
Foundations of Logic  
and Mathematics  
 
Rudolf Carnap 



 
Foundations of Logic and Mathematics  
 
Contents: 
 
I. LOGICAL ANALYSIS OF LANGUAGE: SEMANTICS AND SYNTAX 

PAGE 
1. Theoretical Procedures in Science . . 143 
2. Analysis of Language . . . . . . 145 
3. Pragmatics of Language B . . . 147 
4. Semantical Systems . . . . . 148 
5. Rules of the Semantical System B-S 150 
6. Some Terms of Semantics . . 153 
7. L-Semantical Terms . . 154 
8. Logical Syntax . . . . 158 
9. The Calculus B-C . . . . . . . . . 160  

 
II. CALCULUS AND INTERPRETATION 

10. Calculus and Semantical System . .. 163 
11. On the Construction of a Language System 166 

  12. Is Logic a Matter of Convention? . . . . 168  
 
III. CALCULI AND THEIR APPLICATION IN EMPIRICAL SCIENCE 

13. Elementary Logical Calculi . . 171 
14. Higher Logical Calculi . . . . . 175 
15. Application of Logical Calculi . . .. . 177 
16. General Remarks about Nonlogical Calculi 

               (Axiom Systems) . .. . . . . . . 179 
        17. An Elementary Mathematical Calculus . . 180 
        18. Higher Mathematical Calculi . . .     184 
        19. Application of Mathematical Calculi 186  
        20. The Controversies over “Foundations” of  
               Mathematics . . . . . . . . . .  190                   
        21. Geometrical Calculi and Their Interpretations 193  
        22. The Distinction between Mathematical and 
               Physical Geometry. . . . . .     195  
        23. Physical Calculi and Their Interpretations . 198  
        24. Elementary and Abstract Terms . .      203 
        25. “Understanding” in Physics . . .           209 
 
SELECTED BIBLIOGRAPHY                                        211 
 
INDEX OF TERMS                                                      213 



Foundations of Logic and Mathematics  
 
Rudolf Carnap 
 
I. Logical Analysis of Language: Semantics and Syntax 
 
1. Theoretical Procedures in Science 
 
     The activities of a scientist are in part practical: he arranges experiments and 
makes observations. Another part of his work is theoretical: he formulates the results 
of his observations in sentences, compares the results with those of other observers, 
tries to explain them by a theory, endeavors to confirm a theory proposed by himself 
or somebody else, makes predictions with the help of a theory, etc. In these theoretical 
activities, deduction plays an important part; this includes calculation, which is a 
special form of deduction applied to numerical expressions. Let us consider, as an 
example, some theoretical activities of an astronomer. He describes his observations 
concerning a certain planet in a report, 01. Further, he takes into consideration a 
theory T concerning the movements of planets. (Strictly speaking, T would have to 
include, for the application to be discussed, laws of some other branches of physics, 
e.g., concerning the astronomical instruments used, refraction of light in the 
atmosphere, etc.) From 01 and T, the astronomer deduces a prediction, P; he 
calculates the apparent position of the planet for the next night. At that time he will 
make a new observation and formulate it in a report 02. Then he will compare the pre-
diction P with 02 and thereby find it either confirmed or not. If T was a new theory and 
the purpose of the procedure described was to test T, then the astronomer will take 
the confirmation of P by 02 as a partial confirmation for T; he will apply the same 
procedure again and again and thereby obtain either an increasing degree of 
confirmation for T or else a disconfirmation. The same deduction of P from 01 and T is 
made in the case where T is already scientifically acknowledged on the 
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basis of previous evidence, and the present purpose is to obtain a prediction of what will 
happen tomorrow. There is a third situation in which a deduction of this kind may be 
made. Suppose we have made both the observations described in 01 and in 02; we are 
surprised by the results of the observation described in 02 and therefore want an 
explanation for it. This explanation is given by the theory T; more precisely, by deducing 
P from 01 and T and then showing that 02 is in accordance with P (“What we have 
observed is exactly what we had to expect”). 

These simple examples show that the chief theoretical procedures in science—
namely, testing a theory, giving an explanation for a known fact, and predicting an 
unknown fact—involve as an essential component deduction and calculation; in other 
words, the application of logic and mathematics. (These procedures will later be 
discussed more in detail, especially in §§ 15, 19, and 23.) It is one of the chief tasks of 
this essay to make clear the role of logic and mathematics as applied in empirical 
science. We shall see that they furnish instruments for deduction, that is, for the 
transformation of formulations of factual, contingent knowledge. However, logic and 
mathematics not only supply rules for transformation of factual sentences but they 
themselves contain sentences of a different, nonfactual kind. Therefore, we shall have to 
deal with the question of the nature of logical and mathematical theorems. It will 
become clear that they do not possess any factual content. If we call them true, then 
another kind of truth is meant, one not dependent upon facts. A theorem of 
mathematics is not tested like a theorem of physics, by deriving more and more 
predictions with its help and then comparing them with the results of observations. But 
what else is the basis of their validity? We shall try to answer these questions by 
examining how theorems of logic and mathematics are used in the context of empirical 
science. 
     The material on which the scientist works in his theoretical activities consists of 
reports of observations, scientific laws and theories, and predictions; that is, 
formulations in language 
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which describe certain features of facts. Therefore, an analysis of theoretical procedures 
in science must concern itself with language and its applications. In the present section, 
in preparing for the later task, we shall outline an analysis of language and explain the 
chief factors involved. Three points of view will be distinguished, and accordingly three 
disciplines applying them, called pragmatics, semantics, and syntax. These will be 
illustrated by the analysis of a simple, fictitious language. In the later sections the 
results of these discussions will be applied in an analysis of the theoretical procedure of 
science, especially from the point of view of calculi, their interpretation, and their 
application in empirical science. 
 
2. Analysis of Language 
 
     A language, as, e.g., English, is a system of activities or, rather, of habits, i.e., 
dispositions to certain activities, serving mainly for the purposes of communication and 
of co-ordination of activities among the members of a group. The elements of the 
language are signs, e.g., sounds or written marks, produced by members of the group in 
order to be perceived by other members and to influence their behavior. Since our final 
interest in this essay concerns the language of science, we shall restrict ourselves to the 
theoretical side of language, i.e., to the use of language for making assertions. Thus, 
among the different kinds of sentences, e.g., commands, questions, exclamations, 
declarations, etc., we shall deal with declarative sentences only. For the sake of brevity 
we shall call them here simply sentences. 
     This restriction to declarative sentences does not involve, in the investigation of 
processes accompanying the use of language, a restriction to theoretical thinking. 
Declarative sentences, e.g., ‘This apple is sour’, are connected not only with the 
theoretical side of behavior but also with emotional, volitional, and other factors. If we 
wish to investigate a language as a human activity, we must take into consideration all 
these factors connected with speaking activities. But the sentences, and the signs (e.g., 
words) occurring in them, are sometimes involved in still another relation. A sign or 
expression may con- 
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cern or designate or describe something, or, rather, he who uses the expression may 
intend to refer to something by it, e.g., to an object or a property or a state of affairs; 
this we call the designatum of the expression. (For the moment, no exact definition for 
‘designatum’ is intended; this word is merely to serve as a convenient, common term for 
different cases-objects, properties, etc.—whose fundamental differences in other 
respects are not hereby denied.) Thus, three components have to be distinguished in a 
situation where language is used. We see these in the following example: (1) the action, 
state, and environment of a man who speaks or hears, say, the German word ‘blau’; (2) 
the word ‘blau’ as an element of the German language (meant here as a specified 
acoustic [or visual] design which is the common property of the many sounds produced 
at different times, which may be called the tokens of that design); (3) a certain property 
of things, viz., the color blue, to which this man—and German-speaking people in 
general—intends to refer (one usually says, “The man means the color by the word”, or 
“The word means the color for these people”, or “. . . . within this language”). 
     The complete theory of language has to study all these three components. We shall 
call pragmatics the field of all those investigations which take into consideration the first 
component, whether it be alone or in combination with the other components. Other 
inquiries are made in abstraction from the speaker and deal only with the expressions 
of the language and their relation to their designata. The field of these studies is called 
semantics. Finally, one may abstract even from the designata and restrict the 
investigation to formal properties—in a sense soon to be explained—of the expressions 
and relations among them. This field is called logical syntax. The distinction between the 
three fields will become more clear in our subsequent discussions. 
      
     That an investigation of language has to take into consideration all the three factors 
mentioned was in recent times made clear and emphasized especially by. C. S. Peirce, by 
Ogden and Richards, and by Morris (see Vol. I, No. 2). Morris made it the basis for the three 
fields into which he divides 
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semiotic (i.e., the general theory of signs), namely, pragmatics, semantics, and syntactics. Our 
division is in agreement with his in its chief features. For general questions concerning 
language and its use compare also Bloomfield, Volume I, No. 4. 

 
3. Pragmatics of Language B 
 
     In order to make clear the nature of the three fields and the differences between 
them, we shall analyze an example of a language. We choose a fictitious language B, 
very poor and very simple in its structure, in order to get simple systems of semantical 
and syntactical rules. 
     Whenever an investigation is made about a language, we call this language the 
object-language of the investigation, and the language in which the results of the 
investigation are formulated the metalanguage. Sometimes object-language and meta-
language are the same, e.g., when we speak in English about English. The theory 
concerning the object-language which is formulated in the metalanguage is sometimes 
called metatheory. Its three branches are the pragmatics, the semantics, and the syntax 
of the language in question. In what follows, B is our object-language, English our 
metalanguage. 

Suppose we find a group of people speaking a language B which we do not 
understand; nor do they understand ours. After some observation, we discover which 
words the people use, in which forms of sentences they use them, what these words and 
sentences are about, on what occasions they are used, what activities are connected 
with them, etc. Thus we may have obtained the following results, numbered here for 
later reference. 

 
     Pragm. 1.—Whenever the people utter a sentence of the form ‘. . . ist kalt’, where ‘. . .’ 
is the name of a thing, they intend to assert that the thing in question is cold. 

Pragm. 2a.—A certain lake in that country, which has no name in English, is usually 
called ‘titisee’. When using this name, the people often think of plenty of fish and good 
meals.  

Pragm. 2b.—On certain holidays the lake is called ‘rumber’; 
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when using this name, the people often think—even during good weather—of the 
dangers of storm on the lake. 

Pragm. 3.—The word ‘nicht’ is used in sentences of the form ‘nicht . . .’, where ‘. . .’ is 
a sentence. If the sentence ‘. . .’ serves to express the assertion that such and such is 
the case, the whole sentence ‘nicht . . .’ is acknowledged as a correct assertion if such 
and such is not the case. 

