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 1. The problems of modal logic. The purpose of this article is to give a survey of some 
results I have found in investigations concerning logical modalities. The results refer: (1) to 
semantical systems, i.e., symbolic language systems for which semantical rules of interpretation 
are laid down; (2) to corresponding calculi, i.e., syntactical systems with primitive sentences and 
a rule of inference; (3) to relations between a semantical system and the corresponding calculus. 
 The semantical systems to be dealt with are the following: propositional logic (PL), 
functional logic (FL), and the corresponding modal systems, viz. modal propositional logic 
(MPL) and modal functional logic (MFL). MPL is built out of PL by the addition of the symbol 
‘N’ for logical necessity; likewise MFL out of FL. In terms of Lewis’s symbol ‘◊’ for logical 
possibility, ‘Np’ means the same as ‘~◊~p’. All other logical modalities can, of course, be 
defined on the basis of ‘N’; e.g., impossibility by ‘N~p’, possibility by ‘~N~p’, contingency by 
‘~Np.~N~p’, etc. 
 The calculi corresponding to these semantical systems are the following: the 
propositional calculus (PC), the functional calculus (FC), and the modal calculi (MPC and MFC) 
again constructed by the addition of ‘N’. 
 Lewis’s systems of strict implication1 are forms of MPC. So far, no forms of MFC have 
been constructed, and the construction of such a system is our chief aim. The corresponding 
semantical systems MPL and MFL are constructed chiefly for the purpose of enabling us to show 
that the modal calculi MPC and MFC are adequate, i.e., that every sentence provable in them is 
L-true (analytic). With the help of a normal form, it can further be shown that for MPC the 
inverse holds also; MPC is complete in the sense that every sentence which is L-true in MPL is 
provable in MPC. The reduction to the normal form constitutes a decision method for MPC and 
MPL. For MFC likewise a method of reduction to a normal form will be given. This reduction 
removes all occurrences of ‘N’ of higher order, i.e., such that the scope of one ‘N’ contains 
another ‘N’. A decision method for MFC is of course not possible; however, the reduction 
makes it possible to apply to MFC the known decision methods for special cases in FC. 
 The semantical systems FL and MFL contain an infinite number of individual constants. 
Therefore the representation of these systems requires a very strong metalanguage, dealing with 
classes of classes of sentences. Consequently, the semantical concepts defined, e.g., L-truth, are 
indefinite (non-effective) to a high degree. The chief reasons for constructing corresponding 
calculi are here, as usually in the case of logical calculi, the following two: (1) avoidance of any 
reference to the meanings of the signs and sentences, (2) use of basic concepts which are 
effective. The second purpose is here, as generally in the case of calculi without transfinite rules, 
fulfilled in the following sense. Al- 
_______________ 
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 1 C. I. Lewis and C. H. Langford, Symbolic logic, 1932; the systems are developed from those in Lewis’s 
earlier book (1918). 



though C-truth (provability) is not itself an effective concept, it is defined on the basis of two 
effective concepts, viz. the concept of primitive sentence, given by a finite list of primitive 
sentence schemata, and the concept of direct derivability, defined by the rule of inference. 
 For lack of space, this article will state only a few of the relevant theorems, most of them 
without proofs. For the same reason, this article will be restricted to the technical aspects of the 
systems dealt with and will not contain any discussion of the more general problems connected 
with logical modalities. 
 The guiding idea in our constructions of systems of modal logic is this: a proposition p is 
logically necessary if and only if a sentence expressing p is logically true. That is to say, the 
modal concept of the logical necessity of a proposition and the semantical concept of the logical 
truth or analyticity of a sentence correspond to each other. Both concepts have been used in logic 
and philosophy, mostly, however, without exact rules. If we succeed in explicating one of these 
two concepts, that is, in finding an exact concept, which we call the explicatum, to take the place 
of the given inexact concept, the explicandum, then this leads, on the basis of the parallelism 
stated between the two concepts, to an explication for the other concept. Now it is easy to give, 
with the help of the semantical concepts of state-description and range, an exact definition for 
‘L-true’ as an explicatum for logical truth with respect to the systems PL and FL, as we shall see.
 Therefore it seems natural to interpret ‘N’ in such a way that the following convention is 
always fulfilled: 
 C1-1. If ‘. . .’ is any sentence in a system S containing ‘N’, then the corresponding 
sentence ‘N(... )’ is to be taken as true if and only if ‘. . .’ is L-true in S. 
 This convention determines our interpretation of ‘N’, but it is not a definition for ‘N’. 
The sentence ‘N( ... )’ cannot be transformed by definition into the sentence “ ‘…’ is L-true in 
S,” because the first sentence belongs to the object-language S, the second to the metalanguage 
M; but the first sentence holds, according to the convention, if and only if the second holds.
 We shall not define ‘N’ (it cannot be defined on the basis of the ordinary truth-functional 
connectives and quantifiers for individuals) but shall take it as a primitive sign in MPL and MFL. 
However, we shall frame the semantical rules of these systems in such a manner that the 
convention is fulfilled.2,3 

 Cl-1 gives a sufficient and necessary condition for the truth of ‘N( ... )’. Now the 
following two questions remain: (1) if ‘N( ... )’ is true, is it L-true? If so, ‘NN( ... )’ is likewise 
true; in other words, ‘Np ⊃ NNp’ is always true. 
_______________ 
 2 I shall hereafter refer to the following publications of mine by the signs in square brackets: 
 [Syntax] The logical syntax of language, (1934) 1937. 
 [I] Introduction to semantics, 1942. 
 [II] Formalization of logic, 1943. 
 3 I have indicated the parallelism between the modal concept of the necessity of a proposition and the meta-
concept of the analyticity of a sentence first in [Syntax] §69 (where, however, ‘analytic’ was still regarded as a 
syntactical term), and, more clearly, in [I] pp. 91 ff. 



(2) If ‘N( ... )’ is false, is it L-false? (‘L-false’ is taken as the explicatum for ‘logically false,’ 
‘self-contradictory.’) If so, ‘~N( ... )’ is L-true and hence ‘N~N( … )’ is true; in other words, 
‘~Np⊃ N~Np’ is always true. 
 At the present moment, these questions are not meant with respect to any given system, 
but as pre-systematic questions, concerning the inexact, pre-systematic explicandum rather than 
the exact explicatum. The purpose of the following considerations is merely to make the vague 
meaning of logical necessity or logical truth clearer to ourselves, so as to lead to a convention 
more specific than C1-1 concerning the use of ‘N’. This convention will then later guide us in 
constructing our systems. Once the systems are constructed, the two questions can be answered 
in an exact way. At the present stage, however, our considerations, as always in tasks of self-
clarification, are necessarily inexact and, in a certain sense, even circular. 
 In order to make clearer what is meant by the explicandum of logical, necessary truth, we 
will distinguish two kinds of data concerning any sentence ‘C’ as follows:  
 I.  The meaning of ‘C’ is given, that is to say, the interpretation assigned to ‘C’ by 
the semantical rules. (In technical terms, the rules may either be formulated so as to determine 
the proposition expressed by ‘C’ or so as to determine the range of ‘C’; the rules of our system 
will have the latter form.) 
 II.  Information concerning the facts relevant for ‘C’ is given, that is to say, 
concerning the properties and relations of the individuals involved. 
 If the answer to a given question is merely dependent upon data of the kind I but 
independent of those of kind II, we call it a logical question; if in addition, data of the kind II are 
required, we call it a factual question. In particular, if a sentence ‘C’ is true in such a way that its 
truth is based on I alone, we regard it as logically true; if its truth is dependent upon II also, we 
regard it as factually, contingently true. This conception of the distinction between logical and 
factual truth as explicandum will guide our choice of the definition of ‘L-true’ as explicatum. It 
seems tome that this conception is in agreement with customary conceptions. 
 Let us take as an example the sentence ‘Pa.~Qb’’ which we abbreviate by ‘A’. We learn 
from the semantical rules what individuals are named by ‘a’ and ‘b’ and what properties are 
designated by ‘P’ and ‘Q’; we learn further that ‘A’ says that a is P and b is not Q. This is all we 
can obtain from data of the kind I. In order to establish the truth-value of ‘A’ we need data of the 
kind II, viz., information whether or not a is P and whether or not b is Q. Thus, ‘A’ is neither L-
true nor L-false; we say that it is L-indeterminate or factual. 
 (i)  Now consider the sentence ‘A∨  ~A’. We can find that it is true by using merely 
the semantical rules for ‘∨ ’ and ‘~’ (in our system, the rules of ranges D7-5c and b, which 
correspond to the customary truth-tables for the two connectives) ; we need no factual 
information concerning the individuals a and b occurring in the sentence. Therefore,  
‘A∨  ~A’ is L-true. Hence, according to our convention C1-1, ‘N(A∨  ~A)’ is true. The 
question is whether it is L-true. Now we can easily see that it must be, because the truth of this 
N-sentence follows from those semantical rules by which we established the truth and 



hence the L-truth of ‘A∨  ~A’ together with the semantical rule for ‘N’ which is to be laid down 
in accordance with C1-1. Thus no factual knowledge is required for establishing that ‘N(A∨  
~A)’ is true; hence it is L-true. 
 (ii)  Similarly, the falsity of ‘A.~A’ can be established by the semantical rules alone. 
Therefore, this sentence is L-false and not L-true. Hence, according to C1-1, ‘N(A.~A)’ is false 
and ‘~ N(A.~A)’ is true. 
 (iii)  Finally, let us go back to the sentence ‘A’ itself, i.e., ‘Pa.~Qb’. We found that ‘A’ 
is neither L-true nor L -false by merely using semantical rules, not using any factual knowledge 
concerning the individuals occurring in ‘A’. Therefore we see that, according to C1-1, ‘N(A)’ is 
false and ‘~N(A)’ is true. These results are based merely on the semantical rules for the signs 
occurring in ‘A’ and for ‘N’. Therefore, ‘N(A)’ is L-false and ‘~N(A)’ is L-true. 
 The results found for these simple examples can be generalized. Let ‘C’ be an 
abbreviation for a given sentence of any form with or without ‘N’. 
 (i)  Suppose that ‘N(C)’ is true. Then, according to C1-1, ‘C’ must be L-true. 
Hence the truth of ‘C’ is determined by certain semantical rules. Then these same rules 
together with the rule for ‘N’ determine the truth of ‘N(C)’. Therefore, ‘N(C)’ is L-true, and 
hence ‘NN(C)’ is true. Thus our earlier question (1) is answered in the affirmative. 
 (ii)  Let us now suppose that ‘C’ is L-false and hence ‘N(C)’ is false. Then those 
semantical rules which determine the falsity of ‘C’ together with the rule for ‘N’ determine the 
falsity of ‘N(C)’. Therefore, ‘N(C)’ is L-false, and ‘~N(C)’ is L-true. 
 (iii)  Finally, let us suppose that ‘N(C)’ is false but ‘C’ is not L-false. Then ‘C’ is 
neither L-true nor L-false. The decisive question here is this: is the result that ‘C’ is not L-true 
determined by data I alone or are data II, i.e., factual knowledge, required? Data II are certainly 
relevant for the truth-value of ‘C’, but they cannot be relevant for the character of ‘C’ being L-
indeterminate, factual, contingent. It would be absurd to assume such a relevance, to say, for 
example: “‘C’ is contingent because the individual c happens to have the property Q; if this were 
not so then ‘C’ would not be contingent but L-true.” Thus contingent facts, by being relevant for 
the contingency of ‘C’ would also be relevant for L-truth or L-falsity, in contradiction to our 
explanation of these concepts. Since now data I alone determine that ‘C’ is not L-true, they 
determine that ‘N(C)’ is false and ‘~N(C)’ is true. Therefore, ‘N(C)’ is L-false, and ‘~N(C)’ is L-
true. 
 From (ii) and (iii) together we see that, if ‘N(C)’ is false, it is L-false. Thus our earlier 
question (2) is answered in the affirmative. Together with the result under (i), this leads to the 
following convention, which is more specific than C1-1.  
 C1-2. If ‘…’ is L-true, ‘N( ... )’ is L-true; otherwise ‘N( ... )’ is L-false. 
 We shall later construct the rule for ‘N’ (D9-5i) in such a manner that this convention is 
fulfilled (T9-1). 
 In the preceding analysis, I have repeatedly referred to a certain result as “following 
from” or “determined by” certain data. This is not meant in the sense that the result can be 
derived from the data with the help of deductive means which are systematized in a given 
metalanguage; still less is it implied that there is an effective method for this derivation. What I 
mean is rather 



