
INTRODUCTORY REMARKS TO THE 
ENGLISH EDITION 

 
     Since ancient times the question of the nature of geometry has been a decisive problem for 
any theory of knowledge. The principles of geometry, e.g., Euclid’s axioms, seem to possess two 
characteristics which are not easily reconciled. On the one hand, they appear as immediately 
evident and therefore to hold with necessity. On the other hand, their validity is not purely 
logical but factual; in technical terms, they are not analytic but synthetic. This is shown by the 
fact that, on the basis of certain measurements of angles and lengths of physical bodies the 
results of other measurements can be predicted. Kant boldly accepted the conjunction of both 
characteristics: from the apparently necessary validity of the principles of geometry he concluded 
that their knowledge is a priori (i.e., independent of experience) although they are synthetic.  
When mathematicians constructed about a hundred years ago systems of non-Euclidean 
geometries, a controversy arose about the method of determining which of the systems, one 
Euclidean and infinitely many non-Euclidean, holds for the space of physics. Gauss was the first 
to suggest that the determination should be made by physical measurements.  But the great 
majority of philosophers throughout the last century maintained the Kantian doctrine that 
geometry is independent of experience. 
     At the beginning of our century Poincaré pointed out the following new aspect of the 
situation. No matter what observational facts are found, the physicist is free to ascribe to physical 
space any one of the mathematically possible geometrical structures, provided he makes suitable 
adjustments in the laws of mechanics and optics and consequently in the rules for measuring 
length. This was an important insight. But Poincaré went further and asserted that physicists 
would always choose the Euclidean structure because of its simplicity. History refuted this 
prediction only a few years later, when Einstein used a certain non-Euclidean geometry in his 
general theory of relativity. Hereby he obtained a considerable gain in simplicity for the total 
system of physics in spite of the loss in simplicity for geometry.  
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     Through this development it has become clear that the situation concerning the nature of 
geometry is as follows. It is necessary to distinguish between pure or mathematical geometry 
and physical geometry.  The statements of pure geometry hold logically, but they deal only with 
abstract structures and say nothing about physical space.  Physical geometry describes the 
structure of physical space; it is a part of physics. The validity of its statements is to be estab-
lished empirically—as it has to be in any other part of physics—after rules for measuring the 
magnitudes involved, especially length, have been stated.  (In Kantian terminology, 
mathematical geometry holds indeed a priori, as Kant asserted, but only because it is analytic. 
Physical geometry is indeed synthetic; but it is based on experience and hence does not hold a 
priori.  In neither of the two branches of science which are called “geometry” do synthetic 
judgments a priori occur. Thus Kant’s doctrine must be abandoned.) 

In physical geometry, there are two possible procedures for establishing a theory of physical 
space. First, the physicist may freely choose the rules for measuring length. After this choice is 
made, the question of the geometrical structure of physical space becomes empirical; it is to be 
answered on the basis of the results of experiments. Alternatively, the physicist may freely 
choose the structure of physical space; but then he must adjust the rules of measurement in view 
of the observational facts.  (Although Poincaré emphasized the second way,  he also saw the first 
clearly. This point seems to be overlooked by those philosophers, among them Reichenbach, who 
regard Poincaré’s view on geometry as non-empiricist and purely conventionalist.) 

The view just outlined concerning the nature of geometry in physics stresses, on the one hand, 
the empirical character of physical geometry and, on the other hand, recognizes the important 
function of conventions. This view was developed in the twenties of our century by those 
philosophers who studied the logical and methodological problems connected with the theory of 
relativity, among them Schlick, Reichenbach, and myself. The first comprehensive and 
systematic representation of this conception was given by Reichenbach in 1928 in his 
Philosophie der Raum-Zeit-Lehre (the original of the present translation). This work was an 
important landmark in the development of the empiricist conception of geometry. In my 
judgment it is still the best book in the field. Therefore the appearance of an English edition is to 
be highly welcomed; it satisfies a definite need, all the more since the German original is out of 
print. 
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The book deals with the problems of the foundations of geometry and also of the theory of 

time, closely connected with that of space by Einstein’s conception-in all their various aspects, 
e.g., the relations between theory and observations, connected by coordinative definitions, the 
relations between topological and metrical properties of space, and also the psychological 
problem of the possibility of a visual intuition of non-Euclidean structures. 
     Of the many fruitful ideas which Reichenbach contributed to the development of this 
philosophical theory, I will mention only one, which seems to me of great interest for the 
methodology of physics but which has so far not found the attention it deserves. This is the 
principle of the elimination of universal forces. Reichenbach calls those physical forces universal 
which affect all substances in the same way and against which no isolating walls can be built.  
Let T be the form of Einstein’s theory which uses that particular non-Euclidean structure of 
space which Einstein proposes; in T there are no universal forces. According to our above 
discussion, T can be transformed into another form T′ which is physically equivalent with T in 
the sense of yielding the same observable results, but uses a different geometrical structure.  
Reichenbach shows that any such theory T′ has to assume that our measuring rods undergo 
contractions or expansions depending merely upon their positions in space, and hence has to 
introduce universal forces to account for these changes.  Reichenbach proposes to accept as a 
general methodological principle that we choose that form of a theory among physically 
equivalent forms (or, in other words, that definition of “rigid body” or “measuring standard”) 
with respect to which all universal forces disappear. If this principle is accepted, the arbitrariness 
in the choice of a measuring procedure is avoided and the question of the geometrical structure 
of physical space has a unique answer, to be determined by physical measurements. 
     Even more outstanding than the contributions of detail in this book is the spirit in which it 
was written. The constant careful attention to scientifically established facts and to the content of 
the scientific hypotheses to be analyzed and logically reconstructed, the exact formulation of the 
philosophical results, and the clear and cogent presentation of the arguments supporting them, 
make this work a model of scientific thinking in philosophy. 
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