
ON THE APPLICATION OF INDUCTVE LOGIC 
 

1. THE PROBLEM OF APPLICATION 
 

     Inductive logic1 is here understood as a theory based on a definition of the logical concept of 
probability or degree of confirmation, as distinguished from the frequency concept of probability.2 It 
seems justifiable to regard this theory as a kind of logic because, in spite of certain differences, it shows a 
striking analogy to deductive logic.3 Its basic concept, the degree of confirmation, is in a certain sense a 
weak analogue of the concept of logical implication, the basic concept of deductive logic. 
     The classical theory of probability may be regarded as an attempt towards the construction of a system 
of inductive logic. However, modern criticism, especially that of Keynes,4 has shown that the classical 
theory lacks a solid logical foundation and that some of its principles, if applied without restriction, even 
lead to contradictions. Modern systems in an incomplete axiomatic form without an explicit definition of 
the basic concept have been constructed by Keynes, Jeffreys,5 and others. I have constructed an explicit 
definition of degree of confirmation (c*) and a theory based on this definition.6 An alternative definition 
has been proposed by Helmer, Hempel, and Oppenheim.7  
     In the present paper I intend to discuss some problems which concern, not systematic questions within 
inductive logic, but rather the possibility and the conditions of the application of inductive logic to 
knowledge situations actually given or assumed. There are certain peculiar problems and difficulties 
involved in the application of inductive logic, different from those in the application of deductive logic. 
The chief difficulties which will be discussed here arise out of the following two circumstances. (1)  
_____ 
     1 See “On Inductive Logic,” Philosophy of Science, XII (1945), pp. 72-97. 
        2 See “The Two Concepts of Probability,” Philosophy and Phenomenological Research, V (1945), pp. 513-532. 

      3 See §2 of “Remarks on Induction and Truth,” ibid., VI (1946). pp. 590-602 
     4 J. M. Keynes, A Treatise on Probability (1921). 
     5 Harold Jeffreys, Theory of  Probability (1939). 

6 A summary of the theory, stating the definition and some of the theorems, is given in the paper mentioned in footnote 1. 
The full theory will be developed in a book, Probability and Induction, which is in preparation.  

7 Olaf Helmer and Paul Oppenheim, “A Syntactical Definition of Probability and of Degree of Confirmation,” Journal of 
Symbolic Logic, X (1945), pp. 25-60; Carl G. Hempel and P. Oppenheim, “A Definition of ‘Degree of Confirmation’,” Philos. of 
Science, XII (1945), pp. 98-115. 
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The systems of inductive logic at present available apply only to languages of a certain simple 
structure and hence to a simplified picture of the universe, while the practical application must 
be made to our actual, complex world. (2) In order to make it possible for us actually to 
calculate the value of the degree of confirmation of a given hypothesis with respect to given 
evidence, this evidence must be relatively simple; on the other hand the observational 
knowledge actually available to any adult person is enormously comprehensive and 
complicated. 

I shall first explain the structure and interpretation of a language of the kind to which the 
definitions of degree of confirmation which have been constructed can be applied. Then the 
requirements for an application will be discussed, in particular the requirement that we must 
take as evidence the total knowledge available.  Finally the problem of which properties are 
inductively projectible will be discussed.  The discussions in this paper will be independent of 
the technical details of my definition of degree of confirmation; they apply to any definition 
applicable to languages of this kind. 
 

2. STRUCTURE AND INTERPRETATION OF THE LANGUAGE 
 
A language L of the kind to which my system of inductive logic applies is of a very simple 

structure, though not quite so limited as that to which deductive logic was restricted for more 
than two thousand years. It was beyond the latter chiefly in three respects:5 (1) it allows for 
multiple quantification (“for every x there is a y . . .”); (2) it contains not only properties but 
also relations as primitive concepts; (3) it contains a sign of identity and hence can express 
cardinal numbers of properties.  (In technical terms, L has the structure of lower functional 
logic with individual variables as the only variables.)  The universe of discourse consists of 
individuals; their number is either finite or denumerably infinite. Every individual is 
designated by an individual constant. L contains primitive predicates designating properties of 
individuals and relations between individuals.  The language L is to be interpreted as referring 
not to our actual world but to a simplified universe. The individuals are best regarded not as 
something like physical bodies but rather as positions (like space-time points in our actual 
world); hence an individual is not a complex or extended region but a single and indivisible 
entity. 

