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l. The Variety of Instances. Peter Achinstein gives in his papers [1] and [2] interesting analyses 
of some problems of inductive logic and of some approaches I have proposed. I shall discuss 
here some of these problems in order to clarify my present position. My comments will mainly 
concern the variety of instances, and only briefly the analogy influence, and the inductive 
methods for a coordinate language. 
 In his paper [2] (the ms. of which he kindly made available to me) Achinstein derives 
some formulas concerning my confirmation function c* for certain examples. He infers from the 
results that c* does not satisfy the requirement of the variety of instances (RVI). I had asserted in 
my paper ([3], §15] and again in my book ([5], §110 I] that c* satisfies RVI. He further 
generalizes his results by arguments intended to show that none of the confirmation functions in 
the lambda-system, explained in my monograph [6], satisfies RVI. 
 Many years ago, when I examined for the first time the question whether c* satisfies 
RVI, I used examples similar to those of Achinstein and found the same result: that the value of 
c* for the hypothesis was the same on each of two evidences, one with a variety of instances and 
the other with instances of one kind only. This led me too to the belief that the requirement was 
not fulfilled. However, on closer analysis I saw that the simple forms of evidence which I had 
used (and similarly now Achinstein) are not suitable for an examination with respect to RVI. The 
examination must rather be made in the following way. The observers X and Y start out with a 
common prior evidence e, which states the following about a class K of N objects: (a) N1  
specified objects of class K have the property P1, N′1 have not; (b) N13 specified objects of those 
with P1 have also the property P3, N13′ others have not. Both observers intend to test the law l: 
“All objects with P1 have also P2”. They make their tests separately, but they agree that each of 
them will test a sample of s specimens from the N1 objects which were found to have P1. Now X 
takes his s specimens all from the N13 with P3, while Y, mindful of the requirement RVI, takes s13 
specimens from those N13 and s − s13 others from the N13′ without P3. X’s report e1 on his tests 
states that his s specimens have P2; and Y’s report says the same of his s specimens. Thus either 
observer has found s confirming instances and no disconfirming ones. Now let h be the 
hypothesis saying that the next object (or the next n objects) found to have P1 will also have P2 
and thus satisfy the law l. Then RVI demands that the confirmation function c be such that  
c(h, e .e2) > c(h, e .e1). This is the correct form of the requirement. And I shall show that this is 
fulfilled by my function c*. 
 The essential point here is that the two observers have the same prior information 
about the observed frequencies of the various kinds of objects which come into consideration for 
a test of the law. This is necessary for a fair comparison. In Achinstein’s example, the evidence 
for each observer is restricted to those objects which he tests for P2. Thus the prior information 
of the first observer is restricted to those s ravens 
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which he has found to be young. This is then his total knowledge about ravens, since we must 
assume that he has fulfilled the requirement of total evidence ([5], §45 B). For all he knows there 
may be no old ravens. Under these conditions we cannot say that he violated a methodological 
principle by not choosing any old ravens for his test of the law. 
  
2. On the, function c*. We consider the law 1: ‘(x) (Mx ⊃ Mx)’, interpreted, e.g., as “All metal 
bodies are good conductors of electricity”. I shall use the concepts and notations of ([5], §§31, 
32, 38). We take a finite language L with N individuals and K Q-predicates. We define ‘Ml’ by 
‘M. ~  M′’, and ‘M2’ by ‘M.M′’. The law l says that Ml is empty. Let the p predicates ‘K1’, ..., 
‘Kp,’ be pairwise L-exclusive, and their disjunction be L-equivalent to ‘M’. Thus they designate 
p different, non-overlapping kinds of metal (e.g., iron, copper, etc.). For each q, let K1, q, be the 
conjunction of M1 and Kq, and K2, q that of M2 and Kq. Let wl, q be the logical width of Kl, q, and 
w2,q that of K2, q. Each of the predicates mentioned is supposed to be a factual, molecular 
predicate in L, hence L-equivalent to a disjunction of (one or more) Q-predicates. 
 We assume that X’s prior information is expressed in three sentences k, k*, and j, as 
follows. Each of them is a conjunction of full sentences of certain predicates; all these full 
sentences contain distinct individual constants. k contains s′ full sentences, to wit, for every q, s′q 
full sentences of K2, q. Thus k is a report about earlier tests of the law l, with s′ specimens of M, 
among them s′q of the kind Kq, all of which were found to have M2, and thus to confirm the law. 
k* contains s* full sentences of different predicates, each predicate L-implying non-M. This is a 
report on observations of s* objects which were all found to be non-metals. j contains sM full 
sentences with K-predicates, among them sM, q, with Kq. j is a description of sM metal specimens, 
each of them specified as belonging to one of the p subkinds K1, ..., Kp. 
 Now X makes new tests for the law l. He chooses s of the specimens described in j, 
among them, for every q (from 1 to p), sq specimens from those described in j as belonging to the 
kind Kq. (Hence sq ≤ sM, q; some of the numbers sq may be 0.) All these tests have positive results, 
i.e., these s specimens are found to be M2 and thus M′, and hence to confirm the law. Let i be the 
report of these results. Thus i is a conjunction of s full sentences of M2 with distinct individual 
constants; among these constants there are, for every q, sq which occur in j with Kq. The posterior 
information consists of the prior one together with i. 
 I shall now give a theorem about c* involving the sentences just described. (I referred to 
this theorem in [3, §15] without stating it explicitly; its proof is too complicated to be given 
here.) 
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 I have chosen here a language L with a finite number N of individuals, so that the law l is 
a finite conjunction of instances and has positive c*-values. (For an infinite law, c* is 0; see ([5], 
§110 F, (12)). 
 We define R as the ratio of the posterior confirmation of l to its prior confirmation:  
 
