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1.  The ε-operator in logic and set theory 
 

Hilbert’s ε-operator is usually applied only in logic and in mathematical theories, especially 
arithmetic and set theory. The first part of this paper makes some comments on its use in these fields. In 
the second part I shall point out the possibility of a useful application of the ε-operator in the 
formulation of theories in empirical science. 

Hilbert [14], [15] introduced the ε-operator in such a way that, if φ is any satisfiable open 
sentential formula with ‘x’ as the only free variable, then the ε-term  denotes ‘εxφ’ denotes an object 
that satisfies φ.  This object may be regarded as the representative of φ,  or of the corresponding set if 
there is such a set. 

The following two formulas may be taken as logical axioms for the ε-operator: 
 

(1) (∃y)Fy ⊃ F(εxFx), 
 
(2) (x) (Fx ≡ Gx) ⊃ εxFx = εxGx. 
 
Axiom (1) is Hilbert’s axiom. Axiom (2), first proposed by Ackermann [1], says that coextensive 
formulas have the same representative; it is therefore a kind of extensionality axiom. Asser [2] gives the 
first systematic treatment of the ε-calculus, its syntactical rules, its semantical (set-theoretic) 
interpretation in terms of logical selection functions (a function of this kind assigns to each non-empty 
subset of the domain of individuals an element of this subset); and he gives simplified proofs for the 
most important metatheorems. 

Hilbert has shown that both the existential and the universal quantifiers can be defined with the 
help of the ε-operator. The definition of the former is as follows: 

 
(3) (∃x)Fx≡ F(εxFx) 
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Let PK be the ordinary predicate calculus with sentential connectives, 
the two quantifiers, and the sign of identity as primitive logical constants. Let the ε-calculus PKε 
contain, in addition, the ε-operator as primitive, and the additional axioms (1) and (2). Hilbert 
and Bernays [16] have pointed out that the system of rules of PKε is simpler than that of PK. 
They also showed the great usefulness of the ε-operator for metamathematical investigations. 

Axiom systems of set theory are usually constructed on the basis of PK, using a 
language L formed from the language of PK by adding the primitive constant ‘є’ as the sign of 
the membership relation. As an alternative, PKε may be used, and the language Lε formed from 
the language of PK by the addition of ‘ε’. 

Since the ε-operator expresses an (unspecified) selection function, there is clearly a close 
connection between this operator and the axiom of choice. Some who regard this axiom with 
suspicion are therefore also reluctant to accept the ε-operator. Fraenkel has long ago emphasized 
the “purely existential character” of the axiom of choice ([10]; [11, p. 54 ff.]): it asserts merely 
that, if the set x fulfills certain conditions, then there is at least one selection set of x, without 
asserting that for every such set x it is possible to specify a particular selection set of x. 
Analogously, the ε-expression for a satisfiable formula refers to a representative without 
specifying it. It is indeed important to recognize the special character of the axiom of choice in 
contrast to other axioms, and likewise the special character of the ε-expressions, their indeter-
minacy, which we shall discuss later. But these features are in themselves not sufficient reasons 
for rejecting either the axiom of choice or the ε-operator. 

What now is the connection between the ε-operator and the axiom of choice? Is the 
acceptance of the former tantamount to that of the latter? In more formal terms, is the axiom of 
choice derivable from the other axioms of set theory if the underlying logic contains the ε--
operator with its axioms? In some sense this is the case, but the assertion needs some 
qualifications. Fraenkel and Bar-Hillel, in an illuminating brief exposition of the ε-operator, are 
certainly right with the following statement [11, p. 184]: “There is no reason to suppose that in a 
set theory constructed on the basis of an ε-calculus the principle of choice would become 
generally derivable, unless the specific axioms of that set theory contain ε-terms themselves.” 
The decisive point for this question of derivability is the specific form of the axiom schema of 
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subsets (Aussonderungsaxiom). In the customary language L it may be formulated as follows, 
where “Su” stands for “u is a set”: 
 
(4) ‘Su ⊃ (∃y)[Sy • (v)(v∈  y ≡ v∈u • φ)]’ where φ is any sentential formula of language L 
containing ‘v’ as the only free variable. 
 

If Lε is taken as the axiomatic language, there is the choice of two versions of the axiom 
schema, differing in the kinds of formulas admitted as φ. The first version is the same as (4): only 
formulas of Lε without ‘ε’ are admitted; in other words, formulas of L (as a sub-language of Lε). 
The second version, which we shall call. (4ε), is formed from (4) by replacing ‘L’ with ‘Lε’. (4ε) is 
stronger than (4). But to accept this version seems natural, once the ε-operator has been accepted as 
a primitive logical constant. 

 
Consider now the principle of choice:  

 
(5) If x is a set such that: 

(a) any element of x is non-empty, 
(b) any two distinct elements of x are disjoint, 
then there is a set y (called a selection set of x) such that  
(c) Uxy ⊂  , 
(d) for any element z of x, y ∩ z has exactly one element. 