that, if the data hold, the result cannot possibly fail to hold. This is the wide, non-systematized 
concept of logical implication which logicians have in mind before they construct their systems 
and of which only a part can be grasped in any one fixed system. This concept is necessarily 
inexact; but it is clear enough for practical purposes of pre-systematic discussions. Logicians 
refer to it as their explicandum before they offer their explicatum in the form of a system with 
exact rules; so does, for example, Lewis when he explains that his explicatum ‘strict implication’ 
is intended to systematize the common concept of logic, implication, deducibility, entailment. 
 The opinions of logicians on the two questions (1) and (2) mentioned earlier seem to 
differ, with no clear arguments on either side. Our affirmative answers to these questions do not 
mean that a negative answer to either question is wrong but only that it must be based on an 
interpretation of ‘N’ different from ours. It seems to me that the usual discussions of the validity 
of various systems of modal logic are inconclusive because no clear interpretation of the modal 
signs are offered. The interpretation here suggested, based on the parallelism between the 
necessity of propositions and the L-truth of sentences and on the distinction between data of 
kinds I and II, leads to clear solutions of the controversial questions. This interpretation seems to 
be in agreement with customary conceptions; it is, indeed, nothing else than a clarification of 
these conceptions. I am not aware of any clear and simple interpretation which leads to one of 
the alternative systems, e.g., to a negative answer to either of the questions (1) or (2). 
 Since we intend to combine modalities with quantification, we have also to decide how to 
interpret a sentence of the form ‘(x)[N(. . x . .)]’. This is done by the following convention. 
 C1-3. ‘N’ is to be interpreted in such a way that any sentence of the form  
‘(x)[N(. . x . .)]’ is regarded as L-equivalent to (i.e., meaning the same as) the corresponding 
sentence ‘N[(x)(. . x . .)]’. 
 The reasons for this convention (that is, “the motives for its choice,” not “the proof of its 
validity”) are as follows. We adopt the principle, which seems generally accepted, that any 
sentence with a universal quantifier, no matter whether it contains modal signs or not, is to be 
interpreted as a joint assertion for all values of the variable. Thus, if ‘x’ has only three values, say 
a, b, c, then ‘(x)[N(. . x . .)]’ means the same as ‘N(. . a . .) .N(. . b . .) .N(. . c . .)’. The latter 
sentence is L-equivalent to (see below, T4-1e), because a conjunction is L-true if and only if all 
of its components are L-true. Finally, the sentence last mentioned is L-equivalent to ‘N[(x)(. . x . 
.)]’, because, in virtue of the above principle, ‘(x)(. . x . .)’ means the same as ‘(. . a . .) . (. . b . .) . 
(. . c . .)’. It seems natural to transfer this result also to variables with a denumerably infinite 
range of values, as in MFL. I think that the same convention could be applied even to variables 
with a non-denumerable range, e.g., real number variables, although in this case not all values 
are expressible in the language; this problem, however, need not concern us in the present 
context. [It may be remarked that the foregoing discussion oversimplifies the situation. The 
actual situation is complicated by the fact that the values of individual variables in a modal 
system are not individuals but 



individual concepts; compare the remarks at the end of §12. However, for the present purposes 
we may leave aside this distinction.] 
 
 2. Propositional logic (PL) and propositional calculus (PC). We shall not construct PL 
as a separate system. Instead, we shall say of certain systems that they “contain PL” (roughly 
speaking, if they contain the ordinary connectives and semantical rules for them corresponding to 
the ordinary truth-tables) and of some of their sentences that they are “L-true by PL” (roughly 
speaking, if their truth can be shown by the truth tables alone).4 For the sake of brevity, we 
omit here the exact definitions. The definition for “S contains PL” requires that S contain rules 
like D7-la, b, c, D7-2c, d, e, D7-3, D7-5b, c, d, h. The definition for “L-true by PL” 
corresponds to D7-6a but is framed in such a way that it applies only if the universality of a 
range is based on the mentioned rules of ranges (D7-5b, c, d) which correspond to the ordinary 
truth-tables. Thus we shall see that FL, and likewise MFL, contain PL. 
 As primitive signs in all our systems we shall use the connectives ‘~’, ‘∨ ’, and ‘.’; and 
also the tautologous sentence ‘t’. (‘.’ could of course be defined; likewise ‘t’, e.g., by  
‘Pa ∨  ~Pa’. We take them, nevertheless, as primitive in order to be able to write the normal 
forms in primitive notation; see D3-1.) In the following discussions, we make use also of ‘⊃ ’ 
and ‘≡’; they do not belong to the systems themselves but serve as shorthand in the customary 
manner. We adopt the customary conventions for the omission of parentheses; in particular, we 
write ‘Np’ instead of ‘N(p)’ (but not if a compound sentence takes the place of ‘p’). 
 We use German letters as signs of the metalanguage: ‘S’ for sentences (all sentences in 
our system are closed, i.e., without free variables); ‘M’ for matrices (by which we mean here 
always sentential matrices (Quine), sometimes called “sentential functions”; they include the 
sentences); ‘in’ for individual constants; ‘i’ for individual variables; and occasionally others. 
Any expression containing a German letter belongs to the metalanguage and denotes the 
corresponding expression of the object-language in the customary way; e.g., ‘Si∨  Si’ denotes the 
disjunction with the components Si and Si. 
 We say that Si is L-false by PL, that Si L-implies Si by PL, or that Si is L-equivalent to Si 
by PL if and only if ~Si, Si ⊃  Si or Si ≡ Si respectively, is L-true by PL. (These simple 
definitions can be used here because all sentences are closed.) 
 In analogy to PL, we do not take PC as a separate calculus, since our systems will not 
contain propositional variables. We define instead “the calculus K contains PC.” The definition 
requires that K contain the signs, matrices and sentences required for PL; further the rule of 
implication (as D4-2e), and certain primitive sentences (e.g., ‘t’ and all sentences formed by 
substitution from Bernays’s5 four axioms of the propositional calculus). We say that Si is C-true 
by PC in K if Si is C-true (provable) in a sub-calculus K′ of K contain- 
_______________ 
 4 For this concept, the term ‘tautologous’ is sometimes used; see W. V. Quine, Mathematical logic, 1940, 
p. 50, and [1], p. 240. In [II] D11-30, I have used the term ‘L-true by NTT.’ 
 5 D. Hilbert and W. Ackermann, Grundzüge der theoretischen Logik, (1928) 1938. P. Bernays, 
Mathematische Zeltschrift, vol. 25 (1926). 



ing all sentences of K but only the rule of implication and those primitive sentences required for 
PC. 
 Definitions for other C-concepts (which we shall not state here) are constructed in such a 
way that they lead to the following results. Si , is C-false (refutable) by PC, Si C-implies Si (Si is 
derivable from Si) by PC, or Si is C-equivalent to Si (mutually derivable) by PC if and only if 
~Si, Si ⊃  Si or Si ≡ Si, respectively, is C-true by PC. 
 The following theorem T2-la is well known; it is easily proved by examining the 
primitive sentences and the rule of inference of PC. 
 T2-1. Let the semantical system S and the calculus K contain the same signs and the same 
sentences. Let S contain PL and K contain PC. 
 a.  Any sentence which is C-true by PC is L-true by PL. 
 b. Whenever C-falsity by PC holds, then L-falsity by PL holds. Analogously with C-
implication and L-implication, and with C-equivalence and L-equivalence. Hence, in a certain 
sense, PL is an L-true interpretation of PC ([I] D34-1, [II] §14). (We add “in a certain sense,” 
because PL and PC have not been defined here as independent systems.) 
 
 3. P-reduction. We shall now lay down rules of reduction leading to a normal 
form (definition D3-1). This is, essentially, the customary transformation into a conjunctive 
normal form. The present procedure is, however, considerably simplified, because by the use of 
‘t’ we get rid of many parts of a sentence which otherwise make the transformation very 
cumbersome. This method of reduction is applicable both to PL and to PC; therefore we use the 
neutral term ‘P-reduction.’ The rules are formulated so as to apply not only to sentences but to all 
matrices; this will be needed later in FC and MFC (see D8-1a). We presuppose that the 
customary notation of multiple disjunctions and conjunctions is used; this simplifies the 
procedure. (Thus we presuppose, for example, that instead of ‘(A∨  B)∨  C’, the simple form 
‘A∨  B∨  C’ is written; and further, that ‘A∨  (B∨  C)’ is transformed, according to the 
associative law, into ‘(A∨  B)∨  C’ and hence likewise simplified to ‘A∨  B∨  C’.) 
 D3-1. The P-reduction of a matrix Mi is its transformation according to the following 
rules. At any step in the transformation, the first of these rules that can be applied must be 
applied. The replacement applies to any part having the specified form, provided this part is 
either the whole matrix or one of those components out of which the whole is built up with 
connectives. The final result to which no rule is applicable any more is called the P-reduction of 
Mi . 
 a.  Any disjunction containing among its components a matrix and its negation is 
replaced by ‘t’. 
 b.  Any conjunction containing among its components a matrix and its negation is 
replaced by ‘~t’. 
 c. ~~Mk is replaced by Mk 
 d. If a disjunction or a conjunction contains among its components several 
occurrences of the same matrix, then all occurrences except the first one are omitted. (This rule is 
inessential but simplifies the form.) 
 e. If ‘t’ is a component of a disjunction, then all other components of this disjunction 
are omitted. 
 f. If ‘~t’ is a component of a disjunction, it is omitted. 



 g. If ‘t’ is a component of a conjunction, it is omitted. 
 h. If ‘~t’ is a component of a conjunction, then all other components of this 
conjunction are omitted. 
 i. The negation of a disjunction is replaced by the conjunction of the negations of 
the components. 
 j. The negation of a conjunction is replaced by the disjunction of the negations of 
the components. 
 k. If a conjunction occurs as a component of a disjunction, it is distributed (e.g.,  
Mh ∨  (Mk1 . Mk2) ∨  M1 is replaced by (Mh ∨  Mk1 ∨  M1).(Mh ∨  Mk2 ∨  M1) 
 T3-1. Let S and K be as in T2-1. Let Si be any sentence in S and K, and let Si be its P-
reductum; then the following holds. 
 a.  Si and Si are C-equivalent by PC. (This follows by induction from the fact that C-
equivalence holds for each application of one of the rules of reduction in D3-1.) 
 b.  Si and Si are L-equivalent by PL. (From (a) and T2-lb.) 
 c.  If Si is ‘t’, Si is L-true by PL. (From (b).) 
 d.  Si is L-true by PL if and only if Si is ‘t’. 
 Proof. Let Si be L-true by PL (tautologous). It is well known6 that the application of the 
reduction rules D1c, i, j, k to Si leads to a conjunctive normal form, in which every disjunction 
contains a sentence and its negation as components. Therefore, the rules Dla and g lead to ‘t’.—
The converse is (c). 
 e.  If Si is ‘t’, Si is C-true by PC. (From (a).) 
 f.  Completeness of PC.7 If Si is L-true by PL, it is C-true by PC. (From (d), (e).) 
 g.  Whenever L-falsity by PL holds, then C-falsity by PC holds. Analogously with L-
implication and C-implication, and with L-equivalence and C-equivalence. Hence, in a certain 
sense, PC is an L-exhaustive calculus for PL ([I] D36-3). (From (f).) 
 
 4. Modal propositional logic (MPL) and modal propositional calculus (MPC). MPL 
consists of PL with the addition of the modal symbol ‘N’ for logical necessity. Here again, we do 
not define MPL as an independent system but only: “The system S contains MPL.” The 
definition (which will not be given here) requires the same rules as those for PL but with the 
following addition: the modal symbol ‘N’ is added (D9-1h, D9-2g); and the rule of ranges for it 
(as D9-5i) says that the range of NSi is the universal range if the range of Si is the universal 
range; otherwise it is the null range. This is in accord with our previous convention C1-2, since 
L-truth is defined by the universality of the range (D7-6a). Our system MFL (§9) will contain 
MPL. 
 In analogy to ‘L-true by PL’ we now define ‘L-true by MPL’: 
 D4-1. Si is L-true by MPL in S = Df S contains MPL; Si belongs to S; every sentence 
formed out of Si in the following way is L-true in S: the ultimate MPL-components of Si (i.e., 
those sentences out of which Si is built up with 
_______________ 
 6 See, e.g., Hilbert and Ackermann, op.cit., Kap. I, §§3 and 4’ or Hilbert and Bernays, Grundlagen der 
Mathematik, vol. I, 1934, pp. 53f. 
 7 The completeness of PC was first proved by E. L. Post, American journal of mathematics, vol. 43 (1921). 
See W. V. Quine, this JOURNAL, vol. 3 (1938), pp. 37ff. 