 
     In this way we slowly learn the designata and mode of use of all the words and 
expressions, especially the sentences; we find out both the cause and the effect of their 
utterance. We may study the preferences of different social groups, age groups, or 
geographical groups in the choice of expressions. We investigate the role of the language 
in various social relations, etc. 

The pragmatics of language B consists of all these and similar investigations. 
Pragmatical observations are the basis of all linguistic research. We see that pragmatics 
is an empirical discipline dealing with a special kind of human behavior and making use 
of the results of different branches of science (principally social science, but also 
physics, biology, and psychology). 

 
4. Semantical Systems 
 

We now proceed to restrict our attention to a special aspect of the facts concerning 
the language B which we have found by observations of the speaking activities within 
the group who speak that language. We study the relations between the expressions of 
B and their designata. On the basis of those facts we are going to lay down a system of 
rules establishing those relations. We call them semantical rules. These rules are not 
unambiguously determined by the facts. Suppose we have found that the word ‘mond’ of 
B was used in 98 per cent of the cases for the moon and in 2 per cent for a certain 
lantern. Now it is a matter of our decision whether we construct the rules in such a way 
that both the moon and the lantern are designata of ‘mond’ or only the moon. If we 
choose the first, the use of ‘mond’ in those 2 per cent of cases was right—with respect to 
our rules; if we choose the second, it was wrong. The facts do not determine whether the 
use of a certain expression is right 
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or wrong but only how often it occurs and how often it leads to the effect intended, and 
the like. A question of right or wrong must always refer to a system of rules. Strictly 
speaking, the rules which we shall lay down are not rules of the factually given language 
B; they rather constitute a language system corresponding to B which we will call the 
semantical system B-S. The language B belongs to the world of facts; it has many 
properties, some of which we have found, while others are unknown to us. The language 
system B-S, on the other hand, is something constructed by us; it has all and only 
those properties which we establish by the rules. Nevertheless, we construct B-S not 
arbitrarily but with regard to the facts about B. Then we may make the empirical 
statement that the language B is to a certain degree in accordance with the system B-S. 
The previously mentioned pragmatical facts are the basis—in the sense explained—of 
some of the rules to be given later (Pragm. 1 for SD 2a and SL 1, Pragm. 2a,b for SD 1a, 
Pragm. 3 for SL 2). 
     We call the elements of a semantical system signs; they may be words or special 
symbols like ‘0’, ‘+’, etc. A sequence consisting of one or several signs is called an 
expression. As signs of the system B-S we take the words which we have found by our 
observations to be words of B or, rather, only those words which we decide to accept as 
“correct.” We divide the signs of B-S—and, in an analogous way, those of any other 
semantical system—into two classes: descriptive and logical signs. As descriptive signs 
we take those which designate things or properties of things (in a more comprehensive 
system we should classify here also the relations among things, functions of things, 
etc.). The other signs are taken as logical signs: they serve chiefly for connecting 
descriptive signs in the construction of sentences but do not themselves designate 
things, properties of things, etc. Logical signs are, e.g., those corresponding to English 
words like ‘is’, ‘are’, ‘not’, ‘and’, ‘or’, ‘if’, ‘any’, ‘some’, ‘every’, ‘all’. These unprecise 
explanations will suffice here. Our later discussions will show some of the differentiae of 
the two classes of signs. 
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     Semantics as an exact discipline is quite new; we owe it to the very fertile school of 
contemporary Polish logicians. After some of this group, especially Lesniewski and Ajdukiewicz, 
had discussed semantical questions, Tarski, in his treatise on truth, made the first 
comprehensive systematic investigation in this field, giving rise to very important results. 
 
5. Rules of the Semantical System B –S 
 

In order to show how semantical rules are to be formulated and how they serve to 
determine truth conditions and thereby give an interpretation of the sentences, we are 
going to construct the semantical rules for the system B-S. As preliminary steps for this 
construction we make a classification of the signs and lay down rules of formation. Each 
class is defined by an enumeration of the signs belonging to it. The signs of B-S are 
divided into descriptive and logical signs. The descriptive signs of B-S are divided into 
names and predicates. Names are the words ‘titisee’, ‘rumber’, ‘mond’, etc. (here a 
complete list of the names has to be given). Predicates are the words ‘kalt’, ‘blau’, ‘rot’, 
etc. The logical signs are divided into logical constants (‘ist’, ‘nicht’, ‘wenn’, ‘so’, ‘fuer’, 
‘jedes’) and variables (‘x’, ‘y’, etc.). For the general description of forms of expressions we 
shall use blanks like ‘. . .’ ‘- - -’ , etc. They are not themselves signs of B-S but have to be 
replaced by expressions of B-S. If nothing else is said, a blank stands for any expression 
of B-S. A blank with a subscript ‘n’, ‘p’, ‘s’, or ‘v’ (e.g., ‘. . .n’) stands for a name, a 
predicate, a sentence, or a variable, respectively. If the same blank occurs several times 
within a rule or a statement, it stands at all places for the same expression. 
     The rules of formation determine how sentences may be constructed out of the 
various kinds of signs. 
     Rules of formation.—An expression of B-S is called a sentence (in the semantical 
sense) or a proposition of B-S, if and only if it has one of the following forms, F 1-4. F 1: 
‘. . .n ist - - -p’ (e.g., ‘mond ist blau’); F 2: ‘nicht. . .s’ (e.g., ‘nicht mond ist blau’); F 3: 
‘wenn . . .s, so - - -s’ (e.g., ‘wenn titisee ist rot, so mond ist kalt’); F 4: ‘fuer jedes . .v, - . .-’ 
where ‘- . . –’ stands for an expression which is formed out of a sentence not containing 
a variable by replacing one or several names by the variable 
 
150 



‘. .v’ (e.g., ‘fuer jedes x, x ist blau’; ‘fuer jedes y, wenn y ist blau, so y ist kalt’). The 
partial sentence in a sentence of the form F 2 and the two partial sentences in a 
sentence of the form F 3 (indicated above by blanks) are called components of the whole 
sentence. In order to indicate the components of a sentence in case they are themselves 
compound, commas and square brackets are used when necessary. 
 
Rules B-SD. Designata of descriptive signs: 
 
SD 1. The names designate things, and especially 

a) each of the thing-names ‘titisee’ and ‘rumber’ designates the lake at such and 
 such a longitude and latitude. 

         b) ‘mond’ designates the moon. 
         Etc. [Here is to be given a complete list of rules for all the names of B-S.] 
SD 2. The predicates designate properties of things, and especially 

a) ‘kalt’ designates the property of being cold.  
b) ‘blau’ designates the property of being blue.  
c) ‘rot’ designates the property of being red.  
Etc. [for all predicates]. 
 

Rules B-SL. Truth conditions for the sentences of B-S. These rules involve the logical 
signs. We call them the L-semantical rules of B-S. 

 
SL 1. ‘ist’, form F 1. A sentence of the form ‘. . .n ist - - -p’ is true if and only if the thing 

designated by ‘. . .n’ has the property designated by ‘---p’. 
SL 2. ‘nicht’, form F 2. A sentence of the form ‘nicht ... s’ is true if and only if the 

sentence ‘ . ..s’ is not true. 
SL 3. ‘wenn’ and ‘so’, form F 3. A sentence of the form ‘wenn . . .s, so - - -s,’ is true if and 

only if ‘. . .s’ is not true or - --s’ is true. 
SL 4. ‘fuer jedes’, form F 4. A sentence of the form ‘fuer jedes ..v, -..-’, where ‘- . . –’ is an 

expression formed out of a sentence by replacing one or several names by the 
variable ‘.. v’, is true if and only if all sentences of the follow- 

 
151



 
ing kind are true: namely, those sentences constructed out of the expression ‘-..-’ 
by replacing the variable ‘. .v’ at all places where it occurs within that expression 
by a name, the same for all places; here names of any things may be taken, even 
of those for which there is no name in the list of names in B-S. (Example: The 
sentence ‘fuer jedes x, x ist blau’ is true if and only if every sentence of the form  
‘. . .n ist blau’ is true; hence, according to SL 1, if and only if everything is blue.) 

 
     The rule SL 1, in combination with SD, provides direct truth conditions for the 
sentences of the simplest form; direct, since the rule does not refer to the truth of other 
sentences. SL 2-4 provide indirect truth conditions for the compound sentences by 
referring to other sentences and finally back to sentences of the simplest form. Hence 
the rules B-SD and SL together give a general definition of ‘true in B-S’ though not in 
explicit form. (It would be possible, although in a rather complicated form, to formulate 
an explicit definition of ‘true in B-S’ on the basis of the rules given.) A sentence of B-S 
which is not true in B-S is called false in B-S. 
     If a sentence of B-S is given, one can easily construct, with the help of the given 
rules, a direct truth-criterion for it, i.e., a necessary and sufficient condition for its truth, 
in such a way that in the formulation of this condition no reference is made to the truth 
of other sentences. Since to know the truth conditions of a sentence is to know what is 
assorted by it, the given semantical rules determine for every sentence of B-S what it 
asserts—in usual terms, its “meaning”—or, in other words, how it is to be translated 
into English. 
 
     Examples: (1) The sentence ‘mond ist blau’ is true if and only if the moon is blue. (2) The 
sentence ‘fuer jedes x, wenn x ist blau, so x ist kalt’ is true if and only if every thing—not only 
those having a name in B-S—either is not blue or is cold; in other words, if all blue things are 
cold. Hence, this sentence asserts that all blue things are cold; it is to be translated into the 
English sentence ‘all blue things are cold’. 
 
     Therefore, we shall say that we understand a language system, or a sign, or an 
expression, or a sentence in a language system, 
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if we know the semantical rules of the system. We shall also say that the semantical 
rules give an interpretation of the language system. 
 
     We have formulated the semantical rules of the descriptive signs by stating their designata, 
for the logical signs by stating truth conditions for the sentences constructed with their help. 
We may mention here two other ways of formulating them which are often used in the practice 
of linguistics and logic. The first consists in giving translations for the signs and, if necessary, 
for the complex expressions and sentences, as it is done in a dictionary. The second way 
consists in stating designata throughout, not only for the descriptive signs as in SD, but also 
for expressions containing the logical signs, corresponding to SL. Example (corresponding to SL 
1): A sentence of the form ‘. . .n ist ---p’ designates (the state of affairs) that the thing designated 
by ‘. . .n’ has the property designated by ‘---p’. 
 