An atomic sentence consists of a primitive predicate and one or more individual constants. 
A state-description is defined9 as a conjunction whose components are some atomic sentences 
and the negations of all other 
______ 
     8 The language to which Helmer’s definition applies (see footnote 7) has a similar structure but contains only 
the first of the three features explained in the text. 
       9 “On Inductive Logic,” p. 73. 
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atomic sentences. The state-descriptions are meant as descriptions of the possible states of 
the whole universe. Therefore the following requirement must be fulfilled because, if it is 
violated, some state-descriptions become self-contradictory. 
     1. Requirement of topical independence.  a. The atomic sentences must be logically 
independent of each other.  (If, for instance, ‘A’ and ‘B’ were atomic sentences such that ‘A’ 
logically implied ‘B’, then any state-description containing ‘A’ and ‘non-B’ would be self-
contradictory.)  Consequently the individual constants and the primitive predicates must 
fulfill the following conditions. 
     b. The individual constants must designate different and entirely separate individuals. (If 
‘a’ and ‘b’ designated the same individual, ‘Pa and not Pb’ would be impossible; if ‘a’ were 
a part of ‘b’ or had a part in common with ‘b’ and if ‘H’ designated ‘hot’ in the sense of 
‘being hot throughout’, then ‘Hb and not Ha’ would be impossible.) 
     c.  The primitive predicates must be logically independent of each other, (If ‘x is a raven’ 
is understood as logically implying ‘x is black’, then ‘raven’ and ‘black’ cannot both be 
primitive predicates, because ‘b is a raven and b is not black’ is impossible. ‘Warm’ and 
‘warmer’ cannot both be primitive predicates, because ‘a is warm and b is non-warm and b is 
warmer than a’ is impossible.) (The above formulation applies to groups of two incompatible 
properties only, e g. P and non-P; for the sake of simplicity let us leave aside for the present 
discussion groups of more than two incompatible properties, for example a group of the 
following four properties: ‘blue’, ‘red’, ‘yellow’, ‘neither blue nor red nor yellow’.) 

