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PREFACE 
 

The purpose of this monograph is the development of a new approach to the study of 
inductive methods; they are methods for determining the degree of confirmation (or probability 
in the inductive sense) of a given hypothesis on the basis of a given body of evidence. It is shown 
that from any method of this kind we can derive a method for estimating unknown magnitudes 
(here restricted to frequencies). In distinction to deductive logic, where there is practically 
general agreement on method, in inductive logic we find a great variety of incompatible methods. 
They are here incorporated into an infinite system of possible methods, called the continuum of 
inductive methods. Within this system, the methods are characterized by parameters. Essentially, 
one parameter is sufficient for a complete characterization of each method. A procedure is 
developed for comparing various methods, not on the basis of philosophical arguments offered 
for them or of intuitive judgments on their immediate plausibility, but rather from the objective 
point of view of their success in various possible universes (here restricted to those describable 
in a certain simple language). This leads to a procedure for determining the optimum inductive 
method in any given possible universe. The comparative analysis comes to the result that some 
widely used methods for estimating frequencies (e.g., Reichenbach’s principle of induction, R. 
A. Fisher’s maximum likelihood principle, the principle of unbiased estimates, and Wald’s 
minimax principle) have certain disadvantages, which are avoided by other inductive methods in 
the continuum. 

The present investigations are based on a conception of inductive logic which was 
systematically developed in Logical Foundations of Probability (Vol. I of Probability and 
Induction (1950)); it is explained in nontechnical terms in The Nature and Application of 
Inductive Logic (1951), which is a reprint of six sections from the former book. Knowledge of 
either of these books is, however, not presupposed; the concepts used in this monograph will be 
explained so that it can be read independently. 

The substance of this monograph is to become part of Volume II of Probability and 
Induction. I shall welcome critical reactions. 

I want to thank Professors Gerhard Tintner and John Myhill, who read an earlier version 
of the manuscript and made many helpful, critical comments. 

RUDOLF CARNAP  
 
UNIVERSITY OF CHICAGO  
           November 1951 
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SUMMARY 
 
 

Part I. The λ-system. Inductive methods are here understood as methods of confirmation 
or of estimation. A method of confirmation determines the degree of confirmation of any 
hypothesis h (on the basis of anybody of evidence e (c(h,e)). A method of estimation determines 
an estimate for a magnitude x concerning the universe (or population) on the basis of evidence e 
concerning a sample from the universe (e(x,e)). The discussion in this monograph is restricted to 
some simple language-systems (in technical terms, the functional calculus of first order with 
identity). Measurable quantities are not expressible in these systems, but only properties of 
individuals; the only quantities occurring are cardinal numbers and relative frequencies of 
properties. Therefore, the discussion of estimation is here restricted to the estimation of the rela-
tive frequency of a property M in a finite universe (e(rf,M,e)). It is shown that there is a one-one 
correspondence between the confirmation-functions c and the estimate functions for relative 
frequency e. A given function c determines completely the corresponding function e and vice 
versa. A complete inductive method consists of a function c and the corresponding function e. 
The purpose of this monograph is to construct an ordered system of the inductive methods, a 
system which contains not only those methods which have so far been proposed or discussed by 
authors or probability or statistics but also an infinity of other methods. This system is a 
continuum; the transition from one method to another consists in the continuous variation of-

certain features. A system of this kind is practically useful only if each method can be charac-
terized by a small number of parameters. An analysis of the c- and e-functions leads to the 
surprising result that one parameter λ is sufficient; in other words, the continuum of inductive 
methods is one-dimensional. The possible values of λ are the nonnegative real numbers and ∞. 
Any value of λ determines completely a confirmation function cλ and the corresponding 
estimate-function eλ in the following sense. If a language-system L and a number λ are given, we 
can calculate the value of cλ(h,e) for any pair of sentences h,e (e must not be self-contradictory) 
in L and the value of eλ(rf,M,e) for any M and e in L. The meaning of λ may be indicated in 
nontechnical terms as follows. The values of c and e are influenced by two particular factors, one 
of which is of an empirical nature, the other of a logical nature. λ is the relative weight given to 
the logical factor, in comparison to the empirical factor, in the determination of the values of cλ 
and eλ. Let eM describe a sample of s individuals of which sM have the property M; let hM be the 
hypothesis that an individual outside the sample has the property M. It is shown that, for any λ, 
eλ(rf,M, eM) = cλ(hM, eM). For λ= 0, it is found that (1) c0(hM, eM) = sM /s, and (2) e0(rf,M, eM) = 
sM/s. We call (1) the straight rule of confirmation and (2) the straight rule of estimation. The 
latter says that the estimate of the relative frequency of M in the universe is equal to the relative 
frequency of M in the sample. The great majority of contemporary statisticians accept this rule; it 
is implied, e.g., by R. A. Fisher’s principle of maximum likelihood, by the principle of the  
preferability of unbiased estimate-functions, and by Reichenbach’s rule of induction. Laplace’s 
rule of succession, if we modify it in a suitable way so as to eliminate its inconsistency, leads to 
λ = 2. Some theoreticians (e.g., C. S. Peirce, Keynes, and Wittgenstein) have declared that all 
individual distributions (called ‘constitutions’) should be given equal probability a priori. This 
principle leads to λ = ∞. It is shown that the values of c∞(hM, eM) and e∞(rf,M, eM) are 
independent of eM. To let the esti- 



mate of the relative frequency of M in the universe not be influenced by past observations 
concerning M obviously cannot be regarded as sound inductive reasoning. Therefore, the method 
characterized by λ = ∞ is unacceptable. It is found that the method of the straight rule (λ = 0) also 
has certain inadequacies, though not such serious ones as the method of λ = ∞. 

Part II. Comparison of the success of inductive methods. Let a language-system L for a 
finite universe and in it a state-description k be given, i.e., a complete description of a possible 
state (not necessarily the actual state) of the universe. We regard an inductive method 
characterized by λas the more successful in k, the smaller the mean square error of the estimates 
supplied by the function eλ, for the relative frequency of the strongest properties expressible in L 
(the Q-properties) on the basis of all possible samples of the fixed size s. For any state-
description k, we can easily determine that value of λ for which the mean square error has its 
minimum; we denote this value by ‘λ∆’. The method characterized by λ∆ is called the optimum 
method for k. It is found that λ∆ is independent of s; thus, for any given k, there is one optimum 
method of estimation, irrespective of the size of the samples to which it is applied. And, con-
versely, for any method characterized by any λ, there are state-descriptions for which this 
method is the optimum one. If a state-description is homogeneous, i.e., all individuals are 
completely alike so that there is maximum uniformity or degree of order, then λ∆ = 0; in other 
words, the straight rule is the optimum method. If a state-description is such that the Q-properties 
have equal frequencies (minimum uniformity), then λ∆ = ∞. In any other case, with intermediate 
uniformity, λ∆ has an intermediate value, i.e., it is positive and finite. Since an observer knows at 
any time only a sample, not the whole universe, he cannot determine the optimum method for the 
actual universe. However, as soon as he observes any nonhomogeneous sample, he knows that 
the universe is nonhomogeneous. It is shown that he can then determine a positive λ′ such that, in 
the universe as a whole, the mean square error for λ′ is smaller than that for λ = 0; in other words, 
the method of λ′ is, with deductive certainty, more successful in the actual universe than the 
method of the straight rule. This result seems to be a serious argument against the straight rule, 
and thereby against the customary preference for unbiased estimate-functions and against the 
principle of maximum likelihood. 

In the Appendix, the estimate-function for relative frequency to which Wald’s minimax 
principle leads is examined. It is shown that it has some serious disadvantages. A related 
function is defined, which is free of the disadvantages and which belongs to the λ-system. 



PART I 
 

THE λ-SYSTEM 
 

§ 1. The Situation in the Theory of Inductive Methods 
 

Any reasoning or inference in science belongs to one of two kinds: either it yields 
certainty in the sense that the conclusion is necessarily true, provided that the premises are true, 
or it does not. The first kind is that of deductive inference including all transformations or 
calculations in pure mathematics (arithmetic, algebra, analysis, etc.). The second kind will here 
be called ‘inductive inference’. Thus this term is used here in a much wider sense than in 
traditional terminology; it covers all nondeductive inference. 

Inductive inference is clearly of fundamental importance in any field of science from 
physics to history. Any specific investigation in any field is focused in a hypothesis or a set of 
competitive hypotheses. A hypothesis may be a prediction of a single event (the weather for 
tomorrow, the result of an experiment, the outcome of the next presidential election) or of a 
general trend (decrease in the rate of death by cancer, increase in unemployment) ; it may be a 
law, e.g., in physics or, physiology or economics; its form may be deterministic or statistical (in 
terms of frequencies, averages, or the like). The scientist takes as a basis the observational 
evidence at hand or makes efforts to gather new evidence relevant for his hypothesis. Then he 
tries to arrive at a judgment concerning the hypothesis based on the evidence and to decide 
whether to accept or reject the hypothesis. The judgment is obviously of an inductive nature; the 
scientist is aware that at any future time when new evidence is found he may have to revise his 
judgment concerning the status of the hypothesis in question. The new evidence may be 
favorable or unfavorable or irrelevant to the hypothesis. That it is favorable means that the 
hypothesis is now confirmed more strongly than before; if the increase in confirmation is large 
enough, a previously rejected hypothesis may now be accepted. Instead of examining a given 
hypothesis, the scientist may try to arrive at a quantitative estimate for the unknown value of 
some magnitude. For example, lie may wish to estimate, on the basis of his evidence, the amount 
of rain for tomorrow, the number of votes for a certain candidate, the rate of increase in 
unemployment. Estimation is likewise an inductive procedure, 



because there is no guaranty that the actual value of the magnitude will turn out to be close, let 
alone exactly equal, to the estimated value.  

This monograph will be concerned with the two kinds of inductive methods just 
indicated, methods of confirmation and methods of estimation, both taken in a form that leads to 
numerical values. We say that a person X possesses a method of confirmation if he is able to 
determine in some way (not necessarily by explicitly formulated rules), at least in certain cases 
of a hypothesis h and a body of evidence e, a numerical value which he regards as the degree of 
confirmation of h with respect to e; in other words, if there is a numerical function c(h,e,) which 
has values for at least some pairs of sentences h,e and which represents to X the degree of 
confirmation of h on the basis of e. (I use the term ‘sentence’ as synonymous with ‘declarative 
sentence’ or ‘statement’.) For reasons to be explained soon, our present discussions of methods 
of estimation will be restricted to the estimation of one kind of magnitude, viz., the relative 
frequency (henceforth abbreviated by ‘rf’) of a property M in a class K with respect to a given 
body of evidence e; the elements of K are “unobserved”, i.e., not described in e. We say that X 
possesses a method of estimation of this kind if he knows a way of determining, at least for 
certain cases of e, M, and K, a numerical value which he accepts as an estimate of rf of M in K 
with respect to e; in other words, if there is an estimate-function e(rf,M,K,e) which has values for 
at least some triples M,K,e of the kind specified, and which represents to X the estimate of the rf 
of M in K on the basis of e. 

Instead of ‘degree of confirmation’, the term ‘probability’ is often used.1 Here I shall 
avoid. the latter term bee: use of its ambiguity. It seems to me that, in scientific contexts, the 
word ‘probability’ is chiefly used in the following two senses.2 In its first sense it denotes a 
logical relation between two propositions or sentences, expressing the degree of confirmation or 
strength of support that is given to a hypothesis by a body of evidence. The term is used in this 
sense by John Maynard Keynes,3 Harold Jeffreys,4 C. I. Lewis,5 Donald Williams,6 and others; 
the same  
 

1. R. Carnap, Logical foundations of probability (Probability and induction, Vol. 1) (Chicago: University 
of Chicago Press, 1950), henceforth referred to by ‘[I]’. A second volume, referred to by ‘[II]’, is in preparation. 

2. See [I], § 9, or the earlier paper “The two concepts of probability,” Philos. and Phen. Research, 5 (1915), 
513-32, reprinted in: H. Feigl and W. Sellars (eds.), Readings in philosophical analysis (New York, 1949). 

3. J. M. Keynes, A treatise on probability (London and New York, 1921; 2d ed., 1929).  
4. H. Jeffreys, Theory of probability (Oxford, 1939). 
5. C. I. Lewis, An analysis of knowledge and valuation (LaSalle, Ill., 1946).  
6. D. Williams, The ground of induction (Cambridge, Mass., 1947). 



holds in my opinion (in agreement with the authors just mentioned) also for the classical 
authors,7 especially Bernoulli, Bayes, and Laplace. The word ‘probability’ in its second sense 
means an empirical relation between a property M and a reference-class K, representing the 
relative frequency in the long run (sometimes defined as the limit in an infinite sequence) of M in 
K. It is used in this sense by Richard von Mises,8 Hans Reichenbach,9 and in contemporary 
mathematical statistics (e.g., by R. A. Fisher,10 Harald Cramér,11 S. S. Wilks,12 Jerzy 
Neyman,13,14 E. S. Pearson,14 A. Wald,15 DI. G. Kendall,16 and others). It seems to me that there 
is no point in debating the question as to which of the two is “the right sense” of the word. Both 
concepts, though fundamentally different, have an important function in science under whatever 
name; the first has its place in inductive logic and hence in the methodology of science, the sec-
ond in mathematical statistics and its applications. 

Suppose that X1 uses a method of confirmation represented by the function c1(h,e), and X2 
uses one represented by c2(h,e). We say that these two methods are incompatible if they lead 
sometimes to different numerical results; i.e., if there is at least one pair of sentences h,e such 
that c1(h,e) ≠ c2(h,e). Analogously, let X1 use a method of estimation for rf, represented by 
e1(rf,M,K,e), and X2 one represented by e2(rf,M,K,e). Here again we regard the two given 
methods as incompatible if they sometimes yield different values, i.e., if there is at least one 
triple M,K,e, such that e1(rf,M,K,e) ≠ e2(rf,M,K,e). 

If we look at the contemporary situation in the field of. inductive logic, the theory of 
inductive inferences, we notice the remarkable fact that a variety of mutually incompatible 
inductive methods are proposed and  
 

7. Compare [I], § 12B. 
8. R. von Mises, Wahrscheinlichkeitsecchnung (Wien, 1931), Probability, statistics, and truth (New York, 

1939). 
9. H. Reichenbach, The theory of probability (Berkeley, 1949). 
10. R. A. Fisher, “On the mathematical foundations of theoretical statistics,” Philos. Transactions of the 

Royal Society, Ser. A, 222 (1922), 309-68; The design of experiments (Edinburgh and London, 1935, and later 
editions). 

11. H. Cramér, Mathematical methods of statistics (Princeton, 1946).  
12. S. S. Wilks, Mathematical statistics (Princeton, 1943). 
13. J. Neyman, Lectures and conferences on mathematical statistics (Washington, D.C., 1938). 
14. J. Neyman and E. S. Pearson, “Contributions to the theory of testing statistical hypotheses,” Statistical 

Research Memoirs, 1 (1936), 1-37; 2 (1938), 25-57. 
15. A. Wald, On the principles of statistical inference (Notre Dame, 1942). 
16. M. G. Kendall, Advanced theory of statistics, Vol. I (London, 1943; 4th ed., 1948), Vol. II (1946; 2d 

ed., 1948). 



discussed by authors of theoretical treatises and applied in practical work by scientists and 
statisticians. None of the authors is able to convince the others that their methods are invalid. I 
shall not try to decide the difficult question whether the situation in inductive logic is in this 
respect fundamentally different from that in deductive logic, including mathematics. One might 
point out the fact that in the latter field, likewise, we find differences of opinion concerning the 
validity of certain inferences. (For example, most mathematicians would regard as valid the 
indirect proof of an existential sentence of the form ‘There is a number with the property P’ 
based on the derivation of a contradiction from the sentence ‘All numbers have the property non-
P; but intuitionists like L. E. J. Brouwer and H. Weyl would reject it.) Furthermore, there are 
alternative systems of multivalued logic. On the other hand, one might perhaps regard differ-
ences of these kinds as based on different interpretations of the basic logical terms rather than as 
genuine differences in opinion, i.e., incompatible answers to the same question. Whatever the 
solution of this philosophical problem may be, it seems to me that there can hardly be any doubt 
about the historical fact that, as matters stand today, the differences of opinion concerning the 
validity of inductive methods go much deeper and are much more extensive in their scope than 
the differences in deductive logic. Most of the latter differences seem to reduce either to the case 
that the same sentence is interpreted in two different ways or to the case that only one of the two 
parties assigns any interpretation to a given formula, while the other declares it meaningless, i.e., 
not a genuine sentence. (This is, for example, done by intuitionists with respect to the existential 
sentence in the earlier example as long as no instance for it is constructed.) An analogous 
situation occurs frequently in inductive logic: one method assigns a value of degree of 
confirmation to a given pair of sentences h,e, while another method assigns no value and thus 
declares ‘c(h,e)’ as meaningless. A difference of this kind is rather harmless. But here, in the 
field of inductive logic, we frequently find differences which are far more critical, namely, cases 
in which two methods assign different values. It even occurs sometimes that one method assigns 
to a given pair h,e the maximum value of c (1, according to a customary convention), while 
another method assigns to the same pair the minimum value (0). [For example, let λ be a 
universal factual sentence in an infinite universe (e.g., ‘All ravens are black’), and e describe a 
finite sample of positive instances (e.g., a sample of ten ravens, all of them black). Then one of 
the methods to be discussed later (the straight rule) takes c(h,e) = 1, and another one (c*) assigns 
the value 0,] In view of the situation described, 



another deep philosophical problem arises. The fact that there are at present time irreconcilable 
differences may be merely a matter of historical contingency due to the present lack of 
knowledge in the field of inductive logic. If so, it would be conceivable that at some future time, 
on the basis of deeper insight, all will agree that a certain inductive method is the only valid one. 
On the other hand, it may be that the multiplicity of mutually incompatible methods is an 
essential characteristic of inductive logic, so that it would be meaningless to talk of “the one 
valid method.” This does not necessarily imply that the choice of an inductive method is merely 
a matter of whim. It may still be possible to judge inductive methods as being more or less 
adequate. However, questions o this kind would then not be purely theoretical but rather of a 
pragmatic nature. A method would here be judged as a more or less suitable instrument for a 
certain purpose. I shall not try to discuss this problem here still less to solve it; but I may indicate 
that at the present time I am more inclined to think in the direction of the second answer. In the 
later part of this monograph some of the points which are relevant for judgment concerning the 
adequacy of inductive methods will be discussed. 
 
 
2. Our Task: The Construction of a Continuum of Inductive Methods 
 

In view of the multiplicity of inductive methods, the scientist who wants to apply a 
method is compelled to make a choice. Now the main point is that the scientist should be given, 
as a basis for his choice, not simply the list of those inductive methods which have been 
proposed or considered so far but a systematic survey of all possible inductive methods. It would 
not do merely to enlarge the list, which now comprises perhaps a dozen or so methods, by adding 
some dozens or hundreds of new methods. The system of possible inductive methods is a 
continuum. The few methods now known represent just a few points picked out from the 
continuum by the hazards of historical and psychological circumstances. 

It will be our task to order the possible inductive methods into a system in such a manner 
that the nature of any particular method determines its place in the system. If possible, it would 
be especially useful to find a system for which the inverse also holds: the position of a method in 
the system, described by the values of the co-ordinates or parameters, uniquely determines the 
method. An n-dimensional system of this kind would fulfil the following two conditions: (1) if 
any method is given, we can determine for it a particular set of n numerical values p1, p2, …, pn, 
called the parameters of the method; and (2) any such set of n parameter values characterizes 
uniquely and completely an inductive method with 



respect to the values of c and e. The meaning of this complete characterization will later be made 
more exact (§ 10). 

It is clear that it would have great advantages if a parameter system of this kind could be 
found with a number n which was not only finite but sufficiently small for easy practical 
manipulation. The investigation of entities of some kind in any branch of science applying the 
quantitative method has often been greatly helped by the introduction of parameters 
characteristic of the entities. A procedure of this kind not only facilitates the comparison of 
entities already known but supplies a convenient survey of the totality of possible entities of the 
kind in question and thus leads to the study of new entities by varying the parameter values of 
known ones. Special advantages result if the system is continuous, that is, if all real numbers or 
those of given intervals serve as parameter values. In this case, it is possible to study the change 
in the nature of the entities due to a continuous variation of the parameters; the convenient and 
fruitful methods of the differential and integral calculus are applicable; it is easily possible to 
find those entities which possess a certain characteristic in a minimum or maximum degree; and 
so on. In the case of inductive methods a parameter system would enable us not only to compare 
any two of the historically given methods in a more exact way than was possible so far but also 
to study new methods quantitatively. It would be easy to discover one or several new methods 
which fulfil any given condition or which are most useful for a specified purpose. 

It is the purpose of this monograph to discover a way which leads to the construction of a 
parameter system of inductive methods. The resulting system will be called the λ-system. No 
attempt is made to include in the system all conceivable inductive methods. This would be 
useless, because most of the methods which one could arbitrarily construct in the form of a c- or 
e-function would be entirely inadequate for the purpose of inductive application. No one would 
even consider them as possible methods of confirmation or of estimation because their use would 
be in conflict with the implicitly accepted basic principles of inductive reasoning (e.g., any 
method of estimation represented by a function e(rf,M,K,e) of such a kind that its value would be 
lower, the higher the rf of M in the sample described in e). However, the methods contained in 
the λ-system, called the λ -methods, do not constitute a narrow selection but an infinite class and, 
moreover, a continuum which contains, among others, the historically known methods and those 
others which are related to them by sharing with them their fundamental features but differ from 
them through a continuous variation of certain of their characteristics. 



3. Preliminary Explanations 
 

Before we begin the analysis of inductive methods which is to lead to the λ-system, a few 
concepts have to be explained. These explanations are necessarily brief and not quite exact but, I 
hope, practically sufficient for an understanding of this monograph. For exact definitions and 
detailed explanations the reader is referred to [I]. A more detailed treatment of the λ-system will 
be given in [II]. 

The present monograph, like my previous publications, studies inductive logic in 
application not to the whole language of science but to simple language systems L.17 A system 
L π

N  of this kind contains a finite number N of individual constants (‘a1’, ‘a2’, . . . , aN’), which 
stand for individuals (things, events, or positions), and a finite number π of primitive predicates 
(‘P1’, ‘P2’, . . . , ‘Pπ’) which designate primitive properties of the individuals. For the sake of 
simplicity, we shall disregard in the present context the infinite system L∞. This does not involve 
an essential restriction in generality, because we assume that in any inductive method dealing 
with an infinite universe of discourse the value of c is the limit of the values in finite systems LN 
for N → ∞,18 and analogously for the values of e. It seems that this assumption is in accord with 
the historically given methods.  