6. Some Terms of Semantics 
 
     We shall define some more terms which belong to the metalanguage and, moreover, 
to the semantical part of the metalanguage (as is seen from the fact that the definitions 
refer to the semantical rules). Any semantical term is relative to a semantical system 
and must, in strict formulation, be accompanied by a reference to that system. In 
practice the reference may often be omitted without ambiguity (thus we say, e.g., simply 
‘synonymous’ instead of ‘synonymous in B-S’). 
     Two expressions are said to be semantically synonymous, or briefly, synonymous, 
with each other in a semantical system S if they have the same designatum by virtue of 
the rules of S. Hence, according to SD la, the signs ‘titisee’ and ‘rumber’ are 
semantically synonymous with one another in B-S. They are, however, not what we 
might call pragmatically synonymous in B, as is shown by Pragm. 2a,b. Since the 
transition from pragmatics to semantics is an abstraction, some properties drop out of 
consideration and hence some distinctions disappear. Because of the semantical 
synonymity of the names mentioned, the sentences ‘titisee ist kalt’ and ‘rumber ist kalt’ 
are also semantically synonymous. These two sentences have the same truth 
conditions, although different pragmatical conditions of application. Suppose that the 
lake is cold and hence the sentence ‘titisee ist kalt’ is true. Then the sentence ‘rumber 
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is kalt’ is also true, even if sinfully spoken on a working day. If this 
happened by mistake, people would tell the speaker that he is right in his 
belief but that he ought to formulate it—i.e., the same belief—in another 
way. 
     We shall apply the semantical terms to be defined not only to sentences 
but also to classes of sentences. In what follows we shall use ‘S1’, ‘S2’, etc., 
for sentences; ‘C1’, ‘C2’, etc., for classes of sentences; ‘T1’, ‘T2’, etc., stand 
both for sentences and for classes of sentences. (These ‘S’ and ‘C’ with 
subscripts have nothing to do with the same letters without subscripts, 
which we use for semantical systems and calculi, e.g., ‘B-S’ and ‘B-C’.) We 
understand the assertion of a class of sentences C1 as a simultaneous 
assertion of all the sentences belonging to C1; therefore, we make the 
following definition: a class of sentences C1 is called true if all sentences of 
C1 are true; false, if at least one of them is false. T1 and T2 (i.e., two 
sentences, or two classes of sentences, or one sentence and one class) are 
called equivalent with each other, if either both are true or both are false. T2 
is called an implicate of T1, if T1 is false or T2 is true. T1 is said to exclude T2 
if not both are true. 
 
7. L-Semantical Terms 
 
     Let us compare the following two sentences: ‘Australia is large’ (S1) and 
‘Australia is large or Australia is not large’ (S2). We see that they have a 
quite different character; let us try to give an exact account of their 
difference. We learn S1 in geography but S2 in logic. In order to find out for 
each of these sentences whether it is true or false, we must, of course, first 
understand the language to which it belongs. Then, for S1 we have to know, 
in addition, some facts about the thing whose name occurs in it, i.e., 
Australia. Such is not the case for S2. Whether Australia is large or small 
does not matter here; just by understanding S2 we become aware that it 
must be right. If we agree to use the same term ‘true’ in both cases, we may 
express their difference by saying that S1 is factually (or empirically) true 
while S2 is logically true. These unprecise explanations can easily be 
transformed into precise definitions by replacing 
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the former reference to understanding by a reference to semantical rules. 
We call a sentence of a semantical system S (logically true or) L-true if it is 
true in such a way that the semantical rules of S suffice for establishing its 
truth. We call a sentence (logically false or) L -false if it is false in such a 
way that the semantical rules suffice for finding that it is false. The two 
terms just defined and all other terms defined on their basis we call L-
semantical terms. If a sentence is either L-true or L-false, it is called L-
determinate, otherwise (L-indeterminate or) factual. (The terms ‘L-true’, ‘L-
false’, and ‘factual’ correspond to the terms ‘analytic’, ‘contradictory’, and 
‘synthetic’, as they are used in traditional terminology, usually without 
exact definitions.) If a factual sentence is true, it is called (factually true or) 
F-true; if it is false, (factually false or) F -false. Every sentence which 
contains only logical signs is L-determinate. This is one of the chief 
characteristics distinguishing logical from descriptive signs. (Example: ‘For 
every object x and every property F, if x is an F then x is an F’ is L-true. 
There are no sentences of this kind in the system B-S.) 
 
Classification of sentences of a semantical system: 
 

 
 
     Examples of sentences in B-S: (1) We found earlier (§ 5) that the sentence ‘mond ist 
blau’ (S1) is true in B-S if and only if the moon is blue. Hence, in order to find out 
whether S1 is true or false, not only must we know the rules of B-S but we have to 
make observations of the moon. Hence S1 is not L-determinate but factual. (2) Let us 
analyze the sentence ‘wenn mond ist blau, so mond is blau’ (S2). According to rule SL 
3, a ‘wenn-so’ sentence is true if its first component is not true or its second 
component is true. Now, if S1 is true, the second component of S2 is true, and hence S2 
is true; and if S1 is not true, then the first component of S2 is not true, and hence S2 is 
again true. Thus S2 is true in any case, independently of the facts concerning the 
moon; it is true merely in virtue of rule SL 3. Therefore S2 is L-true. (3) The sentence 
‘nicht, wenn mond ist blau, so mond ist blau’ (S3) has S2 as its com- 
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ponent; and we found S2 to be true on the basis of SL 3. Therefore, according to SL 2, S3 is not 
true but false. And, moreover, it is false not because some fact happens to be the case but 
merely by virtue of the rules SL 3 and 2. Hence, S3 is L-false. 
     Terminological remark.—The use of the word ‘true’ in everyday language and in philosophy 
is restricted by some to factual sentences, while some others use it in a wider sense, including 
analytic sentences. We adopted here the wider use; it is more customary in modern logic (e.g., 
‘truth function’, ‘truth-value-table’), and it turns out to be much more convenient. Otherwise, 
we should always have to say in the semantical rules and in most of the semantical theorems 
‘true or analytic’ instead of ‘true’. Semantical rules stating truth-conditions in the sense of ‘F-
true’ would become very complicated and indeed indefinite. 
 
     The definitions given can easily be transferred to classes of sentences. C1 is called L-
true if it is possible to find out that C1 is true with the help of the semantical rules 
alone, hence if all sentences of C1 are L-true. C1 is called L-false if it is possible to find 
out with the help of the semantical rules that C1 is false, i.e., that at least one sentence 
of C1 is false (in this case, however, all sentences of C1 may be factual). If C1 is either L-
true or L-false, it is called L-determinate, otherwise factual. 
     If the semantical rules suffice to show that T2 is an implicate of T1, we call T2 an L-
implicate of T1. This relation of L-implication is one of the fundamental concepts in 
logical analysis of language. The criterion for it can also be formulated in this way: the 
semantical rules exclude the possibility of T1 being true and T2 false; or in this way: 
according to the semantical rules, if T1 is true, T2 must be true. This last formulation of 
the criterion shows that L-implication, as defined here, is essentially the same as what 
is usually called logical consequence or deducibility or strict implication or entailment, 
although the form of the definitions of these terms may be different. Our definition is a 
semantical one as it refers to the semantical rules. Later we shall discuss the possibility 
of defining a corresponding syntactical term. 
 
     Examples: (1) ‘mond ist rot’ (S1; ‘wenn mond ist rot, so titisee ist kalt’ (S2); ‘titisee ist kalt’ 
(S3). We shall see that S3 is an L-implicate of the class C1 consisting of S1 and S2. According to 
the definition of ‘implicate’ (§ 6), if S3 is true, S3 is an implicate of C1. The same holds if S1 is 
false because C1 is 
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then also false. The only remaining case is that S1 is true and S3 is false. In this case, according 
to rule SL 3 (§ 5), S2 is false and, hence, C1 is false too, and S3 is an implicate of C1. Thus we 
have found, without examining the facts described by the sentences, and merely by referring to 
the semantical rules, that S3 is an implicate of C1. Therefore, S3 is an L-implicate of C1. (2) ‘fuer 
jedes x, x ist blau’ (S4); ‘mond ist blau’ (S5). We shall see that S5 is an L-implicate of S4. If S5 is 
true, S5 is an implicate of S4. And if S5 is not true, then according to SL 4 (§ 5), S4 is not true, 
and, hence, S5 is again an implicate of S4. We found this result by merely referring to a 
semantical rule. Therefore, S5 is an L-implicate of S4. 
 
     T1 and T2 are said to be L-equivalent if the semantical rules suffice to establish their 
equivalence, in other words, if T1 and T2 are L-implicates of each other. L-equivalent 
sentences have the same truth conditions; therefore, they say the same thing, although 
the formulations may be quite different. 
 
     Example: ‘mond ist kalt’ (S1); ‘nicht, mond ist kalt’ (S2): ‘nicht, nicht, mond ist kalt’ (S3). 
These sentences are factual; the semantical rules do not suffice for finding out their truth or 
falsity. But they suffice for showing that S1 and S3 are equivalent. If S1 is true, S2 is, according 
to SL 2 (§ 5), false, and hence S3 true. Therefore, in this case, S1 and S3 an equivalent. And, if 
S1 is false, then S2 is true and S3 is false; hence, S1 and S3 are again equivalent. Thus, on the 
basis of the semantical rules, S1 and S3 cannot be other than equivalent. Therefore they are L-
equivalent. 
 
     If S1 is an L-true sentence, then the truth of S1 can be established without any 
regard to the facts, e.g., to the properties of the things whose names occur in S1. 
Therefore, S1 does not convey any information about facts; this is sometimes formulated 
by saying that an L-true sentence has no factual content. Suppose S2 to be an L-
implicate of the class of sentences C1. Then S2 is an implicate of C1, and hence, if the 
sentences of C1 are true, S2 is also true; and, moreover, this relation between C1 and S2 
can be found to hold without taking into account any facts. Therefore, S2 does not 
furnish any new information concerning facts that were not already given by C1. This is 
sometimes expressed by saying that logical deduction does not increase the factual 
content of the premisses. The two characteristics just explained of L-truth and L-
implication (which have been especially emphasized by Wittgenstein) are very important 
for a clear understanding of the relation between logic and empirical 
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knowledge. We shall see later that they hold also for mathematical theorems and 
mathematical deductions even if applied in empirical science (§ 19). 
 