The language L is here discussed for  the purpose of inductive logic. The construction of a 
system of inductive logic for any given language presupposes that a system of deductive 
logic is available for this language. We are laying down requirements which the language L 
must fulfill so as to make possible the application of inductive logic.  Now it is important to 
realize that some of these requirements are necessary even for deductive logic. This holds, 
for instance, for the requirement of logical independence. This requirement is, as we have 
seen, essential for the purpose of the state-descriptions as descriptions of logically possible 
states. Now the state-descriptions constitute the basis four deductive logic as well; for 
instance, we may define a logically true (analytic) sentence as one which holds in every 
state-description, and one sentence is said to imply logically a second sentence if the latter 
holds in every state-description in which the first holds. (If ‘P’ and ‘Q’ were primitive 
predicates and we were not assured whether or not they fulfilled the requirement of logical 
independence, then we should be unable to determine whether ‘not Pa or Qa’ is or is not 
analytic.)  
     We may imagine the primitive predicates as designating directly observ- 
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able qualities or relations.  (As examples we may think of something like ‘blue’, ‘warm’, 
‘darker’, ‘warmer’, etc., abstracting from the fact that in our actual world these qualities 
and relations an observed only in extended regions.)  Here a further requirement must be 
added. 
     2. Requirement of simplicity. The qualities and relations designated by the primitive 
predicates must not be analyzable into simpler components.  
     This requirement needs some explanation and discussion. First it means that, if a 
property is complex, that is, analyzable in terms of simpler properties, then it must not be 
chosen as primitive; it must rather be analyzed and then expressed by compound 
expressions.  ‘x is a raven’ is to be analyzed into ‘x is black and x is a bird, etc.’ and hence 
to be expressed by a conjunction; and then ‘bird’ is to be analyzed further. The property ‘x 
occurs before or on V-E day and is red, or it occurs later and is non-red’ (which will be 
discussed later) must not be taken as primitive even if there were a simple word for it in 
English or any other language; it must rather be analyzed an just stated and hence 
expressed by a disjunction of two conjunctions, some components of which are still 
compound. 
     It seems to me that the requirement of analyzing the concepts occurring holds even for 
deductive logic.  One of the chief tasks of deductive logic is to determine whether a given 
sentence is logically true (analytic).  For example, the sentence “all ravens are birds” is 
logically true, since its truth is based merely on the meanings of the terms occurring, 
independently of the contingency of facts.  However, this deductive result can be 
established only with the help of the analysis of ‘raven’ mentioned above. For a deductive 
problem, for instance, for the question whether logical implication holds between two 
given sentences, it is necessary to carry the analysis of the terms involved at least to a set 
of terms which we recognize as logically independent.  In practice this is often easy to see; 
but theoretically it involves quite serious problems.  If the affirmative result that one 
sentence logically implies another or that a given sentence is logically true is established 
after some steps of analysis, then this result is definitive and the analysis need not go 
further.  On the other hand, the situation with respect to a negative result, for instance, that 
two given sentences are logically independent or that a given sentence is factual (synthetic) 
is quite different.  If at a certain stage in the analysis no logical dependence is found, the 
negative result may appear plausible and for practical purposes we may accept it as 
established.  However, there is always the possibility, at least theoretically, that further 
analysis will reveal a logical dependence. Therefore, strictly speaking, the negative result 
is not definitively established until we drive the analysis down as far as possible. The 
properties or relations to which the analysis finally leads, those which cannot be analyzed 
further, we call simple properties or relations. The important 
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fact is that even deductive logic requires, at least theoretically, an analysis into simple 
components. 
     It must be admitted that an exact explication of the concept of simplicity cannot easily be 
given. Nevertheless, the concept seems clear enough for many practical purposes because for 
many properties or relations it is quite clear that they are not simple but analyzable into 
simpler concepts; this holds, for example, for ‘raven’, ‘house’, ‘milk’, ‘occurring before or 
on V-E day and being red, or occurring later and being non-red’, and still more for ‘brother’, 
‘electrically charged’, ‘schizophrenic’, and the like; the complexity of any of these latter 
concepts is obvious because a great number of observations is required for establishing the 
concept in a given instance. It cannot be denied that the question whether a given property is 
simple or not often involves serious difficulties. One difficulty consists in the fact that a 
property may be directly observable and yet analyzable, hence not simple. For example, 
gestalt-psychologists have pointed out that we recognize a thing as a dog immediately, that 
is, without first perceiving some separate items and then applying a process of reasoning 
resulting in the knowledge that the complex consisting of these items is a dog. Nevertheless 
we can analyze our recognition of a dog into simpler components, and we do so if we or 
somebody else has some doubt about it.  Therefore the property of being a dog is not simple.  
On the other hand, a certain shade of blue is a simple property. We cannot analyze it into 
simpler components. (The spectral analysis of this blue into spectral colors as its components 
or the physical analysis of it in terms of electro-magnetic waves are, of course, not analyses 
in the present sense; they do not show the experience to be composite but rather establish, by 
way of induction, certain correlations between this color blue and other experiences.) 
     Now it seems to me that the situation in inductive logic with respect to the requirement of 
simplicity is fundamentally the same as in deductive logic but practically more difficult.  I 
believe that for most of the problems in inductive logic it is necessary to carry the analysis to 
the end.  It is true that this requirement of complete analysis involves great difficulties for 
the application of inductive logic to our actual world. It should, however, be kept in mind 
that these difficulties for inductive logic, although more complicated than those for deductive 
logic, are fundamentally not of a different kind. Both deductive and inductive logic, if their 
problems are to be soluble in an exact way, must be applied to a simplified universe. We may 
then presuppose that some simple, directly observable properties occurring in this universe 
have been taken as primitive for our language L. 
     The following requirement is perhaps necessary for inductive logic, though it is certainly 
not for deductive logic. 
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     3. Requirement of completeness.  The set of primitive predicates in the language L must 
be complete in the following sense.  Every qualitative property or relation of the individuals, 
that is, every respect in which two positions in the universe may be found to differ by direct 
observation, must be expressible in L. This requirement is presupposed in my system of 
inductive logic; it is at present not yet quite dear whether it is essential for all forms of 
inductive logic. 
     On the basis of the primitive predicates, with the help of the other signs of L, other 
predicates may be introduced by definitions. All properties expressible by statement-forms in 
L (and hence designatable by predicates, primitive or defined) may then be classified into the 
following three kinds. 
     (1)  Purely qualitative properties; they can be expressed without the use of individual 
constants, but not without primitive predicates. Examples: ‘blue’, ‘non-blue’, ‘blue or non-
warm’. 
     (2) Purely positional properties: they can be expressed without using primitive 
predicates. Examples: ‘being the position a28’ (i.e. ‘x = a28’), ‘being neither a28 nor a30’ (i.e. 
‘x ≠ a28 and x ≠ a30’). 
     (3) Mixed properties; they do not belong to the kinds (1) or (2); hence every expression 
for them contains a primitive predicate and an individual constant. Examples: ‘being red and 
not being a100’ (i.e. ‘x is red and x ≠ a100). 
     It follows from these definitions that every full sentence of a purely qualitative property is 
factual (synthetic, neither logically true nor logically false) and every full sentence of a 
purely positional property is L-determinate (i.e., either logically true or logically false). (For 
this reason I have elsewhere called the purely positioned properties L-determinate 
properties.) (Note that ‘x is red or x is not red’ designates not a purely qualitative property 
but a purely positional property though a trivial one, because it is logically equivalent to ‘x = 
x’.) 
 