An atomic sentence consists of a primitive predicate and an individual constant (e.g., 
‘P2a5

,, ‘the individual a5 has the property P2’). Other molecular sentences are formed out of 
atomic ones with the help of the customary connectives of negation (‘~’, ‘not’), disjunction (‘ ∨ ’, 
‘or’), and conjunction (‘.’, ‘and’). Analogously, other molecular predicate expressions are 
formed out of primitive predicates with the help of connectives (e.g., ‘P1 . ~P2’, ‘P1 and not P2’). 
A sentence consisting of a predicate or a compound predicate expression and an individual 
constant is called a full sentence of the predicate or predicate expression or of the property 
designated by it. The systems contain individual variables with quantifiers for the formulation of 
universal and existential sentences (‘for every individual, . . .’, ‘then is an individual such that 
…’). ‘=’ is a sign of identity between individuals. With its help, numerical statements can be 
formulated (e.g., ‘there are at least two individuals with the property M’ is rendered in the form 
‘there are individuals x, y, such that x is M and y is M and x is not identical with y’). No other 
primitive symbols occur in the systems L. Thus measurable quantities (like length, mass, etc.) 
cannot be expressed but absolute frequencies (cardinal numbers of classes or properties) and 
hence relative frequencies can be expressed. For this reason we restrict 

 
 17. [I], §§ 15, 16. 18. See [I], §§ 54A, 56. 



the discussion of estimation to the estimation of relative frequency (rf). This is, of course, a very 
narrow restriction. It is, however, to be noted that rf belongs to the most basic and most 
important magnitudes for statistical inference and estimation. Certain coefficients measuring the 
dependence of properties, e.g., the coefficient of association of two properties and, for a 
contingency table, Pearson’s coefficient of mean square contingency or other related 
coefficients, are, of course, determined by the relative frequencies of the properties involved. 
Whether and how the basic ideas of this monograph can be transferred to more comprehensive 
language-systems involving measurable quantities remains a question for the future. 

Any sentence is either L-true (logically true, analytic, e.g., ‘Pa ∨  ~Pa’) , or L-false 
(logically false, self -contradictory, e.g., ‘Pa . ~Pa’} or factual  (synthetic, e.g., ‘P1a3 ∨  P2a6’).19 
Correspondingly, the molecular predicate expressions and the properties designated by them are 
divided into three kinds: (1) L-universal (e.g., ‘P ∨  ~P’; every full sentence is L-true), (2) L-
empty (e.g., ‘P . ~P’; every full sentence is L-false), (3) factual (e.g., ‘P1 . ~P2’; every full 
sentence is factual).20 Furthermore, logical relations among sentences can be defined, e.g., L-
implication (logical implication, deducibility), L-equivalence (mutual logical implication), and L-
exclusion (mutual logical incompatibility). We shall use ‘t’ as an abbreviation for a particular 
tautology (i.e., an L-true molecular sentence, e.g., ‘Pa ∨ ~Pa’). 

Of especial importance are those molecular properties which are defined by a conjunction 
in which every primitive predicate occurs either unnegated or negated. They are called Q-
properties and are designated by ‘Q1’, ‘Q2’, … , ‘QK’.21 Obviously, their number K = 2π. For 
example, for π = 3 there are 8 Q’s: 

 
P1 . P2 . P3 Q1      ~Pl . P2 . P3 Q5 
P1 . P2 . ~P3 Q2      ~PI . P2 . ~P3 Q6 
Pl . ~P2 . P3 Q3      ~P1 . ~P2 . P3 Q7 
Pl . ~P2 . ~P3 Q4      ~Pl . ~P2 . ~P3 Q8 
 
The Q-properties of a system L are the strongest non-L-empty properties expressible in L. If M is 
any non-L-empty molecular property in L, then M is uniquely analyzable into a disjunction of 
Q’s or one Q. Let w be. the number of these Q’s. w is called the (logical) width of M; if M is L-
empty,  
 

19. [1], § 20. 
20. [1], § 25.     21. [1], § 31. 



we assign to it the width w = 0. If w is the width of M, w/K is its relative width.22 The following 
table gives examples of predicate-expressions in the system L3, i.e., for π = 3, K = 8. 
 

Predicate 
Expression 

Logical 
Nature 

Transformed in 
Terms of Q’s 

Width 
w 

Relative
Width 
w/K 

    P2 . ~P2 
    P1. P2 . P3 
    P1 . ~P2 
    P1 . (P2 ∨  P3) 
    P1 
    P1 ∨ (P2 . P3) 
    P1 ∨  P2 
    P1 ∨  P2 ∨ P3 
    P1 ∨ ~P1  

     L-empty 
 
 
 
     Factual 
 
 
 
     L-universal 

 
    Q1 
    Q1 ∨ Q2 
    Q1 ∨ Q2 ∨ Q3 
    Q1 ∨ Q2 ∨ Q3 ∨ Q4 
    Q1 ∨ Q2 ∨ Q3 ∨ Q4 ∨ Q5 
    Q1 ∨ Q2 ∨ Q3 ∨ Q4 ∨ Q5 ∨ Q6 
    Q1 ∨ Q2 ∨ Q3 ∨ Q4 ∨ Q5 ∨ Q6 ∨ Q7 
    Q1 ∨ Q2 ∨ Q3 ∨ Q4 ∨ Q5 ∨ Q6 ∨ Q7 ∨ Q8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
⅛ 
¼ 
⅜ 
½ 
⅝ 
¾ 
⅞ 
1 

 
A state-description23 in a system LN is a conjunction containing as components for every 

atomic sentence either it, or its negation, but not both, and no other sentences. Thus a state-
description describes completely a possible state of the universe of discourse consisting of the N 
individuals of the system in question. A state-description can be transformed into another, L-
equivalent form, called its Q-form; this is a conjunction of N Q-sentences, one for each of the N 
individual constants of the system. For any sentence j in the system, the class of those state-
descriptions in which j holds, i.e., each of which L-implies j, is called the range of j.24 The range 
of j is null if and only if j is L-false; in any other case j is L-equivalent to the disjunction of the 
state-descriptions in its range. 
 
 
§ 4. The Characteristic Function of an Inductive Method 
 

In preparation for the parameter system to be constructed later, we shall now make a 
study of possible inductive methods. This will lead to a class of mathematical functions such that 
every inductive method can be characterized by exactly one function of this class. 

We begin with methods of confirmation; methods of estimation will analyzed later (§ 6). 
A method of confirmation is represented by a function c(h,e). This is not a mathematical 
function; although its values are numbers, the two arguments are not numbers but sentences. Our 
first aim is to find another way of characterizing any given method of conformation a way that 
uses a mathematical function instead of a c-function. 

 
 
22. [1], § 32.    23,24. [1], § 18. 



A c-function assigns a real number to every pair of sentences h,e of its domain. We 
presuppose, as is customary, that e is not L-false.25 [Some customary methods require that e be 
factual; thus they exclude not only L-false but also L-true sentences as evidence. We shall, 
however, not demand this condition.] 

We assume that any method of confirmation which is to be included in our λ-system can 
be represented by a c-function which fulfils ten conditions Cl-C10. C1-C9 will be stated in this 
section, C10 in § 8. 

 
C1. If h and h′ are L-equivalent, c(h,e) = c(h′,e).  
C2. If e and e′ are L-equivalent, c(h,e) = c(h,e′). 
C3. General multiplication principle: c(h . h′,e) = c(h,e) × c(h′,e . h).  
C4. Special addition principle: If h and h′’ are L-exclusive on the basis of e (i.e., e . h . h′ 

is L-false), then c(h ∨  h′,e)= c(h,e) + c(h′,e). 
C5. 0 ≤ c(h,e) ≤ l. 
 

These principles have generally been accepted since the times of the classical calculus of 
probability.26 The first two are obvious, since L-equivalent sentences have the same factual 
content. C3 and C4 are essential. C5 is an inessential stipulation concerning the range of values 
of c. 

We shall now introduce some notations for sentences of special forms, which will be 
used throughout the subsequent discussions. Let eQ be a conjunction of s Q-sentences with s 
distinct individual constants, among them s1 with ‘Q1’, s2 with ‘Q2’, .... sK with ‘QK’; hence s1 + 
s2 + . . . + sK = s. Let h1 be a full sentence of ‘Q1’ with an individual constant not occurring in eQ; 
and h2, . . . , hK full sentences of ‘Q2, …, QK’, respectively, with the same individual constant. eQ 
may be regarded as a description of an observed sample of size s, and any hypothesis of the form 
hi (i = 1, 2, . . . , K) as a prediction concerning an individual not yet observed. Let e1 be formed 
from eQ by replacing every Q-predicate different from ‘Q1’ by ‘~Q1’ (e.g., ‘Q3a5’ is replaced by 
‘~Q1a5’). Let e2, ..., eK be formed analogously. Thus any sentence of the form ei describes the 
same sample as eQ but in a less specific way; it ascribes the property Qi to the same si individuals 
as eQ does; but of the other s – si individuals it says merely that they are not Qi, without 
specifying which of the other Q’s each of them has. Let M be a factual molecular property with 
the width w (0 < w <K); hence M is a disjunction of w Q’s, of which we say that they are “in M”. 
Let eM be formed from eQ by replacing every Q-predicate which is in M by ‘M’ and every other 
one by ‘~M’. 

 
25. [I], §§ 52, 55A.  26. [I], § 53. 



Then eM is a conjunction of sM full sentences of ‘M’ and s – sM negations of full sentences of ‘M’, 
and 
 
(4-1) sM = ∑

Miin  

si, where the sum runs over the subscripts i of those Q’s which are in M. 

 
Thus eM describes the same sample as eQ,_but it says of each individual only whether it is M or 
not. (Any ei is a special case of eM with Qi as M.) Let hM be the full sentence of ‘M’ with the 
same individual constant as in h1. Hence hM is L-equivalent to a disjunction of w hypotheses hi 
with the Q’s in M. Since these hypotheses are L-exclusive of one another, we have, according to 
the special addition principle (C4) 
 
(4-2) For any e, c(hM,e) = ∑

Miin  

c(hi,e). 

 
For the sake of greater generality, we admit also the case of an empty sample, that is, s = 0; in 
this case eQ (and likewise any ei and eM) gives no factual information; it is an L-true sentence, 
e.g., the tautology ‘t’. 

The inductive inference from an evidence describing a sample to a hypothesis concerning 
an individual not belonging to the sample, in other words, the determination of the value of 
c(h1,e1), c(hM,eM), and the like, is known as the singular predictive inference.27 It is of basic 
importance for inductive logic. As we shall see later (§ 5), all other cases are reducible to this 
one in the sense that, if the values of a c-function for cases of the kind c(hi,ei) are given, all other 
values can be derived. 

We shall now lay down some further assumptions concerning the c-functions of the λ-
system. In accordance with all historically given methods, we may assume that it has no 
influence on the value of c(h,e), where h and e contain no variables, whether in addition to the 
individuals mentioned in h and e there are still other individuals in the universe of discourse or 
not. We shall state in C6 this condition for the special case of c(hi,ei); the general condition just 
given follows from C6. 
 

C6. For given sentences hi and ei (and given π primitive predicates), the value of c(hi,ei) 
is the same in all systems L π

N  in which the two sentences occur, independently of N.28 
In agreement with all known methods, we may assume that c treats all individuals on a 

par so that only their numbers influence the values of c. This assumption is stated in C7 in 
technical terms, as a condition for the admission of c to our λ-system. 
 

27. See [I], § 44B,   28. [I], § 57B. 



C7. c is symmetrical with respect to the individual constants, in the following sense.29 If 
h′ and e′ are formed from h and e, respectively, by exchanging two individual constants (i.e., by 
replacing each occurrence of the one constant in h and in e by the other constant and vice versa), 
then c(h,e) = c(h′,e′). 

 
In an analogous way, we may assume that c treats all Q’s on a par. This condition is 

formulated in technical terms in C8, which is analogous to C7: 
 
C8. c is symmetrical with respect to the Q-predicates, in the following sense. If h′ and e′ 

are formed from h and e, respectively, by exchanging two Q-predicates, then c(h,e) = c(h′,e′). 
 
C9. For any M, c(hM,eM) = c(hM,eQ). 

 
This condition seems to be accepted generally, in most cases tacitly. For example, the probability 
(in the logical sense) that the next throw of a given die will yield an odd number is generally 
regarded as depending merely on the number of odd results and the number of even results ob-
tained so far with this die; it is assumed that it makes no difference whether a particular previous 
result is recorded merely as ‘odd’ or more specifically as ‘l’ or ‘3’ or ‘5’, whether merely as 
‘even’ or rather as ‘2’ or ‘4’ or ‘6’. (Note that the additional information in eQ is regarded as 
irrelevant only for the particularly hypothesis hM; it is, of course, quite relevant for certain other 
hypotheses.) 
 
From C9 with Qi for M: 
 
(4-4) For any i, c(hi,ei) = c(hi,eQ).  
 
From C9 and (4-2) 
 
(4-5) For any M, c(hM,eM) = ∑

Miin  

 c(hi,eQ) ∑
Miin  

 c(hi,ei). 

 
Suppose that a method of confirmation is given, applicable to sentences of the forms e1 

and hl. It cannot be given by an enumeration of the values of c for a list of cases because the 
number of cases is infinite. Therefore, it must be given by general rules which constitute a 
definition of the function c. The value of c for any two sentences of the forms hl and e1 in a 
system L π

N must thus depend upon—in other words, be a function of—certain magnitudes 
determined by those two sentences and the system. Let us examine the magnitudes which may 
possibly be arguments of the function in question. First, there are the two numbers N and π 
which are  

 
29. [I], §§ 90, 91. 



characteristic of the language system and hence are given with it. However, N is irrelevant for 
c(h1,e1) according to C6. The number K of Q’s in the system is uniquely determined by π (K = 2π) 
and vice versa. Hence we may take K instead of π as an argument. K may be regarded as a 
logical, i.e., nonempirical, magnitude. There are, furthermore, empirical magnitudes involved, 
viz., the numbers s and s1, by which the observed sample is described in el. Since e1 contains 
individual constants, it tells us not only that s individuals belong to the sample and s1 of them are 
Q1, but also which particular individuals belong to the sample and which of them are Q1. But this 
information is irrelevant in virtue of C7. The one individual constant occurring in h1 is distinct 
from those in e1. However, according to C7, it does not matter otherwise which constant this is. 
Therefore, the consideration of h1 does not introduce any additional magnitude. Thus we arrive at 
the result that the value of c(h1,e1) is uniquely determined by K, s, and s1. An analogous result 
holds for any other Qi instead of Q1. Hence: 
 
(4-6) For any function c in the λ-system there is a mathematical function G such that for any Qi 

and any pair of sentences hi,ei in a system L π
N  with any values of N, K, s, and si, c(hi,ei) = 

G(K,s,si).  
 

We obtain from (4-6) with (4-5): 
 
(4-7) For any M, c(hM,eM) = ∑

Miin  

 G(K,s,si), 

and with (4-4): 
 
(4-8) For any i, c(hi,eQ) = G(K,s,si). 
 

We call G the characteristic function of the given method of confirmation or of its c-
function. If various methods of confirmation are given, represented by several functions c, c′, 
etc., then we can determine their several characteristic functions G, G′, etc., with the help of (4-
6). We shall soon find that these G-functions deserve the attribute ‘characteristic’ inasmuch as 
each of them characterizes completely and uniquely: the corresponding c-function (§ 5). A G-
function is a mathematical function from triples of integers to real numbers of the closed interval 
(0,1). 

Let K sentences hi (i = 1 to K) be given, with any individual constant. Let h be their 
disjunction. Since h is L-true, its c on any evidence is 1. The sentences hi are mutually L-
exclusive. Therefore, according to the special addition principle (C4): 
 

∑
=

K

i 1
 c(hi,eQ) = c(h,eQ) = 1.



Hence with ‘t’ for eQ (s = si = 0):  
 
(4-9)   ∑ c(hi,t)= 1 
 
Now, according to C8: 
 
(4-10) The values c(hi,t) (i = 1 to K) are equal.  
 
Hence with (4-9) 
 
(4-11) For any c in the λ-system, any Qi and any hi, c(hi,t) = 1/K.  
 
Hence with (4-5) 
 
(4-12). For any c and any M with width w, c(hM,t) = w/ K.  
 
From (4-11) and (4-6), for s = si = 0: 
 
(4-13) For any characteristic function G in the λ -system, G(K,0,0) = 1/ K.  
 

If in our subsequent discussions a G-function is defined in such a way that the definition 
does not supply a value for G(K,0,0), then it will be understood that this value is to be determined 
according to the following convention: 

 
(4-14) Limit convention for G-functions. We take as value of G(K,0,0) lim

0→δ
(K,δ,δ). 

 
The value determined in this way must then, according to (4-13), be equal to 1/ K in order to 
qualify the given G-function for the λ -system. 
 
 
§ 5. A Characteristic Function Gives a Complete Characterization 
 

We shall now show that a characteristic function G(K,s,si) characterizes completely its 
method of confirmation. This means that, if a function G is given, we can determine the value of 
its c not only for the special sentences hi and ei (according to (4-6)) but for any pair of sentences 
h,e (e non-L-false) in any system L π

n . The proof of this result is somewhat more technical than 
oar former discussions; a reader who is satisfied with the result itself may skip over this section. 

Let G(K,s,si) be a given characteristic function. We shall show how the values of a 
confirmation function c can be determined with the help of G.  

The c-values for any sentences are reducible, as we shall see, to c-values with respect to 
the tautological evidence ‘t’ (“probability a priori” in the classical terminology). For the latter 
values we introduce the notation ‘m’  

 
(5-1) m(h) = c(h,t). 
 

Thus, for every c-function, there is a corresponding m-function defined by (5-1). The m-
value of any sentence is reducible to the m-values of state- 



descriptions, as we shall see. Therefore, we begin with a consideration of state-descriptions. 
We consider a state-description in Q-form, i.e:, a conjunction k of N Q-sentences with the 

N individual constants of the system in question. We arrange the components of k in the 
following order: first, the full sentences of ‘Q1’, if any, in an arbitrary order; let their number be 
N1 (0 ≤ N1 ≤ N); then the N2 full sentences of ‘Q2’, etc.; finally, the NK full sentences of ‘QK’. The 
numbers Ni (i = 1 to K) are called the Q-numbers in k; their sum is N. Let the Q-sentences in this 
order be j1, j2, . . . , jN; hence k is j1 • j2 • . . . • jN. Let kn (n = 1 to N) be the conjunction of the n 
first j-sentences: j1 • . . . • jN. Then, for n ≥ 2, kn is kn-1 • jn. Therefore, according to the general 
multiplication principle (C3, § 4): 
 
(5-2)   c(kn,t) = c(kn-1,t) × c(jn,kn-1), 
 
since kn-1 • t is L-equivalent to kn-1. Applying this result successively to n = N, N − 1, . . . , 2, and 
noting that k1 is j1 and kN is k, we obtain; 
 
(5-3) m(k) = c(k,t) = c(jl,t) × c(j2,k1) × c(j3,k2) . . . × c(jN, kN-1).  
 
Now we consider a particular predicate ‘Qi’ occurring in the conjunction k. k contains Ni 
sentences with this predicate. Let mi be the number of those components in k which precede the 

first Q-sentence (hence, if i = 1, mi = 0, and, for i > 1, mi = ∑
−

=

1

1

i

p
Np). The Ni Qi-sentences 

are
iiii Nmmm jjj +++ ,...,, 21 . Consider the terms for these j-sentences in the product on the right-hand 

side of (5-3). Let us first assume that ‘Qi’ is not the first Q-predicate: occurring in k; hence mi >  
0. Then the first of the terms mentioned is c( 1+imj ,

imk ).
imk is a conjunction of mi Q-sentences, 

none of them with ‘Qi’. 1+imj is a full sentence of ‘Qi’with an individual constant not occurring in 

imk . Thus the two arguments of c here have the forms of hi and eQ, with s = mi and si = 0. Hence 
the first term is, according to (4-8), G(K, mi,0). If, on the other hand, ‘Qi’ is the first Q-predicate 
in k, and hence mi = 0, then the, first term is c(j1,t); this, by (4-11), is always 1/K. Here, s = 0 and 
si = 0; thus the first term can be stated as G(K,0.0), which agrees with the former result G(K,mi,0) 
for mi = 0. The second term, no matter whether mi = 0 or mi > 0, is c( 2+imj , 1+imk ). Here the 
situation is analogous but with s = mi + 1 and si = l. Hence the second term is G(K,mi + 1,1). In 
this way it goes on; at each step, both, s and si are increased by 1. For the last term with ‘Qi’, s = 
mi + Ni − 1, and si = Ni − 1; hence the term is G(K,mi + Ni − 1, Ni − 1). Thus the partial product in 
(5-3) containing the terms with ‘Qi’ is 



∏
=

iN

p 1

G(K,mi + p − l,p − 1). The results for the partial products with other Q’s are analogous. Hence 

from (5-3): 
 

(5-4) For any state-description k with the Q-numbers Ni, m(k) = ∏∏
=i

N

p

i

1

G(K,mi + p − l,p 

− 1), where the first product runs through those values of i (from 1 to K) for which Ni > 0. The 
first term in the total product is always 1/K. 
 

Thus G determines the m-values for all state-descriptions. With their help the m-values of 
all other sentences can be determined, because the following can be proved with the special 
addition principle (C4, § 4):30  
(5-5) Let j be any sentence in the system L π

n . If j is L-false, m(j) = 0. Otherwise, m(j) is the 
sum of the m-values for the state-descriptions in the range of j. 

 
     Further, all c-values are reducible to m-values as follows:31  

 

(5-6) For any sentences h,e (m(e) ≠ 0), c(h,e) = 
)(
)(

e
he

m
m ⋅ . 

 
Thus a characteristic function G determines the value of its c for any pair of sentences h,e in any 
system L π

n , provided that e is not L-false. 
It can, moreover, be shown that a characteristic function G determines uniquely its 

function c in the following sense. Let c be any c-function which fulfils the conditions C1-C9 (§ 
4) and which has values for all sentence pairs h,e in a system L π

n  (e not L-false). Let the 
corresponding function G(K,s,si) be determined according to (4-6). If we now apply the pro-
cedure described above in (5-4), (5-5), and (5-6) for any sentence pair h,e, then (5-6) yields just 
that value of c(h,e) which the given function c has for h and e. In particular, if we take a pair of 
sentences of the forms hi and ei, then (5-6) supplies just that value c(hi,ei) which was used, ac-
cording to (4-6), for determining G(K,s,si). This can easily be shown with the help of the theory 
of c-functions developed in [I]. The result means, in effect, that any G-function determines at 
most one c-function fulfilling the conditions. (Obviously, not every arbitrarily chosen function 
G(K,s,si) determines a c-function fulfilling the conditions.) 

 
 

§6. Methods of Estimation 
 

We have assigned to each method of confirmation a characteristic function G. The 
analogous problem for the methods of estimation can now be solved easily because we can 
simply transfer the-G-functions from the former to the latter methods. The possibility of this 
procedure is due to a  

 
30. [I], § 54C.   31. [I], § 54B. 



very close relationship between the two kinds of methods. A one-one correspondence can be 
established which correlates with each method of confirmation a general method of estimation. 
This fact is of fundamental im. portance for the general theory of estimation but has so far not 
been sufficiently utilized. 

Let us briefly indicate the correspondence in its general form before we consider the 
special form which it obtains in application to the systems L. Suppose that a scientist X has 
chosen a method of confirmation applicable to the language of science as a whole or in his field 
of work, a language also containing quantitative magnitudes of various kinds. Let this method be 
represented by a particular function c applicable to the sentences of the language. Suppose 
further that X is now in search of a general method of estimation which could be applied to all 
quantitative magnitudes expressible in his language. We saw earlier that X has to choose from a 
great number, theoretically speaking, an infinite number, of mutually incompatible possible 
methods of estimation, many of which have actually been applied or discussed. There is, 
however, for any method of confirmation represented by a function c, one method of estimation 
which is based on c in the following way.32 We wish to define a function e such that e(f,u,e) is 
the estimate of the unknown value of a function f for an argument u (e.g., the length of the rod u, 
or the number of persons who will use a certain bus line at the date u) with respect to given 
evidence e. Let r1, r2, … , rn be n numbers which include all values of f(u) which are possible on 
the basis of e. Let h′l (l = 1, 2, . . . , n) be the hypothesis that f(u) = r1. Then we take as the 
estimate of f(u) the weighted mean of the possible values r1 with the c for these values as 
weights: 
 

(6-1)    e(f,u,e) = ∑
=

n

i 1
[r1 × c(h′l,e)]. 