8. Logical Syntax 
 
     We distinguished three factors in the functioning of language: the activities of the 
speaking and listening persons, the designata, and the expressions of the language. We 
abstracted from the first factor and thereby came from pragmatics to semantics. Now we 
shall abstract from the second factor also and thus proceed from semantics to syntax. 
We shall take into consideration only the expressions, leaving aside the objects, proper-
ties, states of affairs, or whatever may be designated by the expressions. The relation of 
designation will be disregarded entirely. As this relation is the basis of the whole 
semantical system, it might seem as if nothing would be left. But we shall soon see that 
this is not the case. 
A definition of a term in the metalanguage is called formal if it refers only to the 
expressions of the object-language (or, more exactly, to the kinds of signs and the order 
in which they occur in the expressions) but not to any extralinguistic objects and 
especially not to the designata of the descriptive signs of the object-language. A term 
defined by a formal definition is also called formal, as are questions, proofs, 
investigations, etc., in which only formal terms occur. We call the formal theory of an 
object-language, formulated in the metalanguage, the syntax of the object-language (or 
the logical syntax, whenever it seems necessary to distinguish this theory from that part 
of linguistics which is known as syntax but which usually is not restricted to formal 
terms). A formal definition, term, analysis, etc., is then also called syntactical. 

The definitions of all semantical terms refer directly or indirectly to designata. But 
some of these terms — e.g., ‘true’, ‘L-true’, ‘L-implicate’—are attributed not to designata 
but only to expressions; they designate properties of, or relations between, expressions. 
Now our question is whether it is possible  
 
158 



to define within syntax, i.e., in a formal way, terms which correspond more or less to 
those semantical terms, i.e., whose extensions coincide partly or completely with theirs. 
The development of syntax—chiefly in modern symbolic logic—has led to an affirmative 
answer to that question. Especially is the possibility of defining in a forma] way terms 
which completely correspond to ‘L-true’ and ‘L-implicate’ of fundamental importance. 
This shows that logical deduction can be completely formalized. 

A syntactical system or calculus (sometimes also called a formal deductive system 
or a formal system) is a system of formal rules which determine certain formal 
properties and relations of sentences, especially for the purpose of formal deduction. 
The simplest procedure for the construction of a calculus consists in laying down some 
sentences as primitive sentences (sometimes called postulates or axioms) and some 
rules of inference. The primitive sentences and rules of inference are used for two 
purposes, for the construction of proofs and of derivations. We shall call the sentences 
to which the proofs lead C-true sentences (they are often called provable or proved 
sentences or theorems of the calculus). A derivation leads from any not necessarily C-
true sentences, called the premisses, to a sentence, called the conclusion. We shall call 
the conclusion a C-implicate of the class of premisses (it is sometimes called derivable 
or derived or [formally] deducible or deduced from the premisses or a [formal] 
consequence of the premisses). A calculus may (but usually does not) also contain 
rules which determine certain sentences as C-false. If the rules of a calculus determine 
some sentence as both C-true and C-false, the calculus is called inconsistent; 
otherwise consistent. (If, as is usually done, no rules for ‘C-false’ are given, the 
calculus cannot be inconsistent.) In order to explain this procedure, we shall construct 
the calculus B-C as an example. 

 
Logical syntax has chiefly grown out of two roots, one being formal logic, founded by 

Aristotle, the other the axiomatic method, initiated by Euclid. The general idea of operations 
with calculi goes back to Leibniz; since the middle of the last century it has been developed in 
the systems of symbolic logic into a comprehensive discipline. Among the founders of symbolic 
logic, or logistic, Boole (1854) is especially to be mentioned. More comprehensive 
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systems (including the higher functional calculus [see § 14]) were created by Schroeder (1890), 
Frege (1893), Peano (1895), and Whitehead and Russell (1910). Frege was the first to formulate 
explicitly and to fulfill strictly the requirement of formality, i.e., of a formulation of rules of logic 
without any reference to designata. Hilbert considerably developed the axiomatic method, in its 
application both to geometry (see § 21) and to classical mathematics (see §§ 18 and 20). 
 
9. The Calculus B-C 
 

While the sentences of a semantical system are interpreted, assert something, and 
therefore are either true or false, within a calculus the sentences are looked at from a 
purely formal point of view. In order to emphasize this distinction, we sometimes call 
sentences as elements of a semantical system propositions and as elements of a 
calculus formulas. 

We constructed earlier a semantical system B-S on the basis of the language B, but 
not, as we have seen, uniquely determined by B. Analogously, we shall now construct a 
calculus B-C on the basis of B. As preliminary steps for the construction of the 
syntactical rules proper, which we shall then call rules of transformation, we have to 
make a classification of the signs of B-C and to lay down syntactical rules of formation 
Fc 1-4. But they correspond exactly to the classification and the rules of formation F 1-4 
of B-S (§ 5); these rules were already formal. Therefore we shall not write them down 
again. 
 
Calculus B-C. Rules of Transformation: 
 
PS. A sentence of B-C is called a primitive sentence of B-C, if it has one of the 

following forms, PS 1-4: 
PS 1.  ‘wenn . . . , so [wean nicht . . ., so - - - ]’. 
PS 2. ‘wenn [wenn nicht . . . , so . . . ], so . . .’. 
PS 3.  ‘wenn [wenn . . . , so - - - ], so [ wenn [wenn - - -, so . - . -],  
 so [wenn . . . , so . -. -]]’. 
PS 4. ‘wenn [fuer jedes . . , - . . - ], so - . - . -’; here ‘. .’ is a variable, ‘- . - . –’ is a 

sentence which does not contain ‘fuer jedes’ but contains a name ‘. - .’ one or 
several times, and ‘- . . –’ is an expression constructed out of ‘- . - . -’ by replacing 
‘. - .’ at one or several (not necessarily all) places by the variable ‘. .’. (Examples: 
[1] ‘wenn 
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[fuer jedes x, x ist rot], so mond ist rot’; [2] see sentence (3) in the first example of a 
derivation, at the end of this section.) 

 
R. Rules of Inference: The relation of direct derivability holds if and only if one of the 

following conditions is fulfilled. 
R 1. Rule of Implication: From ‘wenn . . . , so - - -’ and 

‘. . .’, ‘- - -’ is directly derivable in B-C. 
R 2. Rule of Synonymity: The words ‘titisee’ and ‘rumber’ may be exchanged at any place 

(i.e., if S2 is constructed out of S1 by replacing one of those words at one place by 
the other one, then S2 is directly derivable from S1 in B-C). 

 
A proof in B-C is a sequence of sentences of B-C such that each of them is either a 
primitive sentence or directly derivable from one or two sentences preceding it in the 
sequence. A sentence S1 of B-C is called provable in B-C if it is the last sentence of a 
proof in B-C. A sentence of B-C is called C-true in B-C if and only if it is provable in B-C; 
a sentence ‘. . .’ is called C -false in B-C if and only if ‘nicht . . .’ is provable in B-C. (For 
B-C, provability and C-truth coincide, and likewise derivability and C-implication; for 
other calculi, this is in general not the case, as we shall see.) 

A derivation in B-C with a class C1 of premisses is a sequence of sentences of B-C 
such that each of them is either a sentence of C1 or a primitive sentence or directly 
derivable from one or two sentences preceding it in the sequence. The last sentence of a 
derivation is called its conclusion. S2 is called derivable from C1 and also a C-implicate of 
C1 if it is the conclusion of a derivation with the class of premisses C1. 

Both the rules of formation and the rules of transformation of B-C do not in any 
way refer to designata; they are strictly formal. Nevertheless, they have been chosen 
with regard to B-S in such a way that the extension of the terms ‘C-true’, ‘C-false’, and 
‘C-implicate’ in B-C coincides with that of ‘L-true’, ‘L-false’, and ‘L-implicate’, 
respectively, in B-S. There are an infinite number of other possible choices of primitive 
sentences and rules of inference which would lead to the same result. This 
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result gives the practical justification for our choice of the rules o f  B-C .  A  calculus in 
itself needs no justification; this point will be discussed later. 
 

The calculus B-C corresponds to a restricted form of the so-called lower functional calculus, as 
constructed by Hilbert and Bernays. PS 1-3 and R I correspond to the so-called sentential calculus. 
That the lower functional calculus is complete, i.e., that it exhausts the extension of L-truth and L-
implication, has been shown by Gödel. 

Example of a proof in B-C. If in the following sequence the blank `. . .’ is always replaced by the 
same sentence, e.g., ‘titisee ist blau’, the sequence fulfils the conditions-as shown by the remarks 
on the left side-and therefore is a proof. Hence any sentence of the form ‘wean ..., s o  . . . ’  i s  
provable and C-true in B-C, e.g., ‘wenn titisee ist blau, so titisee ist blau’. 
PS 1 wenn .... so [wenn nicht . . . . s o  . . . ]  ( 1 )  
PS 2 wenn [wenn nicht . . ., so . . . ], s o  . . .  ( 2 )   
PS 3 wenn [wenn . . ., s o  [wenn nicht . . ., s o  .  .  . ] ] ,   
 so [wenn [wenn [wenn nicht . . ., s o  . . .  ] ,  s o  . . .  ] ,  

so [wenn .... s o  . . .  ] ]  ( 3 )  
(here, ‘wenn nicht . . ., s o  .  .  . ’  has been taken for ‘- - -’) and ‘. . .’ for ‘. - . - .’)  
 
(1)(3) R 1 wenn [wenn [wenn nicht . . ., s o  .  .  . ] ,  s o  .  .  . ] ,  
 so [wenn . . ., s o  . . . ]  ( 4 )  
( 2 ) ( 4 )  R 1       wenn . . ., s o  .  .  .  ( 5 )  
 
First example of a derivation in B-C: 
 
Premisses { titisee ist blau (1) 

             {fuer jedes x, [wenn x ist blau, so x ist kalt] (2)  
PS 4 wenn [fuer jedes x, [wenn x ist blau, so x  
 ist kalt]], so [wenn titisee ist blau, so  
 titisee ist kalt] (3) 
(2)(3) R 1  wenn titisee ist blau, so titisee ist kalt (4) 
(1)(4) R 1  Conclusion: titisee ist kalt (5) 
 

If we interpret these sentences as in BS, (1) says that a certain object is blue, (2) says that all 
blue things are cold (see example [2] at the end of § 5), (5) says that that object is cold. Here, 
however, the conclusion is derived from the premisses in a formal way, i.e., without making use of 
an interpretation. 