3. THE PRINCIPLE OF TOTAL EVIDENCE 
 

Let  c(h, e) be the degree of confirmation of the hypothesis h with respect to the evidence 
e. Let us suppose we have a definition of the function c and, based upon this definition, a 
theorem ‘c (h, e) = q’, which states the value q of c for given h and e. A principle which 
seems generally recognized,10 although not always obeyed, says that if we wish to apply such 
a theorem of the theory of probability to a given knowledge situation, then we have to take as 
evidence e the total evidence available to the person in question at the time in question, that 
is to say, his total knowledge of the  
______ 
     10 Keynes, op. cit., p. 313, refers to “Bernoulli’s maxim, that is reckoning a probability, we must take into 
account all the information which we have”. 



APPLICATION OF INDUCTIVE LOGIC    139 
 
results of his observations.11 An additional item of evidence i may be omitted only if it can be 
shown that this omission does not change the value of c, in other words, that c (h, e and i) = c 
(h, e).  If this condition is fulfilled, i is said to be irrelevant for h with respect to e. In practice i 
is often omitted if its irrelevance is plausible though not actually proved. But if there is any 
doubt as to the irrelevance of i, it ought to be retained.  And if, moreover, it is recognized that i 
is relevant, that is to say, that c(h, e and i) ≠ c(h, e), then it would obviously be wrong to omit 
i. Suppose, for example, that an observer X tells us that he has observed some inhabitants of 
Chicago with respect to the color of their hair and that he is interested in the degree of 
confirmation of t h e  prediction h that a certain person who has not yet been observed and of 
whom nothing is known except that he is a Chicagoan, has red hair.  X shows a list of 40 
inhabitants of whom 20 are marked as red-haired and 20 as non-red-haired; X tells us that he 
has found these facts by observation; let e be this report.  X tells us that according to his 
definition of c (in agreement with certain customary conceptions) the value of c in cases of this 
kind is equal to the relative frequency in the observed sample; hence c (h, e) = ½. He asks us 
whether he may apply this result in the sense that he may regard the probability of h for his 
situation at the present time as ½; and consequently, whether it would be reasonable for him to 
bet on h even odds. We ask him whether the list e concerning the 40 inhabitants represents all 
his observations of inhabitants. He replies, no, he had observed altogether 400 persons, but he 
was not very much interested in the other list i concerning the remaining 360 persons because 
all of them had been found not to have red hair.  I believe that everybody would tell X that he 
committed a serious mistake by omitting an obviously relevant part of the evidence he had; and 
that he ought to take as the probability not c(h, e) but c(h, e and i) (thus not ½ but 1/20).    
     In a recent discussion note,12 Nelson Goodman points out that there are properties which 
can be projected by induction from past observations to future events, and that there are other 
properties which are not thus projectible.  He raises the question as to which properties are 
inductively projectible. And he tries to show with the help of two examples that both my 
definition of degree of confirmation (see footnote 1) and that by Helmer (see footnote 7 )  
neglect this distinction and thereby yield implausible values in certain cases. The question of 
projectibility raised by Goodman is an important problem; I shall discuss it in the last section 
of this paper. At the present moment I want merely to point out that Goodman’s reason- 
______ 
     11 See “Remarks” (footnote 3), p. 594, the explanation of I6. 
     12 Nelson Goodman. “A Query on Confirmation,” Journal of Philosophy, XLIII (1946), pp. 383-385. 
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ing with respect to his two examples is not correct because he violates the principle of the 
total evidence in both of them. In the first example, ‘Sx’ is meant as ‘x is a marble drawn 
before or on V-E day and is red, or is drawn later and in non-red’. The observational results 
include the fact that the marble a1 was drawn ninety-eight days before V-E day and was red. 
Instead of this known fact, Goodman formulates the evidence concerning a1 simply by ‘Sa1’. 
This sentence, however, says merely that a1 was drawn before or on V-E day and was red, or 
was drawn later and was non-red; it is true that this follows from the fact mentioned, but it is 
obviously lees than is known about a1.  In the second example, ninety-six tosses of balls have 
been observed; red and non-red balls occur in this sequence in a certain regular pattern. But 
then Goodman formulates the evidence simply by a conjunction of sentences which say 
which balls were red and which were non-red; thus the formulation omits the temporal 
regularity although it is obviously quite essential. 
     How can the temporal order of events be described? There are chiefly two alternative 
procedures. They will now be explained; the second seems to me more adequate. The first 
procedure consists in using a primitive predicate, say ‘R’ such that ‘Rxy’ means that x is 
earlier than y; ‘x immediately precedes y’ can then be expressed by ‘Rxy and there is no z 
such that Rxz and Rzy’. This procedure would presuppose that temporal relations are 
regarded as qualitative. This conception seems to me rather dubious; it would have the effect 
that, for instance, the asymmetry of R m merely contingent. The second procedure is possible 
only in a language which is somewhat stronger than the language L used in my system of 
inductive logic.  It must be not a name-language, like L, but a coordinate-language;13 that is 
to say, the forms of the individual expressions indicate their positional relations.  In the 
simplest case, an accent ‘′’ is used; x′ is the position immediately succeeding x. With the help 
of the accent, relations like earlier or later can be introduced by recursive definitions.14  ‘a′′′ 
is later than a’ is here analytic (in analogy to the statement ‘the fourth of January, 1946, is 
later than the first of January, 1946’); the same holds for the general statements saying that 
the relation Earlier is asymmetric, irreflexive, and transitive. While my definition for c* 
applies only to a name-language, I have also constructed a tentative form of a similar 
definition for the degree of confirmation with respect to a coordinate- 
______ 
     13 See Logical Syntax of Language, §3.  For further discussions concerning the semantical character of 
coordinate-languages and the expression of positional properties and relations in them see Chapter II of my 
book Meaning and Necessity (1947). 
     14 The individual may here be regarded as natural numbers, which function as coordinates for the positions. 
‘x is later than y’ means here the same as ‘x > y’; for the definition of this relation on the basis of the accent 
see Logical Syntax, §20, D9. 
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language of the simple form just indicated. Thin language refers to a universe of discourse 
whose individuals (positions) exhibit a basic order of a one-dimensional, discrete structure; 
this order may, for example, be imagined as a temporal order. [This language permits a more 
adequate formulation of Goodman’s property S; taking ‘b’ for ‘V-E day’, ‘Sx’ is defined by 
‘(x ≤ b and x is red) or (x > b and x is not red)’.] 