(2)    R = Df c*(1, k .k*.j.i)/c*(l, k.k*.j). 



We see easily that i is L-implied by j.l, and hence also by k.k*. j.l. Therefore, by ([5], T61-3c): 
 
(3)     R = 1/c*(i, k.k*.j). 
 
We see from (3) and (1) that R is independent of the values of s*, sM, and sM, q (i.e., sM, 1, ..., sM,p), 
although the two c*-values in (2) are dependent on them. 
 
3. Application to Nagel’s Numerical Examples. Nagel has given some numerical examples 
([9], pp. 68-71) in order to illustrate the great difficulties for the construction of a c-function that 
would be in accord with RVI. He makes use of two subkinds K1 and K2. Hence we have p = 2. In 
order to make our numerical calculations easier, we make the following simplifying 
assumptions: (A) we omit k; hence we have qs′  = 0. This means that the prior information does 
not contain any results of tests of metal specimens with respect to conductivity; thus the only 
results of this kind are those described in i. (B) We assume that each of the widths w11, w21, w12+ 
w22 is 1; thus the width of M is 4. (We might take the width of non-M as 12; then 
K = 16; but these numbers are irrelevant for R, though relevant for the c*-values.) For the 
intended examination of c* with respect to RVI, it is fortunately not necessary to calculate the 
posterior values of c* for the various cases. It is sufficient to determine R. And for this we 
obtain, under the simplifying conditions mentioned, an extremely simple formula (from (3) and 
(1)): 
 
(4)    R = (s1 + 1) (s2 + 1). 
 
Nagel discusses nine different possible cases P1, ..., P9 with respect to the total number 
s of specimens tested, and the numbers s1 and s2 of the two kinds, as given in the subsequent 
table. Let us imagine nine observers X1, ..., X9, who have the same prior information k*. j, but 
then make different decisions with respect to s, s1, and s2, as specified in Nagel’s nine cases. (In 
order to make possible the values of s1 and s2 in all nine cases, we must choose the numbers in j 
sufficiently high so that, in each case, sM,q ≥ sq ; hence we must take sM,1 ≥ 200 and sM,2 ≥ 100; 
but here we need not bother about these numbers, since they do not affect R.) The nine observers 
obtain different results i, say i1, ..., i9, and hence different values of the posterior confirmation of 
the law. Now we have from (2): 
 
(5)   For n = l, ..., 9,   c*(1, k*. j.in) = Rn.c*(l, k*.j). 
 
I have added to Nagel’s table the last line, giving the values of R1, ..., R9, determined by (4). 
Since the prior confirmation is the same in all nine cases, the posterior confirmation is, according 
to (5), proportional to Rn. 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 
s1 50 50 100 101 99 100 200 100 198 
s2 0 50 0 49 52 90 0 100 2 
s 50 100 100 150 151 190 200 200 200 

Rn 51 2601 101 5100 5300 9191 201 10201 597 
 
 The values of Rn clearly bear out what I said about the nine cases in ([3], §15). In 
particular, these values show that the posterior confirmation is increased not only 



if the total number s of confirming instances is increased (and none of the numbers sl and s2 is 
decreased), but also, and indeed much more, if with the same s the distribution is improved, i.e., 
the smaller of the numbers sl and s2 is increased from 0 to a positive value, or from a positive 
value to another one nearer to s/2. Thus the  function c* is in good accordance with RVI. 
 