 
Second example of a derivation in B-C:  
Premisses { wenn mond ist blau, so mond ist kalt (1) 
 { nicht mond ist kalt (2) 
Provable:  wenn [wenn mond ist blau, so mond ist kalt], so  
 [wenn nicht mond ist kalt, so nicht mond ist blau] (3) 
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(1)(3) R 1 wenn nicht mond ist kalt, so nicht mond ist blau (4) 
(2)(4) R 1 Conclusion: nicht mend ist blau (5) 

 
(3) is a provable sentence. To save space, we do not give its proof here. Suppose that the proof of 

(3) has been constructed earlier, then the example shows how its result can be used in a 
derivation. According to the definitions previously given for ‘proof’ and ‘derivation, any proof may 
also occur as a part of a derivation. If this happens, we can abbreviate the derivation; we write in 
the derivation not all the sentences of the proof, whose last sentence we intend to use, but only this 
one sentence, as we have done in the example given with sentence (3). In this way a sentence 
which has been proved once can be used in derivations again and again. Later, in the discussion of 
the application of calculi in empirical science we shall come back to this application of proved 
sentences in derivations (§ 19). 

 
II. Calculus and Interpretation 
 
10. Calculus and Semantical System 

 
We shall investigate the relations which may hold between a calculus and a 

semantical system. Sometimes we shall use as examples the calculus B-C  and the 
semantical system B-S as discussed before. Suppose a calculus is given-it may be desig-
nated by ‘Z-C’ or briefly ‘C’—and a semantical system—designated by ‘Z-S’ or ‘S’. We call 
S an interpretation of C if the rules of S determine truth criteria for all sentences of C; 
in other words, if to every formula of C there is a corresponding proposition of S; the 
converse is not required. 

Suppose S fulfils the following condition: for any T1, T2, T3, and T4, if T2 is a C-
implicate of T1 in C, T2 is an implicate of T1 in S; if T3 is C-true in C, it is true in S; if T4 
is C-false in C, it is false in S. If an interpretation S of C fulfils the condition stated, we 
call it a true interpretation of C; otherwise a false interpretation. If the semantical 
rules suffice to show that S is a true interpretation of C, then we call S an L-true 
interpretation of C. In this case C-implication becomes L-implication; every C-true 
sentence becomes L-true, and every C-false sentence becomes L-false. If, on the other 
hand, these semantical rules suffice to show that S is a false interpretation, we call S an 
L-false interpretation. If S is an interpretation but neither an 
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L-true nor an L-false interpretation of C, we call S a factual interpretation of C. In this 
case, in order to find out whether the interpretation is true, we have to find out whether 
some factual sentences are true; for this task we have to carry out empirical 
investigations about facts. An interpretation S of C is called a logical interpretation if all 
sentences of C become logical sentences of S (i.e., sentences containing logical signs 
only), otherwise a descriptive interpretation. A logical interpretation is always L-
determinate. Applying these definitions to the system of our former example: B-S is a 
true and, moreover, L-true, and descriptive interpretation of B-C. 

The class of the sentences which are C-true in C is, interpreted by S, a class 0f 
assertions; we call it the theory correlated to C by S. If the interpretation is true, L-true 
or logical, respectively, the correlated theory is likewise true, L-true or logical, 
respectively; the converse does not hold generally. 

Previously we had a semantical system B-S and then constructed a calculus B-C “in 
accordance with” B-S. What was meant by this can now be formulated: we intended to 
construct B-C in such a way that B-S is a true interpretation of B-C. It is easy to see 
that for any given semantical system S it is possible to construct a calculus C of that 
kind. All we have to do is to select partial domains, as small as we wish, of the 
extensions of `implicate in S’, ‘true in S’, and ‘false in S’ (usually the null class), and 
then lay down formal definitions of ‘C-implicate’, ‘C-true’, and possibly ‘C-false’, in such 
a way that their extensions correspond to these partial domains. On the other hand, it 
is an important problem whether it is possible to construct for a given system S a 
calculus C such that C is not only in accordance with S, in the sense explained, but 
that the extensions of ‘C-implicate’, ‘C-true’, and (if defined at all) ‘C-false’ coincide with 
those 0f ‘L-implicate’, ‘L-true’, and possibly ‘L-false,’ respectively. If this is the case, we 
call C an L-exhaustive calculus with respect to S. Thus B-C is L-exhaustive with respect 
to B-S. (We do not define a term for the case that the extensions of ‘C-implicate’, ‘C-
true’, and ‘C-false’ coincide with those of ‘implicate’, ‘true’, and ‘false’ because that 
would be impossible 
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for any somewhat richer language system, e.g., for any language system of a branch of 
science.) 
 

In order to answer the question of the possibility of an L-exhaustive calculus, we have to 
distinguish two fundamentally different kinds of rules of transformation, which we call finite 
and transfinite rules. By finite rules we understand those of the customary kind: primitive 
sentences and rules of inference each of which refers to a finite number of premisses (in most 
cases one or two). Almost all rules used by logicians up to the present time are finite. Finite 
rules are applied in the construction of proofs and derivations of the usual kind, which are 
finite sequences of sentences, as we have seen in the examples in B-C. A rule of transformation 
is called transfinite if it refers to an infinite number of premisses. Because of this number being 
infinite, a transfinite rule cannot be used within a proof or derivation; a procedure of deduction 
of an entirely new kind is necessary. We call a calculus finite if all its rules of transformation 
are finite, otherwise transfinite. It may be remarked that some logicians reject transfinite rules. 

We shall make the following terminological distinction: the terms ‘C-implicate’ and ‘C-true’ 
are applied generally with respect both to finite and to transfinite calculi. On the other hand, 
we shall restrict the corresponding terms ‘derivable’ and `provable’ to finite calculi. Thus we 
call T2 a C-implicate of T1 in C, if it is possible to obtain T2 from the premisses T1 by a 
procedure of deduction of any kind in C; and we call T3 C-true if it is possible to obtain T3 by a 
procedure of deduction without premisses. If C is a finite calculus—as, e.g., B-C—the 
deduction takes the form of a finite sequence of sentences, either a derivation or a proof. In this 
case T2 is called, moreover, derivable from T1, and T3 is called, moreover, provable. 

Now we come back to the problem whether it is possible to construct for a given Semantical 
system S an L-exhaustive calculus C. The answer can now be formulated (but not proved here). 
The answer depends upon the degree of complexity of S; more precisely, it depends upon 
whether there are in S a sentence S2 and an infinite class of sentences C, such that S2 is an L-
implicate of C1 but not an L-implicate of any finite subclass of C1. (Example. S contains a name 
for every object of an infinite domain: ‘a1’, ‘a2’, ‘a3’, etc. ‘P’ is a descriptive predicate. C1 is the 
[infinite] class of all sentences of the form . . . is a P where ‘. . .’ is one of the object names. S2 is 
the sentence ‘for every x, x is a P’.) If this is not the case, then there is a finite L-exhaustive 
calculus C. If, however, it is the case, an L-exhaustive calculus C can be constructed if and 
only if transfinite rules are admitted. For, because C1 is infinite, S2 cannot be derivable from 
C1. If we decide in a given case to admit transfinite rules, we have to accept the complications 
and methodological difficulties connected with them. It was first shown by Gödel that a 
calculus of the ordinary kind (in our terminology, a finite calculus) cannot be constructed for 
the whole of arithmetic. 
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11. On the Construction of a Language System 
 

We found earlier that the pragmatical description of a language gives some 
suggestions for the construction of a corresponding semantical system without, 
however, determining it. Therefore, there is a certain amount of freedom for the selection 
and formulation of the semantical rules. Again, if a semantical system S is given and a 
calculus C is to be constructed in accordance with S, we are bound in some respects 
and free in others. The rules of formation of C are given by S. And in the construction of 
the rules of transformation we are restricted by the condition that C must be such that 
S is a true interpretation of C, as discussed before. But this still leaves some range of 
choice. We may, for instance, decide that the class of C-true sentences is to be only a 
proper subclass of the class of L-true sentences, or that it is to coincide with that class 
(as we did in constructing B-C), or that it is to go beyond that class and comprehend 
some factual sentences, e.g., some physical laws. When the extensions of ‘C-true’ and 
‘C-implicate’ are decided, there is still some possibility of choice in the construction of 
the rules, e.g., primitive sentences and rules of inference, leading to those extensions. 
This choice, however, is not of essential importance, as it concerns more the form of 
presentation than the result. 
     If we are concerned with a historically given language, the pragmatical description 
comes first, and then we may go by abstraction to semantics and (either from semantics 
or immediately from pragmatics) to syntax. The situation is quite different if we wish to 
construct a language (or rather a language system, because we lay down rules), perhaps 
with the intention of practical application, as for making communications or formu-
lating a scientific theory. Here we are not bound by a previous use of language, but are 
free to construct in accordance with our wishes and purposes. The construction of a 
language system Z may consist in laying down two kinds of rules, the semantical rules 
(Z-S or briefly S) and the syntactical rules (calculus Z-C or C). As a common basis for 
both, according to our former discussion, we have to make a classification of the signs 
which we 
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intend to use and lay down rules of formation Z-F. Z-S consists of two parts, rules for 
the descriptive signs (Z-SD or SD) and rules for the logical signs (Z-SL or SL). 
     In constructing the system Z, we can proceed in two different ways—different as to 
the order of S and C. Here the order is not unessential, for, if we have chosen some 
rules arbitrarily, we are no longer free in the choice of others. 
     The first method consists in first constructing S and then constructing C. We start 
with a classification of the kinds of signs which we want, and rules F determining the 
forms of sentences which we intend to use. Then we lay down the rules SD; we choose 
objects, properties, etc., for which we wish to have direct designations, and then signs to 
designate these objects, properties, etc. Next we construct the rules SL; we choose signs 
to be used as logical signs and state for each of them the conditions of the truth of the 
sentences constructed with its help. (As mentioned before, we may also proceed by 
indicating the translations of the sentences containing logical signs, or giving their 
designata.) After this we proceed to syntax and construct the calculus C, e.g., by stating 
primitive sentences and rules of inference. It has been explained already that, if S is 
given or constructed, we are limited in constructing C in some essential respects, 
because C must be such that S is a true interpretation of C; but we are free in other 
respects. 
     The second method for constructing Z is first to construct C and then S. We begin 
again with a classification of signs and a system F of syntactical rules of formation, 
defining ‘sentence in C’ in a formal way. Then we set up the system C of syntactical 
rules of transformation, in other words, a formal definition of ‘C-true’ and ‘C-implicate’. 
Since so far nothing has been determined concerning the single signs, we may choose 
these definitions, i.e., the rules of formation and of transformation, in any way we wish. 
With respect to a calculus to be constructed there is only a question of expedience or 
fitness to purposes chosen, but not of correctness. This will be discussed later. 
     Then we add to the uninterpreted calculus C an interpretation S. Its function is to 
determine truth conditions for the sen- 
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tences of C and thereby to change them from formulas to propositions. We proceed in 
the following way. It is already determined by the rules F which expressions are 
formulas in C. Now we have to stipulate that each of them is also a proposition in S. By 
the syntactical classification of the signs it is not yet completely settled which signs are 
logical and which descriptive. In many cases there is still a considerable amount of 
freedom of choice in this respect, as we shall see later in some examples. After having 
stated which signs are to be logical and which descriptive, we construct the rules SL for 
the logical signs. Here our choice is restricted to some extent by the requirement that 
the interpretation must be true. 
     Finally we establish the rules SD for the descriptive signs. Here we have to take into 
account the classification of signs. We choose the designata for each kind of signs and 
then for each sign of that kind. We may begin with individual names. First we choose a 
field of objects with which we wish to deal in the language to be constructed, e.g., the 
persons of a certain group, the towns of a certain country, the colors, geometrical 
structures, or whatever else. Then we determine for each individual name, as its 
designatum, one object of the class chosen. Then, for each predicate, we choose a 
possible property of those objects, etc. In this way, a designatum for every descriptive 
sign is chosen. If we decide to make S an L-true interpretation of C, we have a great 
amount of freedom for the choice of the rules SD. Otherwise, we find some essential 
restrictions. If some of the C-true formulas are to become factual propositions, they 
must be factually true. Therefore, in this case, on the basis of our factual knowledge 
about the objects which we have chosen as subject matter of Z, we have to take care 
that the interpretations for the descriptive names, predicates, etc., i.e., their designata, 
are chosen in such a way that those factual C-true sentences are actually true. 
 