 
The function e defined in this way on c is called the c-mean estimate-function. It is a general 
estimate-function, i.e., applicable to any kind of magnitude f. [We have assumed here for the 
sake of simplicity, that the set of possible values is finite. If it is infinite, e.g., an interval of the 
continuous scale of a measurable magnitude, then a modified definition is to be taken involving 
an integral instead of the sum. The basic idea, however, remains essentially the same.33] Since X 
has chosen the function c as his method of confirmation, it seems natural for him to choose the 
function e based on c as his method of estimation. He is, however, in no way compelled to make 
this particular choice. There is no incompatibility between any c-function and any e-function. 
Therefore, X may choose an estimate 
 

32. [I], §§ 41D, 98-100. 33. [I], § 100A. 



function e which is not defined on the basis of his function c or which is defined on c in a 
manner different from (6-1). 

The general procedure just outlined will now be applied to our language systems L. As 
mentioned earlier, we shall here apply estimation only to the relative frequency (rf) of a property 
M in a class K. K is here supposed to be defined by the enumeration of its elements;34 hence the 
cardinal number of K, say m, is given by the definition of K. There are m + 1 possible values for 
the absolute frequency of M in K (viz., 0, 1, 2, . . . , m) and likewise m + 1 possible values for the 
rf of M in K (viz., 0, 1/m, 2/m, … , 1). Therefore, we can lay down here a definition of the form 
(6-1):35 

 

(6-2) e(rf,M,K,e) = ∑
=

m

l 1
[(l/m) × c(h′l,e)]. 

 
Here, h′l is the hypothesis that exactly l elements of K have the property M. Numerical 
hypotheses of this form can be formulated in the systems L. If two functions e and c fulfil (6-2), 
we say that e is based upon c. 

We discussed earlier (§ 4) cases of the singular predictive inference, i.e., the application 
of any function c to sentences hM,eM, of a specified form concerning a property M. Now for cases 
of this kind there is an interesting connection between confirmation and (predictive) estimation 
of rf: the estimate of the rf of M, expressed by the function e based upon c, is equal to the value 
of c for hM,eM. The following theorem states this connection in a more general way.36 

 
(6-3) Let c be a function fulfilling the conditions C1-C9 (§ 4). Let e be the estimate-function 

for rf based on c. Let e be any non-L-false sentence. Let M be a molecular property, and h 
a sentence ascribing M to an individual not mentioned in e. Let K be any finite non-null 
class of individuals not mentioned in e. Then  

 
e(rf,M,K,e) = c(h,e) . 

 
This general theorem leads to the following results, if e is hased on c:  
 
(6-4)    e(rf,M,K,eM)  = c(hM,eM), 
(6-5)      = c(hM,eQ)     (C9), 
(6-6)      = ∑

Miin  

G(K,s,si)     (4-7), 

= ∑
Miin  

 c(hi,eQ) = ∑
Miin  

 c(hi,ei)   (4-5), 

(6-7)    e(rf,M,K,eQ)  = c(hM,eQ)     (6-3),  
(6-8)      = e(rf,M,K,eM)     (6-5). 
 
 

34. [I], § 15A.   35. [I] § 104.  36. [I], § 106, T106-1c. 



From (6-4) with Qi as M: 
 
(6-9)    e(rf,Qi,K,ei)  = c(hi,ei), 
(6-10)      = c(hi,eQ)     (4-4), 
(6-11)    e(rf,Qi,K,eQ) = c(hi,eQ)     (6-3),  
(6-12)      = e(rf,Qi,K,ei)     (6-10),  
 
From (6-8), (6-6), and (6-11) 
 
(6-13)    e(rf,M,K,eQ) = ∑

Miin  

 e(rf,Qi,K,eQ). 

 
The result (6-3) suggests a simple procedure for transferring our characteristic functions 

from methods of confirmation to methods of estimation for rf. Suppose that G is the 
characteristic function for a given c. This means, according to (4-6), that: 
 
(6-15)     c(hi,ei)= G(K,s,si).  
 
Hence we obtain with the help of (6-9): 
 
(6-16) If G is the characteristic function of c, and e is based upon c, then  
 

e(rf,Qi,K,ei)  = G(K,s,si). 
 
Therefore, we may regard the same function G also as the characteristic function for that 
estimate-function e which is based upon c. It determines the value of e for the predictive 
estimation of the rf of a Q. 

The result (6-16) holds only for a function e based on a given function c. It is not 
applicable to an estimate-function e for rf which is defined without reference to any c-function. 
But this result makes it appear natural to define in any case the characteristic function G of e by 
the same equation as in (6-16): 
 
(6-17) For any estimate-function e for rf, its characteristic function G is determined as follows: 
 

G(K,s,si) = e(rf,Qi,K,ei) 
 
That each of the magnitudes K, s, si might conceivably influence the value of e(rf,Qi,K,ei)is easy 
to see in analogy to the previous consideration concerning c (§ 4). The irrelevance of N is 
likewise easily seen. One might perhaps think that here the cardinal number m of K could be of 
influence. However, it seems that all historically know, estimate-functions for rf are independent 
of m. And certainly any e-function based upon any c-function which fulfils the conditions C1-C9 
is independent of m.37  
 

37. [I], § 106, T106-1d. 



Therefore, we require the same of all e-functions to be admitted to the λ-system. 
If any function e is given, no matter whether its definition does or does not involve a c-

function, we can determine its characteristic function G by (6-17). Now this function G 
determines uniquely and completely a function c, as we have seen (§ 5). Hence for any function 
e, there is a unique function c such that both have the same characteristic function and therefore e 
is based upon c. 

Thus the c-functions and the e-functions within our system are matched in pairs. A 
combined inductive method is represented by a function c and a function e based upon c and is 
characterized by a function G common to c and e. 

It can be shown that, for any estimate-function based upon a c-function, the estimate for 
the sum of two magnitudes is equal to the sum of the estimates of the two magnitudes ([I], T100-
2). Since the rf of the disjunction of two L-exclusive properties is the sum of their rf’s, the fol-
lowing holds: 
 
(6-18) Let e be any estimate-function of our system. Let M1 and M2 be L-exclusive molecular 

properties and M1,2 their disjunction. Then e(rf,M1,2,K,e) = e(rf,M1,K,e) + e(rf,M2,K,e). 
 
This follows also from (6-3) and the special addition principle for c (C4). (6-13) is a special case 
of (6-18). 

Since we apply the c-functions of the λ-system also in cases where the evidence is 
tautological, in other words, the sample is empty, we shall do the same with our estimate-
functions e, although this is not customary in present-day mathematical statistics. In particular, 
we obtain from (4-11) and (6-9): 
 
(6-19)    e(rf,Qi,K,t) = 1/K,  
 
and from (4-12) and (6-7): 
 
(6-20) For any M with width w, e(rf,M,K,t) = w/K. 
 
The result (6-19) seems quite plausible in view of the fact that the sum of the rf’s of the K Q’s in 
K is obviously 1, and hence the mean rf is 1/K (compare [I], § 107). 
 
 
§7. The Empirical Factor and the Logical Factor 
 

We have solved the first part of our problem: for each method of confirmation or of 
estimation of rf, there is a mathematical function G which characterizes that method completely. 
Now we approach the second, more 



difficult part of the problem: we wish to find a set of parameters for the complete 
characterization of any function G and thereby of the corresponding inductive method. The 
number of parameters involved must be finite and even small, because otherwise the procedure 
would not serve the intended purpose: the possibility of investigating old and new inductive 
methods by studying their characters determined completely by their parameters. 

Let us briefly look again at the ranges for the arguments and values of the functions G. π 
is the number of primitive predicates in a given system; it is a positive integer. Hence K = 2π, the 
number of Q’s, is a positive power of 2. s is the number of individuals in the sample described by 
ei, hence a nonnegative integer < N (usually positive, but we admit the case s = 0). si is a 
nonnegative integer ≤ s. The values of G are values of c or of an estimate of rf and hence are real 
numbers of the closed interval (0,1). (The range of values of a particular function G need not, of 
course, cover the whole interval; it may, e.g., be restricted to the rational numbers of the interval 
or to a part of them; but every real number of the interval may occur as value of some function 
G.) 

Now, if all possible mathematical functions with the ranges of arguments and values just 
specified could serve as characteristic functions of inductive methods, then our problem could 
not be solved. It is not even possible to characterize by a finite set of parameters all rational 
integral functions of the specified kind, since, e.g., the number of coefficients in a polynomial of 
one argument (a0 + a1u + a2u2 + a3u3 + . . .) may go beyond any bound. Thus, although the 
functions G have as arguments only three integers, it is not immediately apparent how it should 
be possible to find a finite and even small number of parameters for their characterization. 

A close examination of the situation shows, however, that the task is not so hopeless as it 
might appear at first glance. The decisive point is that the functions G are not any arbitrary 
mathematical functions (for the specified ranges of arguments and values) but characteristic 
functions for functions c and e. G(K,s,si) is intended to give the values of c(hi,ei) and e(rf,Qi, 
K,ei). Now the functions c and e characterized by G must somehow be in accord with sound ways 
of inductive reasoning. We have seen earlier that there is a great variety of inductive methods 
acknowledged and used by careful thinkers. Nevertheless, these methods have certain general 
characteristics in common. And there are, on the other hand, traits of such a kind that any 
function c or e showing one of them would be regarded as unacceptable by practically 
everybody. (For example, con- 



sider a function G such that, for fixed K and s, G(K,s,si) decreases with increasing si. Then the 
functions c and e characterized by this function G would be such that (1) the degree of 
confirmation for the prediction that the next thing is Q1 and (2) the estimate of the rf of Q1 among 
future observations would be lower, the more frequently Q1 occurs in the observed sample. 
Practically everybody would regard these results as absurd and hence reject these functions c and 
e.) Now we intend to be rather liberal in the admission of inductive methods to the projected λ-
system. We shall not restrict it to those methods which appear plausible to a majority of thinkers 
but shall also admit methods which I and presumably many others would regard as 
unsatisfactory. On the other hand, we intend to exclude those methods which practically 
everybody would reject. Our task is to see whether we can find a convenient parameter system 
for a class of G-functions restricted in a plausible way in view of their meaning as 
characterizations of inductive methods. 

Suppose that a scientist X has made certain observations concerning the individuals of a 
given sample whirls he describes in eM and that he wants to find the value of c for a singular 
prediction hM concerning the property M and an estimate for the rf of M in an unobserved class 
K. Let us look at two particular factors in the situation which may possibly (not necessarily, and 
certainly not exclusively) influence the values of c and e. We take as the first the rf of M in the 
observed sample described in eM, that is, sM /s. This is an empirical factor. X cannot know this 
magnitude a priori, he learns about it from the factual circumstances concerning the sample, 
either by his own observations or by a report about the observations of others. It is clear in which 
direction this factor influences the values of c and e. Other things (including s) being equal, those 
values are higher, the greater sM /s. This has often been stated explicitly and may be regarded as 
one of the fundamental and generally accepted characteristics of inductive reasoning. Moreover, 
all known methods of confirmation or estimation for rf agree that in any case of a sufficiently 
large sample the value of c or e, respectively, is either equal to or close to sM /s. 

The second factor to be considered is the relative width of M, that is, w/K. This is a 
logical factor. X knows it, independently of any observation of facts, from a logical analysis of 
the given language system L π

n , which determines K = 2π, and the given definition of ‘M’, which 
enables him to transform ‘M’ into a disjunction of certain Q’s, whose number is w. As to the 
direction of the influence of this factor, a result analogous to the former one holds here. Other 
things (including K) being equal, if w/K is 



greater in one case than in another, the value of c is higher or equal, and likewise that of e. I 
believe that the stronger statement with “higher” instead of “higher or equal” also holds. [For 
example, let M be Q1, hence w = 1, let hM be ‘Mc’, i.e., ‘Qlc’. Let M′ be Q1 ∨ Q2, hence its width 
is w′ = 2; let h′M be ‘M′c’, i.e., ‘Qlc ∨ Q2c’. Let s2 = 0, i.e., ‘Q2’ does not occur in eQ. Then sM′ = s1 
+ s2 = s1 = sM. Thus in the two cases with M and M′  the values of K, s, and sM are the same, but w′ 
(= 2) > w (= 1): According to the special addition principle (C4, § 4), c(h′M,eQ) = c(Qlc,eQ) + 
c(Q2c,eQ) = c(hM,eQ) + c(Q2c,eQ) ≥ c(hM,eQ). I think, moreover, that, for any adequate c, 
c(Q2c,eQ) > 0, because the evidence eQ does not exclude the possibility that c is Q2; therefore, 
c(h′M,eQ) > c(hM,eQ).] 
 
 
§ 8. An Interval for Values of G 
 

The two factors sM/s and w/K are of particular importance for our problem because the 
value of c(hM,eM), and hence likewise that of e(rf,M,K,eM), must always lie between those two 
values or be equal to one of them. It seems that this condition is fulfilled by practically all 
historically given methods (for an exception see the Appendix). The condition also seems 
plausible as a necessary condition of adequacy.38 For example, let M be a primitive predicate. 
Then, no matter what is the value of K, w = K/2 and hence w/K = ½.39 Let eM say that, in a sample 
of 10 individuals, 2 have been found to be M; hence sM/s = 0.2. The above condition says that in 
this case the value of c and e lies in the closed interval (0.2, 0.5), which is marked in the 
accompanying diagram by the heavy segment of the whole line representing the interval (0,1). 
Many people (namely, those 

 

 
 

who accept the straight rule to be discussed later) would take in this case 0.2 as the value for c or 
e; in particular, the majority of contemporary statisticians would take 0.2 as the estimate of rf. 
Others would take other values. The decisive point is that, if someone takes in this case a value 
different from 0.2, he will choose a higher, not a lower, value, and, further, he will not go above 
0.5. To choose any value below 0.2 would appear as 
 
 

38. The kinds of c-functions studied in [I] (regular c-functions and symmetrical c-functions) are very 
comprehensive and also contain functions which do not fulfil the condition mentioned above. Therefore, this 
condition, in contradistinction to C1-C7, is not stated as a theorem in [I]; the same holds for C8 and C9 (14). 

39. [I], § 32, T32-4c. 



entirely arbitrary; if anybody deviates from 0.2, he does so because he thinks (or feels 
instinctively) that the value of c or e should somehow be influenced by the value ½, that it should 
somehow tend in the direction toward ½. On the other hand, to take a value > ½ when the 
observed rf is < ½ would appear as entirely unacceptable. For those who wish to apply their 
function c (or e) also to the tautology ‘t’ as evidence, a plausible value for c(hM,t) (or for 
e(rf,M,K,t))—and, indeed, the only acceptable value—would appear to be 1/K In the case of a Q 
(see (4-11) and (6-19)) and hence w/K in the case of any M with width w (see (4-12) and (6-20)); 
thus, in particular, in the case of a primitive predicate as in the above example. For a factual 
evidence eM, the value of c or e would then move with increasing sample size s (if sM/s remains 
the same) more and more away from w/K in the direction toward sM/s, asymptotically 
approaching the latter value. 

We shall now state as C10 a special case of the general condition just discussed, with Qi 
as M and hence w = 1. We shall see that the general condition can then be derived. C10 is the last 
of our conditions of admission to the λ-system. Thus this system includes all those c-functions 
which fulfil the conditions C1-C10. 
 
C10. c is such that for any sentences hi and ei with any values of K, s, and si, either si/s ≤ c(hi,ei) ≤ 
1/K or 1/K ≤ c(hi,ei) ≤ si/s. 

 
The general condition for M discussed above follows from C10 with (4-1) and (4-5): 

 
(8-1) For any M, any sentences hM and eM with any values of K, w, s, and sM, either sM/s ≤ 

c(hM,eM) ≤ w/K or w/K ≤ c(hM,eM) ≤ sM/s.  
 

In the special case in which sM/s happens to be = w/K (e.g., if in the earlier example sM = 
5), there would presumably be general agreement that this common value is the only acceptable 
value for c or e. 

The preceding analysis was made for the purpose of finding suitable restricting 
conditions for our characteristic functions G. What effect in this respect does the acceptance of 
C10 have? Since c(hi,ei) gives the value of G(K,s,si), C10 leads to the following result: 
 
(8-2) For any characteristic function G of the λ-system and any values of K, s, and si, either si/s 

≤  G(K,s,si) ≤ 1/K or 1/K  ≤ G(K,s,si) ≤  si/s. 
 

This result in itself may appear as rather insignificant, since it does no more than restrict 
to a still narrower interval the possible values of G, which were confined anyway to the interval 
(0,1). It does not say any- 



thing about the form of the functions G, which, of course, involves the more important problem. 
We shall, however, see later that the step here made opens the way for other, more important 
steps toward our goal, the parameter system. 
 
 
§ 9. The λ-Functions 
 

We found that the values of any G-function for cases of a certain kind must lie in a 
certain interval. In situations of this kind, where a value u must lie in an interval determined by 
the boundaries ul and u2 (both included), we can characterize the location of u in relation to ul 
and u2 in various ways. We might do it, e.g., by specifying the distances d1 = |u – ul| and d2 = |u – 
u2|. Another way, often used and in the present case more convenient, consists in representing u 
as weighted mean of u1 and u2. That u is the weighted mean of u1 and u2 with the weights W1 and 
W2, respectively, means that 
 

(9-1)    u = 
21

2211
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uWuW

+
+ . 

 
If W1 = W2, u lies in the middle between u1 and u2. If W1 > W2, u lies nearer to ul than to u2, i.e., 
dl < d2. More specifically, the ratio of the distances is always equal to the inverse ratios of the 
weights: 
 

(9-2)    
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We admit as possible weights not only finite positive values but also 0 and ∞, to be used in the 
cases that u coincides with one. of the boundary values. If W1 = ∞ and W2 is finite (or W1 is finite 
and W2 = 0), then dl = 0, and hence u coincides with u1. If W1 = 0 and W2 is finite (or W1 is finite 
and W2 = ∞), then d2 = 0, and hence u coincides with u2. 

If the two boundaries u1 and u2 are given, then it is sufficient for the location of u to 
specify the ratio of the weights; their actual values are irrelevant. Therefore, we may, if we wish, 
standardize the value of one of the two weights, choosing, say, 1 or any other finite positive 
value that might seem convenient; then the value of the other weight (which runs now from 0 to 
∞) determines the value of u. 

We shall now apply this procedure to our situation. We are going to represent the value 
of G(K,s,si) as a weighted mean of the values si/s and 1/K. We decide to standardize by 
convention the weight of the empirical factor si/s; then the weight of the logical factor 1/K 
determines the value of G(K,s,si). We choose as standardized weight of si/s the number s of 
individuals in the observed sample. This choice is not in need of a theo- 



retical justification, since it does not involve any assertion. It is merely a convention, which in 
no way restricts the possible values of G. The choice is suggested  (merely. suggested, not 
imposed upon us) by the reflection that it might seem natural to give to the empirical factor 
determined by ei more influence, the larger the sample, in other words, the more factual 
information is conveyed by ei. The practical justification of the choice lies in the fact that it leads 
to an especially simple form of the parameter system, as we shall see. 

After the weight of the empirical factor has been standardized, the weight to be attributed 
to the logical factor 1/K is characteristic of the function G. For a given function G, this weight 
need not necessarily be always the same but may change from case to case, depending possibly 
upon the values K, s, and si. Therefore, we represent it as a function of these three arguments: 
λ(K,s,si). The letter ‘λ’ is meant to suggest ‘logical’, since the value of the λ-function indicates 
the relative weight given to the logical factor. For example, if we find that for a certain inductive 
method in a given case λ = 3, this shows that the weight given to the logical factor in this case is 
equivalent to the weight given to the observation of three individuals. Thus the value of G is a 
weighted mean of si/s and 1/K, the weight of the first being s, and that of the second being 
λ(K,s,si). Hence we have, according to (9-1): 
 

(9-3)    G(K,s,si) = .
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This yields: 
 

(9-4)   λ(K,s,si) = .
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Thus, if any inductive method is given in the form of a function c or e, then we can first 
determine its characteristic function G by the procedure explained earlier and then its function λ 
with the help of (9-4). On the other hand, if a function λ is given, then we can determine the 
corresponding function G by (9-3) and then the functions c and e by the earlier procedure. Thus a 
G-function and the corresponding λ-function determine each other, and hence the latter may be 
regarded as a characteristic function of the corresponding inductive method just as well as the 
former. What is gained by the construction of this second characteristic function? Both are 
mathematical functions of the same three arguments. But there is a decisive difference. It is not 
possible to simplify the general form of the functions G by dropping any one of the three 
arguments, because the value of c(hi,ei), which determines the value of G(K,s,si), in 



general depends upon all three arguments. This holds, indeed, for almost all inductive methods, 
with the exception of only two which. occupy, so to speak, two opposite extreme positions (the 
straight rule and the function ct to be explained later). On the other hand, the use of the functions 
λ leads to a great simplification, because here we may drop several of the three arguments. 

If, for any one of the customary methods, both of confirmation and of estimation of rf, we 
construct its function G according to the earlier procedure and then its function λ by (9-4), we 
find that the latter never contains the arguments s and si at all. This will soon be shown for 
several examples. The same holds likewise for those methods, infinite in number, which have the 
same fundamental character as the customary methods and can be constructed from them by a 
variation of some of their features. The result may at first appear surprising and perhaps even 
strange and implausible; but this impression will change after a little reflection. The fact that a 
given function λ is not dependent upon s and si must not be interpreted as meaning that the 
inductive method characterized by this λ-function fails to take into consideration the values s and 
si for the determination of c(hi,ei). As (9-3) shows, s and si appear anyway in the function G, 
which determines c(hi,ei), even if they do not appear in the λ-function. In particular, the 
nonappearance of s in the λ-function is due to our choice of s as the standardized weight of the 
empirical factor. (This is easily shown by the reappearance of s in the λ-function if any choice of 
a weight not involving s is made.) Thus the nonappearance of s shows simply that our choice of 
the weight fits well a common feature of all customary methods which give any influence at all 
to both the empirical and the logical factors. 

While we admit to the λ-system all those inductive methods which fulfil the conditions 
C1-C10 (§§ 4 and 8), we shall restrict our further investigations for the sake of simplicity to 
those methods whose λ-functions are independent of s and si. (We shall, however, mention later a 
λ-function dependent upon s; see (20-10).) If λ is independent of s and si, then the same holds for 
the right-hand side of (9-4). Thus we obtain the following formulation concerning c, if we note 
that G(K,s,si) gives the value of c(hi,ei). 

 
C11. In the subsequent discussions it is presupposed that c is such that, if a system L π

n is 
given and hence K = 2π is fixed, 
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has always the same value, for any values of s and si and any sentences hi and ei. 
That the conditions C1-C11 form a consistent system is easily seen from the fact that 

there are c-functions fulfilling all of them. This holds, e.g., for those examples of c-functions of 
the λ-system which we shall explain later (§§ 12-15). 

Owing to C11, of the three arguments of the function λ, only K remains. Therefore, we 
may now write simply ‘λ(K)’ instead of ‘λ(K,s,si)’. Then (9-3), (6-15), and (6-16) yield: 
 
(9-5)   G(K,s,si) 

(9-6)   c(hi,ei)   = 
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(9-7)   e(rf,Qi,K,ei) 
 
Hence with (4-5), (4-1), and (6-4): 
 
(9-8)   c(hM,eM) 
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(9-9)   e(rf,M,K,eM) 
 
These two results show that likewise in this case, for a property M with the width w, the value of 
c for hM and the estimate of the rf of M may be represented as a weighted mean of the empirical 
factor, which here is sM /s, and the, logical factor, which here is w/K, with the same weights s and 
λ(K) as before. 
 