the help of connectives and ‘N’, which themselves, however, are not thus built up out of other 
sentences) are replaced by any sentences of S (occurrences of the same component to be replaced 
by occurrences of the same sentence). 
 L-falsity by MPL, L-implication by MPL, and L-equivalence by MPL are defined in 
analogy to the corresponding concepts for PL in §2. 
 Now we shall define: “The calculus K contains MPC.” This will later be applied to MFC. 
We here make use of ‘p’, ‘q’, etc. as auxiliary variables; that is to say, these letters do not belong 
to the signs of our calculi but are merely used (following Quine) for the description of certain 
forms of sentences. We say, e.g., that a sentence of K has the form ‘p ⊃  q’ if it is formed out of 
the auxiliary formula ‘p ⊃  q’ (which does not belong to K) by substituting for ‘p’ and ‘q’ any 
sentences of K (which do not contain ‘p’, ‘q’, etc.); for instance, 
‘Pa ⊃  N(Pb)’. We write ‘p ⊇  q’ and ‘p ≡ q’ as abbreviations for ‘N(p ⊃  q)’ 
and ‘N(p ≡ q)’, respectively. Thus ‘⊇ ’ is a symbol of strict implication (corresponding to 
Lewis’s ‘p ’); and ‘≡’ is a symbol of strict equivalence (or identity of propositions, 
corresponding to Lewis’s ‘=’). The essential features of the form of MPC here stated are due to 
M. Wajsberg.8 
 D4-2. K contains MPC = Df K is a calculus fulfilling the following conditions. 
 a. The following signs are among the signs of K:  
  al.  Connectives: ‘~’, ‘∨ ’, ‘.’. 
  a2.  Parentheses: ‘(‘, ‘)’.  
  a3.  ‘t’. 
  a4.  ‘N’. 
 b. If Mi and Mi are matrices in K, then all expressions of the following forms are matrices 
in K: 
  bl.  ‘t’.  
  b2.  ~(Mi). 
  b3. (Mi)∨  (Mi). 
  b4.  (Mi) . (Mi). 
  b5.  N(Mi). 
 c. All the closed matrices in K, and only these, are sentences in K. 
_______________ 
 *An earlier system MPC, which I constructed in 1940, was slightly different from the one here given; I 
constructed a proof for its completeness with the help of the reduction procedure explained in the next section.
 I found later that my system was equivalent to, but simpler than, Lewis’s system S5. While writing this 
article, I found that M. Wajsberg had given a still simpler form (Ein erweiterter Klassenkalkül Monatshefte für 
Mathematik und Physik, vol. 40 (1933), pp. 113-126); therefore I now adopt (in D4-2d) his axioms, with the 
following two inessential changes. (1) I take (dl), where Wajsberg takes the four axioms of the propositional 
calculus of Hilbert and Ackermann with the symbol of necessity added to each. (2) In (d3) I have ‘⊃ ’, while 
Wajsberg has a symbol corresponding to ‘⊇ ’ this change is due to the fact that I do not use, like Wajsberg, a rule of 
strict implication but a rule of material implication in order to have MPC and MFC contain PC. Wajsberg’s calculus 
is primarily intended as a class calculus with a symbol for class universality added to it, but he remarks that it can 
also be interpreted as an extended propositional calculus corresponding to Lewis’s systems of strict implication. In 
this interpretation, Wajsberg’s ‘X’ corresponds to ‘Np’, and therefore his ‘X < Y’ to my ‘p ⊇  q’ and to Lewis’s 
‘pp  q’. In the same paper, Wajsberg gave a proof for the completeness of his calculus (see below, T6-2f). 



 d.  K contains among its primitive sentences all sentences of the following forms; we 
call them primitive sentences of MPC in K: 
  dl. NSi, where Si is any sentence whose P-reductum is ‘t’.  
  d2.  ‘(p ⊇  q) ⊇  (Np ⊇  Nq)’. 
  d3.  ‘Np ⊃ p’. 
  d4.  ‘~Np ⊇  N~Np’. 
 e.  K contains among its rules of inference the rule of implication: Si is a direct C-
implicate of (directly derivable from) Si and Si ⊃  Si. 
 f. Rule of refutation: the class of all sentences is directly C-false in K. 
 (f) is the rule of refutation of the simplest form (see [II] §20). If we are willing to 
dispense with C-falsity, in order to have a form more similar to customary calculi, we may omit 
this rule. 
 C-truth (provability) by MPC is defined in the customary way with reference to the 
primitive sentences (d) and the rule of inference (e). C-falsity, C-implication, and C-equivalence 
are defined in such a way that the conditions mentioned in §2 are fulfilled. 
 We shall now state some theorems of MPC without proofs. We use again the auxiliary 
variables ‘p’ etc. for convenience and easier comparison with modal calculi of other authors.
 (‘d1’ etc. refer to D4-2dl etc.) 
 T4-1. Let K be a calculus containing MPC. Every sentence in K of any of the following 
forms is C-true by MPC in K. 
 a. ‘(p ⊇  q) ⊃  (Np ⊇  Nq). (From d2, d3.) 
 b.  ‘~Np ≡ N~Np’. (From d4, d3.) 
 c. ‘(p ⊇  q) ⊃ (Np ⊃ Nq)’. (From (a), d3.) 
 d. ‘(p ⊇  q) ⊃  [(r ⊇  p) ⊃  (r ⊇  q)]’. (From dl, (c).) 
 e. ‘Np . Nq ≡ N(p.q)’. (From dl, (c).) 
 f. ‘Np ⊃ N(q ⊃ p)’. (From dl, (c).) 
 g. ‘Np ≡ NNp’. (From (a), (c), d4; d3.) 
 h. ‘(Np ⊇  q) ⊃  (Np ⊃ Nq)’. (From (c), (g).) 
 i. ‘~p ⊃ ~Np’. (From d3.)  
 j.  ‘q ⊃ ~N~q’. (From (i).)  
 k. ‘N~p ⊃ ~Np’. (From d3, (i).) 
 l. ‘N(~pl ∨  ~p2 ∨  ... ∨  ~pn ∨  q) ⊃  ~Np1 ∨  ~Np2 ∨  ... ∨  ~Npn ∨  Nq’. (From 
(c).) 
 m.  ‘N(~p1∨  . . . ∨ ~pn) ⊃ ~Np1 ∨  ... ∨  ~Npn’. (From (1), (k).) 
 n. ‘N(Np ∨ q) ⊃ Np ∨  Nq’. (From dl, (c), (b).) 
 p.  NNSi where Si is any sentence whose P-reductum is ‘t’. (From dl, (g).) 
 q.  NSi ⊃ NSi where Si and Si are such that the P-reductum of Si ⊃  Si is ‘t’. (From 
dl, (c).) 
 r. ‘Np ⊃ N(p ∨  q)’. (From (q).) 
 s. ‘Np ∨  Nq ⊃  N(p ∨  q)’. (From (r), (q).) 
 t. (Np ⊃ Nq) ≡ (Np ⊇  q)’. (From (r), (b), (q); (h).)  
 u.  ‘Np ⊇  p)’. (From (t).) 
 v. ‘Np ∨  Nq ≡ N(Np ∨  q)’. (From (r), (b), (q); (n).)  
 x.  ‘~N~Np ⊃ Np’. (From (b).) 
 y. ‘Np ∨  Nq ≡ N(Np ∨  Nq)’. (From (g), (v).) 



 For proofs of many of these theorems, see Wajsberg (op. cit.). 
 T4-2. Let K contain MPC. Let Si and ~Si be C-true by MPC in K. Then the sentences of 
the following forms are likewise C-true by MPC in K.  
 a.  NSi  
Proof. If we prefix ‘N’ to every sentence in the proof of Si, then it can be shown, with the help 
of T4-1g, u, and a, that every sentence thus resulting is C-true by MPC. 
 b:  Si ≡ NSi . (From (a).)  
 c.  N~Si. (From (a).) 
 d.  ~NSi. (From (c), T4-1i.) 
 e. ~Si ≡ N~Si .(From (c).) 
 f. ~Si ≡ ~NSi . (From (d).) 
 g. Si ≡ NSi  . (From (f).) 
 h.  Si ≡ ~N~Si . (From (e).) 
  
 5. MP-reduction. We shall now explain a reduction method which leads to a normal 
form for both MPL and MPC; therefore we call it MP-reduction. This method is an extension of 
P-reduction. It is similar to the method used by Wajsberg (op. cit.). 
 It is easy to construct a decision method for MPL if we require only that it be 
theoretically effective, i.e., that it lead to a decision in a finite number of steps, no matter how 
large. [If we have a modal sentence Si with n ultimate components, then they determine p = 2n 
smallest ranges. Thus there are 2p − 1 possibilities for none or some (but not all) of these 
ultimate ranges to be null (see the explanation of basic modal functions in §6). If we find, on the 
basis of the rules of ranges for MPL, that for each of these possibilities the range of Si is 
universal, then Si is L-true by MPL.] MP-reduction will yield a decision method which is, 
moreover, practicable, i.e., sufficiently short for modal sentences of ordinary length. This 
reduction method further leads to the result that MPC is complete in this sense: every sentence 
which is L-true by MPL is C-true by MPC. 
 D5-1. The MP-reduction of a matrix Mi is its transformation according to the following 
rules. At any step in the transformation, the first of these rules that can be applied must be 
applied. The replacement applies to any part having the specified form, provided this part is 
either the whole matrix or one of those components out of which the whole is built up with 
connectives and ‘N’. Here we have two kinds of rules: (a) to (n), and (o) to (p). If none of the 
rules (a) to (n) is any more applicable, the result is called the first MP-reductum of Mi. If none of 
all the rules (a) to (p) is any more applicable, the result is called the second MP-reductum or, 
briefly, the MP-reductum of Mi. 
 a to k, as in D3-1. 
 l. Omission of ‘N’. NMk is replaced by Mk if Mk, has one of the following four 
forms: (1) NMh (with any Mh), (2) ~NMh , (3) ‘t’, (4) ‘~t’. 
 m.  N(Mk1 . … . Mkn) is replaced by N(Mk1). … .N(Mkn). 
 n.  Suppose that NMh occurs where Mh is a disjunction with n components (n. ≥ 2) 
such that there is at least one component of the form ‘N( ... )’ or ‘~N( ... )’. Let Mk be the first of 
the components having either of these forms. Let Ml  be either (if n > 2) the disjunction of the 
remaining components (in 



the order in which they occur in Mh or (if n = 2) the one remaining component. Then NMh is 
replaced by Mk ∨  NMl . 
 These are the rules of the first kind; the following two are those of the second kind. 
 o.  Suppose that Mk is either the whole matrix or a conjunctive component of the 
whole, and has the form ~NMk1 ∨  ... ∨  ~N Mkm. (m ≥ 1; for m = l, Mk is ~N Mk1). Then Mk is 
replaced by N(~Mk1 ∨  … ∨  ~ Mkm.). 
 p.  Suppose that Mh is either the whole matrix or a conjunctive component of the 
whole and is a disjunction (with m + n + p components) which has the following form or can be 
brought into this form by merely changing the order of the components: ~NMi1∨  ...∨  ~NMim ∨  
NMk1∨ ...∨  NMkn∨  Ml1 ∨ ...∨  Mlp, where the p Ml-components have neither the form ‘~N(...)’ 
nor ‘N(...)’, and where m ≥ 1, n ≥ 0, p ≥ 0, but n + p ≥ 1, hence m + n + p ≥ 2. Let Mi be ~Mi1 
∨ ...∨  ~Mim, and Ml be Ml1∨ ...∨  Mlp . Then Mh he replaced by N(Mi∨  Mk1) ∨  N(Mi∨  
Mk2)∨ ...∨N(Mi∨  Mkn)∨  N(Mi∨  Ml). (If p = 0, the last of these n + 1 components 
disappears; if n = 0, all components except the last disappear.) 
 (Concerning the difference between the rules of the first and the second kind, see T6-1e, 
f, g.) 
 With respect to this reduction method, the following theorems can be proved. The proofs 
cannot be given here. 
 T5-1. Let Mk be a matrix in a semantical system containing MPL or in a calculus 
containing MPC, such that none of the rules of MP-reduction (Dla to o) can be applied to Mk. 
Then Mk has exactly one of the following forms (a) to (h). 
 a.  Mk is ‘t’.  
 b.  Mk is ‘~t’.  
 c. Mk has a form different from the five forms listed in D4-2b.  
 d.  Mk is ~ Mh, where Mh has form (c). 
 e.  Mk is a disjunction of two or more components of the forms (c), (d); no 
component is the negation of another component; no two components are alike. 
 f. Mk is N(Mh), where Mh has one of the forms (c), (d), (e). 
 g. Mk is a disjunction of two or more components of the forms (c), (d), (f), at least 
one being of the form (f); no component is the negation of another component; no two 
components are alike. 
 h. Mk is a conjunction of two or more components of the, forms (c), (d), (e), (f), (g); 
no component is the negation of another component; no two components are alike. 
  