12. Is Logic a Matter of Convention? 
 
     There has been much controversial discussion recently on the question whether or 
not logic is conventional. Are the rules on 
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which logical deduction is based to be chosen at will and, hence, to be judged only with 
respect to convenience but not to correctness? Or is there a distinction between 
objectively right and objectively wrong systems so that in constructing a system of rules 
we are free only in relatively minor respects (as, e.g., the way of formulation) but bound 
in all essential respects? Obviously, the question discussed refers to the rules of an 
interpreted language, applicable for purposes of communication; nobody doubts that 
the rules of a pure calculus, without regard to any interpretation, can be chosen 
arbitrarily. On the basis of our former discussions we are in a position to answer the 
question. We found the possibility—which we called the second method—of constructing 
a language system in such a way that first a calculus C is established and then an 
interpretation is given by adding a semantical system S. Here we are free in choosing 
the rules of C. To be sure, the choice is not irrelevant; it depends upon C whether the 
interpretation can yield a rich language or only a poor one. 
     We may find that a calculus we have chosen yields a language which is too poor or 
which in some other respect seems unsuitable for the purpose we have in mind. But 
there is no question of a calculus being right or wrong, true or false. A true 
interpretation is possible for any given consistent calculus (and hence for any calculus 
of the usual kind, not containing rules for ‘C-false’), however the rules may be chosen. 
     On the other hand, those who deny the conventional character of logic, i.e., the 
possibility of a free choice of the logical rules of deduction, are equally right in what they 
mean if not in what they say. They are right under a certain condition, which 
presumably is tacitly assumed. The condition is that the “meanings” of the logical signs 
are given before the rules of deduction are formulated. They would, for instance, insist 
that the rule R 1 of B-C (‘from ‘wenn ..., so - - -’ and ‘. . .’, ‘- - -’ is directly derivable’ [§ 9]) 
is necessary; that it would be wrong to change it arbitrarily, e.g., into R 1*: ‘from ‘wenn . 
.., so - - -’ and ‘nicht . . .’, ‘- - -’ is directly derivable’. What they presumably mean is that 
the rule R 1* is incorrect on the basis of 
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the presupposed “meaning” of the signs ‘wenn’, ‘so’, and ‘nicht’. Thus they have in mind 
the procedure which we called the first method (§ 11): we begin by establishing the 
semantical rules SL or assume them as given—obviously this is meant by saying that 
the “meaning” is given—and then we ask what rules of deduction, i.e., syntactical rules 
of transformation, would be in accordance with the presupposed semantical rules. In 
this order of procedure, we are, as we have seen, indeed bound in the choice of the rules 
in all essential respects. Thus we come to a reconciliation of the opposing views. And it 
seems to me that an agreement should easily be attainable in the other direction as 
well. The anti-conventionalists would certainly not deny that the rule R 1* can also be 
chosen and can lead to correct results, provided we interpret the logical signs in a 
different way (in the example given, we could interpret ‘wenn ... , so ---’, e.g., as ‘. . . or - 
- -’). 
     The result of our discussion is the following: logic or the rules of deduction (in our 
terminology, the syntactical rules of transformation) can be chosen arbitrarily and 
hence are conventional if they are taken as the basis of the construction of the language 
system and if the interpretation of the system is later superimposed. On the other hand, 
a system of logic is not a matter of choice, but either right or wrong, if an interpretation 
of the logical signs is given in advance. But even here, conventions are of fundamental 
importance; for the basis on which logic is constructed, namely, the interpretation of the 
logical signs (e.g., by a determination of truth conditions) can be freely chosen. 
     It is important to be aware of the conventional components in the construction of a 
language system. This view leads to an unprejudiced investigation of the various forms 
of new logical systems which differ more or less from the customary form (e.g., the 
intuitionist logic constructed by Brouwer and Heyting, the systems of logic of modalities 
as constructed by Lewis and others, the systems of plurivalued logic as constructed by 
Lukasiewicz and Tarski, etc.), and it encourages the construction of further new forms. 
The task is not to decide which of the different systems is “the right logic” but to 
examine their formal 
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properties and the possibilities for their interpretation and application in science. It 
might be that a system deviating from the ordinary form will turn out to be useful as a 
basis for the language of science. 
 
III. Calculi and Their Application in Empirical Science 
 
13. Elementary Logical Calculi 
 
     For any given calculus there are, in general, many different possibilities of a true 
interpretation. The practical situation, however, is such that for almost every calculus 
which is actually interpreted and applied in science, there is a certain interpretation or 
a certain kind of interpretation used in the great majority of cases of its practical 
application. This we will call the customary interpretation (or kind of interpretation) for 
the calculus. In what follows we shall discuss some calculi and their application. We 
classify them according to their customary interpretation in this way: logical calculi (in 
the narrower sense), mathematical, geometrical, and (other) physical calculi. The 
customary interpretation of the logical and mathematical calculi is a logical, L-
determinate interpretation; that of the geometrical and physical calculi is descriptive 
and factual. The mathematical calculi are a special kind of logical calculi, dis-
tinguished merely by their greater complexity. The geometrical calculi are a special 
kind of physical calculi. This classification is rather rough and is only meant to serve a 
temporary, practical purpose. 
     To the logical calculi (in the narrower sense) belong most of the calculi of elementary 
structure used in symbolic logic, above all, the so-called sentential calculus and the so-
called lower functional calculus. The sentential calculus has approximately the 
structure of B-C with F 4 and PS 4 omitted. The customary interpretation corresponds 
to the rules B-SL 2, 3. The form mostly used contains, however, only those signs which 
are logical in the customary interpretation, corresponding to the English words ‘not’, ‘if’, 
‘or’, ‘and’, and the like, and sentential variables. The lower functional calculus (or 
predicate calculus) 
 
171 



contains the sentential calculus and, in addition, general sentences with individual 
variables, namely, universal sentences (interpretation: ‘for every x, . . .’) and existential 
sentences (interpretation: ‘there is an x such that . . .’). Within symbolic logic, this 
calculus too is mostly used without descriptive signs but with three kinds of variables: 
sentential variables, individual variables (as in B-C), and predicate variables. The cus-
tomary interpretation is a logical one, as given by B-SL. In the case of the logical 
calculi here explained the customary interpretation is the only one which is ever used 
practically. (If the calculi are supplemented in a certain way, it is even the only 
possible true interpretation.) Therefore, we shall call it the normal interpretation of the 
logical calculus. 
     If a calculus C is constructed with the intention of using it mostly or exclusively 
with a certain interpretation S, it may often seem convenient to use as signs of C not 
artificial symbols but those words of the word-language whose ordinary use is 
approximately in accord with the interpretation intended (a word with exact 
accordance will usually not be available). Then we have in C the same sentences as in 
the interpreted language S, which is perhaps to be applied in science; “the same 
sentences” as to the wording, but in C they are formulas, while they are propositions 
in S. This procedure is mostly chosen in geometrical and other physical calculi (for 
examples see end of § 17, beginning of § 22). 
     In what follows we shall do the same for the logical calculus (where, for good 
reasons, it is usually not done). Thus, instead of symbols, we shall use the words ‘not’, 
‘if’, etc. It has been shown (by H. M. Sheffer) that two primitive signs are sufficient, 
namely, ‘excludes’ (to be interpreted later) and ‘for every’. It is not necessary to take as 
many primitive signs as we did in B-C, corresponding to ‘not’, ‘if-then’, ‘for every’. The 
other logical signs of the logical calculus can be introduced by definitions. The 
primitive signs mentioned and all signs defined with their help are called logical 
constants. We shall use three kinds of variables: sentential variables (‘p’, ‘q’, etc.), 
individual variables (‘x’, ‘y’, etc., as in B-C), and predicate variables (‘F’, 
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‘G’, etc.). For a sentential variable a sentence may be substituted, for an individual 
variable an individual name, for a predicate variable a predicate, and for ‘Fx’ an 
expression of sentential form containing the variable ‘x’. 
     A definition is a rule of a calculus which serves for introducing a new sign. In 
simpler cases the rule states that the new sign is to be taken as an abbreviation for a 
certain expression consisting only of old signs (i.e., primitive signs or signs defined 
earlier). In other cases the rule states that sentences containing the new sign and old 
signs are to be taken as abbreviations for certain sentences containing old signs only. 
Rules of the first kind are called explicit definitions (e.g., Defs. 11, 12, and 13 in § 
14); those of the second kind are called definitions in use (e.g., Defs. 1-7, below); we 
shall use still another kind of definition, the so-called recursive definitions frequently 
found in arithmetic (e.g., Defs. 14 and 15 in § 14). The definitions in a calculus are, 
so to speak, additional rules of transformation, either primitive sentences or rules of 
inference, according to their formulation; they are added in order to provide shorter 
expressions. If a calculus C contains definitions and the interpretation S contains 
semantical rules for the primitive signs of C, the interpretation of the defined signs 
need not be given explicitly. The definitions, together with those rules of S, determine 
the truth conditions of the sentences containing the defined signs and thereby the 
interpretation of these signs. 
     We shall formulate the definitions here in this form: ‘ ‘...’ for ‘- - -’ ’. This means 
that ‘. . .’ is to serve as an abbreviation for ‘- - -’ , i.e., that ‘. . .’ and ‘- - -’, and likewise 
two expressions constructed out of ‘. . .’ and ‘---’ by the same substitutions, may 
always be replaced by each other. In this calculus, we take as simplest form of 
sentences in the beginning ‘Fx’ (e.g., ‘city Chicago’ instead of ‘Chicago is a city’); the 
usual form with ‘is a’ is introduced later by Definition 7. 
     The expressions included in parentheses serve merely to facilitate understanding; 
in the exact formulation they have to be omitted. The brackets and commas, however, 
are essential; they indicate the structure of the sentence (cf. § 5). 
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Def. 1. ‘not p’ for ‘p excludes p’. 
Def. 2. ‘p or q’ for ‘not p, excludes, not q’.  
Def. 3. ‘p and q’ for ‘not [p excludes q]’.  
Def. 4. ‘if p then q’ for ‘not p, or q’. 
Def. 5. ‘p if and only if q’ for ‘[if p then q] and [if q then p]’.  
Def. 6. ‘for some x, Fx’ for ‘not [for every x, not Fx]’. 
Def. 7. ‘x is an F for ‘Fx’. 
 