 
§10. A λ-Function Gives a Complete Characterization 
 

The usefulness of the functions λ depends on whether such a function characterizes its 
inductive method completely. We shall now show that this is the case. This can easily be shown 
because we found earlier the analogous result with respect to the characteristic functions G. 
Suppose that a function λ(K) is given. Then we can express the G-function occurring in (5-4) in 
terms of λ(K) by (9-5). Thus we obtain the following (writing for simplicity ‘λ’ instead of ‘λ(K)’): 
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(where the quotient for mi = 0 and p = 1 is always to be taken as 1/K). 
 
Hence: 
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where Ai and Bi are as follows:  

(10-4)     Ai = ∏
=
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p 1

(λ/K + p – 1), 

(10-5)     Bi = ∏
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From (10-4): 
 
(10-6)   Ai = λ/K(λ/K + 1)(λ/K +2) …( λ/K + Ni – 1). 
 
Let i1 and i2 be two values of i such that i1 < i2, 1i

N , > 0, 
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for any i, Bi is a product of Ni ascending factors, each greater by 1 than the preceding one. The 
greatest factor in 

1i
B is λ + nai, + 

1i
m – 1. The smallest factor in 
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hence greater by 1 than the greatest factor in 
1i

B . Therefore, ∏
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Bi is a product of ∑ Ni = N 

ascending factors from λ to λ + N – 1. Thus from (10-3) and (10-6): 
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Here it is convenient to use the function [ ]n

r , where r is a real number and n a 
nonnegative integer, defined by the following recursive definition:40 
 
(10-8)    (a) [ ]0

r = 1. 

(b) [ ]1+n
r = [ ]n

r (r – n). 
 
This definition immediately yields the following theorems:  
 
(10-9)  (a)  [ ]1

r  = 1 
(b)  For n > 0, [ ]n

r  = r (r  – 1)(r  – 2) … (r  –n + 1); 
hence [ ]n

r is a product of n descending factors beginning with r. 
 
 

40. In [I], D40-3, a function [ ]n
m was defined, which is a specialization of the present one, with an integer 

m. For the present function, the notation ‘r(n)’ is sometimes used. 



(In the cases of our applications, we have always r ≥ n; hence every factor and the whole 
product is positive.) 

 
(c)        [ ]n

n  = n!. 
(d)      [ ]n

n 1+  = (n + 1)!. 
Using this notation, (10-7) becomes: 
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The formula (10-7) (or (10-10)) determines the values of m for any state-descriptions in 

any given system L π
n . According to the procedure outlined in §5, this determines the values of m 

for all sentences and the values of c for all pairs of sentences h,e (e not L-false). The function c, 
in turn, determines all values of the estimate-function e based upon it. Thus any given λ-function 
characterizes completely a combined inductive method consisting of a function c and a function 
e. 
 
 
§ 11. Inductive Methods of the First Kind: λ Is Independent of K 
 

It seems that almost all historically given inductive methods are such that their λ-
functions are not even dependent upon K but have a constant numerical value. As far as I am 
aware at present, the only exception is the function c* which I proposed in earlier publications. 
We now divide the inductive methods here investigated into two kinds; the first kind comprises 
those whose λ does not depend upon K, the second those whose λ is a function of K. We shall 
discuss each of these two kinds in turn and examine examples of known methods for them. 

Suppose that an inductive method is given either by a c-function or by an e-function. We 
determine first its G-function (§§ 4, 6) and then its λ-function by (9-4). If we find that the latter 
is independent, not only of s and si, but also of K, the method belongs to the first kind. Thus here 
the λ-function degenerates into a constant, which we simply denote by λ. We regard λ as the 
parameter characterizing the method in question. 

The relation between the parameter λ and the corresponding function G is expressed by 
the following formulas, which are merely simplifications of (9-3) and (9-4): 
 

(11-1)   G(K,s,si) = 
K
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We consider as possible values of λ not only all finite positive real numbers 
(corresponding to the interior points of the interval (w/K, sM/s) discuss!d in § 8) but also 0 and ∞, 
corresponding to the end points of the interval. Negative values are excluded, because they 
would correspond to points outside the interval and hence violate the condition C10 (§ 8). In our 
further discussions, various functions of λ will occur. The following conventions will be applied 
to them. 
 
(11-3) Limit conventions for any function f(λ). 

(a)  If the definition of a function f(λ) does not assign to it a value for λ = 0, we take as 
this value 

0
lim

→λ
f(λ). 

(b)  We take as value of f(λ) for λ = ∞ 
∞→λ

lim f(λ) 

 
Let λ be a number of the specified range. We shall now introduce notations for the 

functions characterized by the given λ. Gλ is the G-function determined by λ according to (11-1); 
cλ is the c-function characterized by Gλ; mλ is the m-function corresponding to cλ; eλ is the e-
function based upon cλ. 

The formulas (9-6) to (9-9) here take the following simpler forms:  
 

(11-4)   cλ(hi,ei)   =
λ

λ
+

+
s

s Ki /  

(11-5)   eλ(rf,Qi,K,ei) 

(11-6)   cλ(hM,eM)  =
λ

λ
+

+
s

ws KM )/(  

(11-7)   eλ(rf,M,K,eM) 
 

In the case that the evidence is tautological and hence the sample is empty, we found 
previously the following results ((4-11), (6-19), (4-12), (6-20)): 
 
(11-8)   mλ(hi) = cλ(hi,t)  = 1/K  
(11-9)    eλ(rf,Qi,K,t) 
(11-10)  mλ(hM) = cλ(hM,t)  = w/K 
(11-11)  eλ(rf,M,K,t)   
 
We see now that these values are in accord with the above results (11-4) to (11-7). For every 
positive, finite λ they follow immediately from those results for s = si = sM = 0. For λ = 0 and λ = 
∞, our limit conventions must be applied. Obviously, both limits for 0 and for ∞ are in the case 
of (11-4) and (11-5) 1/K and in the case of (11-6) and (11-7) w/K. 
 
 
§ 12. The Nonextreme Methods 
 

The two inductive methods of the first kind characterized by the extreme values 0 and ∞ 
of λ may be called the extreme methods. We shall 



consider them later. Here we shall establish some common characters of the others, the 
nonextreme methods. Thus we suppose now that λ is a given positive and finite number. Our 
previous discussion (§ 10) shows that the number λ determines completely the functions mλ, cλ, 
and eλ. According to (10-7) we have, for a state-description k with the Q-numbers Ni:  
 

(12-1)  mλ(K) = ,
)1)...(2)(1(
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  (here ‘λ’ is not short for ‘λ(K)’ but denotes a number). 
 
(The alternative form (10-10) could likewise be used here.) This determines, as explained 
previously (§ 5) the values of mλ for all sentences, and the values of cλ for all pairs of sentences 
h,e (e not L-false). Since λ is here positive and finite, the same holds for every factor and every 
product on the right-hand side of (12-1), hence for mλ(K) itself and therefore also for the value of 
mλ for every non-L-false sentence. Let e be a non-L-false sentence and h a factual sentence 
logically independent of e, i.e., such that neither h nor its negation is L-implied by e; hence both 
e . ~h and e . h are non-L-false and have positive mλ-values. Now cλ(h,e) = mλ(e . h)/ mλ(e) ; and 
mλ(e) = mλ(e . h) + mλ(e . ~h) > mλ(e . h). Therefore:  
 
(12-2)     0 < cλ(h,e) < 1 . 
 

Sentences of the forms hi,ei and hM,eM fulfil the conditions here stated for h,e. Therefore: 
 
(12-3)     0 < cλ( hi,ei) < 1 , 
(12-4)     0 < cλ(hM,eM) < 1 .  
 
Hence with (6-9) and (6-4): 
 
(12-5)     0 < eλ(rf,Qi,K,ei) < 1 
(12-6)     0 < eλ(rf,M,K,eM) < 1 . 
 

On the basis of these results, the following can be shown (with the help of the theory of 
c-functions developed in [I] and the results mentioned at the end of § 5). If any positive, finite 
real number is chosen as λ, then this determines one and only one c-function cλ, and this function 
cλ fulfils the conditions C1-C11. On the basis of our later explanations in §§ 13 and 14, the same 
holds also for λ = 0 and λ = ∞. Hence we arrive 



easily at the following results. Let λ(K) be an arbitrarily chosen function of K whose values for 
possible values of K (which are positive finite numbers) are nonnegative numbers (or possibly 
∞). Then, for any system L π

n , λ(K) has a fixed nonnegative value (possibly ∞) and therefore 
determines for this system one and only one c-function, and this c-function fulfils the conditions 
C1-C11. 

We shall now consider two examples of nonextreme methods. 
1. The modified Laplace method. Laplace’s famous rule of succession concerns the case 

of the singular predictive inference. Therefore, it applies to the sentences hM,eM. It says, 
expressed in our notation, that 
 

(12-7)     c(hM,eM) = 
2
1

+
+

s
sM . 

 
If this is applied to all factual properties M, it leads to contradictions. For example, in a system 
with K = 4, let eQ be such that s = 4, sl = s2 = s3 = s4 = 1 (i.e., the sample contains one individual 
for each of the four Q’s). Then, according to Laplace’s rule, for every i, c(hi,eQ) = (1 + 1)/(4 + 2) 
= ⅓. Hence we obtain, on the one hand, by using the special addition principle (C4, § 4), which 
is, of course, accepted by Laplace: c(hl ∨ h2,eQ) = ⅔. On the other hand, applying Laplace’s rule 
directly to Ql ∨ Q2 (which is P1), we obtain c(hl ∨ h2,eQ) = (2 + 1)/(4 + 2) = ½ , which is 
incompatible with the first result. If the first procedure (with C4) is applied to the disjunction of 
the four hypotheses hi, we should even obtain c = 3

4  > 1, which is, of course, impossible. 
However, Laplace’s method becomes consistent if we restrict its application to a suitable kind of 
properties. We shall do this now in a special way. We  apply Laplace’s rule directly only to the 
primitive properties (of a given system); then we choose the values of c(hM,eM) for other 
properties M in a certain way such that they fit well to the values supplied by the rule. We call 
the method constructed in this way the modified Laplace method. A primitive property has 
always the relative width w/K = ½  and the width w = K/2. We obtain from (11-6) for this value: 
 

(12-8)    c(hM,eM) = 
λ
λ

+
+

s
sM 2/  

 
Comparing this with (12-7), we see that Laplace’s rule, if applied to primitive properties or, more 
generally, to any M with w = K/2, is characterized by λ = 2. We decide now to apply in the case 
of all other factual properties the same value λ = 2. This assures that the values of c(hM,eM) for 
any properties are in accord with the values determined by the original 



rule for the primitive properties. We obtain from (11-4) to (11-7) for λ = 2: 
  

(12-9)   c2(hi,ei)   = 
2
/2
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s Ki , 

(12-10)   e2(rf,Qi,K,ei) 

(12-11)  c2(hM,eM)  = 
2

/2
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+
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ws KM . 

(12-12)  e2(rf,M,K,eM) 
 
 
(12-11) is our modification of Laplace’s rule (12-7); it coincides with the latter for w = K/2. The 
subsequent table (12-19) gives, in the column λ = 2, numerical examples for (12-11) and (12-12). 
According to (12-1), the in for a state-description k is here: 
 

(12-13) m2(k) = ,
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2. The method with λ = 1. If λ is a positive integer, the form of (12-1) becomes simple, 

since the denominator is then (N + λ − 1)!/( λ − 1) !, The modified Laplace method is an 
example, with λ = 2. Another method of this kind, which deserves serious consideration, is that 
characterized by λ = 1. This method gives to the logical factor as much weight as to the 
observation of one individual. Here (12-1) becomes: 
 

(12-14)  m1(k) = .
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(11-4) to (11-7) we obtain: 
 

(12-15)  c1(hi,ei)   = 
1
/1
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(12-16)   e1(rf,Qi,K,ei) 

(12-17)  c1(hM,eM)  = 
1

/
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+
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ws KM . 

(12-18)  e1(rf,M,K,eM) 
 
For numerical examples see table (12-19), column λ = 1. 

In order to illustrate some selected methods by numerical examples, the subsequent table 
gives the values of cλ(hM,eM), which are also the values of eλ(rf,M,K,eM) for a primitive property 
M (hence w/K = ½) and a sample of size s = 10, according to (11-6) and (11-7). The values are 
given only for sM = 0 to 5; note that the value for sM is here, with w/K = ½, the same as that for 
10 − sM. The values are stated for those methods 



of the first kind which are characterized by λ = 0 (the straight rule, see, below, § 14), λ = 1 (just 
mentioned), λ = 2 (the modified Laplace method), λ = 4, 8, 16, 32, and λ = ∞ (the first extreme 
method, see the next section). [As we shall see later, § 15, the same values hold also for methods 
of the second kind in systems with a suitable K. In particular, the values stated here for λ = 2, 4, 
8, 16, 32 hold for the method of c* and e*, characterized by λ = K, in a system with K = 2, 4, 8, 
16, 32, respectively, hence with 1, 2, 3, 4, or 5 primitive predicates, respectively.]  
 
(12-19) Numerical values of cλ(hM,eM)and eλ(rf,M,K,eM) for w/K = ½ and s = 10, as functions of λ     

 and sM. 
 

λ = 
sM 

0 1 2 4 8 16 32 ∞ 
0 0 0.0455 0.0833 0.1429 0.2222 0.3077 0.3810 0.5 
1 0.1 0.1364 0.1667 0.2143 0.2778 0.3462 0.4047 0.5 
2 0.2 0.2273 0.2500 0.2857 0.3333 0.3846 0.4286 0.5 
3 0.3 0.3182 0.3333 0.3571 0.3889 0.4231 0.4524 0.5 
4 0.4 0.4091 0.4167 0.4286 0.4444 0.4615 0.4762 0.5 
5 0.5 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5 

 
 
§ 13. The First Extreme Method: λ = ∞ 
 

We shall now investigate the two extreme methods among those of the first kind, i.e., 
those characterized by λ = 0 and λ = ∞. We begin with . the latter. 

The functions characterized by λ = ∞ are G∞, c∞, m∞, and e∞. According to the limit 
convention (11-3b), we obtain from (11-1): 
 

 (13-1)   (G∞ K,s,si) = 
∞→λ

lim
λ

λ
+

+
s

s Ki / = 1/K. 

 
Thus G∞is equal to the logical factor, independently of s  and si. The empirical factor si/s is 
entirely disregarded. From (13-1) or directly from (11-4) to (11-7): 
 
(13-2)   c∞(hi,ei)      = 1/K, 
(13-3)    e∞(rf,Qi,K,ei) 
(13-4)   c∞(hM,eM)      = w/K. 
(13-5)   e∞(rf,M,K,eM) 
 
Thus c∞is here equal to the relative width of the property in question, irrespective of any 
information concerning an observed sample. The 



values stated in (13-2) to (13-5) are the same as those given by this and any other method on the. 
basis of the tautological evidence (see (11-8) to (11-11)). Thus this method clings always to that 
value of c or e which is determined before any factual information is available. This value is 
never changed, no matter what factual information is obtained (as long as it does not concern the 
individual mentioned in the hypothesis). Thus accepting this method means refusing to give any 
regard to experience, to the results of observations, in making expectations or estimations. This 
is in gross contrast to what is generally regarded as sound inductive reasoning. Therefore, the 
method characterized by λ = ∞ seems unacceptable as an inductive method in science.  
 
From (13-2) with (4-4): 
 
(13-6)     c∞(hi,eQ) = 1/K. 
 
Let k be any state-description with N individuals. Each of the N factors on the right-hand side of 
(5-3) has for c. the form as in (13-6) and hence is equal to 1/rc. Therefore: 
 
(13-7)     m∞(k) = 1/KN.  
 
Let m† be defined as that m-function which, in application to a given system L π

n , has the same 
value for all state-descriptions of that system; let c† be based upon m†.41 The number of state-
descriptions is KN.42 The sum of their m-values must. be 1.43 Therefore: 
 
(13-8)     m†(k) = 1/KN.  
 
Hence the function m† is the same as m∞; therefore, c† is the same as c∞, a function which we 
found to be objectionable. The definition of c† does not immediately reveal the unacceptable 
consequences to which it leads. On the contrary, it may appear at first glance as quite plausible. 
This is presumably the reason why this function ct has actually been proposed by several authors, 
as we shall see. 

By an individual distribution44 (sometimes called a “constitution”) with respect to given 
individuals and given properties, which form an exhaustive and nonoverlapping division, we 
mean a specific description assigning to each of the individuals one of the properties (e.g., eQ and 
eM). By a statistical distribution44 we mean a weaker description which states for each of the 
properties merely how many individuals have it, but not which individuals. The question of equal 
a priori probabilities of distributions  

 
 
41. [I], §110A.   43. [I], § 55, D55-1b. 
42. [I], § 35, T35-1b.  44. [I], § 26B. 



has frequently been discussed in connection with the classical or related conceptions of 
probability and the principle of indifference. Probabilities a priori are represented in our theory 
by the values of c with respect to the tautological evidence, hence by the values of m (§ 5). The 
controversy concerned the question as to which of the two following, rules should be accepted: 
 
(A) individual distributions have equal m-values.  
(B) Statistical distributions have equal m-values.  
 
Now it can easily be shown that either rule leads to contradictions if taken in the given 
unrestricted form and hence applied to all divisions. [For example, in a system with five 
individuals and two primitive predicates, hence four Q’s, consider two divisions D1 and D2: D1 
consists of the four Q’s, and D2 of Q1-or-Q2 (which is the first primitive property), Q3, and Q4. 
The number of individual distributions for D1 is I1 = 1024, for D2, I2 = 243 (see [I], T40-31a); for 
our discussion we need only the obvious result that I1 ≠ I2. The number of statistical distributions 
for D1 is S1 = 56, for D2, S2 = 21 (see [I]; T40-33a); again, we need only the obvious result that S1 
≠ S2. Let mA satisfy rule (A) and mB rule (B). Let h be the conjunction of the five full sentences 
of ‘Q4’ with the five individual constants. Then h is an individual distribution for both D1 and D2. 
Therefore, rule (A) leads, if applied to D1, to the result mA(h) = 1/I1 and, if applied to D2, to 
mA(h) = 1/I2. These two results are incompatible. Let h′ be the statistical distribution 
corresponding to h, saying that the cardinal number of Q4 is five. (h′ is L-equivalent to h.) Then 
h′ is a statistical distribution for both D1 and D2. Therefore, rule (B) leads to the two values 1/S1 
and 1/S2 of mB(h′), which are different and hence incompatible.] 

However, each of the two rules becomes consistent if restricted to any one division. It 
seems natural to take here for each system L the strongest division possible in the system, which 
is that formed by the Q’s. The individual distributions for all the individuals of the system with 
respect to the Q’s are the state-descriptions. The corresponding statistical descriptions state 
merely the Q-numbers Ni; we call them structure-descriptions.45 (In our systems L, a structure-
description for given Q-numbers Ni may be formulated as a disjunction of those state-
descriptions for which the given numbers Ni hold.) Thus the two modified rules are as follows: 
 
(A′) State-descriptions have equal m-values,  
(B′) Structure-descriptions have equal m-values.  
 

45. [I], §§27, 34. 



Keynes46 discusses the whole problem and mentions that C. S. Peirce favored rule (A). Keynes 
himself does, too, but proposes a modification similar to (A’). Ludwig Wittgenstein47 proposes a 
rule which is essentially the same as (A’). Since rule (A’) defines m t, the authors mentioned ac-
cept the function ct, which is the same as em. We have seen that this method leads to 
unacceptable results. «‘e shall see later that rule (B’) leads to our function c* (§ 15). 
 
 
§ 14. The Second Extreme Method: X = 0; the Straight Rule 
 

The functions characterized by X = 0 are Go, co, mo, and to. According to (11-1) and (11-
4) to (11-7), we have for s = 0: 

 
(14-1)     G0(K,s,si), 
 
(14-2)   c0(hi,ei)        = si/s, 
(14-3)    e0(rf,Qi,K,ei) 
(14-4)   c0(hM,eM)       = sM/s. 
(14-5)   e0(rf,M,K,eM) 
 
 
Numerical examples for (14-4) and (14-5) are given in table (12-19), column λ = 0. 

The values stated here hold only for s > 0. In the case of s = 0 the functions yield 0/0 and 
hence are inapplicable; this case will be discussed later. 

Theorem (14-4) says that in the case of the singular predictive inference c0 is equal to the 
observed rf. We call this the straight rule of confirmation. (14-5) says that the estimate e0 of rf in 
an unobserved class is equal to the observed rf. We call this the straight rule of estimation. The 
method of the straight rule assigns the weight λ = 0 to the logical factor w/K; in other words, it 
disregards this factor; it takes as c0 or e0 in the above cases simply the value of the empirical 
factor sM/s. 

In the case of the tautological evidence we have s = sM = 0. In this case the results for c0 
and e0 stated above are inapplicable. Those authors who accept the straight rule in either form do 
indeed usually reject tautological evidence. However, our limit convention (11-3a) enables us to 
apply the method with λ = 0 also to tautological evidence, in other words,  

 
 
46. Op. cit., pp. 49 ff., especially p. 56 at bottom. 
47. Tractatus logico-philosophicus (London, 1922), *5. 15. 



to establish a function m0. We found earlier that the results (11-8) to (11-11) hold also for λ = 0. 
Hence:  
 
(14-6)   m0(hi) = c0(hi,t) = 1/K, 
(14-7)   e0(rf,Qi,K,t) 
(14-8)   m0(hM) = c0(hM,t) = w/K. 
(14-9)   e0(rf,M,K,t) 
 

Let k be a state-description with the Q-numbers N; (i = 1 to K). Application of the limit 
convention to (12-1) yields: 
 

(14-10) m0(k) = 
0

lim
→λ
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where the product runs through those; i for which Ni > 0, in other words, for which Qi is 
nonempty in k. Let p be the number of the nonempty Q’s in k (1 ≤ p ≤ K); thus the above product 
contains p factors. Hence: 
 

 (14-11)  m0(k) = 
0
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→λ )!1(
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We distinguish two cases. Case 1: Let p = 1. In this case all individuals have the same Q and 
hence are completely alike (with respect to the properties expressible in the given system). We 
say in this case that k is a homogeneous stale-description. There is only one positive Ni, and this 
is = N. Hence the last quotient in (14-11) becomes (N − 1)!/(N − 1)! and drops out. The quotient 
under the limit becomes 1/K. Hence: 
 
(14-12) If k is a homogeneous state-description, m0(k) = 1/K. 
 
Case 2: p > 1. The quotient under the limit in (14-11) becomes λp-1/Kp hence the limit is 0. 
Therefore, since the last quotient in (14-11) is always finite: 
 
(14-13) If k is a nonhomogeneous state-description, m0(k) = 0. 
 

This result leads (with (5-5)) to the consequence that for many factual  sentences m0= 0. 
Therefore, we can, in general, not determine c0(h,e), by m0(e . h)/ m0(e) (as in (5-6)). We have 
instead to apply the limit convention directly to c0: 
 

(14-14)   c0(h,e)  = 
0

lim
→λ

 cλ(h,e) = 
0

lim
→λ )(
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For every non-L-false e and every λ > 0, mλ(e) > 0 (§ 12); hence the quotient has a definite value. 
It can be shown that these values converge toward a limit for λ → 0. Therefore, for every pair of 
sentences h,e (e not L-false) in any system L π

n , c0(h,e)  has a definite value, determined by (14-
14). The application of this general procedure to the special case of hM and eM leads to the values 
stated in (14-4) for s > 0 and in (14-5) for s = 0. 