As an instance of a case in which the temporal order of events is essential, let us consider 
again Goodman’s second example. There are ninety-six individuals exhibiting the periodical 
pattern ‘an is not red, and an+1 is not red, and an+ 2 is red’. Suppose that we describe this 
temporal order in the evidence e with the help of the second procedure just explained, that is, 
in a coordinate-language.  Let h be the prediction ‘a99 is red’. Then we find (on the basis of 
the tentative definition mentioned) that the degree of confirmation for h with respect to e is 
considerably higher than 1/3, in agreement with Goodman’s requirement. 

Goodman seems to be aware of the fact that his examples violate the principle of total 
evidence.  However, he says15 that “it would be fatal to accept” this principle; “if we shall 
have to express all the observed data in our statement of evidence, we shall have to include 
such particularized information—e. g., the unique date of each toss—that repetition in the 
future will be impossible.” It is not clear what Goodman means by ‘repetition’ If by a 
repetition of an event E a later event in meant which has all the properties of the event E 
including its date, then any repetition is indeed impossible by definition. If, however, we 
understand, in agreement with customary usage, by a repetition of E a later event which is 
similar to E in certain properties not including temporal position, repetition is possible. If the 
event E described in the evidence e is complex, that is, consists of a large number of 
individuals, then a repetition will have only a small probability. (As an instance, take 
Goodman’s example:15 e describes an event E consisting of ninety-six consecutive tosses of 
balls exhibiting a wholly irregular distribution of colors, and h is the hypothesis that this 
distribution will be exactly repeated in the next ninety-six tosses. Since h (and likewise e) 
must be formulated not as one atomic sentence but as a conjunction of at least ninety-six 
atomic sentences, the value of c(h, e), both in my theory and in that of Helmer-Hempel-
Oppenheim, would be, not 1 or near to 1, as Goodman seems to think, but rather near to 0.) 

