spite of a reception which is physically free of 
distortion, reacts to it in a way which is different from that expected by the sender. Attempts 
have been made to formulate this situation in terms of semantic noise. Indeed, the same sentence 
(more exactly, two tokens of the same sentence-type) may convey different informations (with 
different or equal amounts of information) to two people (e.g. the sender and the receiver of a 
message) and this in at least two different ways: first, the two tokens, which are physically alike, 
are interpreted as belonging to different languages [69], and second, probably more common and 
interesting, the information carried by them is evaluated with respect to different evidences. 
Misunderstandings may be due either to physical mishearing or to semantic misevaluation (or to 
both). 
 In addition to the two metaphorical usages of ‘noise’ mentioned above, which seem 
pretty straightforward and should cause no confusion if properly distinguished among 
themselves and from the engineer’s noise, it seems natural to use this term also in the following 
general situations. Whenever one is interested in knowing whether a certain event out of an 
exhaustive system of events, H, has happened (or is going to happen) but is unable, for some 
reason, to observe directly the occurrence of these events and has to content oneself with the 
observation of some event out of another exhaustive system, K, where not all of the kq are 
irrelevant to the hp on e [28: §65], one can regard K as a distortion or a transformation through 
noise of H. 
 Following this usage, we may not only say that the system of sounds coming out of a 
telephone receiver is a distortion through noise of the system of sounds coming out of the mouth 
of the speaker and that the system of symbol printings at the output of a teleprinter is a distortion 
of the system of symbol printings at the input, but also that the system of positions of a 
thermometer at a certain time is a distortion of the system 



of the temperature situations at those times (for somebody who is interested in the temperatures), 
that the system of weather predictions of a certain weather bureau is a distortion of the system of 
weather situations at the times for which the predictions are made (for somebody who is 
interested in the weather), and that the system of IQ-tests results is a distortion of the system of 
intelligence characteristics (for somebody interested in these characteristics). 
 Whether it is worthwhile, in the three last examples and in similar cases, to talk about 
nature communicating with us and about our receiving nature’s messages in a noise-distorted 
fashion in order to drive home a useful analogy, is questionable. Some heuristic value to such a 
form of speech can hardly be denied, but the strain such usage would put upon terms like 
‘communication’ or ‘message’ might well be too high. 
 The twin concepts of code-efficiency and code-redundancy play an important role in 
communication theory. We shall not discuss here the definitions given these concepts nor dwell 
on their various applications (and misapplications) but give instead definitions for certain 
semantic correlates which seem to have some importance. 
 By the efficiency of (the conceptual framework of) the language L1, with respect to (the 
amount-of-information function) in and (the evidence) e, in symbols: ef(L1, in, e), we understand 
the ratio of est(in, H1, e) where H1 is the class of the full sentences of all Q-predicators (§2) with 
an argument not mentioned in e, to maxi[est(in, Hi, e)], where the Hi are the corresponding 
classes in other languages Li covering, intuitively speaking, the same ground. (This loose 
statement is in need of much elaboration. This is expected to be achieved at a later stage. We 
have in mind that the languages Li refer to the same physical magnitudes without, however, there 
existing a sentence-by-sentence translatability between them.) It seems to us that the choice of 
the class of the Q-sentences as the class relative to which the efficiency of a language is defined 
is a natural one, though it certainly is not the only plausible one. The efficiency of a language, as 
defined here, changes, as a function of e, with a change of the evidence taken into account. A 
language may become, in a sense, more or less efficient with a change in experience. 
  
 For an inhabitant of New York, a language with the predicates ‘W’, ‘T’, and ‘C’, 
designating Warm (above 75°F.), Temperate (between 40° and 75°), and Cold (below 40°), 
respectively, would be quite efficient. Should he move to San Francisco, however, its efficiency 
would be highly reduced because ‘T’ occurs here much more frequently than the other two. 



 We would, therefore, like to have also a concept of efficiency that is independent of 
experience. Such a concept is, of course, readily available. We have only to consider the 
efficiency relative to the tautological evidence, i.e., ef(L1, in, t). Let us call this concept the initial 
efficiency and denote it also by ‘ef(L1, in)’. A language will accordingly have maximal initial 
efficiency if and only if each of the mentioned Q-sentences will be initially equiprobable, that is, 
if and only if the m-function upon which it is based ascribes equal values to all Q-sentences with 
the same argument, which will be the case when (but not only when) this m-function treats each 
primitive predicate and its negation on a par, as do, for instance, mD and all mI. 
 The symmetrical treatment of a predicate and its negation loses somewhat the 
arbitrariness with which it has often been charged; it turns out that this treatment, based 
psychologically upon some principle of indifference and methodologically upon considerations 
of simplicity, maximizes the initial efficiency of the language. 
 With an increase in experience and the establishment of empirical laws, which in their 
simplest form are equivalent to the statement that certain Q-properties are empty [28: §38], the 
efficiency of the respective language generally decreases. The greater the number of laws which 
are established, and the stronger they are, the less efficient the languages become. It is plausible 
that with a continuing decrease of the efficiency of a language, a stage may be reached where 
this language will be altogether abandoned and replaced by another which, on the same evidence, 
shows a higher efficiency, mainly through the fact that the (or at least some) empirical laws of 
the first language have led to a modification of the conceptual framework of the second. 
 
 The New Yorker, in our previous illustration, would do well, after having stayed for 
some time in San Francisco, to adopt a new language in which ‘W” would stand for More-Than-
60°, ‘T” for Between-50°-And-60°, and ‘C” for Less-Than-50°, for instance, to save him from 
making the inefficient and uninteresting statements about the weather in San Francisco, which 
had before in almost all cases the form ‘T(x)’, i.e., ‘It is temperate at time x’. 
  
 It might be sometimes useful to talk about the inefficiency of a language. The definition 
is obvious: 
 

inef(Ll, in, e) =Df 1 − ef(L1, in, e). 
 
It is advisable to avoid the term ‘redundancy’—the term used for the correlate of our 
‘inefficiency’ in communication theory—since the ex- 



pression ‘redundancy of a conceptual framework’ is usually understood in a different sense. 
 
 

13. CONCLUSIONS 
 
 [The concepts of information and information measures explicated here should be of 
value in various theories, as in the Theory of Design of Experiments and the Theory of Testing. 
Various extensions are outlined. One of these would take into account the linear arrangements of 
the individuals.] 
The Theory of Semantic Information outlined here is nothing more than a certain ramification of 
the Theory of Inductive Probability presented in [28]. The explication of the presystematic 
concept of the information carried by a sentence, which has been attempted here, should be of 
value for a clarification of the foundations of all those theories which make use of this concept 
and the measures connected with it. The impact of the concepts presented here for the Theory of 
Design of Experiments or for the Theory of Testing should be obvious. 
 The present theory requires extension into various directions. One extension has already 
been mentioned: no great difficulties are involved in treating language systems with 
denumerably many individuals. Nor would introduction of individual variables and 
quantification over them present problems of which we do not know the solution. Language 
systems of these types have already been treated in [28]. Other extensions, however, will have to 
be postponed until the corresponding theories of inductive probability are developed. 
 