Those m-functions which fulfil the conditions C1-C5 (§ 4) and have a positive value for 
every state-description are called regular;48 likewise, the c-functions based upon regular m-
functions. I believe that only regular c-functions represent adequate inductive methods; 
therefore, only these functions are dealt within [I]. It can be shown on the basis of (12-1) that, for 
any finite positive λ, mλ is regular, and hence also cλ. The same holds for m∞, according to (13-
7), and hence for c∞. On the other hand, we see from (14-13) that m0 is not regular: We call m0 
and c0 quasi-regular functions, which means that, although they are not regular, they can be 
represented as limits of regular functions. c0 can be represented approximately by a suitable 
regular function cλ with λ > 0; by taking a sufficiently small, but positive, value of λ, any desired 
degree of approximation can be achieved. 

The method of the straight rule leads in some cases to values of c0 or e0 which seem to me 
not adequate. First, the result that m0 = 0 for every nonhomogeneous state-description seems 
unsatisfactory because these state-descriptions obviously represent possible cases. This remark, 
however, is directed only to those who accept m-functions, not to the authors who propose the 
method of the straight rule, because they usually reject tautological evidence and hence any 
function m. Let us therefore now consider cases with factual evidence. For s > 0 and sM = 0, the 
straight rule (14-4) yields c0 = 0. The hypothesis predicts in this case that an unobserved 
individual has the property M, for which so far no instances have been observed. Suppose, e.g., 
that M is P1 . P2, that we have observed some instances of P1 and some of P2 but none of P1 . P2. 
Then the probability (in the logical sense) that an unobserved individual is Pl . P2 may be low, 
but it cannot be regarded as 0 because it is, after all, a possible case, i.e., one logically 
compatible with the given evidence. Further, consider the case sM = s > 0, i.e., all observed 
individuals are found to be M. Then c0 = 1 not only for the singular hypothesis h that the next 
individual is M, but even for the universal law that all individuals are M. This result seems hardly 
acceptable, the more so since  

 
 
48. [I], §55A. 



it holds for every s > 0 however small, even for s = 1. Thus, if all we know about the universe is 
that the only observed thing is M, then the method of the straight rule leads us to assume with 
inductive certainty (i.e., c0 = 1) that all things are M and to take the estimate of the rf of M in the 
universe to be 1. The strangeness of these results becomes especially striking when we remember 
that both a value of c for the singular predictive inference and a value of an estimate of rf may be 
interpreted as stating a fair betting quotient.49 Thus, on the basis of the observation of just one 
thing, which was found to be a black dog, the method of the straight rule declares a betting 
quotient of 1 to be fair for a bet on the prediction that the next thing will again be a black dog 
and likewise for a bet on the prediction that all things without a single exception will turn out to 
be black dogs. Now a betting quotient of u means odds (ratio of stakes) of u: (1 − it); hence a 
betting quotient of 1 means odds of 1:0. Thus this method tells you that if you bet in the case 
described any amount on either of the two predictions mentioned, while the stake of your partner 
is 0, then this is a fair bet. I wonder whether there is any sane man, whether scientist, 
businessman, or gambler, who would actually regard a bet of this kind as fair. I think that these 
examples show that the method of the straight rule, although not totally inadequate like c∞ is not 
quite satisfactory in application to very small samples. We shall later point out the weakness of 
the straight rule of estimation from another point of view, with respect to its mean square error in 
the sampling distribution (§§ 23, 24),

50 
On the other hand, there is no need to reject outright every application of the straight rule 

in practical work. In cases where s and sM are sufficiently large, it does not make a great 
difference in the values of cλ(hM,eM) and eλ(rf,M,K,eM), whether λ = 0 is chosen or a not too large 
positive λ, e.g., λ = 2, as in the modified Laplace method (§ 12). Therefore, in cases of this kind 
the straight rule may be used as a convenient approximation for the values of c or e supplied by 
more adequate nonextreme methods. The convenience of the straight rule is due to its great 
simplicity; but it is bought at the price of neglecting the logical factor w/K. 

The straight rule, especially that of estimation, is implied by various historically given 
methods. R. A. Fisher’s method of maximum likelihood is a general method for the estimation of 
magnitudes characteristic of a popu- 

 
49. [I], § 41B, C, D. 
50. The method of the straight rule will be examined more thoroughly and its disadvantages explained in 

greater detail in [II]. 



lation, on the basis of a given sample from the population.51 If it is applied to the estimation of rf, 
it leads to the straight rule of estimation.52 

Many statisticians today seem to accept, explicitly or implicitly, the principle that, if a 
choice among available estimate-functions is to be made, a so-called “unbiased” one is 
preferable. This concept will be explained later (§ 19), and it will be shown that e0 is the only 
unbiased function among the functions eλ. Thus the principle mentioned. leads to the acceptance 
of the straight rule of estimation. 

One gets the impression that, in the problem of estimating the rf of M in a population (or, 
in the terminology of statistics, the “probability” of M), there is general agreement among the 
various schools of statisticians: the solution consists in taking as the estimate the observed rf in 
the sample, hence what we call the straight rule of estimation. Kendall, after explaining the 
various approaches, sums up the situation: “In this case, therefore, all the approaches lead to the 
same conclusion (a happy state of affairs which ... does not always exist).”53 

Reichenbach lays down the following rule of induction: “If an initial section of is 
elements of a sequence xi is given, resulting in the frequency f”, and if, furthermore, nothing is 
known about the probability of the second level for the occurrence of a certain limit p, we posit 
that the frequency fi (i > n) will approach a limit p within fi ± δ when the sequence is 
continued.”54 Although the term ‘estimation’ is not used, the explanations and examples given by 
the author seem to show that the rule is meant as a rule of estimation which might be formulated 
in our terminology as follows: “Let the evidence e say that in an initial section containing s in-
dividuals of an infinite sequence there are sM with the property M and let e not contain any 
further factual information; then take sM/s as the estimate for the limit of the rf of M in the 
sequence.” If this interpretation is correct, then the rule of induction is essentially the same as the 
straight rule of estimation. Reichenbach does not have a method of confirmation, because he 
rejects the concept of degree of confirmation. 
 
 
§ 15. Inductive Methods of the Second Kind: λ Is Dependent upon K 
 

We assign to the second kind of inductive methods those for which the λ-functions, 
determined from their G-functions by (9-4), are dependent  

 
51. R. A. Fisher, “On the mathematical foundations . . .”, p. 323; Cramér, op. cit., pp. 498 ff.; Kendall, op. 

cit., I, 178 ff., II, 12 ff. 
52 Fisher, “On the mathematical foundations ...,” p. 324; Kendall, op. cit., I, 199.  
53. Kendall, op. cit., I, 200. 
54. Reichenbach, op. cit., p. 446. 



upon K. Since all λ-functions for the methods which we here take into consideration are 
independent of s and s; (C11, § 9), K is here the only argument; thus we write a λ -function here 
in the form ‘λ(K)’. That a function  (K) is actually dependent upon K, in other words, that K is not 
a vacuous argument, means that there are at least two distinct values of K, say K1 and K 2, such 
that λ(K1) ≠ λ(K2) 

It seems that the only inductive method of the second kind which has been proposed or 
even considered so far is that represented by the function c*, which I defined in earlier 
publications.55 First, m* is defined as that m-function which is symmetrical (C7, § 4) and has 
equal values for all structure-descriptions (§ 13). Then c* is defined as based upon m* by (5-6), 
and e* as based upon c* by (6-2). These definitions yield: 
 

(15-1)   c*(hi,ei)  = 
K

i

s
s

+
+1  

(15-2)   e*(rf,Qi,K,ei)  
 
and hence, with (6-9) and (6-4) 
 

(15-3)   c*(hM,eM)   = 
K

M

s
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+
+  

(15-4)   e*(rf,M,K,eM)  
 

According to (15-1), this method is characterized by the following G-function, G*: 
 

(15-5)   G*(K,s,si) = 
K

i

s
s

+
+1 . 

 
and hence, according to (9-4), by the following λ-function, λ*:  
 
(15-6)   λ*(K) = K. 
 
We shall find later (see,(15-16)) that this λ -function leads indeed to the result that all structure-
descriptions have the same m*-value. For numerical examples of (15-3) and (15-4) see table (12-
19). 

We shall restrict our present investigation to a certain class of methods of the second kind 
obtained by a simple generalization of the only method of this kind known so far, which is 
characterized by λ*(K) = K. This class contains those λ -functions which are multiples of K: 
 
(15-7) λ(K) = CK, with a constant coefficient C. 
 
C may be any finite positive number. (For C = 0 and C = ∞ we obtain λ = 0 and λ = ∞, 
respectively, which are methods of the first kind.) 
 

55. The definition of c* and some theorems (without proofs) were given in “On inductive logic,” Philos. of 
Science, 12 (1945), 72-97, and in [I], Appendix, § 110. The full theory of c* will be developed in [II]. 



Let us briefly examine a more comprehensive class, that of the linear functions of K: 
 
(15-8) λ(K) = C0 + CK . 
 
We might regard this as a general schema for λ-functions of both kinds. With C = 0 it would 
yield the functions of the first kind, with C > 0 a more comprehensive class of functions of the 
second kind. Let m be the m-function corresponding to the λ-function C0 + CK with given 
constants C0 and C. Then we find the value of tit for a state-description k by substituting in (10-
7) ‘C0 + CK’ for ‘λ’ (which there stands for ‘λ(K)’). We see that the result is rather complicated. 
But it becomes much simpler in the cast C0 = 0, λ(K) = CK; hence λ(K)/K = C: 
(C(C-}-1)(C+2)...(C-f-N;-1 )1  
 

(15-9)  m(k) = ,
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Therefore, we shall restrict bur considerations to λ -functions of the simple form (15-7). For this 
form, we obtain from (9-6) to (9-9): 
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(15-11)  e(rf,Qi,K,ei)  

(15-12)  c(hM,eM)   = 
K

M

Cs
Cws

+
+ . 

(15-13)  e(rf,M,K,eM)  
 

The functions stated in these theorems become especially simple if C is a positive integer. 
In this case, (15-9) becomes: 
 

(15-14) m(k) = .
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Let us consider two examples. 

1. C = 1, hence λ(K) = K. This is the method of c* mentioned earlier. From (15-14): 
 

(15-15)  m*(k) = .!
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Thus, c* represents the simplest method of the second kind.  

Incidentally, every state-description which is isomorphic to k in the sense of having the 
same Q-numbers Ni has the same m*-value. The corresponding structure-description k′ is the 
disjunction of these state-descriptions (§ 13). Therefore, according to the special addition 
principle 



(C4, § 4) m*(k′) is obtained by multiplying m*(k) with the number of the isomorphic state-
descriptions, which is N!/ ∏

i
iN !.56 Hence: 
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Since this is independent of the Q-numbers Ni; every structure-description has the same m*-
value. 

2. C = 2, hence λ(K) = 2K. From (15-14): 
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From (15-10) to (15-13): 
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(15-19)  e(rf,Qi,K,ei)  
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(15-21)  e(rf,M,K,eM)  
 

The numerical values stated in table (12-19) for λ = 4, 8, 16, 32, hold for this method in a 
system with K = 2, 4, 8, 16, respectively. 

One might, of course, consider a much wider class of methods of the second kind, 
including also nonlinear functions of K, either all of them or certain kinds. Our present restriction 
to linear functions and even to those of the simple form (15-7) is motivated by the fact that our 
investigations of methods of the second kind have so far not led to any practical reasons for 
going beyond this simple form. But it may, of course, very well be that this situation will change 
in the future; and then it will be time to abandon the present restrictions. 
 
 
§ 16. The Difference between the Two Kinds of Inductive Methods  
 

Since we restrict the investigation of methods of the second kind to the λ -functions of the 
form CK (15-7), we should, strictly speaking, regard C as the characteristic parameter of these 
methods. It is, however, more convenient to use a common way of speaking for methods of both 
kinds by referring to λ as a parameter in both cases (instead of using the term ‘λ -function’ in the 
second case). In a method of the first kind a value of the parameter λ is characteristic of an 
inductive method in itself, irrespective of language-systems, while for a method of the second 
kind a value of the  
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parameter λ is characteristic of the given method with respect to a given language-system or, in-
other words, a given value of K. It seems to me that the difference between the two kinds of 
methods is not so fundamental and Important as it might appear at first glance. One might 
perhaps think that in practical work with a method of the second kind, in contradistinction. to one 
of the first kind, it would be necessary to change the value of λ all the time. This, however, is 
actually not the case. If an investigation concerning a given universe of discourse (say, the 
universe of atoms in the physical world or that of observable physical events or that of human 
beings) studies inductive inferences with various bodies of possible evidence and various forms 
of hypotheses or estimates of rf, then this whole investigation refers to one fined set of relevant 
properties of the individuals in question and thus to one language-system, or at least to one 
number K, while the number N of individuals may be disregarded for most questions (it becomes 
relevant only for hypotheses containing quantifiers, e.g., universal laws). “Thus for an 
investigation of this sort λ has a fixed value which remains the same for all the various questions 
studied within that investigation. A changes only with a change of λ, hence only in the transition 
from one universe to another universe with a different multiplicity of properties. For any given 
universe there is only one adequate language-system or at least only one adequate value of K. 
(Strictly speaking, different language-systems may be adequate for a given universe, but only if 
they are intertranslatable and differ merely in the selection of primitive properties; in this case 
the systems are in a certain sense equivalent and have the same K, i.e.. the same number of the 
strongest factual properties expressible.) 

Let its consider, as an example, the method of the second kind characterized by the λ-
function λ(K) = 2K. For a system L π

n , (with any N), K = 23 = 8; hence λ(K) = 16. Thus, in 
application to this system, we may simply write ‘λ = 16’, because in this domain the given 
method of the second kind coincides with the method of the first kind characterized by λ = 16. 
For the given system, both methods are represented by the  same functions c16, m16, and e16. 

In certain cases the methods of the first kind have indeed the advantage of greater 
simplicity in comparison with those of the second kind. Suppose that X wishes to study some 
questions concerning a few properties M1, M2, etc., which are defined as molecular properties in 
terms of a few primitive properties, say. P1, P2, and P3; the latter must be (deductively) inde-
pendent of each other.57 It may be that X is aware that there are still  
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other primitive properties P4, P5, etc., in the universe in question, but he would like to disregard 
them, if possible, because they do not happen to appear in the definitions of the molecular 
properties under investigation. And, above all, he would like to avoid the bothersome problem of 
ascertaining the total number π of primitive properties in the universe in question, and the 
number K of the strongest factual properties in the universe. He cannot escape this problem if he 
has chosen a method of the second kind, because in this case values of c and e like those stated in 
(15-10) to (15-13) depend upon a and hence cannot be established without a knowledge of K. On 
the other hand, if X has chosen a method of the first kind, he does not need any knowledge of K 
but merely the definitions of the molecular properties under investigation. As we see from (11-6) 
and (11-7), K enters those values of cλ and eλ only through w/K; now the relative width w/K of M 
is uniquely determined by the definition of M in terms of primitive properties. [For example, the 
relative width of P1 is ½, that of P1 ∨ ~P2 is ¾ that of P1 ∨ (P2 . ~P3) is ⅝, irrespective of the 
number of additional primitive properties.]  

The difference between the methods of the first and the second kind can be easily 
recognized from the accompanying diagram. On the left-hand side is the scale for λ. For the sake 
of convenience, a logarithmic scale form is used for finite positive values (this has the effect that 
also the methods of the second kind are represented by straight lines). The values 0 and ∞ on the 
scale are separated from the others by dotted lines in order to indicate that they are at infinite. 
distances. The other vertical lines represent the four simplest language-systems, characterized by 
values of π (1, 2, 3, 4) and K (2, 4, 8, 16). The heavy lines represent some examples of inductive 
methods by indicating their λ -values for the four systems. A method of the first kind has the 
same λ for all systems; therefore, it is represented by a horizontal line (given for λ = 0, l, 2, 4, ∞). 
A method of the second kind has λ-values which increase with increasing a and is therefore 
represented by a slanted line. The examples are for λ = K/2, K(c*), and 2K. The diagram shows 
that, with respect to a given language-system, the numerical value of λ is all that matters, and 
that an inductive method which is general, i.e., applicable to various systems, is simply a set of 
λ-values for the systems, equal values in the case of a method of the first kind, different values in 
the case of a method of the second kind. 

There are any number of procedures for characterizing inductive methods by sets of 
parameters. The procedure of the λ-parameter here developed has the advantage of great 
simplicity, since, with respect to a 



 



given language-system, each method (of, the class here investigated) is completely characterized 
by the numerical value of one parameter. The same holds, of course, for any other parameter 
which is determined from λ by any univalued function f(λ) whose inverse is likewise univalued 
(i.e:, f is such that for λ1 ≠ λ2 f(λ1) ≠ f(λ2)). Here are three simple examples: the parameter λ′ 
defined by 1/λ; λ′′ = 1/(λ + 1); λ′′′ = λ/(λ + 1). When λ runs from 0 to ∞, λ runs from ∞ to 0, λ′′  
from 1 to 0, and λ′′′ from 0 to 1. λ′′ and λ′′′ have the advantage that all their values are finite. λ 
has the advantage of a simple interpretation: the weight given to the logical factor is the same as 
that given to the observation of λ individuals. However, aside from these considerations of 
convenience, it makes, of course, no essential difference which one among the parameters 
mentioned or other equivalent ones is chosen. 
 
 
§17. Complete Inductive Methods 

 
A method of confirmation for the systems L and its function c may be regarded as 

complete if c has a value for any pair of sentences h,e (e not L-false) in any system L π
n . A 

method of estimation for rf in the systems L and its function e may be regarded as complete, if e 
has a value e(rf,M,K,e) for any triple M,K,e in any system L π

n , provided that M is a molecular 
property, K a nonnull class of individuals, and e a non-L-false sentence. It is easily seen that a 
function e based upon a complete function c is itself complete. A complete inductive method for 
the systems L is a combination of a complete c and a complete e. The elements of our λ-system 
are complete inductive methods in this sense. Each consists of a complete c and an e based upon 
c. According to the earlier explanations, any method of this kind in the λ-system possesses a 
characteristic function G such that (6-15) and (6-16) hold for any hi, ei, M, and K of the kinds 
previously specified, and a λ-function determined by (9-4). 

The theories concerning one or the other aspect of inductive reasoning (e.g., theories of 
probability in the inductive sense, of statistical inference, or of estimation) which have been 
constructed up to now do not usually supply a complete inductive method in the sense just 
explained. (The method represented by c* and e* is perhaps the only exception.) However, the 
incomplete methods available so far can usually be supplemented so as to form a complete 
inductive method in the λ-system. We shall now discuss the procedure of supplementation; 
dividing the possible cases into three kinds: (1) only a method of confirmation is given, (2) only 
a method of estimation for rf is given, but no method of confirmation, (3) both kinds of methods 
are given. Historically given methods are here considered only to the extent of their application 
to the language systems L. 



1. Suppose that an author gives only a method of confirmation, represented by a function 
c, but no method of estimation for rf. Usually c is incomplete. For instance, many authors 
exclude L-true sentences as evidence (in other words, an empty sample, s = 0); some of them 
exclude, in addition, samples of very small size (e.g., s = 1; the required minimum size is 
sometimes not exactly specified). If, however, a method of confirmation in our sense is given at 
all, that is, if rules determining numerical values. c are given at least for some nontrivial cases, 
their these comprise usually, or perhaps always, cases of the singular predictive inference. If so, 
these rules determine immediately the characteristic function G of the method and its λ-function. 
Then we can supplement c to a complete function c′ by determining the values of c′ for the 
remaining cases with the help of the λ-function, as explained earlier (§ 10). Finally, we add to c′ 
the complete function e′ based upon it; it has the same λ-function as c′. 

2. Suppose that an author proposes or discusses a method of estimation for rf represented 
by a function e, but no method of confirmation. This is frequently the case, e.g., for Reichenbach 
and the majority of contemporary workers in mathematical statistics. Usually a method of this 
kind is incomplete; here again cases of empty or even very small samples are often excluded. But 
at least some nontrivial values are assigned to e, and they comprise usually cases of the 
predictive estimation for rf, M, K, eM, as previously specified. If so, these values will 
immediately supply the characteristic function G by (6-17) and hence the λ-function. Then we 
transform e into the complete inductive method consisting of those complete functions c′ and e′ 
which are characterized by the resulting λ-function. Thus we have seen, for example, how 
various methods of estimation of rf which lead to the straight rule of estimation but are 
represented by an incomplete function e, excluding an empty sample and maybe also very small 
samples (e.g., the maximum likelihood method), are transformed into the complete function c0, 
to which the complete function c0 is then added (§ 14). In this case the limit-convention plays an 
essential role in the procedure of supplementation. 

3. Suppose that an author presents or investigates a method which involves both a method 
of confirmation and a method of estimation for rf, represented by the functions c and e, 
respectively. So far, very few authors have studied combined methods of this kind. If such a 
method is given, we can establish the characteristic function for c, say G1, and separately that for 
e, say G2. Then G1 yields a λ-function λ1, and G2 yields λ2. The resulting functions determine 
whether the two parts of the method fit together or not. They do if and only if λ1and λ2are the 
same function. It 



seems that in the few historically given cases this condition is fulfilled. Then the method is 
extended so as to supply complete functions c′ and e′ determined by the common λ-function. If it 
is found, however, that λl and λ2 are not the same, then c and e must be regarded not as parts of 
one inductive method in our sense but as belonging to two distinct methods. Each of the two 
parts could then be transformed separately with the help of, its λ-function into a complete 
inductive method. 
 
 
§ 18. The Choice of an inductive Method 
 

The λ-system represents an infinite number of inductive methods, each characterized by a 
function or number λ. Thus the question arises as to which of the available methods a man X 
ought to choose if he wants to determine degrees of confirmation and estimates on the basis of 
his observational results. This is fundamentally not a theoretical question. A possible answer to a 
theoretical question is an assertion; as such it can be judged as true or false, and, if it is true; it 
demands the assent of all. Here, however, the answer consists in a practical decision to be made 
by X. A decision cannot be judged as true or fare but only as more or less adequate, that is, 
suitable for given purposes. However, the adequacy of the choice depends, of course, on many 
theoretical results concerning the properties of the various inductive methods; and therefore the 
theoretical results may influence the decision. Nevertheless, the decision itself still remains a 
practical matter, a matter of X making up his mind, like choosing an instrument for a certain kind 
of work. First, X has to decide whether to choose a method of the first or the second kind. As we 
have seen, a method of the first kind has the advantage that only those primitive properties which 
actually occur in e and h have to be taken into consideration for the calculation of c(h,e). 
Suppose that X, for this or other reasons, prefers a method of the first kind. Then he has to 
choose as a value of the parameter λ any positive real number or 0 or ∞. He learns about the 
properties of the method with λ = ∞, which were stated earlier (§ 13), especially the fact that c∞ 
and e∞ are independent of e (which is a theoretical result). Suppose he regards these properties as 
unsatisfactory (which is a practical evaluation) and hence rejects this method (which is a 
practical decision). Suppose he rejects also those methods for which λ is very large, though 
finite, because they have the same unsatisfactory properties, though to a lesser degree. What 
might be X’s attitude toward the other extreme method, the straight rule, characterized by λ = 0? 
He may perhaps accept it, following the majority of statistic fans and Reichenbach, or he may 
not. Let us suppose that he rejects it in view of those properties. 



which seem to me disadvantageous (of which only a few are mentioned in this monograph). He 
may. then likewise reject those related methods for which λ is near to 0 (a small positive. 
fraction), because they have the same disadvantageous properties, though to a lesser degree. This 
would still leave X the choice from an infinite number of nonextreme methods in the medium 
range of the λ-scale. There are various points of view which might have more or less weight for 
his decision. He may have the feeling (as I do) that small λ-values seem to lead to more adequate 
values of c and e. Integers lead to simpler formulas (see the denominator in (12-1)), and 
especially powers of 2 (since λ/K occurs frequently and K is always a power of 2). Thus he might 
consider (as I would) in the first place λ = 2, the modified Laplace method, or λ = 1 (§ 12); in the 
second place 4 or 8; further, 16, etc.; also ½, ¼, etc. 