 6. Relations between MPC and MPL. If a calculus is constructed for the purpose of a 
formalization of a given logical or empirical theory, then two questions may be raised. (1) Is the 
calculus in accord with the given theory? In technical terms, is the theory a true (or L-true) 
interpretation for the calculus? (2) Is the calculus strong enough to yield all the statements of the 
theory? In technical terms, is the calculus an exhaustive (or L-exhaustive) calculus for the 
theory? An affirmative answer to the first question is certainly required, because otherwise the 
calculus would not fulfill its purpose. An affirmative 



answer to the second question is, although desirable, in general not required. If we use only the 
customary means (excluding so-called transfinite rules), then for certain logical systems no L-
exhaustive calculus can be constructed. (We leave aside the question of the requirement of full 
formalization in a sense still stronger than that of L-exhaustiveness; this question has been 
discussed for PC and FC in [II].) 
 For PC and PL, it is well known that both questions can be answered affirmatively (see 
above, T2-1 and T3-1). The same result will now be stated for MPC and MPL; it was first found 
by Wajsberg. The affirmative answer to the first question is easily found (T6-1c, d); it is based 
on a simple examination of the primitive sentences of MPC (T6-1a) and its rule of inference (T6-
1b). The proof of the completeness of MPC, however, is more complicated. It makes use of the 
method of MP-reduction (D5-1). The result is reached in two steps: 
(i) every L-true sentence is reducible to ‘t’ (T6-2d) ; (îi) if a sentence is reducible to ‘t,’ it is C-
true (T6-2e); hence, if a sentence is L-true, it is C-true (T6-2f).  
 T6-1. Let the semantical system S and the calculus K contain the same signs and the same 
sentences. Let S contain MPL, and K contain MPC. 
 a.  Every primitive sentence of MPC (D4-2d) is L-true by MPL. 
 b.  In every instance of direct C-implication by MPC (that is, of an application of the 
rule of implication D4-2e), L-implication by MPL holds. 
 c. Any sentence which is C-true by MPC is L-true by MPL. (From (a), (b).) 
 d.  Whenever C-falsity by MPC holds, then L-falsity by MPL holds; analogously 
with C-implication and L-implication, and with C-equivalence and L-equivalence. (From (c).) 
Thus, in a certain sense, MPL is an L-true interpretation of MPC. 
 e. If one application of any of the rules of MP-reduction of the first kind (D5-1a to 
n) to a sentence Si leads to Si, then Si and Si are C-equivalent by MPC and hence L-equivalent by 
MPL. 
 f. Let Si be formed from Si by an application of one of the rules of MP reduction of 
the second kind (D5-lo or p). Then, if Si is L-true by MPL, Si is likewise. (The converse holds 
too but will not be needed. Note that, in contradistinction to (e), L-equivalence is here not 
asserted; it does not hold in general.) 
 g.  Let Si and Si be as in (f). Then Si C-implies Si by MPC. (From T4-1m, D4-
2d3.) [Between Si and Si C-implication by MPC does not hold generally, but only the weaker 
relation that, if Si is C-true by MPC, then so is Si  .] 
 T6-2. Let S and K be as in T6-1. Let Si be the (second) MP-reductum of Si Then the 
following holds. 
 a. If Si is L-true by MPL, then so is Si  . (From T6-le, f.) 
 b.  Si C-implies Si by MPC. (From T6-1e, g.) 
 c. Si L-implies Si by MPL. (From (b), T6-1d.) 
 d. If Si is L-true by MPL, then Si t is ‘t’. 
 Proof. Si is L-true by MPL (a), and none of the rules of MP-reduction is applicable to Si. 
An examination of the forms listed in T5-1 shows that all of them except the first, i.e., ‘t’, are 
impossible in this case. 



 e. If Si is ‘t’, then Si is C-true by MPC. (From (b), D4-2d1.) 
 f. Completeness of MPC. If Si is L-true by MPL, then it is C-true by MPC. 
(From (d), (e).) In this case, the rules of MP reduction provide an effective method for the 
construction of a proof of Si by MPC (according to T6-1e, g).  
 g.  L-truth by MPL holds if and only if C-truth by MPC holds. (From (f), T6-1c.) 
Analogously with L-falsity and C-falsity, with L-implication and C-implication, with L-
equivalence and C-equivalence. Thus, in a certain sense, MPC is an L-exhaustive calculus for 
MPL. 
 h.   A sufficient and necessary condition for Si to be L-true by MPL is that Si is ‘t’, 
and likewise for Si to be C true by MPC. (From (d), (e), (f), T6-lc.)  
 T6-2h shows that MP-reduction yields a decision method for both MPL and MPC. The 
rules of MP-reduction can be applied not only to a given sentence in S and K but also to any 
formula constructed out of auxiliary variables ‘p’, ‘q’, etc. with the help of connectives and ‘N’. 
(In this case, the form T5-1c is a single variable.) The reduction of such a formula leads to ‘t’ if 
and only if every sentence obtainable from the formula by substitutions is L-true by MPL and C-
true by MPC. In the MP-reductum of any such formula, no ‘N’ occurs in the scope of another 
‘N’. 
 In the case of PL and PC, there are two well-known decision methods, viz. P-reduction 
(the conjunctive normal form) and the truth-table method. Analogously, in the case of MPL and 
MPC, there are, in addition to MP-reduction, decision methods using tables. These methods are 
likewise applicable both to sentences and to auxiliary formulas. If a sentence with n different 
ultimate MP-components (i.e., form T5-lc) or a formula with n different auxiliary variables is 
given, then first a truth-table of the customary kind with respect to these n components (hence 
containing 2n lines) is constructed. Then a table of a 
new kind is to be formed which supplies the decision. It is easy to find a table method in which 
the second table consists of 22n lines (thus, for n = 3, 256 lines) ; but this method is of course 
impracticable. I have found a method in which the second table has, in ordinary cases, only a few 
lines (for instance, for some theorems and postulates of Lewis’s systems with  
n = 3 only three or four lines are needed). This method cannot be explained here. 
 In order to compare our system with those of other authors, let us consider a modification 
MPCv of MPC: MPCv is itself a calculus; it contains the variables ‘p’, ‘q’, etc.; these variables 
and ‘t’ are the only ultimate components; it possesses the same rules as MPC, except that the rule 
of refutation is omitted and a rule of substitution for the variables is added. The method of MP-
reduction is likewise applicable to MPCv. As mentioned earlier (footnote 8), this system MPC, 
(except for containing ‘t’, which corresponds to ‘p∨  ~p’) is equivalent to Lewis’s system S5, 
which is the strongest of a series of systems investigated by Lewis.9 Some of the reasons for 
which this system seems to me preferable to Lewis’s other systems were indicated in §l. The 
completeness of this system is a further advantage. On the basis of the interpretation given by 
MPL, all sentences C-true (provable) in MPC and MPCv are L-true, while those princi- 
_______________ 
 9 See Lewis and Langford (op. cit.), especially Appendix II; for S5, see p. 501. Compare also W. T. Parry, 
Modalities in the Survey system of strict implication, this JOURNAL, vol. 4 (1939), pp. 137-154; concerning S5, see 
pp. 151 ff. 



plea of other systems which go beyond Lewis’s S510 are L-false. My chief reason for preferring 
the interpretation given by MPL is the simple parallelism between the modalities in this system 
and the semantical L-concepts, in particular between necessity and L-truth. It is true that these 
semantical concepts could be defined in a different way so as to correspond to a different 
conception of the modalities. However, the definition of L-truth here chosen, which is based on 
Wittgenstein’s conception of the nature of logical truth, has the advantage of great simplicity, 
taking as criterion the universality of the range (D7-6a). 
 Let us consider all possible functions of n propositions p1, p2, ... , pn . Any formula 
composed of n auxiliary variables with connectives and ‘N’ represents such a function. We will 
say that two such formulas Mi and Mi represent the same function if and only if they are L-
equivalent, that is to say, if the P-reductum of Mi ≡ Mi is ‘t’ and therefore all sentences of this 
form are L-true by MPL and hence C-true by MPC. If a function can be represented by a formula 
without ‘N’, it is called a truth-function (or extensional function); otherwise we call it a modal 
function11 (or intensional function). (N(p v ...p) represents a truth-function because it is L-
equivalent to ‘p∨  ~p’ (T4-2b).] If a modal function can be represented by a formula in which all 
variables are under ‘N’ (i e., within the scope of an ‘N’), we call it a purely modal function (e.g., 
‘Np∨  N~p), otherwise a mixed modal function (e.g., ‘p ∨  N~p’). 
 We shall now determine the number of functions of these kinds (without giving here 
exact proofs). The considerations are formulated for MPL (in terms of ranges); the results hold 
likewise for MPC. For n sentences ‘A1’, … , ‘An’, there are p = 2n conjunctions containing for 
every sentence in the given order either the sentence itself or its negation but not both; they 
correspond to the 2n lines of the customary truth-table. Each of these conjunctions may be 
regarded as representing a basic truth-function of the n sentences. The truth-functions in general 
are represented by the disjunctions corresponding to the possible selections of some (or none or 
all) of these p conjunctions. (Here, by the disjunction of one sentence, the sentence itself is 
meant; by the null selection, any L-false sentence, e.g., ‘A1 . ~A1 . A2 . … . An’). Thus there are q 
= 2p = 22n truth-functions, as is well known. 
 Let the p conjunctions mentioned be abbreviated by ‘C1’, … ,‘Cp’. They 
have the smallest ranges expressible by the n sentences. If some (or none, but not all) of these 
ranges are null, but the others are not, a specific logical relation holds among the sentences; in 
other words, a basic modal function holds among the propositions. Each of these functions can 
be represented by a conjunction of p components, namely either ‘N~Ci’ (if the range of ‘Ci’ is 
null), or ‘~N~Ci’ (if the range is not null) for i = 1, 2, … , p; but the conjunction with all 
components of the form ‘N~Ci’ is excluded. Thus there are 2p ― 1 or  
q ― 1 basic modal functions. (The conjunction containing all components of the form ‘N~Ci’ 
says that all basic conjunctions are L-false, which is impossible; therefore this conjunction is L-
equivalent to ‘A . ~A’ and hence is not a modal  
_______________ 
 10  See Parry, op. cit., pp. 152 ff. 
 11 This use of the term ‘modal function’ is narrower than that of Parry, op. cit., p. 144, who takes it to 
include the truth-functions. 



function.) The purely modal functions are the disjunctions of some (but not all) of these q - 1 
basic modal functions. The disjunction of all of them must be excluded because it is L-true and 
hence not a modal function (it is L-equivalent to ‘A ∨  ~A’) ; likewise the null disjunction (so to 
speak), which is L-false. Therefore the number of all purely modal functions is 2q−1 − 2. 
 Now we shall determine the number of all functions of n propositions. We construct first 
the basic possibilities. If one of the p conjunctions is stated, say ‘Ci’, then this one cannot 
simultaneously be stated to be impossible (its range cannot be null); but any of the other p − 1 
conjunctions may have a null range, possibly all of them or none of them. Thus there are in this 
ease 2p−1 possibilities; each is represented by a conjunction containing ‘Ci’ and in addition, for 
every other conjunction ‘Ci’ either ‘N~ Ci’ or ‘~N~ Ci’. In the same way we may start with any 
other of the p conjunctions instead of ‘Ci’. Let the conjunctions which we obtain in this way 
(e.g., ‘C1. N~ C2. …’) be ‘M1’, . . . ,’Mr’. Their number r is p. 2p−1 = 2n. 2p−1 = 2p+n−1 They 
represent the basic functions of n propositions. Every function of n propositions is represented by 
a disjunction of some (possibly all or none) of these r conjunctions ‘Mi’. (Here again, by the null 
disjunction an L-false sentence is meant.) Thus the number of all functions of n propositions is 
2r. By subtraction we find the number of modal functions to be 2r − q, and the number of mixed 
modal functions to be 2r − q − 2q−1 + 2. 
 

The Number of Functions of n Propositions 
(p = 2n; q = 2p; r =  2p+n−1) 

 
  n = 1                n = 2 

  (p = 2, q = 
4;                (p = 4, q = 16; r =32) 

  r = 4)  

Purely modal functions: 
  

2q−1 − 2 6 215 − 2 =  
32,766

Mixed modal functions: 2r − q − 2q−1 + 2  6 4,294,934,514
       Modal functions: 2r − q  12 4,294,967,280
       Truth-functions:  q = 2p 4 24 =      16
               All functions: 2r 16 232  =   

4,294,967,296
      
 Examples for n = 1. The four truth-functions are represented by ‘p ∨  ~p’, ‘p’, ‘~p’,  
‘p.~p’. The six purely modal functions are: ‘Np’ (p is necessary),‘N~p’ (impossible), 
‘~Np.~N~p’ (contingent), ‘~Np’ (non-necessary), ‘~N~p’ (possible), ‘Np ∨  N~p’ (non-
contingent). The six mixed modal functions are: ‘p.~Np’, ‘~p.~N~p’, ‘p ∨  N~p’, ‘~p ∨  Np’, 
‘Np∨  (~p.~N~p)’, ‘N~p ∨  (p.~Np)’. 
 In spite of the finite number of functions in MPL, there is no finite characteristic value-
table (“matrix”) for MPL or MPC, i.e., a value-table with a finite number of values (so-called 
truth-values) which attributes to a sentence (or formula with auxiliary variables) one of a set of 
specified “designated” values if and only if that sentence is L-true by MPL and hence C-true by 
MPC.12 
_______________ 
 12 See J. Dugundji, this JOURNAL, vol. 5 (1940), pp. 150 f., with references to Gödel and McKinsey. 