 
4. IDEALIZATION AND APPLICATION 

 
     The interpretation of the language L indicated above refers not to the actual world in 
which we live but to a simplified universe.  A system of inductive logic for the actual world, 
say, for the language of physics, in  
______ 
     15 Op. cit., in the next to the last paragraph. 
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which the space-time positions constitute a four-dimensional continuous order and the 
scale of values of the physical magnitudes a likewise continuous, would have to be much 
more complicated; the construction of such s system remains a task for the future. 
     Although our system applies to a simplified world, it is not useless as a basis for 
inductions concerning the actual world.  Physics likewise uses certain simplified, idealized 
conceptions which would hold strictly only in a fictitious universe, for example those of 
frictionless movement, an absolutely rigid lever, a perfect pendulum, a mass point, an ideal 
gas, etc.  These concepts are found to be useful, however, because the simple laws stated 
for these ideal cases hold approximately whenever the ideal conditions are approximately 
fulfilled. Similarly, there are actual situations which may be regarded as approximately 
representing the ideal conditions dealt with in the language L. 
     Suppose, for instance, that spherical bails of equal size are drawn from an urn; the 
surface of these balls is in general white, but some are marked with a red point, others not; 
some (without regard to whether they have a red point or not) have a blue point, others 
have not; and some have a yellow point, others not. A simple inspection does not reveal 
other differences between the balls. Then we may apply our system to the balls and their 
observed marks; we take as individuals the balls or rather the events of the appearance of 
the single balls, abstracting from the fact that the actual balls have distinguishable parts 
and that the very markings by which we distinguish them are parts of the balls.  And we 
take the three kinds of markings as primitive properties as though they were the only 
qualitative properties of the balls, abstracting from the fact that a careful inspection of the 
actual balls would reveal many more properties in which they differ. Suppose we have 
drawn one hundred balls and found that forty of them had a certain property M, say, that of 
bearing a red point and a blue point. Suppose that this is all the knowledge we have 
concerning the balls and that we are interested in the probability of the hypothesis h that 
the next ball (if and when it appears) will have the property M. Then we shall take the 
observations of the hundred balls as our evidence e. This is again an idealization of the 
actual situation because in fact we have, of course, an enormous amount of knowledge 
concerning other things. We leave this other knowledge i aside because we regard it as 
plausible that it is not very relevant for h with respect to e, that is to say, that the value of 
c(h, e), which we can calculate does not differ much from the value of c(h, e and i) which 
ought to be taken but would make the calculation too complicated. (Of course, we may be 
mistaken in this assumption; that is to say, a closer investigation might show that, in order 
to come to a sufficient approximation, certain other parts of the available knowledge 
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must be included in the evidence; just as a physicist who assumes that the influence of the 
friction in a certain case is so small that he may neglect it may find by a closer analysis that 
its influence is considerable and therefore must be taken into account.) If the temporal order 
of the hundred ball drawings is known and seems to be relevant (for instance, if the sequence 
of the colors in their temporal order of appearance shows a high degree of regularity, as in 
Goodman’s second example mentioned above), then we shall include in our evidence the 
description of this order.  If the temporal order of the hundred drawings is not known (for 
instance, if we counted only the number of each kind without paying attention to the order), 
or if it is known but assumed to be not very relevant, then we shall take as evidence the 
conjunction of three hundred sentences each of which says of one of the hundred balls 
whether or not it has one of the three primitive properties. It will even be sufficient to take as 
evidence a conjunction of one hundred sentences each of which says of one of the hundred 
balls whether or not it is M. For certain rules of induction or definitions of degree of 
confirmation, among them the three to be mentioned below, it can be shown that the 
additional knowledge contained in the three hundred sentences is strictly irrelevant in this 
case. 
     Let us suppose that we have decided to take the latter conjunction of one hundred 
sentences concerning M and non-M as our evidence e. Then a system of inductive logic, 
although formulated for a simplified universe, may be applied to the actual knowledge 
situation just described. The application consists in calculating the value of the degree of 
confirmation c for the hypothesis h and the evidence e specified and taking this value as the 
probability sought. 
 

5. EXAMPLES OF CALCULATION 
 
     We shall now apply several concepts of degree of confirmation to the evidence e and the 
hypothesis h in the example described in the preceding section. If we take the concept c* 
defined in my system, we obtain a value slightly less than 0.4, as we shall presently see. This 
result may then determine our willingness to bet on the prediction h that the next ball will be 
M at odds slightly less than two to three. 
     Let us see how the value of c* for this case is found.  We apply here the theorem T of the 
singular predictive inference,16 which says that 
 
(T) c*(h, e) = (s1 + w1) / (s + k). 
 