Now let us suppose that X prefers a method of the second kind, with λ(K) = CK. If he 
chooses a positive integer for the coefficient C, the formulas become much simpler than in any 
nonextreme method of the first kind (see (15-14)). He might take into consideration, in the first 
place, C = 1 (as I would), hence λ(K) = K, i.e., the function c*. The definition of this function c* 
is of great simplicity and elegance; it is simpler than that of any other c-function that comes into 
consideration (excluding c† as entirely inadequate). In the second place, he might regard C = 2 or 
3; and further perhaps a few more subsequent integers, but not many. With larger values of C, λ 
would be rather large for systems with many primitive properties, and then the adequacy of the 
resulting values of c and e would become dubious. (For example, even with C = 6, for a system 
with a- = 8; hence K = 28 = 256, we have λ = 1,536, which might be regarded as too high for 
adequacy.) Thus only a small number of methods of the second kind seem advantageous. 

Suppose that X has chosen a certain inductive method and used it during a certain period 
for the inductive problems which occurred. If, in view of the services this method has given him, 
he is not satisfied with it, he may at any time abandon it and adopt another method which seems 
to him preferable. This is not the same as a change in method from problem to problem. Once he 
adopts the new method, he will apply it to all inductive problems, problems of confirmation for 
all kinds of hypotheses; of estimation for all kinds of situations (and, ultimately, for all kinds of 
magnitudes, according to the general concept of estimation explained in § 6); of choosing a 
practical decision; etc. One inductive method is here envisaged as covering all inductive 
problems. How can X go over from one inductive method to another? It is not easy to change a 
belief at will; 



good theoretical reasons are required. It is psychologically difficult to change a faith supported 
by strong emotional factors (e.g., a religious or political creed). The adoption of an inductive 
method is neither an expression of belief nor an act of faith, though either or both may come in 
as motivating factors. An inductive method is rather an instrument for the task of constructing a 
picture of the world on the basis of observational data and especially of forming expectations of 
future events as a guidance for practical conduct. X may change this instrument just as he 
changes a saw or an automobile, and for similar reasons. If X, after using his car for some time, 
is no longer satisfied with it, he will consider taking another one, provided that he finds one that 
seems to him preferable. Relevant points of view for his preference might be: performance, 
economy, aesthetic satisfaction, and others. Similarly, after working with a particular inductive 
method for a time, he may not be quite satisfied and therefore look around for another method. 
He will take into consideration the performance of a method, that is, the values it supplies and 
their relation to later empirical results, e.g., the truth-frequency of predictions and the error of 
estimates; further, the economy in use, measured by the simplicity of the calculations required; 
maybe also aesthetic features, like the logical elegance of the definitions and rules involved. The 
λ-system makes it easy to look for another inductive method because it offers an inexhaustible 
stock of ready-made methods systematically ordered on a scale. If X feels that the method he has 
used so far does not. give sufficient weight to the empirical factor in comparison to the logical 
factor, lie will choose a method with a smaller λ—a little smaller or much smaller, according to 
his wishes. On the other hand, if he wishes to give more influence to the logical factor and less to 
the empirical factor, he will move up his mark on the λ-scale. Here, as anywhere else, life is a 
process of never ending adjustment; there are no absolutes, neither absolutely certain knowledge 
about the world nor absolutely perfect methods of working in the world. 



PART II 
 

COMPARISON OF THE SUCCESS OF INDUCTIVE METHODS 
 
 
§ 19. Sampling Distributions 
 

In the first part, the λ-system of inductive methods was constructed, in which each 
method is characterized by its λ. In this part we shall develop a procedure for measuring the 
success of a given inductive method within a given state-description. This procedure will be 
based on the concept of the mean square error of an estimate-f unction in the sampling distribu-
tion of a state-description. It will then be shown how for any given state-description the optimum 
inductive method can be determined. The comparative study of inductive methods carried out in 
this part is not intended to show that one particular method is superior to all others. The purpose 
is rather to clarify the situation by exhibiting the comparative properties of the various methods. 
This will supply to anyone who wishes to choose an inductive method a rational foundation for 
his choice. 

In preparation for the analysis of success, we shall define in this section some well-
known elementary statistical concepts concerning sampling distributions and estimate-functions 
and list some formulas involving these concepts. These results will be applied to the λ-methods 
in subsequent sections. 

We shall mention, first, a few general statistical concepts. Let u be a variate (e.g., a 
measurable magnitude or the cardinal number of a class) which has the values u1, u2, . . . , un in a 
given set of n cases (the values are not necessarily different). We define: 
 

(19-1) The mean of u: ū = ∏
=

n

i 1

ui/n. 

(19-2) The mean square deviation of it with respect to a fixed value a:  

∑ −=−
i

i nauau /)()( 22 . 

(19-3) The variance of u (σ2(u)) is the mean square deviation of u with respect to ū: 
 
   σ2(u) = ∑

i

(ui – ū)2/n.



The variance is the smallest value of the mean square deviation. For any reference point a 
different from ū we have: 
 
(19-4)   2)( au −  = σ2(u) + (ū – a)2.  
 
Hence, for a = 0: 
 
(19-5)   2u  = σ2(u) + ū2. 
 

If the mean and the variance of u are known, we can easily find the mean and the 
variance of a linear function of u, with any constants b and c: 

 
(19-6)    bu  = bū, 
(19-7)    cu +  = ū + c, 
(19-8)    cbu +  = bū + c. 
(19-9)    σ2(u + c) = σ2(u) 
(19-10)   σ2(bu) = σ2(bu + c) = b2σ2(u) 
 
 

Let a system L π
n  be given and in it a state-description k. Let eM, (as in § 4) describe a 

sample of size s (s > 0) in k containing sM individuals with the property M. Let K be the 
unobserved part of the universe (or population), i.e., the class of the N − s individuals not 
mentioned in eM. We assume that N is very large in relation to s, so that we can identify the 
unobserved part with the whole universe with sufficient approximation. Let NM be the number of 
individuals in k which have the property M. Then the rf of M in the universe as described in k is r 
= NM/N; this we shall take (approximately) also as the rf of M in K. Let e be an estimate-function 
for rf; we shall study its values e(rf,M,K,eM) in various cases. 

We consider the totality of possible samples of the fixed size s from the given population 
as described in k, that is, the set of all those subclasses of the universe which contain s 
individuals. Let S be their number. Any method of estimation can be applied to each of these 
samples, and we consider the distribution of the resulting values among the S samples. This is 
called the sampling distribution of the values in question. We shall study the sampling 
distributions of the estimates and of their errors. 

We shall now apply the statistical concepts defined above to the sampling distribution. 
The number sM of individuals with M in the samples of size s varies from 0 to s. For any given 
value of sM the number of  



samples for which this value holds can easily be determined. The results are as follows: 
 

(19-11) The number of all samples of size s is S = 
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(19-12) The exact number of samples with a given value of sM is SM = 
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Hence the proportion of these samples among all samples of the size s is SM/S. If N is very large 
in relation to s, as is presupposed in our discussion, then the following holds approximately: 
 
(19-13) The proportion of samples with a given sM (and hence the statistical probability that a  

random sample has a given value of sM) is  
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This is known as the binomial law.1 On this basis the mean and the variance of sM for the 
samples of the fixed size s can be ascertained; the results are well known:2 

 
(19-14)    Ms = sr , 
(19-15)     σ2(sM) = sr(1 – r).  
 
Hence with (19-6) and (19-10): 
 
(19-16)    ssM /  = r, 
(19-17)    σ2(sM/ s) = r(1 – r)/s . 
 

The error v(e,x,e) of any estimate e(x,e) of a magnitude x on evidence e is the difference 
between the estimate and x itself3 (the latter means either the actual value of the magnitude or its 
assumed value in a given state-description): 
 
(19-18)   v(e,x,e) = e(x,e) − x. 
 
(In the following we shall often write simply ‘v’ and ‘e’, omitting the arguments when they are 
obvious from the context.) The mean of the error is, according to (19-7): 
 
(19-19)   .x−= ev  
 

1. [I], §95, T95-1c. (This theorem states the value of c in the direct inference. This value is equal to the 
proportion of samples of the kind in question.) 

2. M. G. Kendall, Advanced theory of statistics, I (London, 1943), 117, 197 ff.; H. Cramér, Mathematical 
methods of statistics (Princeton, 1946), 1).193. 

3. [I],  § 102, D102-1. 



The variance of the error is, according to (19-9), equal to the variance of the estimate: 
 
(19-20)     σ2(v) = σ2(e). 
  

In the terminology of statistics, an estimate-function e for some magnitude x is said to be 
unbiased if, for any population and any sample size s, the mean of the estimate is equal to the 
actual value of the magnitude in the population.4 If the function e is not unbiased, the difference 

.), xex −e( is called the bias; according to (19-19) it is equal to the mean error v . 
Of special interest is the mean square error, which. we denote by ‘1v2(e,x)’ (often briefly 

‘1v2’).5 It is defined as the mean of ‘v2’, the square of the error of the estimate e, in the sampling 
distribution: 
(19-21)    1v2(e,x) = 2v ,  
 
Hence with (19-5): 
 
(19-22)    1v2 =  σ2(v) + 2v , 
 
or, according to (19-20): 
 
(19-23)     1v2 =  σ2(e) + 2v . 
 
 
§ 20. The Mean Square Error as a Measure of Success 
 

A given inductive method can be studied in two different respects. On the one hand, its 
internal logical character may be analyzed. On the other hand, we may confront it with a given 
series of events or a whole world, either the actual universe or an assumed one described in a 
given state-description, and examine how well it performs if it is applied to various parts of the 
world in order to obtain degrees of confirmation or estimates concerning other parts. We shall 
study problems of this kind in this and subsequent sections. Our discussions will always refer to 
a given state-description, not to the actual state of the universe. Therefore, our problems are of a 
purely logical nature. Questions concerning the success of a given inductive method in the actual 
world would be of a factual, nonlogical nature. And if they concerned not merely that part of the 
world which is known to us by past observations but also a part or the whole of the future, then 
the answer could be given with certainty only after all observation reports were in, if that were 
ever possible. And if our question 
 

4. Cramér, op. cit., pp. 351, 478; Kendall, op. cit., I, 200; II, 3 ff. 
5. The mean square error 1v2 must not be confused with the estimated square error f2 ([I], § 103, D103-1a). 

The farmer is based on the actual square error v2 and therefore can be determined only if the actual value x is known 
(or assumed in a given state-description). The latter, on the other hand, is the estimate of v2 with respect to given 
evidence e and hence depends merely on e. 



concerned not the actual success but the probability of success or an estimate of success, then it 
would make sense only on the basis of a chosen inductive method. The purpose of the intended 
study, however, is to examine the various inductive methods on a neutral basis without presup-
posing the acceptance of one of them. Therefore, we must relativize the problem with respect to 
state-descriptions. This has the advantage that our results hold with deductive certainty and 
hence must be accepted by anybody independently of the preferences he may have with respect 
to inductive methods. On the other hand, by framing the problem as a logical question, our 
investigation must necessarily abstain from making any judgment concerning the success of an 
inductive method in the total actual world. A judgment of the latter kind is obviously impossible 
from an inductively neutral standpoint. 

Our problem involves the logical concept of the success of a given inductive method 
within a given state-description k. We may perhaps have a rough idea of what we mean by this 
measure of success, but not yet an explication6 for it, that is, a way of representing in the form of 
an exactly defined concept what we vaguely have in mind. Thus this explication will be our first 
task. There are various ways of solving it. We shall first outline, without adopting it, a possible 
explication involving bets based on c-functions. Then we shall choose another explication based 
on e-functions. This will later be used in our analysis of success. 

Suppose we wish to compare the success of two given inductive methods, represented by 
the functions c and c′, respectively, in a given state-description k with N individuals. We might 
do this by considering a comprehensive system of bets between X, using c, and X′, using c′. We 
take a sample in k of size s, described in eM, involving a property M. hM attributes M to an 
individual outside the sample. We assume that eM represents the available evidence for both X 
and X′. Then X regards c(hM,eM) as a fair betting quotient for a bet on hM, and 1 − c(hM,eM) for a 
bet on non- hM; analogously for X′ with c′(hM,eM) and 1 − c′(hM,eM). Suppose that c(hM,eM) > 
c′(hM,eM). Let q be the arithmetic mean of these two values. Then we let X bet on hM with the 
betting quotient q (which is less than his value c(hM,eM));. thus X′ bets on non-hM, with 1 − q 
(which is less than his value 1 − c′(hM,eM)). We stipulate that the sum of the two stakes is 1. 
Hence the stake of X is q and that of X′, 1 − q. Simultaneous bets of this hind are made for each 
of the N − s individuals outside the sample. Since the state-description is given to us (though, of 
course, unknown to the two bettors), we can calculate how many of these bets are  
 

6. [I], chap. i. 



won by X and how many by X′, and thus we can set up the balance. Then we do the same for 
every other sample of the fixed size s. This whole procedure is carried out not only for some one 
property M, but for a suitable set of properties, say, for all primitive properties or for all Q’s. 
Then we regard the over-all balance of X for the total set of bets as the measure of the relative 
success of c in comparison with c′ for the given state-description k. If X has a positive balance 
and hence X′ a negative one, c is regarded as more successful in k than c′. 

If we wish to have a measure of success for one function c alone, we might consider a 
similar system of bets between X, who uses c, and a fictitious semi-omniscient being Y who 
knows, not the state-description and hence all single facts, like an omniscient being, but all the 
frequencies. Y takes as his betting quotient for a singular prediction hM involving M the rf of M in 
the part of the universe not covered by eM. We take again as the measure of success of X in k his 
balance for the total system of bets; in this case, his balance is either negative or zero. 

The measure of success which we shall actually use is based, not on bets, but on the 
errors of estimations. Thus it involves e(rf,M,K, eM), not c(hM,eM); but from our point of view this 
males no essential difference because of the equality of these two values if e is based upon c. 

Now let us see how the concepts defined in the preceding section may be used for the 
purpose of explicating the concept of a measure of success of a method of estimation. The mean 
ū of a variate u represents an average, a central location of the scattered values ui. The mean 
square deviation with respect to a represents a measure of the dispersion or scattering of the 
values around a. And, in particular, the variance represents a measure of the dispersion of the 
values ui around their mean ū. Now an estimate-function e for a magnitude x is not good if its 
values, based on samples of the fixed size s in the state-description k, are dispersed too widely. 
Therefore, it seems desirable for e to be such that the mean square deviation of its values in the 
sampling distribution be not too large. But which reference point should be taken here? The 
mean e as reference point leads to the variance σ2(e). This measures merely the closeness to each 
other of the various estimates, based on various samples. Other things being equal, this 
concentration of the values is also a desirable property of e; but it cannot be regarded as decisive. 
The closeness of the estimates to the actual value x is more suitable as a measure of success; 
hence, in our problem, the closeness of the estimates to the value x given by k. Therefore, we 
shall regard the function e as more successful in k, the smaller the mean square deviation of the 
values of e with respect to x, in other 



words; the mean square error 1v2(e,x) in the sampling distribution in k. [To measure the 
adequacy of an estimate-function e by its variance is justified only if e is such that its mean e  
and the actual value always coincide, in other words, if e is unbiased (§ 19). This is the case for 
most of those estimate-functions applied by statisticians; hence their customary reference for 
estimate-functions with minimum variance (the so-called most-efficient estimate-functions7). 
The functions eλ in our system, however, are mostly not unbiased, as we shall see soon; 
therefore, it would not be justified here to require minimum variance.] 

We return now to our estimate-functions eλ. We had (11-7):   
 

(20-1)   eλ(rf,M,K,eM) = 
λ

λ
+

+
s

ws KM )/(  
 

We refer now again to the given state-description k, in which the rf of M is r. We find the mean 
and the variance of the estimates supplied by a particular function eλ with a fixed λ for all 
samples of the fixed size s in k from (20-1), (19-14), and (19-15) with the help of (19-8) and (19-
10):  
 

(20-2)    
λ

λ
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A function eλ is unbiased if and only if always λe  = r (§ 19). We see from (20-2) that this 

condition is fulfilled only for λ = 0. Thus the function e0, representing the straight rule of 
estimation, is the only unbiased estimate-function in our λ-system. We shall later come back to 
this point. 

In our present discussions, an estimate is based on a sample of size s in a state-description 
k which describes a universe with a finite number N of individuals. It is an estimate of the rf of M 
in the class K of those N − s individuals which do not belong to the sample. We suppose that N is 
very large in relation to s; therefore, we take the rf of M in K as approximately equal to that in 
the whole universe. Let us digress for a moment to consider the estimate for an infinite universe; 
that is, the estimate e(rf,M,K∞,eM) of the limit of the rf of M in an infinite sequence K∞. It seems 
natural to take as this estimate the limit of e(rf,M,Km,eM) for m → ∞, where Km is a class of m 
individuals not mentioned in eM. Now, for any estimate-function eλ of the λ-system, 
eλ(rf,M,Km,eM) always has, according to (11-7), the value (sM +  (w/K) λ)/(s + λ), independently of 
m; hence eλ(rf,M,K∞,eM) has the same value. Let us assume that there is a limit of the rf of M in 
the infinite sequence K∞; let this limit  

 
7. Kendall, op. cit., II, 5 f. 



be r. Let us consider a sequence of samples with increasing size s; the sample with the size s 
contains the first s individuals of the infinite sequence. Reichenbach8 shows that his rule of 
induction (see above, §14), which is essentially the same as the straight rule of estimation, is self-
correcting in the following sense. If we choose a positive δ, however small, then there is a finite 
n such that, for every sample in the sequence of samples with s > n, the estimate based on this 
sample does not deviate from r by more than δ. This follows immediately from the definition of r 
as the limit of sM/s for s → ∞. The values of any eλ with positive finite a converge for s → ∞ 
toward those of e0, as is seen from the value of eλ stated above. Therefore, these functions are 
likewise self-correcting. On the other hand, e∞ is not self-correcting, as is seen immediately from 
(13-5). Closely related to the concept of self-correction is that of consistence9 (defined by the 
“convergence in probability” of the estimates toward the actual value with s → ∞). This is 
likewise a property of every function eλ except e∞. 

Now we return to the discussion of the finite state-description k. We find the following 
results concerning the error v of the estimate eλ(rf,M,K,eM), and the mean v  and the variance 
σ2(v) of this error in the distribution of samples of size s in k from (20-1), (20-2), and (20-3) with 
the help of (19-18), (19-19), and (19-20): 
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For the mean square error 1v2 in the sampling distribution in k we obtain from (20-6) and 

(20-5) according to (19-22): 
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The second form shows that 1v2 as a function of r (for fixed w, K, λ, and s) is, in general, 
represented by a parabola, which is convex upward if λ2 < s   
 

8. The theory of probability (Berkeley, 1949), pp. 445 ff. 
9. This concept was introduced by R. A. Fisher, “On the mathematical foundations of theoretical statistics,” 

Philos. Transactions of the Royal Society, Ser. A, Vol. 222 (1922}; see also Cramér, op. cit., p. 351; Kendall, op. 
cit., II, 3. 



and convex downward if λ2 > s. If λ2 = s, the curve is a straight line; in this case 
 

(20-8)   1v2 = 
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This line is, in general, inclined toward the r-axis. However, in the case that w/K = ½, and only in 
this case, the line is parallel to the r-axis and hence 1v2  is independent of r. In this case 
 
(20-9)   1v2 = 1/[4( s +1)2]. 
 
The case λ2 = s just discussed is here to be understood in the sense that the numerical value 
chosen for λ (chosen either generally or for a particular language-system) and the size s of the 
samples under investigation happen to stand in the relation λ2 = s. However, the results 
mentioned hold also for a λ-function defined as follows: 
 
(20-10)  λ(K,s,si) = 

+
s . 

 
This λ-function belongs to our λ-system; but it does not belong to the class of those λ-functions 
which we selected for closer consideration, since it is dependent upon s and hence does not fulfil 
condition C11 (§ 9). For this function and for a property M with w/K = ½, 1v2 has the value 
stated in (20-9), independent of r. 

We consider now, for any λ and any s, the case that M is a property with w/K = ½, e.g., a 
primitive property. (The value of K itself does not matter, because ‘K’ occurs in these formulas 
only in the context of ‘w/K’.) In this case, the formulas (20-1) to (20-7) yield the following 
results: 
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The curve for 1v2 is, in general, a parabola, as above. However, if λ2 = s, we have the case 
discussed earlier, in which 1v2 has the value (20-9) independent of r. 
 
 
§ 21. The Mean Square Error with Respect to All Q-Properties 
 

We have determined in (20-7) the mean square error 1v2 of the estimates supplied by the 
function eλ for the rf of the particular property M in the state-description k, based on all samples 
of the size s. This value, however, is obviously not suitable as a measure for the success of eλ in k 
in general. For this purpose it would be necessary to take into consideration also the success of eλ 
for other properties than just M. This we shall do by determining the mean square error of the 
estimates for all Q-properties together, which we denote by ‘ 2

Q1v ’. The Q-properties are funda-
mental; any other factual property is a disjunction of Q-properties, and hence its rf is the sum of 
the rf’s of the corresponding Q’s. Therefore, 2

Q1v  represents, in a sense; a measure for all 
properties. eQ describes a sample of s individuals of which si (i = 1 to K) have the property Qi. 
According to (11-5) and (G-12), eλ(rf,Qi,K,eQ) = (si + λ/K)/(s + λ). Ni is the cardinal number of Qi 
in the state-description k. ri = Ni/N is the rf of Qi in k. 

From (20-7), for Qi, hence with w = 1:  
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2
Q1v (eλ,k,s) is the mean square error of KS estimates eλ(rf,Qi,K,eQ), one estimate for each of the S 

samples of size s in k and each of the K Q’s. Therefore, it is the mean of the K values of 1v2 for 
Qi, with i = 1 to K: 
 

(21-2)   2
Q1v (eλ,k,s) = 

k
1∑1v2 (eλ,Qi,k,s). 

 
(‘∑’ denotes here and in the subsequent sections always summation over i from 1 to K, unless 
indicated otherwise.) Hence with (21-1), noting that ∑ri = 1: 
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We shall regard the success of eλ, in k (for samples of size s) as indicated by the 

smallness of 2
Q1v (eλ,k,s). 

In the preceding discussion reference was made to the numbers N and K characterizing 
the given language-system, and to the Q-numbers Ni (i = 1 



to K) of the given state-description k. Nothing else concerning the given state-description was 
used; thus the result could just as well be formulated for a structure-description. Now we see 
from (21-3) that for 2

Q1v the values N and Ni themselves are not relevant (except for the 
assumption that N must be very large in relation to s), but only Ni/N = ri. And the values r1, r2, … 
, rK enter the result only through ∑ri

2; thus this sum is the only magnitude concerning the state-
description k which is relevant for 2

Q1v . 
This sum is a very important characteristic of the state-description. It has its maximum 

value 1, if one ri is 1 and all others 0, in other words, if one Ni is N and all others 0. A state-
description of this kind was called homogeneous (§ 14). It may also be regarded as having the 
maximum degree of order or uniformity or regularity. The concept of the uniformity of the 
universe has often been used by philosophers but has never been clearly defined. It seems to me 
that it should be explicated as a qualitative concept, a degree of order. We shall not try here to 
give a definition; for our present discussion it will suffice to make a few remarks in comparative 
form.10 The uniformity of the world was often discussed by earlier authors in connection with the 
problem of the validity of inductive reasoning. It was understood in the sense of the existence of 
regularities in the world, expressible by universal laws. Now it can easily be shown that, the 
mere Q’s are empty, the more universal laws hold,11 and thus the higher is the degree of order. In 
a homogeneous state-description all Q’s except ore are empty; thus the degree of order reaches 
its maximum. 