 7. Functional logic (FL). In preparation for the construction of the modal systems MFL 
and MFC, which will be the chief aim of this paper, we shall now briefly outline the ordinary, 
non-modal systems FL and FC. The term ‘functional calculus’ (‘FC’) is here used for a certain 
form of the lower functional calculus; in Church’s terminology, it is a simple applied functional 
calculus of first order with identity. The individual variables are the only variables. The term 
‘functional logic’ (‘FL’) is here used for a corresponding semantical system. The system FL 
applies to a universe of discourse containing a denumerable number of individuals. Every 
individual is denoted by an individual constant, and different individual constants denote 
different individuals. Therefore the semantical rules (D7-5f) are framed in such a way that  
‘a1 = a2’, for example, is L-false. [I have also studied other forms of functional logic and 
corresponding calculi. In one alternative FL′, sentences like ‘a1 = a2’ are interpreted, not as L-
false, but as factual, either true or false. In this system FL′ the state-descriptions must contain  
= -sentences and are more complicated than in FL (D7-4). In FL′, sentences which state that the 
cardinal number of the universe of discourse is n, or at least n, or at most n, or the like, are 
factual, although they are purely general (i.e., without non-logical constants). If we want a 
system in which individual descriptions (“the one individual which is ... “) occur and are allowed 
to be substituted for individual variables, then a form like FL′ might be more suitable than the 
simpler form FL. —Other system forms contain functional variables.] 
 In the primitive notation, we use only universal quantifiers. The existential quantifier will 
occasionally be used as an abbreviation in the customary way; likewise ‘x ≠ y’ as short for ‘~(x = 
y) ‘. 
 The following definitions state the features of the semantical system FL.  
 D7-1. The signs in FL are the following: 
 a.  Connectives: ‘~’, ‘∨ ’, ‘.’. 
 b.  Parentheses: ‘(‘, ‘)’.  
 c.  ‘t’. 
 d. An infinite number of individual constants (in) : ‘al’, ‘a2’, etc. (or ‘a’, ‘b’, etc.). 
 e. An infinite number of individual variables (i): ‘x1

’, ‘x2’, etc. (or ‘x’, ‘y’, etc.). 
 f. Any finite or infinite number of predicates (functional constants) of any degree. 
 g. The sign of identity: ‘=’. 
 D7-2. Matrices (M) in FL are the expressions of the following forms: 
 a.  Atomic matrix—a predicate of degree n, followed by n individual signs (constants 
or variables) (e.g., ‘Rx2b4’). 
 b.  ‘=’ preceded and followed by an individual sign.  
 c.  ~(Mi). 
 d.  (Mi) ∨  (Mi).  
 e.  (Mi) . (Mi).  
 f. Universal matrix— (ik)( Mi). 
 D7-3. Sentences (S) in FL are the closed matrices. (Atomic sentences are those of form 
D7-2a; universal sentences, D7-2f; general sentences, those containing variables.) 



 A state-description is a class of sentences which represents a possible specific state of 
affairs by giving a complete description of the universe of individuals with respect to all 
properties and relations designated by predicates in the system. 
 D7-4. A class of sentences Ki is a state-description in FL = Df Ki contains for every 
atomic sentence Si either Si itself or ~Si, but not both, and no other sentences. 
 The class of all state-descriptions is called the universal range and denoted by ‘Vs’; the 
null class (of the same type) is called the null range and denoted by ‘Λs’. 
 We shall now lay down rules which determine for every sentence Si of FL, in which 
state-descriptions Si holds; in other words, what is the range of Si i.e., the class of those state-
descriptions in which Si holds. We shall write briefly ‘R(Si)’ for ‘the range of Si’. That Si holds 
in a given state-description means, in non-technical terms, that this state-description entails C, ; 
in other words, that Si would be true if this state-description were the description of the actual 
state of the universe. [I use the term ‘true’ here only occasionally in informal explanations. I 
shall not lay down a semantical definition of ‘true in FL.’ For the present purposes it is 
sufficient to have the concept of range which is recursively defined by D7-5. With its help the L-
concepts can be defined (D7-6).] 
 D7-5. Rules of ranges (R) for FL. 
 a. If Si is atomic, R(Si) is the class of those state-descriptions to which Si belongs. 
 b.  The range of ~Si; is Vs − R(Si). 
 c. The range of Si ∨  Si is the class-sum of R(Si) and R(Si). 
 d.  The range of Si .Si is the class-product of R(Si) and R(Si). 
 e.  The range of a = -sentence with two occurrences of the same individual constant 
(e.g., ‘a3 = a3’) is Vs. 
 f. The range of a = -sentence with two different individual constants (e.g.,  
‘a3 = a5’) is Λs. 
 g. The range of (i)(Mi) is the class-product of the ranges of the instances of Mi (i.e., 
the sentences formed by substituting individual constants for the free occurrences of ik in Mi ; if 
Mi is closed, Mi itself is its only instance). 
 h. The range of a class Ki of sentences is the class-product of the ranges of the sentences 
of Ki. 
 A sentence Si is usually regarded as logically true or logically necessary if it is true in 
every possible case. Therefore we call Si L-true if it holds in every state-description, in other 
words, if its range is Vs. Analogously, we use ‘L-false’ as explicatum for logical falsity or 
impossibility and define it by the null range. Si follows logically from Si if in every possible case 
in which Si holds, Si also holds. Therefore we define the explicatum ‘L-implication’ by the 
inclusion of the ranges. L-equivalence is meant as mutual L-implication; therefore it is defined 
by the identity of ranges.13 

_______________ 
 13 More detailed explanations and discussions of the L-concepts are given in [I] §§14 ff. For the definitions 
of these concepts with the help of ‘range,’ based on conceptions of 



 D7-6. 
 a. Si is L-true (in FL) = Df  R(Si) is Vs. 
 b. Si is L-false = Df R(Si) is Λs. 
 c. Si L-implies Si = Df R(Si) is included in R(Si). 
 d. Si is L-equivalent to Si = Df Si and Si have the same range. 
 Since the range of a class of sentences has been defined (D7-5h), these L-concepts can 
likewise be applied to classes of sentences. 
 The many well-known theorems concerning FL need not be mentioned here. We shall 
state, without proofs, only a few theorems which seem less known but are important both here 
and later in MFL. 
 The following theorem allows the variation of an individual constant under certain 
conditions. Note that here, and analogously in T7-2, L-implication is not asserted but only the 
conditional relation with respect to L-truth. 
 T7-1. Let Si be a sentence in FL, and Si be formed out of Si by replacing all occurrences 
of ini by ini . 
 a. Let Si not contain ini (but, in distinction to (b), ‘=’ may occur). If Si is L-true, then 
Si is L-true, and vice versa. 
 b. Let Si not contain ‘=’ (but, in distinction to (a), ini may occur). If Si is L-true then 
Si is L-true. (The converse does not generally hold.) 
 That the restrictions in T7-la and b are necessary is seen from the following counter-
example: ‘~(a = b)’ is L-true, but ‘~(a = a)’ is not. As a counterexample for the converse of (b), 
let Si be ‘Pa ⊃  Pb’, and Si ‘Pa ⊃ Pa’; then Si is L-true but Si is not. 
 A theorem analogous to T7-1 holds for the variation of a predicate. 
 The following theorem allows the generalization of an individual constant under certain 
conditions. 
 T7-2. Let Mi be a matrix in FL with ik as the only free variable, and Si be formed out of 
Mi by the substitution of ini for ik (i.e., for all free occurrences of ik). 
 a. Let ini and ‘=’ not occur in Mi. If Si is L-true, then the universal sentence (ik)( Mi) 
is L-true. (The converse is obvious.) (From T7-1b.) 
 b.  Let Mi not contain any individual constant (but ‘=’ may occur). If Si is L-true, 
then (ik )(Mi) is L-true. (From T7-la.) 
 ‘( )(Mk)’ denotes the closure of Mk i.e., the sentence formed out of Mk by prefixing 
universal quantifiers for all variables occurring freely in Mk , in their inverse alphabetical order. 
(If Mk is closed, ‘( )(Mk)’ denotes Mk itself.)  
 T7-3. Let Mi be a matrix in FL with n free variables (n ≥ 2) (i.e., any number of 
occurrences of n different variable-designs). Let Si be formed out of Mi by the substitution of n 
different individual constants for the variables. Let Mh be a disjunction of =-matrices, one for any 
two different ones of the n variables. If Si  is L-true, then ( ) (Mh ∨  Mi) is L-true. 
 T7-2 and 3 say in effect the following. If either no ‘=’ occurs or only one 
individual constant occurs, simple generalization is allowed (T7-2). If two or  
____________________________________________________________________________ 
Wittgenstein, see [I] §§18 and 19; the method used in the present paper is similar to procedure E in §19, but it can 
take a simpler form here because FL contains atomic sentences for all atomic propositions. 



more individual constants occur, generalization with added = -matrices is allowed. The necessity 
of the restrictions is seen from the following example. ‘a ≠ b’ is I.-true; however, ‘(y)(x)[x ≠ y]’ 
is not L-true, but only (y)(x) [x = y ∨  x ≠ y]’. 
 
 8. Functional calculus (FC). FC is a formalization for FL. The signs, matrices, and 
sentences in FC are the same as in FL (D7-1, 2, 3). The only rule of inference is the rule of 
implication (as D4-2e). Further a rule of refutation is laid down (as D4-2f). This rule may be 
omitted if one wishes the form of the calculus to be more similar to the customary form. We add 
the rule in order to be able to compare C-falsity in FC with L-falsity in FL. 
 D8-1. The primitive sentences of FC are the sentences of the following forms. [( ) (Mk) is 
the closure of Mk ; see explanation to T7-3.] 
 a. ( )(Mi), where Mi is any matrix whose P-reductum (D3-1) is ‘t’. (This means in 
effect that Mi has a tautologous form; we could state here instead a sufficient number of 
particular forms, e.g., the four forms stated by Hilbert and Ackermann as axioms of their 
propositional calculus.5) 
 b. ( )[(ii)(Mi ⊃  Mk ) ⊃ ((ii)(Mi) ⊃ (ii)(Mk))]  
 c. ( )[Mi ⊃ (ik)(Mi)] where ik does not occur freely in Mi . 
 d. ( )[(ik)(Mk) ⊃  Mi], where Mi  is like Mk except for containing free occurrences of 
ii wherever Mk contains free occurrences of ik . 
 e. As (d), but here Mi  is like Mk except for containing occurrences of the individual 
constant ini  wherever Mk contains free occurrences of ik . 
 f. (ik) (ik  = ik ) . 
 g. ( )[(ik = ii ) ⊃  (Mk⊃  Mi )] where Mi  is like Mk except for containing free 
occurrences of ii wherever Mk contains free occurrences of ik . 
 h. ~( ini  = ini ), where ini  and ini are different individual constants. 
 D8-la to d are four of Quine’s axiom schemata of quantification.14 To these we add the 
schema (e) for the substitution of an individual constant and the schemata (f), (g), (h) for 
identity. 
 Thus in our calculus FC, Quines theorems of quantification15 hold; that is to say, the 
sentences of the forms specified by Quine are C -true in FC. Further, all theorems on identity 
stated by Hilbert and Bernays16 hold in FC, because they have been proved by these authors on 
the basis of two axioms corresponding to the schemata D8-1f and g here. 
 Schema D8-1h serves as a kind of axiom of infinity. With its help, the negations of those 
sentences can be proved which say that the number of all individuals is at most n, for any finite n 
(e.g., for n = 2, ‘~(x)(y)(z)[x = y ∨  x = z ∨  y = z]’ is C-true). 
 The following theorem says in effect that FC is in accord with FL, as it was intended to 
be. 
_______________ 
 14Quine, op. cit., p. 88, *100, 102, 103, 104. G. Berry has shown (this JOURNAL, vol. 6 (1941), pp. 23-27) 
that Quine’s schema *101 may be omitted if the closure of a matrix is defined by referring to the inverse 
alphabetical order of the quantifiers. This simplification has here been adopted for PC (and MFC). 
 15 Quine, op. cit., §§17-21. 
 16 Hilbert and Bernays, op. cit., pp. 179 ff. 



 T8-1. 
 a.  Every primitive sentence of FC is L-true in FL. 
 b.  Every C-true sentence in FC is L-true in FL. (This follows from (a) together with 
the fact that for every instance of application of the rule of implication, L-implication holds.) 
 c. FL is an L-true interpretation of FC. (This follows from (a) and (b) and the fact 
that the rule of refutation represents an instance of L-falsity.)  
 It is not clear whether FC is complete in the sense that every sentence which is L-true in 
FL is C-true in FC. Gödel’s theorem of the completeness of the ordinary functional calculus of 
first order cannot be directly applied to FC because of the following difference. In ordinary 
functional logic, a sentence is regarded as L-true (or a matrix as universal (“allgemeingültig”)) if 
it is L-true not only in the infinite universe of individuals but, in addition, in every finite (non-
null) universe. In FL, on the other hand, more sentences are regarded as L-true, viz. all those 
which are L-true in the infinite universe. [For example, ‘(∃ x)(∃ y)(x ≠ y)’ says that there are at 
least two individuals. Thus this sentence holds in the infinite universe but not in the universe 
with only one individual. Therefore, it is L-true in FL (D7-5f) (and, moreover, C-true in FC, in 
virtue of D8-1h), but not L-true in the ordinary functional logic (and not provable in the ordinary 
functional calculus).] However, the following restricted theorem holds; it would be of interest to 
investigate the question whether the restriction can be weakened or even eliminated. 
 T8-2. If Si is an L-true sentence in FL without ‘=’ then Si is C-true, in FC. 
 Proof. Let the conditions be fulfilled. Let Mi be formed from Si by replacing all 
individual constants with individual variables not occurring in Si and all predicates by predicate 
variables (like constants to be replaced by like variables, different by different ones). Then  
( )[Mi] (where the closure applies only to the individual variables) is L-universal (i.e., L-true for 
all values of the predicate variables) in the infinite universe (compare T7-2a) and also in every 
non-null finite universe, because ‘=’does not occur. Therefore, according to Gödel’s 
completeness theorem, it is provable in the ordinary functional calculus. Therefore Si is C-true in 
FC. 
 