     The rules of transformation of the sentential calculus and the functional calculus 
will not be given here. They are not essentially different from those of B-C. It has been 
shown (by J. Nicod) that, if ‘excludes’ is taken as primitive sign, one primitive sentence 
is sufficient for the sentential calculus. For the lower functional calculus we have to add 
one more primitive sentence for ‘for every’, analogous to PS 4 in B-C. 

The normal interpretation for the logical calculus is a logical one. Therefore, if 
interpreted, it is, so to speak, a skeleton of a language rather than a language proper, 
i.e., one capable of describing facts. It becomes a factual language only if supplemented 
by descriptive signs. These are then interpreted by SD-rules, and the logical constants 
by SL-rules. As SL-rules for the lower functional calculus we can state the following two 
rules for the two primitive signs. For the sentential calculus the first rule suffices. 
 
1. A sentence of the form ‘. . . excludes - - -’ is true if and only if not both ‘. . .’ and ‘- - -’ 

are true. 
2. A sentence of the form `for every . . . , - - -’ is true if and only if all individuals have 

the property designated by `--=with respect to the variable’. . .’. (The individuals are 
the objects of the domain described, which is to be determined by an SD-rule.) 

 
     The interpretation of the defined signs ‘not’, etc., is determined by rule (1) and 
Definition 1, etc. The interpretation of ‘not’ and ‘if-then’ is easily seen to be the same as 
that of ‘nicht’, and ‘wenn—so’ in B-SL. (The truth conditions here given by rule [1] and 
Definitions 1-5 are the same as those which in symbolic logic usually are stated with 
the help of truth-value tables for the corresponding symbols, the so-called connectives.) 
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14. Higher Logical Calculi 
 

The lower functional calculus can be enlarged to the higher functional calculus by 
the addition of predicates of higher levels. The predicates occurring in the lower 
functional calculus are now called predicates of first level; they designate properties of 
first level, i.e.; properties of individuals. Now we introduce predicates of second level, 
which designate properties of second level, i.e., properties of properties of first level; 
predicates of third level designating properties of third level, etc. Further, new kinds of 
variables for these predicates of higher levels are introduced. (In the subsequent 
definitions we shall use as variables for predicates of second level ‘m’ and ‘n’, for 
predicates of third level ‘K’.) Expressions of the form ‘for every . . .’, and analogously 
‘for some . . .’ (Def. 6), are now admitted not only for individual variables but also for 
predicate variables of any level. Some new rules of transformation for these new kinds 
of variables have to be added. We shall not give them here. Some of them are still 
controversial. 
     The normal interpretation of the higher functional calculus can again be given by two 
semantical rules. Rule (1) is kept, as the sentential calculus remains the basis for the 
higher functional calculus. Rule (2) must be replaced by the subsequent rule (2*), 
because of the extended use of ‘for every’. For individual variables, (2*) is in accordance 
with (2). (It may be remarked that there are some controversies and unsolved problems 
concerning the properties of higher levels.) 
 
2*. A sentence of the form ‘for every . . . , ---’ is true if and only if all entities belonging to 
the range of the variable ‘. . .’ have the property designated by ‘- - -’ with respect to ‘. . .’. 
(To the range of an individual variable belong all individuals, to the range of a predicate 
variable of level r belong all properties of level r.) 
 
     To the definitions which we stated in the lower functional calculus, new ones can 
now be added which make use of predicates and variables of higher levels. We shall first 
give some 
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rough explanations of the new expressions and later the definitions. First, identity can 
be defined; ‘x = y’ is to say that x is the same object as y; this is defined by ‘x and y 
have all properties in common’ (Def. 8). Then we shall define the concept of a cardinal 
number of a property, restricting ourselves, for the sake of simplicity, to finite cardinal 
numbers. ‘F is an m’ is to say that the property F has the cardinal number m; i.e., that 
there are m objects with the property F. This concept is defined by a recursive 
definition (for finite cardinals only). ‘F is a 0’ is defined as saying that no object has the 
property F (Def. 9a). Then ‘F is an m+’, where ‘m+’ designates the next cardinal number 
greater than m, i.e., m + 1, is defined in the following way in terms of ‘m’: there is a 
property G with the cardinal number m such that all objects which have the property 
G, and, in addition, some object x, but no other objects, have the property F (Def. 9b). 
A property K of numbers is called hereditary if, whenever a number m is a K, m + 1 is 
also a K. Then ‘m is a finite cardinal number’ can be defined (as Frege has shown) in 
this way: m has all hereditary properties of 0 (Def. 10). The numerals ‘1’, ‘2 ‘, etc., can 
easily be defined by ‘0+’, ‘1+’, etc. (Def. 11, etc.). The sum (‘m+n’) and the product (‘m X 
n’) can be defined by recursive definitions, as is customary in arithmetic (Defs. 14 and 
15). 
 
Def. 8. ‘x=y’ for ‘for every (property) F, if x is an F then y is an F’. Analogously for 

any higher level. 
Def. 9a. ‘F is a 0’ for ‘not [for some x, x is an F]’. 

 b. ‘F is an m+’ for ‘for some G, for some x, for every y [[y is an F if and only if [y 
      is a G or y=x]] and G is an m and, not x is a G]. 

Def. 10. ‘m is a finite cardinal number’ for ‘for every (property of numbers) K, if [0 is 
              a K and, for every n [if n is a K then n+ is a K]] then m is a K’. 
Def. 11. ‘1’ for ‘0+’. 
Def. 12. ‘2’ for ‘1+’. 
Def. 13. ‘3’ for ‘2+’. 

Analogously for any further numeral.  
Def. 14a. ‘m+0’ for ‘m’. 

   b. ‘m+n+’ for ‘[m+n]+’.  
Def. 15a. ‘m X 0’ for ‘0’. 

   b. ‘m X n+’ for ‘[m X n] + m.’ 
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      For the reasons mentioned before we have used, instead of arbitrary symbols, 
words whose ordinary use agrees approximately with the interpretation intended. It is, 
however, to be noticed that their exact interpretation in our language system is not to 
be derived from their ordinary use but from their definition in connection with the 
semantical rules (1) and (2*). 
     We see that it is possible to define within the logical calculus signs for numbers 
and arithmetical operations. It can further be shown that all theorems of ordinary 
arithmetic are provable in this calculus, if suitable rules of transformation are estab-
lished. 

 
The method of constructing a calculus of arithmetic within a logical calculus was first 

found by Frege (1884) and was then developed by Russell (1903) and Whitehead (1910). 
(Defs. 9-15 are, in their essential features, in accordance with Frege and Russell, but make 
use of some simplifications due to the recent development of symbolic logic.) We shall later 
outline another form of an arithmetical calculus (§ 17) and discuss the problem of mathe-
matics more in detail (§ 20). 
 
15. Application of Logical Calculi 
 

The chief function of a logical calculus in its application to science is not to furnish 
logical theorems, i.e., L-true sentences, but to guide the deduction of factual 
conclusions from factual premisses. (In most presentations of logical systems the first 
point, the proofs, is overemphasized; the second, the derivations, neglected.) 

For the following discussions we may make a rough distinction between singular 
and universal sentences among factual sentences. By a singular sentence of the 
language of science or of an interpreted calculus we mean a sentence concerning one 
or several things (or events or space-time-points), describing, e.g., a property of a thing 
or a relation between several things. By a universal sentence we mean a sentence 
concerning all objects of the field in question, e.g., all things or all space-time-points. 
A report about a certain event or a description of a certain landscape consists of 
singular sentences; on the other hand, the so-called laws of nature in any field 
(physics, biology, psychology, etc.) are universal. The simplest kind of an application of 
the 
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logical calculus to factual sentences is the derivation of a singular sentence from other 
singular sentences (see, e.g., the second example of a derivation in B-C, end of § 9). Of 
greater practical importance is the deduction of a singular sentence from premisses 
which include both singular and universal sentences. We are involved in this kind of a 
deduction if we explain a known fact or if we predict an unknown fact. The form of the 
deduction is the same for these two cases. We have had this form in the first example of 
a derivation in B-C (§ 9); we find it again in the following example, which contains, 
besides signs of the logical calculus, some descriptive signs. In an application of the 
logical calculus, some descriptive signs have to be introduced as primitive; others may 
then be defined on their basis. SD-rules must then be laid down in order to establish 
the interpretation intended by the scientist. Premiss (3) is the law of thermic expansion 
in qualitative formulation. In later examples we shall apply the same law in quantitative 
formulation (D1 in § 19; D2 in § 23). 
 
Premisses:   1. c is an iron rod.  
                    2. c is now heated. 

     3. for every x, if x is an iron rod and x is heated, x expands.  
Conclusion:  4. c now expands. 
 
     A deduction of this form can occur in two practically quite different kinds of 
situations. In the first case we may have found (4) by observation and ask the physicist 
to explain the fact observed. He gives the explanation by referring to other facts (1) and 
(2) and a law (3). In the second case we may have found by observation the facts (1) and 
(2) but not (4). Here the deduction with the help of the law (3) supplies the prediction (4), 
which may then be tested by further observations. 