s is the number of individuals in the observed sample, in our example 100.  s1is the number 
of individuals in this sample which are M, in our case 
______ 
      16 “On Inductive Logic,” §10, Theorem (l). 
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40. If L contains p primitive predicates, the number k of the strongest properties 
expressible in L is 2; in our example p = 3 and k = 8. w1 is the logical width17 of M; that is 
to say, M is a disjunction of w1 of the k strongest properties; in our example, w1 = 2. Thus 
we obtain c* = 42/108 = 0.389. 
     Let us use the theorem T just mentioned for the discussion of another problematic point 
in inductive logic. T shows that in the case of the singular predictive inference—and the 
same holds for many other cases—the value of c* for given sentences h and e depends also 
on the number p of primitive predicates in the language L, even if some of these predicates 
do not occur in the two sentences. With respect to the simplified universe, this fact does 
not involve any difficulty, since all properties occurring in this universe must be 
expressible in L. Therefore, if we can enlarge the language L by adding a new, independent 
primitive predicate, then L does not satisfy the requirement of completeness and hence 
cannot be taken as a basis for calculating c*. However, in any application to the actual 
world, as in the example discussed above, we usually disregard some of the properties 
actually occurring. Therefore here the dependence of c* on p deserves serious 
consideration. Thus Ernest Nagel18 is right in raising the question whether this dependence 
does not make the definition of c* inadequate. However, his description of the dependence 
is not quite correct in two points. He says that, when new primitive predicates are added, 
(1) c* for a pair of given sentences “will in general diminish” and (2) c* can in this way 
“be reduced to as small a value as one pleases” In fact, however, c* will just as often 
increase as decrease and it can change is this way only within certain limits. The second 
point is essential; if Nagel’s statement (2) were right, it would indeed constitute a serious 
objection. Let me explain the situation for the case of a singular predictive inference on the 
basis of the theorem T stated above, which is also quoted by Nagel. As explained in my 
paper,19 T shows that c* is in this case always between w1/k, the relative width of M, and 
s1/s, the relative frequency of M in the observed sample. If the sample is small, c* is near to 
the former value; as the sample increases (assuming that the relative frequency in the 
sample remains the same) c* moves slowly towards the latter which it approaches as a 
limit. Now the addition of new primitive predicates has merely the effect that the 
movement of c* from the former to the latter value is slower; that is to say, in the enlarged 
language L′ a larger sample is required to bring c* as close to the latter value as in the  
______ 
     17 Op. cit., p. 84. 
     18 E. Nagel, Review of “On Inductive Logic,” Journal of Symbolic Logic, XI (1946) pp. 19-23; see point (3) on p. 22. 
     19 Op. cit., § 10. 
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original language L.  If one primitive predicate is added, k is doubled but w1 is likewise doubled, and 
hence the relative width remains unchanged.  In our example, M is a conjunction of two primitive 
predicates; therefore the relative width of M is always ¼, independent of the number p of primitive 
predicates.  For p  = 3, we found above c* = 42/108 = 0.389.  For p = 4, c* = 44/116 = 0.379; for p = 10, 
c* = 296/1124 = 0.263.  Thus c* remains always above ¼, for any number of primitive predicates. 
     If we choose another rule of inductive or definition of degree of confirmation and apply it to the 
hypothesis h and evidence e of our example, we may find values which differ somewhat from the value 
of c*.  For example, the definition proposed by Helmer (see footnote 7) and, in a certain sense, also 
Reichenbach’s principle of induction20 take a value equal to s1/s, the relative frequency of M in the 
observed sample, thus in our case 0.4.  Laplace’s rule of succession takes (s1 + 1) / (s + 2); hence in our 
case 41/102 = 0.402. 
     Since there are several definitions of the degree of confirmation c, the question arises: on what basis 
shall we choose an adequate definition?  How shall we judge the adequacy of a proposed definition?  The 
simplest approach is the following.  We imagine a knowledge situation and describe it in a sentence c, 
and further a hypothesis which we formulate by a sentence h.  We chose e and h such that (1) they are 
simple enough to allow the application of the given definition of c, and (2) such that we have an intuitive 
impression of the value to which customary ways of inductive thinking would lead.  Then we examine 
whether the value of c(h, e) calculated on the basis of the given definition is sufficiently in agreement with 
the intuitive value.  Since the intuitive determination of a value is in general rather than vague, an 
approximate agreement will be regarded as sufficient.  This is the case in the above example for all three 
calculated values, because customary inductive thinking takes the probability in cases of this kind with 
sufficiently large samples to be close to the relative frequency observed in the sample.  If, however, the 
calculated value differ considerably from the intuitive one, we shall regard the definition as inadequate in 
the case in question.  It will seldom occur that a proposed definition will generally yield inadequate 
values.  (I have shown21 that this is the case for Wittgenstein’s definition.)  More frequently we shall find 
that a proposed definition furnishes inadequate values only in certain special instances.  In this case the 
definition need not be entirely abandoned; it may be that a suitable modification for it can be found.  I 
believe that this is the case with a weaker form of Laplace’s rule of succes- 
______ 
     20 Hans Reichenbach, Experience and Prediction (1938), § 38. 
      21 Op. cit., §6. 



sion (in its original strong form it leads to contradictions) and with Helmer’s definition; 
this will be discussed at another place. 
 