On the other hand, consider a state-description in which all Ni-values are equal. (Strictly 
speaking, in order to make this possible, we must assume that N is divisible by K; but, since we 
presuppose N to be very large, the following remarks hold with sufficient approximation also if 
N is not divisible by K and the Ni-values are not exactly equal but nearly so.) Then, for every i, Ni 
= N/K; hence ri = 1/K, and ri

2 = 1/K2. In this case ∑ri
2 has its minimum value 1/K. Here the degree 

of order reaches its minimum. 
∑ri

2 varies from 1/K to 1. We shall find it convenient for the formulation of several of our 
results to make use of the differences between a given value of ∑ri

2 and those two extreme 
values; therefore we define: 
 
(21-4)     D1 = 1 − ∑ri

2 . 
D2 = ∑ri

2 – 1/K 
 

10. The concept of degree of order will be discussed in detail in a forthcoming article, and a tentative 
quantitative explication for it will be given. 

11. [I], § 37. 



Then we can reformulate (21-3) as follows:  
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For the two extreme cases with respect to ∑ri
2, the following holds:  

 
(21-6)  Let ∑ri

2 = 1; maximum degree of order. 
(a)    D1 = 0, 
(b)    D2

 = (K – 1)/K, 
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(21-7) Let ∑ri
2 = 1/K; minimum degree of order. 

(a)    D1 = (K – 1)/K  
(b)    D2 = 0 
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We consider, now, a system of the simplest kind, with M as the only primitive property. 
Let r be the rf of M in k, as before. Here we have K = 2; the two Q’s are M and non-M; hence r1 = 
r and r2 = 1 – r. The previous results (20-11) to (20-16) hold here. Further we have: 
 
(21-8)   ∑ri

2 = r2 + (1 – r)2 = 1 – 2r(1 – r). 
 
Hence with (21-4) 
 
(21-9)     D1 = 2r (1 – r) ,  
(21-10)    D2 = 1/2 – D1 = 2(1/2 – r)2.  
 
Hence from (21-5) with K = 2: 
 

(21-11)  2
Q1v (eλ,k,s)  = ,
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This is the same as the value of 1v2 for M stated in (20-16), because here 1v2 has the same value 
for each of the two Q’s, viz., M and non-M. 

Let us look at some numerical examples for (21-11) with samples of size s = 10. The 
subsequent table shows, for a few selected methods characterized by their λ, the mean square 
error 2

Q1v  as a function of r. In the table, r runs only from 0 to 0.5; 2
Q1v has the same value for 1 – 

r as for r, as (21-11) shows. On each line, the smallest value of 2
Q1v  is indicated by boldface 

type. The results in the table suggest that, the nearer r comes to 



0.5, the higher is the λ for which 2
Q1v has its minimum. We shall soon show that this is indeed the 

case. 
 
(21-12)  The Mean Square Error 2

Q1v  as a Function of λ and r  
(For K = 2, s = 10) 

 

λ = 
r 

0 1 2 4 8 16 ∞ 
 0.0 0.0 0.0 0.0 0.0 0.0  
0 000 021 069 204 493 946 0.2500 

0.1 090 088 107 177 343 619 0.1600 
0.2 160 140 136 155 227 364 0.0900 
0.3 210 177 157 140 144 182 0.0400 
0.4 240 199 170 131 094 073 0.0100 
0.5 250 207 174 128 077 037 0.0000 

 
Let us again consider the case that λ2 = s. This case occurs if either the numerical values 

of λ and s happen to stand in this relation or the λ-function, defined as s (20-10) has been 
adopted. Then, from (21-3): 

(21-13)  2
Q1v (eλ,k,s) = .

)1(
1

22 +
−
sK

K  

This is independent of the ri-values; hence it holds in every state-description. Thus, with respect 
to samples of the size s, the estimate-function eλ with λ = s  has equal success in all state-
descriptions. 
 
 
§ 22. The Optimum Inductive Method for a Given State-Description  
 

The λ-system orders the inductive methods in a continuum. The value of the parameter λ 
for a given inductive method determines the position of the method within the continuum. We 
can now investigate the continuous changes in an inductive method brought about by a 
continuous change in λ. This makes it possible to find that inductive method which shows some 
characteristic to the highest degree with respect to given conditions. Thus we shall now study the 
question how to determine that inductive method which is most successful in a given possible 
world represented by a state-description, in other words, that method which has the smallest 
mean square error. 

Let a language-system and a state-description k be given; then K and ∑ri
2 are fixed. We 

choose a sample size s and consider all the samples of this size in k. We have seen that, for any 
given λ, the mean square error 2

Q1v (eλ,k,s)is determined by (21-3) or (21-5). We shall now study 

the change of 2
Q1v (eλ,k,s) when λ varies. We assume that the given value of ∑ri

2 is 



not one of the two extremes (1/K < ∑ri
2 < 1, hence Dl > 0, D2 > 0), leaving the two extreme 

values aside for the moment. We find the following results (by partial differentiation of the 
function stated in (21-5) with respect to λ). With increasing λ, 2

Q1v first decreases, takes on a 
minimum value, and then increases again (compare table (21-12)). Let λ∆ be that value of a for 
which 2

Q1v has its minimum. We find: 
 

(22-1)    λ∆ = 
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The minimum value of 2
Q1v , which it reaches at λ∆, is:  

 

(22-2)   Minλ ( 2
Q1v ) = .
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Now we consider the two extreme values for ∑ri

2. The following results (22-3) and (22-4) are 
obtained from (21-6) and (21-7), respectively.  
 
(22-3) Let ∑ri

2 = 1; hence D1 = 0. 
(a)    λ∆ = 0. 
(b)    2

Q1v (e0) = 0 
 
In this case, 2

Q1v has its minimum value 0 for λ = 0; from here on it increases always with 
increasing λ. 
 
(22-4) Let ∑ri

2 = 1/K; hence D2 = 0. 
(a)  2

Q1v decreases always with increasing λ; its limit for λ → ∞. is smaller than any of 
its values for finite λ; hence: λ∆ = ∞. 

(b) 2
Q1v (e∞) = 0 (i.e., lim

∞→λ

2
Q1v (eλ) = 0. 

 
The formulas (22-1) and (22-2) were first stated only for nonextreme values of ∑ri

2. However, 
the value of λ∆ stated in (22-3) (a) is the same as that resulting from (22-1) for ∑ri

2 = 1. And the 
value λ∆ = ∞ stated in (22-4) (a) is in accordance with the limit of the function stated in (22-1) 
for ∑ri

2 → 1/K. Thus (22-1) holds for all values of ∑ri
2, including the two extreme ones. The 

same is true for (22-2), as is seen from (22-3)(b) and (22-4)(b). 
We call λ∆ the optimum λ-value, and the inductive method characterized by λ∆ ° the 

optimum method for the given state-description, because this method has a smaller mean square 
error than any other one. The e-function characterized by λ∆ is denoted by ‘e∆’ and called the 
optimum e-function. 

The formula (22-1) for λ∆ is surprisingly simple. (This gives additional support to the 
view, originally based on other reasons not mentioned in 



this monograph, that 2
Q1v is a suitable measure for the success of an inductive method.) In 

particular, λ∆ is independent of s, although 2
Q1v was still dependent upon s. Thus λ∆, as 

determined by (22-1) for a given state-description k, characterizes one method which is most 
successful in application to any sample size s in k (provided that s is small in relation to N), and 
which hence may be regarded as the optimum method for k. 

The situation with respect to optimum methods is as follows; it is illustrated in the 
accompanying diagram. We consider various possible 

 

 
 

λ∆ as a function of ∑ri
2. 

 
worlds, represented by state-descriptions. We begin with a world of maximum degree of order; it 
is homogeneous, i.e., all individuals are alike, hence ∑ri

2 = 1. We find here λ∆ = 0; this means 
that the optimum method is the straight rule. This is quite plausible in view of the fact that the 
method of the straight rule implicitly regards they homogeneous state-descriptions as the only 
possible ones (see (14-12) and (14-1â)). When we go to state-descriptions with smaller degrees 
of order, ∑ri

2 moves from 1 down toward 1/K, and λ∆ increases more and more. As long as ∑ri
2 

has an intermediate value, λ∆ is always positive and finite; it is just the quotient of the distances 
of the value of ∑ri

2 from the two extremes. Finally, for the state-description with minimum 
degree of order, i.e., the one in which 



all Q’s have the same rf, and hence ∑ri
2 has its minimum value 1/K, we have λ∆ = ∞.This means 

that the optimum method is represented by e∞. This is plausible because the value of the rf of 
every Q in this state-description, viz., 1/K, is the value which e∞ assigns to the estimate of the rf 
of any Q with respect to any evidence (see (13-3)). 

The result that, for any given state-description k, there is a unique inductive-method 
which is the most successful method in k and that this optimum method can easily be specified 
by its λ-parameter according to (22-1) is of great theoretical interest. However, it is not of 
immediate. practical usefulness. The practical knowledge situation for any human being at any 
time is such that he knows only a relatively small part of the universe, never the whole; it is just 
this fact that makes the use of inductive methods necessary. Therefore, he is never in a position 
where lie could directly apply the rule which tells him how to find the optimum inductive 
method for his universe from a certain magnitude concerning the universe as a whole (vie., ∑ri

2). 
We shall, however, see later (§ 2-1) that it is still possible to make some weaker statements about 
the optimum method for the unknown universe. 

Theoretically interesting is likewise the inverse result: given any inductive method 
characterized by a value of λ, there is always a state-description for which the given method is 
the optimum method. 

Strictly speaking, for a given system with a fixed N, there is only a finite number (vie., N 
+ 1) of possible values of Ni and of ri. However, since we suppose N to be very large, the 
difference between consecutive values of ri is very small (viz., 1/N). Therefore, it is possible with 
a good approximation to proceed as if ri could vary continuously, running through all real 
numbers from 0 to l, and likewise ∑ri

2, running from 1/K to 1. Thus we consider λ∆ as a 
continuous function of ∑ri

2, given by (22-1), while, strictly speaking, it has only a finite number 
of possible values. Now we consider the inverse function; we obtain from (22-1):  
 

(22-5)    ∑ri
2 = 

1
1/

+
+

∆

∆

λ
λ K  

 
Thus, if we choose any nonnegative real number as λ∆ (strictly speaking, any of those values of 
λ∆ which are possible for the given N according to (22-1)), then (22-5) determines uniquely a 
corresponding value of ∑ri

2 such that, for any state-description with this ∑ri
2 the chosen λ∆ is the 

optimum λ. We see from (22-5) that, for λ∆ = 0, ∑ri
2 = 1; thus, as we already know, the method 

of the straight rule is the optimum method for any homogeneous state-description. The limit of 
the function stated 



in (22-5) for λ∆ → ∞ is 1/K; hence the method with λ = ∞ is, as we know, the optimum method 
for the state-description with ∑ri

2 = 1/K, that is, the one with equal values of ri. The situation will 
be illustrated by the subsequent numerical example (22-8). 

The foregoing general results will now be applied to a system with only one primitive 
property M, hence K = 2. From (22-1) with (21-9) and (21-10): 
  

(22-6) For K = 2,  .
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From (22-2) we find the value of 2

Q1v for λ∆: 
 

(22-7) For K = 2,     Minλ( 2
Q1v )  = 
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The following numerical results are calculated by (22-6). λ∆ is given for certain values of 

r up to 0.5; the curve of λ∆ is symmetrical around r = 0.5, that is, λ∆ has the same value for r and 
1 − r. λ∆ is the optimum a for a state-description in which the rf of the primitive property is r. 
 
(22-8) 

r λ∆ r λ∆ 
0 0 0.3 5.250 

0.05 0.235 0.35 10.111 
0.1 0.562 0.4 24.000 
0.15 1.041 0.45 99.000 
0.2 1.778 0.5 ∞ 
0.25 3.000   

 
From (22-5) we have here: 

(22-9) For K = 2,  ∑ri
2 = 

22
2

+
+
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Hence with (21-8): 

(22-10)   r = 







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If we choose arbitrarily a value λ∆, then the method characterized by this λ is the 

optimum method for those state-descriptions in which the rf of the primitive property M has one 
of the two values stated in (22-10) (and hence the rf of non-M has the other value). (22-10) yields 
the follow- 



ing numerical results for some: values of λ∆; r is here the smaller one of the two values in (22-
10). 
  
(22-11) 

Method λ∆ r 

Straight rule 0 0 
 . . 
 . . 
 ¼ 0.053 
 ½ 0.092 
 1 0.146 
c* and mod. Laplace 2 0.211 
 4 0.276 
 8 0.333 
 16 0.379 
 32 0.413 
 64 0.438 
 128 0.456 
 . . 
 . . 
c† ∞ 0.500 

 
 
§ 23. Are Unbiased Estimate-Functions Preferable? 
 

Many contemporary statisticians seem to regard unbiased estimates as preferable, those 
for which the mean ),( exe in the sampling distribution is always equal to the actual value x of the 
magnitude in question. As far as I am aware, no rational reasons for this preference have been 
offered. It seems a nice situation if the grouping around x of the various estimates of x in the 
totality of samples shows this kind of symmetry. But it is clear that the decisive criterion for the 
success of an estimate-function cannot be this condition, which does not say anything about the 
closeness of the estimates to x. This closeness must be measured by a function of the errors, e.g., 
the mean square error or something similar. We shall show in this section that the straight rule, 
which is the one unbiased estimate-function within our system concerning estimation of rf, is 
definitely inferior to other functions which are not unbiased. 

In order to obtain a more concrete picture of the situation, let us compare in a numerical 
example the success of two particular methods of estimation with respect to a given state-
description k in a system with x = 2 and M as the only primitive property. The first method is that 
of the straight rule, characterized by λ = 0 and represented by the estimate-function e0. The 
second is the optimum method for k, with λ∆; let its e-function be e∆. Let the rf of M in k be r = 
0.3; we consider samples of size s = 10. Thus the data of our ????????: 
 
(23-1)  K = 2 ;  w/K = ½ ;  ??????  s = 10 . 



For these data we obtain, from (21-9) and (21-10):  
 
(23-2)    D1 = 0.42 ; D2 = 0.08 ;  
 
hence with (22-6) 
 
(23-3)     λ∆ = 5.25. 
 
The value of sM, the number of individuals with M in a sample, runs from 0 to 10. [According to 
the binomial law (19-13), the proportion of samples with a particular value sM among the totality 

of samples of the fixed size 10 for r = 0.3 is 








Ms
10

 × 0.3 Ms  × 0.710- Ms .] The following results hold 

for any λ. From (20-11) to (20-16): 

(23-4)   eλ(rf,M,K,eM)  = 
λ

λ
+

+
10

2/Ms , 

(23-5)         λe  = 
λ

λ
+

+
10

2/3 , 

(23-6)   σ2(eλ) = σ2(v)  = 2)10(
1.2
λ+

, 

(23-7)            v = eλ − 0.3, 

(23-8)           v  = .
10

2.0 2

λ
λ
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From (21-11):  

(23-9)         2
Q1v (eλ) = .

)10(
04.01.2

2

2

λ
λ

+
+  

 
The straight rule: λ = 0. Here e0(rf,M,K,eM) = sM/10. These values are listed in the 

subsequent table (23-13). σ2(e0) = σ2(v) = 0.0210. v = sM/10 − 0.3; the values of v2 are listed in 
the table 0e  = 0.3 = r; hence e0 is unbiased, as we know already. v  = 0. Therefore, according to 
(19-23), 21v for M is simply the same as the variance of the estimate; and the same holds for 2

Q1v  
(see the remark on (21-11); the result can also be obtained from (23-9)) 
= 0.0210 . 
 
(23-10)   2

Q1v (e0) = σ2(e0) = 0.0210 . 
 
The optimum method: λ∆ = 5.25. e∆(rf,M,K,eM) = (sM + 2.625)/15.25. These values are 

listed in the table; also those of the square error v2 == (e∆  − 0.3)2. ∆e = 5.625/15.25 = 0.3689. 
Hence e∆ is not unbiased; the difference between ∆e  and r (which is equal to v , see (19-19)) is 
0.0689. 

 
(23-11)   σ2(e∆) = σ2(v) = 0.00901. 



According to (19-23), we must add to this 2v  = 0.00475 in order to obtain 21v for M, which is 

here equal to 2
Q1v ; hence: 

 
(23-12)    2

Q1v (e∆) = 0.013 76 . 
 
(23-13)  Estimates and Square Errors for λ = 0 and λ∆ = 5.25 

        as Functions of sM (for K = 2, r = 0.3, s −10) 
 

 λ = 0 λ∆ = 5.25 

sM e0
 2v e∆ 2v

0 0 0.09 0.1722 0.01636 
1 0.1 0.04 0.2378 0.00387 
2 0.2 0.01 0.3025 0.00001 
3 0.3 0 0.3688 0.00475 
4 0.4 0.01 0.4345 0.01806 
5 0.5 0.04 0.5000 0.04006 
6 0.6 0.09 0.5656 0.07051 
7 0.7 0.16 0.6312 0.10963 
8 0.8 0.25 0.6968 0.15737 
9 0.9 0.36 0.7623 0.2136 
10 1.0 0.49 0.8280 0.2787 
 σ2(e0) =0.0210 σ2(e∆) = 0.0091 

 2
Q1v (e0) = 0.0210 2

Q1v (e∆) = 0.0138 

 
Comparison. We see that not only the variance of the estimate is smaller for e∆ than for 

e0, but also the mean square error. In other words, the values of e∆, in comparison with those of 
e0, show a closer concentration not only around their mean but also around the actual value r = 
0.3. And this is the case in spite of the fact that e0 is unbiased while e∆ in not. The same 
comparative result holds for any other value of r, except 0 and 1, in other words, for any other 
state-description, except the two homogeneous ones. These results seem to me to show that the 
widespread preference for the method of the straight rule e0, in the form of either the principle of 
maximum likelihood or the principle of unbiased estimation, is not justified. 
 
 
§ 24. The Problem of the Success in the Actual Universe. 

 
The discussions in the preceding sections referred always to a given state-description k. 

The successes of various methods within k were compared, and the optimum method for k, 
characterized by λ∆, was determined. As mentioned earlier, the practical situation of. any 
observer X is, however, such that he knows no description of the whole universe but only a 
sample constituting a small part of the universe. Therefore, he is not in 



a position to determine λ∆ for his actual universe. Nevertheless, he can find out certain things 
about this unknown λ∆; in particular, he can determine a lower bound for λ∆. This makes it 
possible to specify a method of which it is certain that it is more successful in the unknown total 
universe than the method of the straight rule. All this presupposes merely that X knows that the 
universe is not homogeneous, i.e., that it contains at least two individuals not completely alike. 
This will now be shown. 

Let a language system be given with given primitive properties and, based upon them, K 
Q-properties, and with a number N of individuals. eQ describes a sample of s individuals, of 
which si (i = 1 to K) are Qi. We assume that the sample is nonhomogeneous, i.e., that at least two 
distinct Q’s occur in it. Then, obviously, the universe cannot possibly be homogeneous. Let kT be 
the unknown true state-description, the one which ascribes to each individual that Q which it 
actually has. Let the Q-numbers in kT be NiT, and let riT, = NiT/N. Since X knows only the sample, 
he cannot state kT; nevertheless, he can, on the basis of his evidence eQ, ascertain certain things 
about the universe and its description kT. Some things can be established inductively and hence 
without complete certainty. But there are other things about kT which X can state with deductive 
certainty. The following discussion concerns these latter things. For example, it follows from eQ 
that, for any i, NiT  ≥ si, and hence riT  ≥ si/N. We put ∑T = ∑ri

2
T. We choose Qm arbitrarily as one 

of those Q’s which have the highest si-value occurring in eQ. We construct the state-description k′ 
in such away that it contains eQ and ascribes to all individuals not occurring in eQ the property 
Qm. For every i, let N′i be the cardinal number of Qi in k′, and ri′ = N′i/N. Then, for any i ≠ m, N′i 
= si; and N′m = N − s + sm. We put ∑′ = ∑ri

2. Since eQ is nonhomogeneous, k′ is likewise; hence: 
 
(24-1)      ∑′ < 1 . 
 
kT cannot possibly be nearer to homogeneity than k′; in exact terms:  
 
(24-2)      ∑T ≤ ∑′ < 1 . 
 
The value ∑′ is thus a known upper bound for the unknown ∑T; it is the maximum of ∑ri

2 for all 
those state-descriptions which are compatible with eQ. Let λ ∆

T  be the optimum λ for kT, and λ′ the 
optimum λ for k′. λ′ is known, but λ ∆

T  is not. According to (22-1): 
 

(24-3)          λ ∆
T   = 

KT

T
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(24-4)           λ′  = 
K/1
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Hence with (24-1): 
 
(24-5)      λ′ > 0 .  
 
With (24-2) 
 
(24-6)      λ ∆

T ≥ λ′ > 0..  
 

Thus the known value λ′  represents a lower bound for the unknown λ ∆
T . It is the 

minimum of the optimum λ-values for all those state-descriptions which are compatible with eQ. 
Let e∆ and e′ be the estimate-functions characterized by λ ∆

T and λ′ , respectively. e′ is 
known, e∆ is not. In any state-description k in which ∑ri

2 < 1, 2
Q1v (eλ,k,s) always decreases when 

λ varies from 0 to λ∆. [For ∑ri
2 < 1/K, this follows from the explanations preceding (22-1); for 

∑ri
2 = 1/K, from (22-4)(a).) kT fulfils the condition (from 124-2)); hence:  

 
(24-7)    2

Q1v (e∆,kT,s) ≤ 2
Q1v (e′,kT,s) < 2

Q1v (e0,kT,s). 
 
Thus, although kT itself is unknown, it can be stated with certainty that in kT the known function 
e′ is more successful in the sense of having a lesser mean square error for the estimation of 
all,Q’s with respect to all samples of the size s than e0, the straight rule. 

We shall now illustrate the foregoing general discussion by a numerical example. Let the 
universe be a bag with N = 1,000 balls. Each ball is either black (B) or white (non-B, W), but 
otherwise they are alike; hence we have K = 2. Let eM describe a sample of s = 20 balls, among 
them s1 = 7 B, s2 == 13 W. The true description kT of all thousand balls is unknown; but we know 
that N1T. ≥ 7, hence r1T ≥ 0.007, and N2T ≥ 13, hence r2T ≥ 0.013. k′ contains eM and, in addition, 
describes the 980 unobserved balls as W. Thus N′1 = 7, N′2  = 993; hence r′1 = 0.007, r′2 = 0.993. 
Then we find the following results by (21-8), (21-9), (21-10), (22-1): 0.986098; D′1 = 0.013902; 
D′2  = 0.486098; λ′ = 0.02860. Thus we can specify an estimate-function e′, viz., that 
characterized by λ′  = 0.0286, which is more successful in the unknown universe of the thousand 
balls in the sense of having a smaller 2

Q1v than the function e0 of the straight rule. 
If we were to talk in terms of probability, either in an intuitive, presystematic way or on 

the basis of any adequate method of confirmation, we might say that in the above example it is 
very improbable that the actual universe is similar to that described in k′  with the rf of B being 
r′1  = 0.007. Since 35 per cent of the balls in the observed sample are B, there is a very great 
probability that r1T, the actual rf of B, is, say, between 6

1 and 6
5  and hence that λ ∆

T > 1, according 
to (22-8). If this is 



the case, there is an e-function, namely, e∆ characterized by λ ∆
T > 1, which is considerably more 

successful in the actual universe than e0. Since λ′ = 0.0286 is near to 0, the difference between 
the results of the functions e′ and e0 is only small. The reason why we referred to λ′ rather than to 
any λ > 1 is the following. The statement that λ ∆

T  > 1 and hence that there is a method which is 
very much more successful than to is not certain, but only highly probable. It is possible, though 
very improbable, that no method with λ > 1 is more successful than  e0, e.g., if r1T  = 0.007. On 
the other hand, the statement that e′ is more successful than e0 in the actual universe does not 
involve any question of probability but holds with deductive certainty. 