4. The Analogy Influence. The principle of analogy says roughly this: the probability that an 
object b has a certain property, is increased by the information that one or more other objects, 
which are similar to b in other respects, have this property. In very simple situations, the old way 
of applying the function c* leads to the required result, as I have shown in ([5], §110 D). This 
holds likewise for any other c-function of the lambda-system. However, this is not the case for 
more complicated situations, e.g. those is Achinstein’s example with rhodium. This is due to the 
failure of the old methods to take account of the different degrees of similarity between Q-
predicates. If (as in ([5], p. 125, Table A31-1)) Q1 is defined by P1.P2.P3, Q2 by P1.P2. ~ P3, Q4 
by Pl. ~P2. ~P3, and Q8 by ~P1. ~P2. ~P3, then an object with Q8 is most dissimilar to one with 
Q1; one with Q4 is somewhat more similar, and one with Q2 still more. 
 This defect of the old methods is overcome by what we now call the method of several 
families. We now regard the formulas for functions of the lambda-system, including c*, as 
exactly valid if they are applied to predicates of one family. This is explained in the new Preface 
to ([5], second edition). When predicates of two or more families are involved, the old methods 
are at best approximately valid, and new methods are required. For example, the old methods are 
appropriate for a law of the form: “For every x, if x is green or blue, then x is blue”, which says 
in effect that the property Green is empty. On the other hand, for a law like 1 in §2, according to 
the new approach, we should use a new kind of c-function for two families, one family of kinds 
of substance, including K1, ..., Kp, and one family of three predicates: “good conductor of 
electricity”, “bad conductor”, and “non-conductor”. 
 Soon after writing [6], I found a c-function appropriate for two families. Then in 1953, 
John G. Kemeny and I together worked out methods for any number n of families. The formula 
for two families is given in ([7], Anhang B, sec. VIII). These methods take account of the various 
degrees of similarity among the Q-predicates. They would, I suppose, lead to intuitively 
plausible results in Achinstein’s examples.  
 
5. Coordinate-languages. In his earlier paper [1], Achinstein analyzes the problem of adequate 
c-functions for a coordinate language with natural numbers as coordinates (comp. [5], pp. 62 f., 
74). He correctly rejects certain approaches as inadequate. In his requirements he makes use of 
my distinction between qualitative, positional, and mixed predicates. However, I would not 
require that only qualitative predicates occur in a law or other hypothesis; any sentence of the 
language may be taken as a hypothesis. What I mean is only this: in certain axioms and theorems 
referring to predicates, these predicates (or some of them) are required to be qualitative. 
 Achinstein states a very general Principle 1, which seems to him plausible, and which is 
supposed to justify his requirements. However, I have serious doubts about this principle. If I 
understand it correctly, it seems to me not valid in a coordinate language, not even if the 
hypothesis h contains only qualitative predicates. Let h be ‘P(201)’; let e say that the positions 
from 1 to 110 have P, and those from 111 to 200 non-P. Thus e contains 110 instances of h, and 
90 of non-h. Principle 1 requires (if I under- 



stood it correctly) that c(h, e) > c(~h, e). In contrast, I would think that c(~h, e) should be near to 
1, and therefore c(h, e) near to 0. In a coordinate language, the numbers of positive instances and 
of negative instances have sometimes less effect on the c-value of a prediction h than the 
nearness of the instances to the position referred to in h. (I call this effect the proximity 
influence.) 
 Achinstein studies chiefly laws of periodicity. He analyzes various approaches, rejects 
each of them, and comes finally to an impasse. He believes that a solution will require a much 
stronger language containing predicates and quantified variables of higher order. 
 I do not share this belief. I will briefly indicate how I would approach the problem of a 
coordinate language in inductive logic. As an example, let us think of a family of five predicates 
for simple qualitative properties P1, ..., P5, say colors. An m-segment is a series of m consecutive 
positions. I introduce Qm-predicates for the possible properties (“m-species”) of m-segments. For 
example, I define:  
(6)   Q3

5,1,4 (n) = Df P5(n).P1(n + 1).P4(n + 2).  
Thus the sentence ‘Q3

5,1,4 (8)’ ascribes to the 3-segment beginning with position 8 the 3-species 
consisting of P5, P1, P4 in this order; but formally, ‘Q3

5,1,4’ is a one-place predicate of positions. 
 With the help of these Qm-predicates, many kinds of regularity in the order in which the 
colors appear can be formulated. A universal sentence saying that p specified m-species never 
occur is called a law of span m and strength p (in analogy to ([5], D37-6a)). For example, a law 
saying that, if P4 is followed by P3, then Pl always follows, followed in turn by either P3 or P5, is 
a law of span 4, and strength 12. 
 I should prefer to use the term “periodicity law” only for those laws which describe a 
regular recurrence with a fixed period length n. Such a law has a span n. For example, the 
sentence “P1 is not empty and, for every i, P1(i) iff P1(i + 10)” has a span 10; it excludes all and 
only those 10-species in which Pl does not occur exactly once. All laws with finite span, whether 
periodical or not, can be dealt with in terms of Qm-predicates. Inductive methods for coordinate 
languages are under investigation; they take into account both regularities of succession (of finite 
span) and the proximity influence. But there are difficult problems still to be solved. For the laws 
here involved no variables or predicates of higher order are necessary. 
 If a law refers to absolute values of the coordinate, then it is quite different from laws of 
finite span (which involve only coordinate differences, not absolute values). An example is the 
law: “For every n, P1(n) iff n is a prime number”, discussed by Hilary Putnam [10] and 
Achinstein [1]. As I have explained in my reply to Putnam ([8], §29), I think that few physicists 
would even consider laws of this kind, and that it is hardly worthwhile to take account of such 
laws in adequacy conditions for c-functions for a coordinate language. It would perhaps be 
preferable to take as coordinates all integers, and not to give a distinguished role to any one 
position. This might diminish the temptation to refer in a law to absolute values of the 
coordinate. 
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