6. THE PROBLEM OF PROJECTIBILITY 
 
     Now we shall discuss Goodman’s question as to what kinds of properties are inductively 
projectible.   I think the latter term may be explained as follows. We call a property W 
inductively projectible if the following is always the case: the higher the relative frequency 
of W in an observed sample, the higher is, on this evidence, the probability that a non-
observed individual has the property W.  I assume that Goodman’s question was meant in 
this sense. Then I propose this as a tentative answer: all purely qualitative properties (in the 
sense explained in §2) are inductively projectible; perhaps only these are; certainly the 
purely positional properties are not projectible, and I am inclined to believe that the mixed 
properties are not, but this requires further investigation. It seems that those authors who 
have formulated inductive rules without specifying the kind of properties to which they are 
applicable (for example, Laplace’s rule of succession and Reichenbach’s rule of induction) 
intended them to be applied to purely qualitative properties only. This was tacitly 
presupposed; a complete formulation should contain this or a similar restriction. The rules 
are, of course, meant to be applied not only to simple, directly observable properties but 
also to certain complex properties. Therefore we must be told to which of them we are 
permitted to apply them and to which not. 
     In my system of inductive logic the situation is somewhat different. Stipulations 
concerning the primitive terms of the language L like those explained earlier (§2) are 
sufficient. For this system, in distinction to the inductive rules mentioned, it is not 
necessary to give a classification of complex properties into projectible and nonprojectible 
properties and then to restrict the inductive procedure to projectible properties. The reason 
is that the system is based on an explicit definitions for the degree of confirmation c*.22  By 
this definition, the value of c*(h, e) for any pair of sentences h and e in L of any form 
(except that a must not be self-contradictory) is uniquely determined. Now let W be a 
complex property of any kind expressible in L. (According to the requirement of 
simplicity, W is expressed in L not by a primitive predicate but by a compound expression.) 
We take as evidence each of a series of statements e0, e1, e2, . . . , e10, saying that of one 
thousand given individuals none, 100, 200, . . . , the entire thousand, are W; as h we take 
the statement that another individual is W.  Then we apply the definition of c* to these 
statements.  If the value of c*(h, en) increases with n, we shall say that W is projected by c* 
is this case.  
______ 
     22 Op. cit., §6. 
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If we find that W is projected by c* in all cases of this kind, we shall say that W is 
projectible by c*.  In this way we can investigate the question which properties are 
projectible by c* and which are not.  The answer to this question is determined by the 
definition of c*, although to prove a general result of this kind as a theorem based on 
the definition of c* may, of course, be a complicated task.  The answer is determined 
although the definition of c*, in distinction to the complete formulation of the rules of 
induction mentioned earlier, is not restricted to projectible properties but applicable to 
all properties.  But only for certain properties does the defintion always supply higher 
values for higher observed frequencies and thereby effect a projection for these 
properties.  According to the presumption mentioned above, this holds for all purely 
qualitative properties and perhaps only for these.  (For example, Goodman’s property S 
is not purely qualitative but mixed because of the occurrence of ‘V-E day’, which is a name 
of a temporal position, hence an individual constant; this property S is certainly not 
projectible by c*.)  Although the definition of c* is not restricted, many theorems concern a 
restricted class of properties.  Thus most of the theorems stated in my article,23 among them 
the theorem T mentioned above, refer only to factual, elementary properties,24 that is, in our 
present terminology, purely qualitative properties.  (Therefore these theorems cannot be 
applied, for instance, to the property S.) 

If somebody were to criticize as axiom system of Euclidean geometry because it does not 
contain a rule specifying for which particular class of triangles the Pythagorean theorem 
holds, the author of the system might reply: no additional rule is required; the axiom system 
is complete; take it and discover yourself under what conditions the theorem holds.  If 
anybody misses in my system of inductive logic a rule specifying the particular kind of 
properties for which inductive projection is permitted, the reply is: no additional rule is 
required; the definition of degree of confirmation is complete, and is sufficient to determine 
the kind of property for which projectibility holds. 
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      23 Op. cit., §§9-14. 
      24 Op. cit., p. 84. 