 
It can now be seen easily that, if the axiom schema of subsets is taken in the stronger form 

(4ε), then (5) is derivable. The derivation is as follows. Let x be any set satisfying the conditions (a) 
and (b) in (5). According to the axiom of the union set, U x is a set. Therefore, by (4ε), there is a set 
y containing exactly those elements v of U x for which 
 

(∃z) [z∈  x • v = εu(u∈z)]. 
 
(This last formula is taken as φ in (4ε).) Thus y is a subset of U x containing just the representatives 
of the elements of x. Hence y satisfies the conditions (c) and (d) in (5). Thus (5) is derived. 
 
2. The ε-operator in a scientific theory 
 
Let L be a language suitable for the formulation of a given scientific theory. We divide the 
primitive descriptive terms of L in the customary way (compare [5],[12]) into observational terms 
(O-terms, e.g. “hot”, “blue”) and theoretical terms (T-terms, e.g. “temperature”, “electric 
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field”). The interpretation of O-terms is assumed to be known. If their meanings are not logically 
independent, it is assumed that their meaning relations are expressed by A-postulates (analytic 
postulates or meaning postulates, [3]). Let AO be the conjunctions of the A-postulates for the O-
terms. An O-sentence (i.e., one containing only O-terms, no T-terms) is said to be A-true 
(analytically true) if it follows logically from AO. 

The T-terms of a scientific theory are introduced by the postulates of the theory. These 
postulates are of two kinds, the theoretical postulates (T-postulates, containing only T-terms, no 
O-terms) and the correspondence postulates (C-postulates, containing both T-terms and O-
terms). Let T be the conjunction of the T-postulates of a given theory, C that of its C-postulates, 
and TC that of both kinds of postulates. Thus the first form of the total set of postulates is this: 
 
FORM I: AO, T, C. 
 
In addition, there are axioms and rules, not to be stated here, of an elementary logic (e.g. PK) and 
a higher logic, either in set-theoretic or in type-theoretic form, sufficient for the scientific theory 
in question. 

Suppose that TC contains n T-terms, say ‘t1’,...,‘tn’, and m O-terms, say ‘o1’,..., ‘om’.  
Then TC can be written as follows: 
 
(6) TC: Φ(t1,...,tn; o1....,om), 
 
where ‘Φ’ is a purely logical (n + m)-place predicate. F. P. Ramsey [17] has proposed to use 
instead of TC the following sentence R, which we shall call the Ramsey sentence of the theory: 
 
(7) R: (∃u1)...(∃un) Φ (u1,...,un; o1,...,om), 
 
where ‘u1’,..., ‘un’ are variables corresponding to ‘t1’,..., ‘tn’, respectively. Ramsey has shown 
that every O-sentence which follows logically from TC, follows also from the weaker sentence 
R, which is itself an O-sentence. The methodological properties of the Ramsey sentence are 
discussed in detail by Hempel [12] [13]. 

The T-terms have no direct interpretation since they refer to unobservables. What 
interpretation they possess is given to them by the C- and T-postulates. And this interpretation is 
incomplete, because the scientist can always add further C-postulates (e.g., operational 
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rules for T-terms) or T-postulates and thereby increase the specification of the meanings of the T-
terms. In view of this situation, some authors have expressed doubts about the possibility of 
extending the concept of A-truth to sentences with T-terms. I have proposed ([6],[8, §24] which is my 
reply to Hempel [13]) to take as the only A-postulate AT for T-terms the conditional with R  and TC 
as components: 
 
(8) AT i s  R  ⊃  T C :  
 

(∃u 1 ) . . . (∃u n )  Φ ( u 1 , . . . , u n ;  o 1 , . . . , o m )⊃  Φ (t1,...,tn; o1,..., om).  
 
With the help of this postulate AT I define: 
 
(9) Let S be any sentence (with or without T-terms) of language L.  

S is A-true in L =Df S follows logically from AO and AT. 
 
Thus we obtain a new form of our postulate system:  
 
FORM II: AO, R , AT . 
 
It is easily seen, that R  and AT together are logically equivalent to T C .  R  has factual content, but 
does not contribute to the interpretation of the T-terms; conversely, AT does the latter but not the 
former. 
 
For our further discussion it is convenient to define ‘t’ and ‘o’, as follows: 
 
(10) t = <t1,..., tn>. 
(11) o = <o1,..., om>. 
 
We shall use ‘u’ as a variable corresponding to ‘t’. Then (6), (7) and (8) are formulated as follows 
(for simplicity, we use here for the two-place predicate the same symbol ‘Φ’ as for the original (n + 
m)-place predicate): 
 
(12) TC:  Φ(t,o). 
 
(13)  R :   (∃u) Φ (u,o). 
 