 9. Modal functional logic (MFL). Now we shall come to our aim, the construction of the 
semantical and syntactical modal systems with quantification, viz., modal functional logic (MFL) 
and modal functional calculus (MFC). MFL is built from FL by the addition of the modal sign 
‘N’; likewise NW from FC. 
 D9-1. The signs in MFL are the following:  
 a to g, as D7-1a to g. 
 h.  ‘N’. 
 D9-2. The matrices in MFL are the expressions of the following forms:  
 a to f, as D7-2a to f. 
 g.  N(Mi). (N-matrix). 
 D9-3. Sentences in MFL are the closed matrices. (Modal sentences are those containing 
‘N’.) 



 D9-4. The state-descriptions in MFL are the same as in FL (D7-4).  
 D9-5. Rules of ranges for MFL: 
 a to h, as D7-5a to h. 
 i. The range of N(Si) is Vs if the range of Si is Vs, and otherwise Λs.  
 L-truth, L-falsity, L-implication and L-equivalence in MFL are defined as in D7-6. 
 We shall now state some theorems concerning MFL. The proofs, in most cases, cannot be 
given here, because they presuppose a number of theorems concerning state-descriptions and 
ranges which have not been stated here.  
 T9-1. 
 a. N Si is L-true if and only if Si is L-true. 
 b. N Si is L-false if and only if Si is not L-true. 
 c. N Si is L-true or L-false. (From D9-5i.)  
 Exchange of ‘N’ and universal quantifier: 
 T9-2. Every sentence of the following form is L-true in MFL:  
 N( )[(ik)N(Mi) ≡ N(ik)(Mi)]. 
 T9-1 and 2 show that the rules of ranges give to ‘N’ the interpretation intended (see §1, 
especially conventions C1-2 and C1-3). 
 Variation of individual constants under ‘N’ (analogous to T7-1): 
 T9-3. Let Si be formed from Si by replacing all occurrences of ini  by ini  .  
 a. Let Si not contain ini  (but it may contain ‘=’ and ‘N’). Then NSi is L-equivalent to 
NSi . 
 b.  Let Si contain neither ‘=’ nor ‘N’ (but it may contain ini  ). Then NSi L-implies 
NSi . (The converse does not generally hold.) 
 
 10. Modal functional calculus (MFC). MFC is constructed as a formalization 
of MFL. It is built from FC by the addition of ‘N’. 
 The signs, matrices and sentences in MFC are the same as in MFL (D9-1, 2, 3). We shall 
occasionally use as abbreviations, not belonging to the systems themselves, existential 
quantifiers and the modal sign of possibility ‘◊’; ‘◊p’ is short for ‘~N~p’. 
 D10-1. The primitive sentences of MFC are those sentences in MFC which have one of 
the following forms: 
 a.  N( )(Mi), where Mi is any matrix whose P-reductum (D3-1) is ‘t’. (See remark on 
D8-la.) 
 b.  N( )[(Mi ⊇  Mi ) ⊃  (NMi ⊇  NMi)].  
 c.  ( )[NMi ⊃ Mi ]. 
 d.  N( )[NMi ∨  N~NMi ]. 
 e to k. N Si , where Si has one of the forms D8-1b to h, respectively (primitive sentences 
of FC). 
 1. N( )[(ik)N(Mi) ⊃  N(ik)(Mi)].  
 m.  N( )[N(ik)(Mi) ⊃  (ik)N(Mi )]. 
 n.  (Assimilation.) N( )[ ii = ik1 ∨  ii  = ik2 ∨  ... ∨  ii  = ikn∨  ~NMi ∨  NMi ; here Mi 
does not contain ‘=’, ‘N’, any quantifier with ii or any individual constant; it contains free 
occurrences of ii , ii  , ik1 , ... , ikn  but of no other variables; Mi  is like Mi except for containing 
free occurrences of ii  wherever Mi contains free occurrences of ii . 



 o. (Variation and Generalization.) N( )[ ii = ik1 ∨  ii  = ik2 ∨  ... ∨  ii  = ikn∨  ~NMi ∨  ii 
= ik1 ∨  ... ∨  ii  = ikn∨  NMi]; here Mi contains no individual constant and contains ii  , ik1 , ik2 , … , 
ikn as the only free variables, and Mi  is like Mi except for containing free occurrences of ii   
wherever Mi contains free occurrences of ii . 
 p.  (Substitution for predicate.) N( )[NMi ⊃ NMi]. Here Mi contains a predicate prk of 
degree m but no ‘N’; Mk  is any matrix containing the m alphabetically first variables (i1 , … , im) 
as the only free variables and not containing a quantifier with any variable occurring in Mi (Mk  
may contain ‘N’ and prk) ; Mi is formed from Mi by replacing every atomic matrix containing prk 
by the corresponding substitution form of Mk  (i.e., prkak1 ... akm is replaced by the matrix 
resulting from Mk  by substituting ak1 for i1, … , akm for im). 
 The only rule of inference for MFC is the rule of implication (as D4-2e). We add further 
a rule of refutation, as D4-2f (see remark on this rule for FC, §8).  
 Examples for D10-1. The following examples show either primitive sentences in MFC or 
sentences easily provable with their help, or cases of simple derivations made possible by the 
primitive sentences. (‘. . x . .’ and ‘- -x- -’ are meant to indicate matrices containing ‘x’ as the 
only free variable.) 
 (a) to (d) correspond to D4-2d1 to 4, respectively; hence any primitive sentence of MPC 
in MFC is a primitive sentence of MFC. However, (a) to (d) admit also sentences like the 
following examples, which are not primitive sentences of MPC. 
 a.  ‘N(x)(Px ∨  ~Px)’. 
 b. ‘N(x)[(. . x . . ⊇  - -x- -) ⊃  (N(. . x . .) ⊇N(- -x- -))]’. 
 c. ‘(x)[N(. . x . .) ⊃  (. . x . .)]’. NSi C-implies Si. 
 d.  ‘(x)[~N(. . x . .) ⊃  N~N(. . x . .)]’, ~NSi C-implies N~NSi . 
 (a), (e) to (k) yield, with the help of (e), all the primitive sentences of FC.  
 (l) and (m), which could of course be combined into a sentence with ‘≡’, allow the 
exchange of a universal quantifier and ‘N’, e.g., the transformation of ‘(x)N(. . x . .)’ into  
‘N(x)(. . x . .)’ and vice versa, and hence also any change in the order of a sequence consisting of 
universal quantifiers and occurrences of ‘N’. 
 n.  ‘N(z)(y)(x)[x = z∨  ~N(. .x. .y. .z. .) ∨  N(. .y. .y. .z. .)]’;hence ‘(z)(y)(x) [x ≠ z .  
N(. .x. .y. .z. .) ⊃ N(. .y. .y. .z. .)]’. Thus, ‘N(. .a. .b. .c. .)’ C-implies ‘N(. .b. .b. .c. .)’. In this way, 
an assimilation under ‘N’ is made possible, i.e., the change of an individual constant (‘a’) to 
another individual constant (‘b’) already occurring. 
 o. ‘‘N(z)(y)(x)[x = z∨  ~N(. .x. .z. .) ∨  y = z ∨  N(. .y. .z. .)]’;,hence ‘(z)(y)(x) [x ≠ z .  
N(. .x. .z. .) ⊃ (y ≠ z ⊃  N(. .y. .z. .))]’;hence (1) ‘N(. .a. .c. .) ⊃  (y)[y ≠ c ⊃ N(. .y. .c. .)]’, and (2) 
‘N(. .a. .c. .) ⊃ N(. .b. .c. .)’, (1) shows the possibility of a generalization under ‘N’, (2) that of a 
variation under ‘N’. (o) permits only the variation into an individual constant otherwise not 
occurring. The variation into an individual constant already occurring, which we call 
assimilation, is possible only under the more restricting conditions of (n).  
 p.  ‘N(u)(v)[—Rva—Rbu—]’ C-implies ‘N(u)(v)[—(. .v. .a. .)—(. .b. .u. .)—]’, e.g., 
‘N(u)(v)[—(Pv.(∃w)(Saw))—(Pb.(∃w)(Suw))—]’; Mk  is here ‘Px. (∃w)(Syw)’. 



 Some theorems on MFC follow; the proofs are omitted or only briefly indicated. 
 T10-1. 
 a. If Si is C-true by PC or by MPC or in FC, both Si and NSi are C-true in MFC. 
 b. NSi is C-true in MFC if and only if Si is C -true in MFC. 
 c. Deduction theorem. Si C-implies Si (in MFC) if and only if Si ⊃ Si is C-true. 
 Proof. Since the rule of implication is the only rule of inference and all sentences are 
closed, this follows from [II] T6-14b. 
 d. Si is C-equivalent to Si (in MFC) if and only if Si ≡ Si is C-true. (From (c).) 
 In what follows, ‘ψ’ is used to denote any context in which a given expression may 
occur; thus ‘ψ(Mi)’ denotes any matrix containing Mi , and then ‘ψ(Mi)’ denotes any of those 
matrices formed from ψ(Mi) by replacing one or several (not necessarily all) occurrences of Mi 
by Mi , . Mi and Mi  are called C-interchangeable if for any context ψ, ( )[ψ(Mi) ≡ ψ(Mi)] is C -
true. 
 T10-2. Theorems of replacement in MFC. 
 a.  If ψ(Mi)  and Mi contain no ‘N’, ( )[(Mi ≡ Mi) ⊇  (ψ(Mi) ≡ ψ(Mi))] is C-true. 
(From FC, MPC, T10-la.) 
 b.  ( )[(Mi ≡ Mi) ⊇  (ψ(Mi) ≡ ψ(Mi))] is C-true (here ‘N’ may occur). (From FC, 
MPC, T10-1a.) 
 c. If ( )[Mi ≡ Mi] is C-true, then Mi and Mi  are C-interchangeable. (From (b).) 
 d.  If Si ≡ Si is C-true, Si and Si are C-interchangeable. (From T10-1b, (c).) 
 e. If ( )(Mi) is C-true, Mi is C-interchangeable with ‘t’. (From (c).) 
 f. If( )(~Mi) is C -true, Mi is C-interchangeable with ‘~t’. (From (e).)  
 T10-3. Sentences of the following forms are C-true in MFC. 
 a. ( )[(∃ ik)N(Mk) ⊇  N(∃ ik)(Mk)].  (The converse implication does not generally 
hold. ‘N’ is here analogous to a universal quantifier.) (From FC, T10-1a, D10-1m, D10-1b.) 
 b.  ( )[◊( ik)(Mk) ⊇  (ik)◊(Mk)]. (The converse implication does not generally hold. ‘◊’ 
is here analogous to an existential quantifier.) (From (a).)  
 c. ( )[(∃ ii)(ii  ≠ ik1 . ... . ii  ≠ ikn . NMi) ⊇  (ii)( ii  ≠ ik1 . ... . ii  ≠ ikn ⊃  NMi)], (where Mi 

contains ii  , ik1 , ik2 , … , ikn  as the only free variables and no individual constants. (From D10-
1o.) 
 d.  ( )[(inl ≠ ik1 . ... . inl ≠ ikn . NMi) ⊇  (ii)( ii  ≠ ik1 . ... . ii  ≠ ikn ⊃  NMi)]where Miis as 
in (c), and Ml is formed from Mi by substituting inl for ii . (From (c).) 
 e. Generalization and specification under ‘N’. ( )[ inl = ikm ∨  ψm (inl = ik,m-1 ∨  ψm-

1(... ∨  ψ2(inl = ik1∨  ψ1[(ii )(ii  = ik1 ∨  ii  = ik2 ∨… ∨  ii  = ikm ∨  ii  = ini1 ∨  ii  = ini2 ∨… ∨  ii  = inin 
∨  Mh ∨  NMi )])). . .) ≡ (inl = ikm ∨  ψm (…∨  ψ1[(ii )(ii  = ik1∨… ∨  ii  = ikm ∨  ii  = ini1∨… ∨  ii  = 
inin ∨  Mh ∨  NMl )])). . .)], (the right side is like the left side except for Ml instead of Mi) where 
Mi contains ii  , ik1 , ik2 , … , ikm  (m≥ 0) as the only free variables and ini1 , ini2 , … , inin (n ≥ 0) as 
the only individual constants, and Ml  is formed 



from Mi by substituting for ii  inl , which does not belong to the constants mentioned, and Mh 
contains ii  as free variable; ψ1 , . . . , ψm are arbitrary contexts. (From D10-1o, T10-2b.) (For 
examples of specification under ‘N’, seethe later examples of applications of D11-1y (1).) 
 f. ( )[ Mi ≡  NMi], where Mi is built out of N-matrices and =-matrices with the help of 
connectives and quantifiers. (From D8-1f, g, MPC, T10-1a, D10-1m, (a).) 

 g. ( )[N(Mi ∨  Mi ) ≡ Mi ∨  NMi ], where Mi is as in (f). (From (f).) 
 h.  ~NSi where Si is a disjunction of n components (n ≥ 1), each being an atomic 
sentence or a negation of an atomic sentence, but no atomic sentence occurring together with its 
negation. 
 Proof. We form Si from Si by substituting certain matrices for all atomic matrices 
occurring in the manner explained in D10-1p. The matrices to be substituted are built out of  
=-matrices with connectives; they can be chosen in such a way that for every disjunctive 
component Sk of Si , ~Sk is C-true; hence ~Si is C-true, hence likewise N~ Si (T10-2b), and ~NSi 
(T4-1k). NSi ⊃ NSi is C-true (D10-1p), hence also ~NSi . 
 i. ~NSi , where Si  is a conjunction of m components (m ≥ 1), each having 
the form described for Si in (h). (From (h), T4-le.) 
 