[In the terminology of Wald’s theory of decision functions (see the Appendix), the result 
can be formulated as follows. If any nonhomogeneous sample has been observed and 2

Q1v is 
taken as the risk function, e′ has a lower risk than e0 in every distribution (i.e., state-description) 
compatible with the sample. In other words, with respect to this class of distributions, e′ is 
uniformly better than e0, and therefore e0 is not an admissible estimate-function.) 

It is important to keep clearly in mind the meaning of 2
Q1v in order to interpret correctly 

the result (24-7). 2
Q1v (e′,kT,s) is the mean square error of the estimates of the rf’s of all Q’s, 

supplied by the function e′ and based on all samples of the fixed size s in kT. If X, after observing 
the sample described in eQ, goes on observing more and more individuals without ever forgetting 
any result of an observation once made, then the samples with which he will be concerned in the 
future form a particular sequence of samples of increasing size, each containing the preceding 
one and hence all containing the one described in eQ. The result (24-7) refers, “ not to this 
sequence of the samples of X, but to all samples of size s. Therefore, X cannot infer from this 
result that he will be more successful in his future estimations if he uses e′ than if he uses e0. 
Whether or not this is the case depends upon which particular sequence of individuals will 
happen to come his way. What X learns from the result is something which concerns, not his own 
course of life in particular, but rather the universe as a whole and hence, so to speak, the average 
observer. 

The following formulation of our result does not refer to an observed sample and hence 
precludes any possibility of the misinterpretation just discussed: 
 
(24-8)  Let a language-system be given, and hence fixed values of N and K. Let the function e′  

be characterized by λ′ = 2K(N − 1)/[(K − 1)N2 − 2K(N − 1)] (which is > 0). Then, 



for any nonhomogeneous state-description k in the given system and any s (small in 
relation to N), 2

Q1v (e′,kT,s) < 2
Q1v (e0,kT,s). 

 
[The specified value of λ′ is found as follows: The maximum value ∑′ of ∑ri

2 for 
nonhomogeneous state-descriptions holds for those cases in which one Q-number is N − 1, 
another one 1, and all others are 0. Hence ∑′ = (N2 − 2N + 2)/N2. The value of λ′ is then 
determined by, (24-4).]  

It follows from (24-8) that, if the true state-description kT is nonhomogeneous, then e′ has 
a smaller 2

Q1v in kT than e0. Note that the condition says here merely that kT is nonhomogeneous, 
in other words, that at least two distinct Q’s occur in kT; information to the effect that two 
specified Q’s occur (as would be given by the description of a nonhomogeneous sample, e.g., by 
eQ in the earlier discussion) is not necessary for the conclusion that e′ is more successful on the 
whole than e0. 

To sum up, we have found that in any universe which contains at least two unlike 
individuals there is a specifiable estimate-function e′ with λ′ > 0 such that, with deductive 
certainty, the mean square error of λ′  for all Q’s through the whole universe is less than that of 
the straight rule e0with λ = 0. e0 is unbiased, λ′  is not. It seems to me that this result shows a very 
serious disadvantage of the principle of preferring unbiased estimate-functions and of the straight 
rule. 



APPENDIX 
 
 

§25. Wald’s Theory of Decision Functions and the Minimax Principle  
 

One of the most interesting recent developments in the field of mathematical statistics is 
the general theory of statistical decision functions constructed by A. Wald.1 A decision function 
δ of simplest form for a given problem situation is a function or general rule which assigns a de-
cision to every observational result possible in the situation. The observational result or evidence 
may, for example, refer to a sample taken from a population. The decision may concern, for 
example, the acceptance or rejection of a hypothesis or an estimate with respect to a distribution 
in :the population. The theory has been developed in a very general form going far beyond the 
simple questions just mentioned. Wald and his collaborators have found many results which are 
not only interesting from a theoretical point of view but also fruitful in practical applications, 
e.g., in the so-called sequential analysis for the purpose of quality control in industrial mass 
production. 

We shall later examine the consequences of Wald’s theory for one of the problems 
discussed in this monograph, viz., the estimation of rf. For this purpose we shall now indicate the 
basic concepts of the theory in their simplest forms and specialized for the problem mentioned. 
We illustrate the concepts with the help of the following example. Suppose the observer X takes 
a random sample of s = 50 units from a lot K of N = 1,000 units produced by a certain 
manufacturing process. By inspecting the sample, he finds the number sM of defectives (property 
M) in it. The. decision he has to make is the acceptance of an estimate r′ of the rf r of M in the lot 
K. Thus the decision function δ is in this case an estimate-function e(rf,M,K,eM). X’s choice of a 
decision function is influenced, on the one hand, by the observational result (in our example, the 
number sM) and, oil the other hand, by the possible losses which X would suffer in the various 
cases in which his estimate r′ differs from the actual value r. X is supposed to know the loss 
which would result in each of the possible cases. The losses are determined by the economic 
conditions of the situation or by the stipulated rules of a game of chance, or the like. To give an 
example for our case, let us suppose that there is a rule to the effect that,  

 
1. A. Wald, Statistical decision functions (New York, 1950). 



if X’s estimate is not correct (i.e., r′ ≠ r), he has to pay a fine equal to the square error of his 
estimate, v2 = (r′ − r)2. Suppose that the value r and a certain function e is given. Then the 
following sampling distributions (§ 19) for samples of the fixed size s can be calculated: first, the 
distribution of sM (this is given by the binomial law (19-13)); then the distribution of the estimate 
r′ determined by sM, and, finally, the distribution of the loss determined by r and r′. The mean 
(expectation-value) of the loss in the sampling distribution for a given state of the population and 
a given decision function, i.e., in our case, for a given r and a given function e, is called the risk 
R(r,e). Although X does not know the actual value of r, he can determine the risk-function R(r,e) 
and hence calculate the risk for any value of r and any function e. If, for example, the loss is 
assumed to be equal to the square error v2 (this particular assumption is repeatedly mentioned by 
Wald as an example, e.g., pp. 22, 140,142), then the risk in a given state-description k with a 
given r is the mean square error 2

Q1v (e,M,k,s). In Wald’s theory, the essential characteristic of a 
decision function consists in its risks in the various possible states of the population; “it seems 
reasonable to judge the merit of any given decision function ... for purposes of inductive 
behavior entirely on the basis of the risk function . . . associated with it” (op. cit., p. 12). The 
decision problem consists in the choice of a decision function in a given problem situation. 

We have indicated the fundamental ideas of Wald’s theory in their simplest form as far as 
they are relevant for our problem, the estimation of rf. From the point of view of our conception 
of inductive logic, no objections are raised against these basic parts of the theory. The doubts 
which we shall express later concern Wald’s minimax principle, which lies outside the part of the 
theory explained so far and is not implied by it. 

One of the most important but also most difficult problems in the field of decision 
functions is the search for a general principle that would tell us which decision function to 
choose in any given problem situation. For example, in the situation discussed above, such a 
general principle would determine an estimate-function e for rf; but the same principle would be 
applicable also to problem situations of entirely different kinds. A general principle that would 
determine for every problem situation the most suitable decision function would obviously be 
extremely valuable. 

Wald discusses in detail two general principles, which he calls the Bayes principle and 
the minimax principle. The Bayes principle makes use of an a priori probability distribution ξ for 
the possible states of the population. In our example, the possible states of a lot are characterized 
by the possible 



values of r, the rf of M. Suppose that the manufacturing process has remained unchanged for 
years and that the observer X has frequently made inspections of whole lots of a thousand units 
each. Then he may feel that he has some knowledge concerning the proportion; in the long run, 
of those lots which show a certain value of r. For example, he might assume the statement that, 
on the average, one lot among fifty has exactly 3 defectives (r = 0.003), and analogous other 
statements concerning other values of r. This proportion (in the example, 1/50) is called the a 
priori probability for the possible state in question of a lot; the distribution ξ specifies these 
probabilities for all possible states of a lot. If such a distribution ξ exists and is known to X, he 
can determine for any decision function δ its “average risk” R*(ξ,δ) with respect to ξ, i.e., the 
weighted mean of the risks of δ for the various possible states of the population, with the 
probabilities of these states as weights. In our example, R*(ξ,e) is the weighted mean of the risk 
R(r,e), with the ξ-probabilities of the possible. values of r as weights. Now, if a distribution ξ 
exists and is known to X, then the Bayes principle advises him to choose that decision function δ 
(called the “Bayes solution”) for which the average risk R*(ξ,δ) with respect to ξ takes its 
minimum value. In the case of a game of chance, X may well know the distribution ξ in question 
(e.g., the probabilities of the various possible hands in a card game). On the other hand, with 
respect to the results of a manufacturing process, as in the above example, it is obviously not 
easy for X to obtain reliable knowledge concerning the probability distribution. And in most 
situations which occur in practical life, say, in business, in political, or in social affairs, the task 
seems hopeless. Thus Wald is certainly right when he says: “In many statistical problems the 
existence of an a priori [probability] distribution cannot be postulated; and, in those cases where 
the existence of an a priori distribution can he assumed, it is usually unknown to the 
experimenter and therefore the Bayes solution cannot be determined” (ibid., p. 16). 

What Wald here calls “a priori probability”, is, of course, probability in the statistical 
sense; in our terminology, it is probability2, not probability1 or degree of confirmation, This is 
clearly shown by Wald’s remark that these probabilities are often unknown. The values of 
probability1 cannot be unknown, at least not in the same sense as those of probability2 (compare 
[I], pp. 174 f.). Like most contemporary statisticians, Wald does not wish to use any concept of 
degree of confirmation. However, his theory of decision functions could easily be combined with 
an inductive logic based on a concept of degree of confirmation c. Once the latter concept is 
introduced, Wald’s “Bayes method” can be applied in a modified form, 



with the values of c taking the place of those of statistical probability. In this modification 
Wald’s mathematical apparatus would remain unchanged in its essential features, only the 
interpretation of the distribution ξ would be changed and, consequently, the procedure for 
establishing the values of ξ. While the values of probability2 are found empirically, those of c are 
determined in a purely logical way. In my view, this modified Bayes method would be preferable 
both to the Bayes method in Wald’s form and to his minimax method. The disadvantages of the 
Bayes method have clearly been pointed out by Wald himself. We shall now turn to the minimax 
method. 

Since Wald finds the a priori probability distribution unworkable in most cases and, on 
the other hand, is unwilling to accept a concept of degree of confirmation, he is compelled to 
look for a general principle not involving either of these concepts. He has proposed a principle of 
this kind, the so-called minimax-principle. After determining the risk-function, X can find out, 
for any decision function δ, the maximum value of its risks in the various possible states of the 
population. The minimax principle advises X to choose that decision function for which this 
maximum risk is as small as possible. This decision function is called the “minimax solution”. In 
our example, the minimax solution is that estimate-function e for rf, for which Max1R(r,e) takes 
its minimum value. To make the problem specific, let us assume, as Wald does in this context, 
that the risk is given by the mean square error 1v2. 

Hodges and Lehmann2 have stated an estimate-function applicable to rf and have shown 
that it is the only minimax solution in the sense just explained. They mention that this result was 
previously found by H. Rubin, but apparently not published. Wald reports the result in his book 
(op. cit., pp. 142 f.). The function is stated in a general form for the estimation of the parameter 
of any binomial distribution of a random variable. Now the sampling distribution for the number 
sM of individuals with the property M in a sample of the fixed size s has the binomial form 
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 where the parameter r is the rf of M in the population (see (19-13)). Thus the 

function stated by Hodges and Lehmann can be used for the estimation of the rf of M, based on a 
sample characterized by s and sM. Since the binomial distribution holds for any property M, the 
function in question is an estimate-function for the rf of any arbitrary property M. We denote 
this function by ‘eW’ because it is the one to 
 

2. J. L. Hodges, Jr., and E. L. Lehmann, “Minimax point estimation,” Annals of Math. Statistics, 21 (1950). 
182-97. 



which Wald’s minimax principle leads. Its definition, transcribed in our notation, is as follows:  
 

(25-1)   eW (rf,M,K,eM) = 

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We notice at once that this function, as is customary in mathematical statistics, does not refer to 
the width w of M but only to the values of s and sM. However, from the point of view of our 
conception, w is an essential factor in the situation. Therefore, we may well wonder, even before 
examining the form of the function, whether it will not lead to undesirable results. This suspicion 
is soon confirmed. 

A. We find easily that the function eW, does not fulfil the principle of additivity (6-18). 
Let M1 and M2 be L-exclusive properties with the cardinal numbers s1 and s2, respectively, in the 
sample. Then the cardinal number of their disjunction M1,2 is s1 + s2. Therefore: 
 

(25-2)   eW (rf,M1,2) = 
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On the other hand, 
 

(25-3)  eW (rf,M1) +  eW (rf,M2) = 
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Hodges and Lehmann state that the general minimax estimate is not always additive; they add: 
“This is a definite disadvantage of the minimax  principle” (op. cit., p. 189). From the point of 
view of our theory, any estimate-function for rf which violates the principle of additivity is en-
tirely unacceptable. The indispensability of this principle within our theory follows from the 
parallelism between e(rf) and c for a singular prediction (see (6-3)). It is obvious from (25-3) and 
(6-18) that eW cannot belong to the λ-system. 

B. Consider the case that every individual in the sample is either M1 or M2; hence s1 + s2 
= s. Here we obtain from (25-3) and (25-2): 
 
(25-4)    eW (rf,M1) +  eW (rf,M2) = 1 , 
(25-5)    eW (rf,M1,2) < 1 . 
 
Let us look at these two results from the point of view of our conception. It is clear that we 
cannot accept both, since we require additivity. Which one should we then reject? If we examine 
this question, we find that the, answer depends upon the logical nature of M1,2. We have to 
distinguish two cases. (1) Suppose that M1,2 is a factual property (hence its relative width w/K < 
1). In this case, (25-5) seems not only plausible but even required. The analogous condition is 
fulfilled for every function eλ with posi- 



tive, finite λ and with λ = ∞ (see (12-6) and (13-5)). It is not fulfilled for the straight rule e0, (as 
shown by (14-5)); but this fact was just one of our reasons for rejecting this method. Thus in the 
present case, we would reject (25-4). (2) Suppose that M1,2 is L-universal (hence w/K = 1). This 
is, for instance, the case if M2 is non-M1. In this case, (25-4) is required and (25-5) to be rejected. 
The strangeness of (25-5) in this case is clearly seen when we notice that here, with logical 
necessity, rf (M1,2) = 1. Thus (25-5) violates the following very general requirement for estimate-
function which seems to me indispensable: 
 
(25-6) Let the evidence e be such that one and only one value u of a certain magnitude is 

compatible with e; in other words, the statement that the magnitude has the value u is a 
logical consequence of e. Then any estimate of the magnitude on the basis of e must be 
equal to u. 

 
This requirement is obviously fulfilled by any estimate-function which is defined as a c-mean 
estimate (i.e., in the form (6-1)). Hence it is fulfilled, in particular, by all e-functions for rf in the 
λ-system. 

Our discussion of the two cases (1) and (2) shows that the judgment on the acceptability 
of the results (25-4) and (25 5) must depend upon the logical nature of M1,2. The fact that the 
function eW ignores this logical nature is thus recognized as its basic defect. 

C. The function eW violates also the following requirement (25-7). (Its nonadditivity 
mentioned under (A) is a consequence of this fact.) 
 
(25-7) The sum of the estimates of the rf’s of several properties which are L-exclusive in pairs, 

in the same class K and on the basis of the same evidence, must not exceed 1. 
 
Suppose that the s individuals of the sample have s distinct properties M1, M2, . . . , Ms, which are 
L-exclusive in pairs. Then, for every n from ?? to s, s.„n = 1. Hence from (25-1): 
 

(25-8)  ∑
n

eW (rf,Mn) = .
21

2
22

11
1

s
s
ss

ss
s

>
+
+

⋅=






 +
+

 

 
For every s ≥ 3, the sum is > 1. For s = 100, it is >5; for s = 10,000, it is >50. These results are 
also incompatible with our conception that estimates of rf represent fair betting quotients.3 

The features of the estimate-function eW just discussed seem to me to make this function 
entirely unacceptable. Since the minimax principle  

 
3. See [I], § 41 D (6). 



leads with necessity to this function, it cannot, in my view, be regarded as a valid general 
principle for the choice of decision functions. This does not, of course, exclude the possibility 
that the principle may lead to suitable solutions in ocher problem situations. 

In the main body of this monograph, which was written before I became acquainted with 
the above-mentioned publications by Wald and by Hodges and Lehmann, I repeatedly made 
remarks to the effect that all historically known estimate-functions for rf fulfil certain conditions. 
Some of these remarks must now be restricted, because eW represents an exception. However, 
since we found eW unacceptable from the point of view of inductive logic, the mere historical 
fact that this function has actually been proposed will not be sufficient to alter the considerations 
which guided the construction of the λ-system. 

Our previous examination of the Laplace method (§ 12) led to results similar in some 
respects to those now obtained for eW. We found that Laplace’s rule (12-7) likewise yields 
unacceptable results clue to the fact that it is formulated in a too general form so as to apply to 
all properties without regard to their logical nature. We eliminated these unacceptable results by 
restricting the rule to properties with relative width w/K  = ½, including the primitive properties. 
Then we constructed a general method, applicable to all properties, by choosing a simple λ-
function such that, for the special case of w/K  = ½, it leads to the same values as Laplace’s rule. 
We called the method characterized by this λ-function (vie., λ = 2) the modified Laplace method. 

We shall now proceed analogously in the case of eW, in order to find a function which is 
similar to eW without possessing its undesirable features. More specifically, we try to find a 
function e′ fulfilling the following two conditions, if that is possible: 
 

(i)  The function e′  belongs to the λ-system; hence it is characterized by a λ-function 
of the λ-system, say λ′. 

(ii)  For any property M with w/K  = ½, e′  has the same values as eW; hence in this 
case: 

    e′(rf,M,K,eM) = 
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Furthermore, we would prefer as simple a function λ′ as possible. Let us therefore tentatively add 
the following condition of simplicity; we shall find that there is indeed a function fulfilling all 
three conditions: 
 

(iii)  λ′ is independent of si; we shall accordingly omit si as an argument and write 
simply ‘λ′(K,s)’.



If (iii) is fulfilled, the following must hold (derived from (9-3), (4-5), (4-1), and 
(6-4), in analogy to (9-9)): 
 

(iv) For every M, 

   e(rf,M,K,eM) = ;
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hence: 
 
(v) For every M, 
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Now condition (ii) is to hold for a special kind of M; hence from (v):  
 
(vi) For any M with w/K = ½, 
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We choose now as λ′ that function which is always equal to s , not only in the special case 
referred to in (vi); hence we define: 
 
(25-9)     λ′(K,s) = s  
 
We take as e′ the e-function characterized by this function λ′. Hence, according to (iv): 
 
(25-10) For any property M, 

  e′(rf,M,K,eM) = =
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Comparing this with (25-1), we see that, in the case w/K = ½, e′ has indeed the same values as 
eW. We propose this estimate-function e′ as a modification of eW. It does not, of course, fulfil that 
special purpose for which eW was originally constructed; it is not in accord with the minimax 
principle. However, e′ is similar to eW. but is free. of the defects of this function. e′ is based upon 
a c-function c′ (see below, (25-11)) which fulfils our earlier conditions C1-C10; therefore, c′ and 
e′ belong to the λ-system. Furthermore, e′ fulfils the requirements of additivity (6-18), of the 
unique value (25-6), and of the upper bound 1 for the sum of estimates (25-7), which are all 
violated by eW. 

The method of estimation represented by e′ and characterized λ′ = s  is the same as one 
mentioned earlier in §§ 20 and 21 in the con- 



text of our discussion of the mean square error 2
Q1v for all Q’s (see the definition (20-10) and the 

result (21-13)). We did not examine it in detail, because this λ-function, though it belongs to the 
λ-system, does not belong to that narrower class to which we restricted most of our investigation. 
This class contains only those λ-functions which fulfil the condition C11 (§ 9) of being 
independent of s and si. However, the method of e′ may well deserve closer investigation. As 
explained earlier (§ 18), those values of λ which are neither too low (zero or small fractions) nor 
too high seem to lead to plausible values of e and c. Now, for small positive values of s, λ′ is 
likewise small, but not too small, since it is ≥ 1. [For s = 0, i.e., tautological evidence, we have λ′  
= 0; here the value of e(rf,M,K,t) is, of course, w/K, like that of any other e-function of the λ-
system; see (11-11) and (14-9).] For large values of s, λ′ becomes rather large. However, for 
large samples, the differences of the numerical values of the various e-functions are not large (as 
long as λ is neither ∞ nor extremely large). [Example. For s = 10,000 and M with w/K = ½, the 
value of e′ (and also that of eW) is (sM + 50)/10,100. Compare this, e.g., with the modified La-
place method e2, which yields (sM + 1)/10,002. The ratio of these two values is considerable 
when sM is small. The difference between the two values, however, is only about 0.005 for any 
sM.] . 

We found earlier that, in the case that λ2 = s, hence for the method of λ′ and e′, the mean 
square error 21v (e′,M,k,s) in the state-description k is independent of r (the rf of M in k) if and 

only if w/K = ½; in this case:, 21v  = 1/[4( s + 1)2] (see (20-9)). Hodges and Lehmann show (op. 

cit., p. 190) that, for their function eW, 21v has always the value just stated, independently of r (eW 

is a “constant risk estimate”, where 21v  is taken as .the risk-function); there is no restriction with 
respect to M. For e′, however, the result is restricted, as mentioned above, to the case w/K = ½. 
That the result for eW, holds for any M must not be regarded as an advantage of eW; it is, on the 
contrary, a symptom for the too general character of the definition of eW, which, as we have seen, 
leads to undesirable consequences. For no estimate-function of the λ-system is it possible that 

21v be independent of r for all properties M; it is not even possible for any single property M with 
w/K ≠ ½. Further, according to (21-13), for the function e′ the mean square error for all Q’s 
together in a state-description k ( 21v (e′,k,s)) has the same value in all state-descriptions: This 
may perhaps also be regarded as an advantage of e′. 

We shall now briefly consider also the functions c′ and m′ corresponding to e′ and the 
characteristic function G′ for c′ and e′. From the point of 



view of our theory, c′ and e′ belong together as parts of one complete inductive method. We 
obtain from (25-10) with (6-4): 
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Hence with (4-6) 
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Hence with (5-4): 
 
(25-13) For any state-description k with the Q-numbers Ni, 
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where the first product runs through those i for which Ni > 0.  

 
Although the function given in (25-11) for the singular predictive inference is relativeiy simple, 
that given in (25-13) for a state-description is rather complicated. [In distinction to (12-1), the 
factors here do not increase by 1; therefore the products cannot be simply stated in terms of the 
Γ-function, let alone in terms of the factorial.] Consequently, it might be that theorems on c′ are, 
in general, rather complicated. Nevertheless, it would be worth while to study both functions c′ 
and e′ more in detail. 
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