(14) AT:    (∃u) Φ (u,o) ⊃ Φ(t,o). 
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I shall now give a new form III of the system, which uses the language Lε. It will be possible, 
with the help of the ε-operator, to give n + 1 definitions A0 

T,A
1 
T,..., A

n 
T for ‘t’, ‘tl’,..., ‘tn’, 

respectively. In form III, these definitions will be taken as A-postulates for the defined terms just 
mentioned. (It seems generally to have some advantages to regard explicit definitions of 
descriptive terms as a special kind of A-postulates.) The conjunction A' 

T of these n + 1 A-
postulates takes in form III the place of AT in the earlier form II, while AO and R remain 
unchanged: 
 
FORM III: AO, R, A′ 

T.   
 

According to (14), AT says this: “If there is anything that bears the relation Φ to o, then t 
does so.” This, in view of (1), suggests defining t as the ε-representative of Φ (.,o): 

 
(15) AO 

T : t = εu Φ (u,o). 
 

The logical predicate ‘Φ’ is supposed to be defined in such a way that its first-place 
arguments are n-tuples. Hence by (15) t is an n-tuple. We now define ti (i = 1,...,n) as the i-th 
member of the n-tuple t. Therefore we take as the definitions A1 

T, ..., A
n 
T the instances of the 

following schema, with i = 1,...,n: 
 
(16)  Ai 

T:    ti = εx [(∃u1)...(∃un) (t = <u1,...,un> • x = ui)].  
 
(Instead of the operator ‘εx’ we could use here the customary description operator ‘(ιx)’, since the 
formula in square brackets fulfills the uniqueness condition with respect to ‘x’.) 
 
Since t is an n-tuple, we obtain from the n definitions of the schema  
 
(16): 
 
(17) t = <t1,...,tn> 
 
This corresponds to the earlier definition (10) in L. Here in form III, we cannot use the definition 
(10), because ‘t1’, etc. are now defined on the basis of ‘t’. However, we still use here the 
definition (11). 
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It will now be shown that the earlier sentence AT can be derived from the new A 
-postulates  A′ 

T, i.e., (15) and (16). Thus this sentence, which was an A-postulate in form II, is still 
A-true in the present form III, even though it is no longer an A-postulate. 
 

We have by the first ε-axiom (1): 
 
(18) (∃u) Φ (u,o) ⊃ Φ (εu Φ (u,o),o).  
 
(Hence with (15): 
 
(19) (∃u) Φ (u,o) ⊃ Φ (t,o), 
 
which is AT in the form (14). (We can also obtain AT in the original form (8), with the help of 
(17) and (11).) 
 

Thus from A′ 
T alone we have derived AT, which is R ⊃ TC. By using now the synthetic 

postulate R, which occurs also in form III, we obtain TC. This shows that the postulates of form 
III are sufficient to recover all T- and C-postulates of the original form I. 

In form III we can clearly recognize that the sentences chosen as A-postulates for ‘t’ and 
the T-terms do not contribute anything to the factual content of the theory but serve merely for 
the (partial) specification of meanings, since these sentences have the form of definitions. 

It may at first glance seem surprising that it should be possible to give explicit definitions 
of the T-terms. This might appear incompatible with the fact that the interpretation of the T-terms 
is purposively left incomplete. The frequently made assertion that it is impossible to define the T-
terms is indeed correct if the primitive logical constants of the language used have a well 
determined complete interpretation, as is usually the case. This intended interpretation may either 
be given formally by semantical rules formulated in the metalanguage or by informal 
explanations. Let us call a constant “determinate” (with respect to interpretation) if it has such an 
interpretation of either kind, and otherwise “indeterminate”. 

If a language like Lε is used, the situation is radically different, because the symbol ‘ε’ 
was intentionally introduced by Hilbert as an indeterminate constant. Its meaning is specified by 
the axioms (1) and (2) only to the extent that any non-empty set has exactly one representative 
and that this representative is an element of the set. If 
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the set has more than one element, then nothing is said, either officially or unofficially, as 
to which of the elements is the representative. Thus, for example, εx(x = 1 V x = 2 V x = 3) 
must be either 1, or 2, or 3; but there is no way of finding out which it is. 

Indeterminate logical constants are not often used. One other example is the iota-
operator for individual descriptions, provided the rules for it are such that the following 
two conditions are fulfilled: (1) all descriptions whose operands do not satisfy the 
condition of uniqueness denote one and the same individual (a method proposed by Frege, 
in contrast to that of Russell), and (2) this individual is not specified (in contrast to Frege’s 
method). One of the methods for descriptions which I have proposed is of this kind ([4, p. 
37]; [7, §35], but not in the first edition or in the English edition). In this one of my methods 
(in distinction to others in which the individual in question is specified, e.g., as 0 or as ao) 
the description ‘(ι x) (x ≠ x)’ and the constant ‘a*’ L-equivalent to it are indeterminate. 

The postulates TC are intended by the scientist who constructs the system to specify 
the meaning of ‘t’ to just this extent: if there is an entity satisfying the postulates, then ‘t’ 
is to be understood as denoting one such entity. Therefore the definition (15) gives to the 
indeterminate constant ‘t’ just the intended meaning with just the intended degree of 
indeterminacy. 
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