 11. MF-reduction. We shall describe a method for transforming sentences of MFL or 
MFC into a normal form which is both L-equivalent in MFL and C-equivalent in MFC to the 
given sentence. We call this method MF-reduction. It is an extension of MP-reduction. Here 
likewise, as in the earlier case, the fact that the reduction of a sentence Si  leads to ‘t’ is a 
sufficient condition for Si  being both L-true (in MFL) and C-true (in MFC). Here, however, in 
distinction to the previous method, this result is not a necessary condition. And moreover, it is 
not possible to construct a method of reduction of such a kind that it leads to ‘t’ if and only if the 
given sentence is C-true (or L-true); such a method would be a decision method for MFC (and 
MFL); this, however, is impossible because there is no decision method for FC (or FL), as 
Church has shown. 
 Thus MF-reduction has the more modest aim of leading to ‘t’ in many cases of L-true and 
C -true sentences, and of leading in general to a sentence which shows the logical nature of the 
given sentence by simplifying its structure. Obviously, this can be done in a more or less 
thoroughgoing way; to any set of reduction rules of this kind it is always possible to add further 
rules which bring about a simplification, and in particular also a reduction to ‘t’, in some 
additional cases. Now our aim will be to effect such a simplification of the structure of the 
sentence in two important respects: if an expression NMi occurs in the reductum then Mi shall 
always fulfill the following two conditions: (i) Mi contains no ‘N’, (ii) Mi is closed, i.e., Mi 
contains no variable which is free in Mi ; in other words, Mi is a sentence. (ii) means that an 
expression of the form’ ‘(x)[. . . N(. .x . .) . . .]’ does not occur; however, quantifiers and hence 
bound variables may occur in Mi , e.g., ‘N[. . .(x)( . .x . .) . . .]’. (i) and (ii) together say that every 
scope of ‘N’ is a non-modal sentence, and hence a sentence in FL and FC. 
 The requirements (i) and (ii) just mentioned are closely connected. It can 



easily be shown that, if no variables occur, the requirement (i) can be fulfilled very simply. 
Suppose that N [. . .NSi . . .] occurs where Si contains no ‘N’ and no variable. Then there is a 
simple effective method for determining whether Si is L-true or not with the help of P-reduction 
(T3-1d); we may then replace NSi in the first case by ‘t’, in the second by ‘~t’. 
 If variables occur, the situation is more complicated. Suppose that all rules of MP-
reduction (D5-1) which are applicable have been applied. Consider the possible forms resulting, 
as listed in T5-1; form (c) is either an atomic matrix or a universal matrix. We see that one ‘N’ 
can occur under another ‘N’ (i.e., within its scope) only if the one ‘N’ stands under a quantifier 
which in turn stands under the other ‘N’, e.g., N[. . .(x)(. . .NMi. . .). . .]. Here we have to 
distinguish two possibilities. 1. Suppose that Mi is closed. In this case we can place NMi outside 
the operand of the quantifier ‘(x)’ and likewise outside the operand of any other quantifier 
standing between the two ‘N’ (this is done by rules like D11-1o, p, q below). Then, by applying 
MP-reduction again, the one ‘N’ which stands under the other ‘N’ will disappear. 2. Suppose that 
‘x’ occurs free in Mi : ‘N[. . .(x)(. . .N(. .x. .). . .). . .]’. This situation represents the most serious 
difficulty we have to overcome to reach our aim, the fulfillment of requirement (i). We must find 
a way of eliminating free variables under ‘N’. Consider the two sentences’(y)[y ≠ c ⊃ N(. .y. .c. 
.)]’ and ‘N(. .a. .c. .)’, where ‘. . y. .c . .’ contains ‘y’ as the only free variable and ‘c’ as the only 
individual constant and ‘. .a. .c. .’ is the result of substituting ‘a’ for ‘y’ in ‘ . .y. .c. .’. It is clear 
that the first sentence C-implies the second; the second can be derived from the first by 
specification (D10-1g corresponding to D8-1d) and the use of ‘a ≠ c’ (D10-1k corresponding to 
D8-1h). Now the important fact is that, moreover, the second sentence C-implies the first by 
what we have called generalization under ‘N’; see the example for D10-1o. Thus the two 
sentences are C-equivalent. Therefore we may lay down a rule of reduction which permits the 
replacement of the first by the second and thereby the elimination of the free variable ‘y’ under 
‘N’. This will be done in a more general way by the rule D11-1y(l). Other reduction rules are 
necessary for bringing the sentence into a form where this rule can be applied. In this way both 
aims will be reached, first (ii) and then (i), as we shall see (T11-1h). 
 D11-1. The MF-reduction of a matrix Mi is its transformation according to the following 
rules. At any step in the transformation, the first of these rules that can be applied must be 
applied. (This is especially important in the case of an application of rules (r), (s), (v), and (y).) 
The replacement applies to any part having the specified form (without any restriction like those 
in D3-1 and D5-1). The final result to which none of the rules is applicable any more is called the 
MP-reductum of Mi . 
 a to k, as D3-la to k, respectively. 
 l.  Omission of ‘N’. NMk is replaced by Mk  if Mk has one of the following forms: (1) 
‘t’; (2) ‘~t’; (3) NMh (with any Mh); (4) any =-matrix; (5) Mk is built out of one or several 
matrices of the forms (3) and (4) with the help of connectives and quantifiers. 
 m.  as D5-1m. 



 n. (1). A = -matrix with two occurrences of the same individual constant or 
variable is replaced by ‘t’. 
  (2). A = -matrix with two different individual constants is replaced by ‘~t’. 
 o.  Omission of quantifier. (ik)(Mk), where ik does not occur free in Mk , is replaced by 
Mk . 
 p. Distribution of quantifier in conjunction. (ik)( Mk1. Mk 2. … . Mkn)( n ≥ 2) 
is replaced by (ik)( Mk1).(ik)( Mk2) . … . (ik)(Mkn). 
 q.  Quantifier with disjunction. Suppose that (ik)(Mk) occurs where Mk is a 
disjunction among whose n components (n ≥ 2) there is at least one in which ik occurs freely and 
at least one in which it does not. Let Mh be the disjunction of the components of the first kind (in 
their original order) and Mi the disjunction of the components of the second kind (in their 
original order). (ik)(Mk) is replaced by (ik)(Mh)∨  Mi  . 
 r. Infinity. (ik)(Mk), where Mk is either a =-matrix or a disjunction of =-matrices, is 
replaced by ‘~t’. [Note that after application of (q) and (m), every component of Mk contains ik 
and, in addition, either a variable different from ik or an individual constant.] 
 s.  Elimination of ≠-matrices. 
 (1). (ik)(~Mk), where Mk is a =-matrix (which contains ik , according to (o)), is 
replaced by ‘~t’. 
 (2). Suppose that (ik)(Mk) occurs where Mk is a disjunction among whose n components 
(n ≥ 2) there is at least one of the form ~Mi where Mi  is a =-matrix containing ik  and another 
individual sign. (ik)(Mk) is replaced by the matrix formed from Mk by first omitting the first 
component of the kind described and then substituting for ik  the other individual sign mentioned. 
 t. Quantifier under ‘N’. Suppose that NSi occurs (Si is a sentence and hence 
closed!), where either Si itself or the first disjunctive component in Si of universal form is 
(ik)(Mk). Then this quantifier (ik) is shifted before the ‘N’ (that is to say, NSi is replaced by 
(ik)[NMi],  where Mi results from Si by omitting the occurrence in question of the quantifier (ik)). 
[After this, rule (w) becomes applicable.] 
 u.  Suppose that a sentence Si (closed!) of the form (ik1)(ik2)...(ikn) [NMk]. occurs (n ≥ 
2). Si is replaced by (ik1)[N(ik2)…(ikn)(Mk)]. [After this, rule (w) becomes applicable, and then 
(t).] 
 v.  Factual sentence under ‘N’. N(Si) is replaced by ‘~t’ if Si has one of the 
following forms: (1) an atomic sentence, (2) the negation of an atomic sentence, (3) a disjunction 
of sentences of forms (1) and (2). [Note that, because of (a), a disjunction of the form (3) does 
not contain any atomic sentence together with its negation.] 
 w.  (Some simple cases of elimination of a free variable under ‘N’.) Suppose 
that Si of the form (ik)[NMk] or Si of the form (ik)[~NMk]  occurs. Let the individual constants 
occurring in Mk be (in alphabetical order) ink1, ink2, . . . , inkn. (n ≥ 0); let inl be an individual 
constant (the first in alphabetical order) not occurring in Mk . Let Sk1, Sk2, … , Skn and Sl  be 
formed from Mk by substituting for ink1, ink2, . . . , inkn and inl , respectively. 



 (1). Let Mk  contain no individual constant. Then Si is replaced by NSl , and Si by NSl . 
 (2).  Let Mk  contain neither ‘=’ nor ‘N’. Then Si is replaced by NSl  and Si by ~NSk1. 
~NSk2. … . ~NSkn .  
 (3). (To be applied only if (1) and (2) are not applicable.) Si is replaced by NSk1. NSk2. 
… . NSkn . NSl and Si by ~NSk1. ~NSk2. … . ~NSkn . ~NSl  . 
 x. Disjunction under ‘N’. Suppose that NMh  occurs where Mh is a disjunction of n 
components (n ≥ 2) of which at least one has one of the forms (3), (4), (5) described in (1). Let 
Mi  be the disjunction of all components of this kind (in their original order) and Ml  be the 
disjunction of the remaining components (in their original order). [There is at least one 
remaining component because of (1).] Then NMh  is replaced by Mi  ∨  NMl  . 
 y.  Elimination of a free variable under ‘N. Let NMk  be the first occurrence of an N-
matrix such that Mk contains a free variable but no ‘N’. Consider the universal quantifiers 
binding the free variables in Mk ; let the last one of these quantifiers contain ii  and let Kk be the 
class of the remaining free vaxiables in Mk . Let Mi  be the operand of the quantifier with ii   just 
mentioned (hence the occurrence of NMk  in question is a part of Mi  ). Let Kl  be the class of the 
individual constants occurring in Mk  and let inl  be an individual constant (the alphabetically first 
one) not occurring in Mk . (Kk and Kl  may be empty.) We examine whether or not the following 
conditions (α) and (β) are fulfilled. Then one and only one of the subsequent rules (1), (2), (3) is 
applicable. 
 (α). Mi  is a disjunction with two or more components such that for every sign ai 
(variable or individual constant) in Kk and in Kl  there is a component ii   = ai or ai = ii   . 
 (β). For every variable ik   in Kk , the operand (which contains the occurrence of NMk  
in question) of the quantifier with ik   contains as (proper or improper) part a disjunction of which 
one component is ik  = inl  or inl  = ik   and another component contains the occurrence of (ii )(Mi ) 
in question. 
 (1).  Specification under ‘N’. Suppose that the conditions (α) and (β) are fulfilled. Then 
the occurrence of NMk  in question is replaced by NMl  , where Ml  is formed from Mk  by 
substituting inl  for ii  . 
 (2). Suppose that the condition (α) is not fulfilled for all signs in Kk and Kl  . Let the 
signs for which it is not fulfilled be (in alphabetical order) ah1, ah2, ... , ahn (n ≥ 1). Let Mh1, Mh2,  
… , Mhn be formed from Mi  by substituting for ii  ah1, ... , ahn, respectively. Then the occurrence 
of (ii )(Mi ) in question is replaced by (ii )[ii  = ah1∨  ii  = ah2∨…∨ ii  = ahn∨  Mi].[Mh1. Mh2. … . 
Mhn]. 
 (3).  Suppose that condition (α) is fulfilled but not (β). Let the last one among those 
quantifiers which do not fulfill (β) contain the variable ih and have the operand Mh . Then this 
occurrence of (ih)(Mh ) is replaced by (ih)[ih = inl ∨  Mh ]. Ml  , where Ml  is formed from Mh  by 
substituting inl for ih . 
 T11-1. Let Si be a sentence in MFL and MFC to which none of the rules of MF-reduction 
(D11-1) is any more applicable. Then every matrix occurring in Si , including Si itself, has one of 
the following forms. 
 a.  Atomic matrix  
 b.  Negation of (a). 



 c. = -matrix. This matrix contains either a variable and a constant or two different 
variables. It is a disjunctive component of an operand whose quantifier contains a variable 
occurring in this matrix. 
 d.  Disjunction with two or more components. Every component has one of the forms 
(a), (b), (c), (f), (g), (h). No component is the negation of another component. No two 
components are alike. 
 e.  Conjunction with two or more components. Every component has one of the 
forms (a), (b), (d), (f), (g), (h). No component is the negation of another component. No two 
components are alike. This form occurs only as the whole sentence Si (or as a partial conjunction 
of the whole conjunction). 
 f. (ik )(Mk ). Mk  has one of the forms (a), (b), (d), (f), (g). 
 g. ~(ik )(Mk ).  Mk  is as in (f). 
 h. NSk or ~NSk . Sk is closed, contains a predicate and a quantifier, but no ‘N’. Sk has 
either form (g) or (d); if a disjunction (d), then every component has one of the forms (a), (b), 
(g), and at least one has (g). The forms (h) do not occur in an operand of a quantifier, but only 
either (1) as Si  itself or (2) an a conjunctive component of Si or (3) as a disjunctive component 
of Si or of a conjunctive component of Si . 
 i. V or ‘-V. This occurs only if the whole sentence @ is V or ‘-V. 
 Examples for rule D11-1y, elimination of free variables under ‘N’. 1. Let the sentence 
‘(y)(z)[z = y ∨  N(. .y. .z. .)]’ be given, where ‘. .y. .z. .’ indicates a matrix containing ‘y’ and ‘z’ as 
the only free variables but containing no individual constants and no ‘N’, and having such a form 
that no rule preceding D11-1y is applicable. Mk  is here ‘. .y. .z. .’; ii  is ‘z’; Kk contains only ‘y’; 
Kl  is empty; inl  is ‘a’. (α) is fulfilled because ‘z = y’ occurs. (β) is not fulfilled because ‘y 
= a’ does not occur. Therefore rule (y)(3) is applied, with ‘y’ as ih  . The result is: ‘(y)[y = 
a∨ (z)[z = y ∨  N(. .y. .z. .)]].(z)[z = a ∨  N(. .a. .z. .)]’. Now we apply rule (y) to the first N-
matrix. This time (y)(1) is applicable; the result is: ‘(y)[y = a∨ (z)[z = y ∨  N(. .a. .z. .)]].(z)[z = a 
∨  N(. .a. .z. .)]’. We apply rule (y) again to the first N-matrix. (α) is not fulfilled because ‘z = a’ 
does not occur. Therefore rule (y)(2) is applied, with ‘a’ as ah1: ‘(y)[y = a∨ [(z)(z = a ∨  z = y∨N(. 
.a. .z. .)).(a = y∨  N(. .a. .a. .))]].(z)[z = a ∨  N(. .a. .z. .)]’. Now rule (j) is applied, distribution 
with respect to the first sign of conjunction; then the quantifier with ‘y’ is distributed (rule (p)). 
‘(y)[y = a∨ (z)(z = a ∨  z = y ∨  N(. .a. .z. .))].(y)[y = a ∨  a = y ∨  N(. .a. .a. .)].(z)[z = a ∨  N(. .a. 
.z. .)]’. Now the second N-matrix is moved out of the operand of the quantifier (rule (q)); thereby 
a disjunctive component of the form ‘(y)[y = a ∨  a = y]’ is produced, which is then transformed 
into ‘~t’ (rule (r)) and then omitted (rule (e)). The result is: ‘(y)[y = a∨ (z)(z = a ∨  z = y ∨  N(. .a. 
.z. .))].(N(. .a. .a. .)].(z)[z = a ∨  N(. .a. .z. .)]’. Now (y)(1) can be applied to the first N-matrix, 
with ‘b’ as inl  : ‘(y)[y = a∨ (z)(z = a ∨  z = y ∨  N(. .a. .b. .))].(N(. .a. .a. .)].(z)[z = a ∨  N(. .a. .z. 
.)]’. As previously, rules (q), (r), and (e) are applied, first to the first quantifier with ‘z’ and then 
to that with ‘y’, so that both quantifiers disappear; thus the first conjunctive component becomes 
‘N(. .a. .b. .)’. Finally we transform. the last conjunctive component. According to (y)(1), the 
matrix ‘N(. .a. .z. .)’ is replaced by ‘N(. .a. .b. .)’. Now the rules (q), (r), and (e) are applied again 



thereby the quantifier with ‘z’ disappears. Thus the component becomes ‘N(. .a. .b. .)’ and 
disappears (rule (d)). Hence the result of the whole reduction is ‘N(. .a. .b. .).N(. .a. .a. .)’. 
 2. Let ‘- - -’  indicate the original sentence of the first example. Consider 
‘N(u)N[(x)(Rxu)∨ - - -]’. Here, the first ‘N’ is of third order. The expression preceding the 
square bracket becomes ‘(u)NN’ (rule (t)) and then ‘(u)N’ (rule (1)(3)). Then rule (x) yields 
‘(u)[N(x)(Rxu)∨ - - -]’ because ‘- - -’ has form (1)(5). Rule (q) yields ‘(u)[N(x)(Rxu)∨ - - -’; 
(w)(1), ‘N(x)(Rxa)∨ - - -’; (t), ‘(x)N(Rxa) ∨  - - -’; (w)(2), ‘N(Rba) ∨  - - -’. The first disjunctive 
component becomes ‘~t’ (rule (v)(1)) and disappears (rule (e)). Thus the reductum of the whole 
is the same as in the first example. 
 
 12. Relations between MFC and MFL. The first question concerning the calculus MFC 
is whether it is not too strong, that is, whether it is indeed a formalization of MFL and hence 
justified by MFL as an L-true interpretation of it. The affirmative answer to this question is given 
by T12-1d. Then the second question, whether MFC is strong enough for certain purposes, will 
be examined.  
 T12-1. 
 a.  Every primitive sentence of MFC is L-true in MFL. (The proof is based on 
complicated theorems concerning state-descriptions, which have not been stated here.) 
 b.  Every C-true sentence in MFC is L-true in MFL. (From (a); see T8-1b.) 
 c. Whenever C-falsity in MFC holds, then L-falsity in MFL holds. Analogously with 
C-implication and L-implication, and with C-equivalence and L-equivalence. (From (b).) 
 d. MFL is an L-true interpretation of MFC, (From (a) and (b); see T8-1c.)  
 We shall now show that MFC is strong enough to cover the transformation by MF-
reduction (T12-2b). However, the further question whether it is also strong enough to yield all L-
true sentences remains open, as we shall see.  
 T12-2. Let Si be any sentence in MFC and MFL, and Si its MF-reductum. Then the 
following holds: 
 a. If a sentence is transformed into another sentence by an application of the first 
rule of MF-reduction which is applicable, then the two sentences are C-equivalent in MFC. 
 Proof. For the rules (a) to (k) in D11-1 this follows from T6-le, T10-1a. For rules (l)(1), 
(2), and (3), from D5-1l(3), (4), (1), T6-1e, T10-1a. For(1)(4), from D10-1i, j (corresponding to 
D8-lf, g), and m. For (l)(5), from T10-3f. For (m) (= D5-1m), from T4-1e, T10-1a. For (n)(1), 
from D8-1f, T10-la, T10-2e. For (n)(2), from D8-1h. For (o), from D8-1c, d. For (p) and (q), 
from FC, T10-1a. For (r), from D8-1h. For (s)(1), from D8-1f. For (s)(2), from D8-1g. For (t) 
and (u), from D10-11, m, and FC. For (v), from T10-3h. For (w), from D10-1n and o. For (x), 
from T10-3g, For (y), from T10-3e. 
 b.  Si and Si are C-equivalent in MFC. (From (a).) 
 c. Si and Si are L-equivalent in MFL. (From (b), T12-1c.) 
 d. If Si is ‘t’, Si is C-true in MFC and L-true in MFL. (From (b), (c).) 
 e. If Si is ‘~t’, Si is C-false in MFC and L-false in MFL. (From (b), (c).) —The 
converses of (d) and (e) do not hold generally. For instance, ‘N[~(x)(Px)∨  Pa]’ is L-true and C-
true, but is an MF-reductum. 



 f. If Si contains no predicate, Si is either ‘t’ or ‘~t’(From T11-1.) 
 g. If Si contains no quantifier under an ‘N’, then Si contains no ‘N’. 
 Proof. In the reduction procedure, no quantifier comes under ‘N’ except by rule D11-1u; 
but these quantifiers are then removed by rules (w) and (t). Therefore, Si contains no quantifier 
under ‘N’, and hence no ‘N’ (T11-1h). 
 Since there is no general decision method for FL (i.e., no effective method which decides 
for any given sentence in a finite number of steps whether or not it is L-true in FL), there is, of 
course, none for MFL. However, the method of MF-reduction makes it possible to apply partial 
solutions for FL, that is to say, decision methods for restricted classes of sentences in FL, to 
MFL in the following manner. A sentence is L-true in MFL if and only if its MF-reductum is 
L-true (T12-2c). The latter has in general the form of a conjunction of disjunctions (T11-1). A 
conjunction is L-true if and only if each of its components is L-true. Each component is in 
general a disjunction of the form ~NSi1∨… ∨ ~NSim∨  NSi1∨…∨  NSin∨  Sk , where Sk is a 
disjunction of p N-free sentences (m ≥ 0, n ≥ 0, p ≥ 0; m + n + p ≥ 1). Since the components with 
‘~N’ and ‘N’ am either L-true or L-false, the whole disjunction is L-true if and only if either one 
of these components or Sk is L-true, in other words, if and only if either one of the sentences Si1 , 
… , Sim is non-L-true or one of the sentences Si1 , … , Sin , Sk is L-true. All these sentences are N-
free and hence belong to FL also. Therefore, if all of them belong to classes for which decision 
methods for FL are available, then their application leads to a decision for the whole disjunction 
in MFL. 
 As has been remarked earlier (see the discussion preceding T8-2), it is not known 
whether FC is complete. Therefore, it is likewise an open question whether or not MFC is 
complete in the sense that every sentence which is L-true in MFL is C-true in MFC. The 
following theorem gives a partial answer to this question. 
 T12-3. Jet Si be an MF-reductum in which no ‘=’ and no sentence of the form 
‘~N’(...)oocurs. If Si is L-true in MFL, it is C-true in MFC. 
 Proof. Let the conditions be fulfilled. Then, disregarding simpler cases, in which the 
theorem is obvious, Si is a conjunction of which all components are L-true. Let Sh be such a 
component. Sh has the form NSi1∨  NSi2∨…∨NSin∨  Sk , where Sk is a disjunction of N-free 
sentences. At least one of the sentences Si1 , … , Sin , Sk must be L-true in MFL and also in FL, 
since all these sentences are N-free. If Sk is L-true in FL, it is C-true in FC (T8-2) and hence in 
MFC (T10-1a), and hence likewise the whole disjunction. If Sir  (r = 1, … , n) is L-true in FL, it 
is C-true in FC and in MFC, and hence likewise N Sir   (T10-1a) and again the whole disjunction. 
Thus every component of the conjunction Si is C-true in MFC, and hence Si itself. 
 Whether the two restricting conditions in this theorem can be eliminated remains to be 
seen. If they can, MFC is complete. The restriction with respect to ‘=’ is a problem concerning 
FC, as earlier discussed. With respect to MFC, the problem remains whether an MF-reductum of 
the form ~NSi is C-true if it is L-true in MFL, in other words, if Si is not L-true in MFL. If Si is 
L-false, the proof of ~NSi is simple (with T4-1k). If Si is factual, ~NSi can often be proved in the 
following way. We construct an L-false 



sentence Si from Si by suitable substitutions for primitive predicates. Then D10-1p yields  
NSi ⊃ NSi and hence ~NSi ⊃ ~NSi . Since ~NSi is C-true, so is ~NSi . As examples, see T10-3h 
and i, which lead to the following theorem (in which Sk is not required to be a reductum). 
 T12-4. If Sk is a factual sentence in MFL without variables, then ~NSk and ~N~Sk (in 
other symbols, ◊~Sk  and ◊Sk) are C-true in MFC. (From T10-3h and i.) 
 Even if variables occur, the procedure of substitution for predicates yields often a proof 
for ~NSi  with factual Si  . The decisive question remains whether this or another procedure will 
assure C-truth in all such cases. 
 
 This article has been restricted to an exhibition of some modal systems and to an 
explanation of some of their technical features. At another place17 I shall discuss certain 
fundamental problems connected with modalities which are, so to speak, of a pre-technical 
nature. These discussions will not presuppose the system but, on the contrary, try to prepare the 
ground for the construction of modal systems by clarifying some basic logical and semantical 
concepts. The problems concern, in particular, the relation of denotation and the nature of 
denoted entities; further, the concepts of the extension and the intension of linguistic expressions. 
It is customary to distinguish, for example, between the extension of a predicate (of degree one), 
which is a class, and its intension, which is a property. Further, we may distinguish between the 
extension of a sentence, which is a truth-value, and its intension, which is a proposition. I shall 
try to show that, in an analogous way, we have to distinguish between the extension of an 
individual expression (e.g., an individual description or a constant abbreviating it), which is an 
individual (e.g., a physical thing or a space-time point), and its intension, which is a concept of a 
special kind which we may call an individual concept. The distinction in this case as in the two 
other cases, becomes essential when the expressions occur in non-extensional contexts, e.g., in 
modal sentences. It will be shown that this distinction also helps to clarify and to overcome the 
difficulties which Quine18 has pointed out for sentences combining modalities and quantification. 
Without an elimination of these difficulties, no modal functional logic could be constructed. 
Further, some related problems which have been raised by Church will be discussed. 
 The approach in the present article, which leaves aside all these fundamental problems, 
may appear to be uncritical and dogmatic. This appearance, however, is not due to an actual 
neglect of these problems but merely to the fact that for the sake of brevity this article had to be 
restricted to the technical aspects of modal systems. 
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 17 Meaning and necessity: A study in semantics and modal logic. (To appear soon.) 
 18 W. V. Quine, Notes on existence and necessity. The journal of philosophy, vol. 40 (1943), pp. 113-127. 
 