The example given shows only a very short deduction, still more abbreviated by the 
omission of the intermediate steps between premisses and conclusion. But a less trivial 
deduction consisting of many steps of inference has fundamentally the same nature. In 
practice a deduction in science is usually made by a few jumps instead of many steps. It 
would, of course, be 
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practically impossible to give each deduction which occurs the form of a complete 
derivation in the logical calculus, i.e., to dissolve it into single steps of such a kind that 
each step is the application of one of the rules of transformation of the calculus, 
including the definitions. An ordinary reasoning of a few seconds would then take days. 
But it is essential that this dissolution is theoretically possible and practically possible 
for any small part of the process. Any critical point can thus be put under the logical 
microscope and enlarged to the degree desired. In consequence of this, a scientific 
controversy can be split up into two fundamentally different components, a factual and 
a logical (including here the mathematical). With respect to the logical component the 
opponents can come to an agreement only by first agreeing upon the rules of the logical 
calculus to be applied and the L-semantical rules for its interpretation, and by then 
applying these rules, disregarding the interpretation of the descriptive signs. The 
discussion, of course, need not concern the whole calculus; it will be sufficient to 
expand the critical part of the controversial deduction to the degree required by the 
situation. The critical point will usually not be within the elementary part of the logical 
calculus (to which all examples of derivations discussed above belong), but to a more 
complex calculus, e.g., the higher, mathematical part of the logical calculus, or a 
specific mathematical calculus, or a physical calculus. This will be discussed later; then 
the advantage of the formal procedure will become more manifest. 
 
16. General Remarks about Nonlogical Calculi (Axiom Systems) 
 
     In later sections we shall discuss certain other calculi which are applied in science. 
The logical calculus explained previously is distinguished from them by the fact that it 
serves as their basis. Each of the nonlogical calculi to be explained later consists, 
strictly speaking, of two parts: a logical basic calculus and a specific calculus added to 
it. The basic calculus could be approximately the same for all those calculi; it could 
consist of the sentential calculus and a smaller or greater part of the functional calculus 
as previously outlined. The specific partial calculus 



does not usually contain additional rules of inference but only additional primitive 
sentences, called axioms. As the basic calculus is essentially the same for all the 
different specific calculi, it is customary not to mention it at all but to describe only the 
specific part of the calculus. What usually is called an axiom system is thus the second 
part of a calculus whose character as a part is usually not noticed. For any of the 
mathematical and physical axiom systems in their ordinary form it is necessary to add a 
logical basic calculus. Without its help it would not be possible to prove any theorem of 
the system or to carry out any deduction by use of the system. Not only is a basic logical 
calculus tacitly presupposed in the customary formulation of an axiom system but so 
also is a special interpretation of the logical calculus, namely, that which we called the 
normal interpretation. An axiom system contains, besides the logical constants, other 
constants which we may call its specific or axiomatic constants. Some of them are taken 
as primitive; others may be defined. The definitions lead back to the primitive specific 
signs and logical signs. An interpretation of an axiom system is given by semantical 
rules for some of the specific signs, since for the logical signs the normal interpretation 
is presupposed. If semantical rules for the primitive specific signs are given, the 
interpretation of the defined specific signs is indirectly determined by these rules 
together with the definitions. But it is also possible—and sometimes convenient, as we 
shall see—to give the interpretation by laying down semantical rules for another 
suitable selection of specific signs, not including the primitive signs. If all specific signs 
are interpreted as logical signs, the interpretation is a logical and L-determinate one; 
otherwise it is a descriptive one. (Every logical interpretation is L-determinate; the 
converse does not always hold.) 
 
17. An Elementary Mathematical Calculus 
 
     We take here as mathematical calculi those whose customary interpretation is 
mathematical, i.e., in terms of numbers and functions of numbers. As an example, we 
shall give the classical axiom system of Peano for (elementary) arithmetic. It is usual- 
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ly called an axiom system of arithmetic because in its customary interpretation it is 
interpreted as a theory of natural numbers, as we shall see. This interpretation is, 
however, by no means the only important one. The logical basic calculus presupposed 
has to include the lower functional calculus and some part of the higher, up to 
expressions ‘for every F’ for predicate variables of first level and Definition 8 for ‘=’ (§ 14). 
The specific primitive signs are ‘b’, ‘N’, ‘ ′ ’. (The following axioms, of course, are, within 
the calculus, independent of any interpretation. Nevertheless, the reader who is not 
familiar with them will find it easier to conceive their form and function by looking at 
their interpretation given below.) 
 
Axiom System of Peano:  
P 1. b is an N. 
P 2. For every x, if x is an N, then x′ is an N. 
P 3. For every x, y, if [x is an N and y is an N and x′ = y′ ] then x=y. 
P 4. For every x, if x is an N, then, not b=x ′. 
P 5. For every F, if [b is an F and, for every x [if x is an F then x′ is an F]] then [for every 

y, if y is an N then y is an F]. 
    (Briefly: if F is any property of b which is hereditary [from x to x′ ] then all N 
are F.) 

      
     It is easy to see that any number of true interpretations of this calculus can be 
constructed. We have only to choose any infinite class, to select one of its elements as 
the beginning member of a sequence and to state a rule determining for any given 
member of the sequence its immediate successor. (An order of elements of this kind is 
called a progression.) Then we interpret in this way: ‘b’ designates the beginning 
member of the sequence; if ‘. . .’ designates a member of the sequence then ‘... ′ ’ 
designates its immediate successor; ‘N’ designates the class of all members of the 
sequence that can be reached from the beginning member in a finite number of steps. It 
can easily be shown that in any interpretation of this kind the five axioms become true. 
 
     Example: ‘b’ designates August 14, 1938; if ‘. ..’ designates a day ‘...′’ designates the 
following day; ‘N’ designates the class (supposed to be infinite) of all days from August 14, 
1938, on. This interpretation of the Peano system is descriptive, while the customary one is 
logical. 
 
181 



The customary interpretation of the Peano system may first be formulated in this way: ‘b’ 
designates the cardinal number 0; if ‘. . .’ designates a cardinal number n, then ‘...′’ 
designates the next one, i.e., n + 1; ‘N ’ designates the class of finite cardinal numbers. 
Hence in this interpretation the system concerns the progression of finite cardinal 
numbers, ordered according to magnitude. Against the given semantical rule ‘ ‘b’ 
designates the cardinal number 0’ perhaps the objection will be raised that the cardinal 
number 0 is not an object to which we could point, as to my desk. This remark is right; 
but it does not follow that the rule is incorrect. We shall give the interpretation in 
another way, with the help of a translation. 
     In the investigation of calculi the procedure of translation of one calculus into another 
is of great importance. A system of rules of translation of the calculus K2 into the 
calculus K1 determines for each primitive sign of K2 an expression of K1 called its 
correlated expression, and for each kind of variable in K2 its correlated kind of variable 
in K1. The rules must be such that the result of translating any sentence in K2 is always 
a sentence in K1. The translation is called C-true if the following three conditions are 
fulfilled: (1) every C-true sentence in K2 becomes, if translated, C-true in K1; (2) every C-
false sentence in K2 becomes C-false in K1; (3) if the relation of C-implication in K2 holds 
among some sentences, then the relation of C-implication in K1 holds among those into 
which they are translated. If we have an interpretation I1, for the calculus K1, then the 
translation of K2 into K1 determines in connection with I1 an interpretation I2 for K2. I2 
may be called a secondary interpretation. If the translation is C-true and the (primary) 
interpretation I1 is true, I2 is also true. 
     We shall now state rules of translation for the Peano system into the higher 
functional calculus and thereby give a secondary interpretation for that system. The 
logical basic calculus is translated into itself; thus we have to state the correlation only 
for the specific primitive signs. As correlates for ‘b’, ‘ ′ ’, ‘N’, we take ‘0’, ‘+’, ‘finite cardinal 
number’; for any variable a variable 
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two levels higher. Accordingly, the five axioms are translated into the following 
sentences of the logical calculus. 
 
P′ 1. 0 is a finite cardinal number. 
P  2. For every m, if m is a finite cardinal number, then m+ is a finite cardinal number. 
P′ 3. For every m, n, if [m is a finite cardinal number and n is a finite cardinal number 

and m+ = n+] then m = n. 
P 4. For every m, if m is a finite cardinal number, then, not 0 = m+. 
P 5. For every K, if [0 is a K and, for every m [if m is a K then m+ is a K]] then [for every 
       n, if n is a finite cardinal number then n is a K]. 
 
     The customary interpretation of the Peano system can now be formulated in another 
way. This interpretation consists of the given translation together with the normal 
interpretation of the higher functional calculus up to the third level. (P ′ 5 contains a 
variable of this level.) 
     The whole interpretation is thus built up in the following way. We have two L-
semantical rules for the primitive signs ‘excludes’ and ‘for every’ of the logical calculus, 
indicating truth conditions (rules [1] and [2*] in § 14). Then we have a chain of 
definitions leading to Definitions 9a and b and 11 for ‘0’, ‘+’, and ‘finite cardinal number’ 
(§ 14). Finally we have rules of translation which correlate these defined signs of the 
logical calculus to the primitive signs ‘b’, ‘ ′ ’, and ‘N’ of the Peano system. 
     If we assume that the normal interpretation of the logical calculus is true, the given 
secondary interpretation for the Peano system is shown to be true by showing that the 
correlates of the axioms are C-true. And it can indeed be shown that the sentences P ′ 1-
5 are provable in the higher functional calculus, provided suitable rules of 
transformation are established. As the normal interpretation of the logical calculus is 
logical and L-true, the given interpretation of the Peano system is also logical and L-
true. 
     We can now define signs within the Peano axiom system which correspond to the 
signs ‘0’, ‘1’, etc., ‘+’, etc., of the logical calculus. For greater clarity we distinguish them 
by the subscript ‘P’. (In an arithmetical calculus, however—whether in the form of 
Peano’s or some other—one ordinarily does not use 
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arbitrary symbols like ‘b’ or ‘0P’, ‘b′’ or ‘1P’, ‘+P ’, etc., but, because of the customary 
interpretation, the corresponding signs of the ordinary language ‘0’, ‘1’, ‘+’, etc.) 
 
Def. P1. ‘0P’ for ‘b’. 
Def. P2. ‘1P’ for ‘b ′’.  
Def. P3. ‘2P’ for ‘b ′’.  
     Etc. 
Def. P 4a. ‘x + P 0P’ for ‘x’. 

  b. ‘x + P y′’ for ‘[x + Py]′’. 
Def. P 5a. ‘x X P0P’ for ‘0P. 

  b. ‘x X Py′’ for ‘[ x X Py] + Px’. 
 

Thus the natural numbers and functions of them can be defined both in the logical 
calculus and in a specific arithmetical calculus, e.g., that of Peano. And the theorems of 
ordinary arithmetic are provable in both calculi. (Strictly speaking, they are not the 
same theorems in the different calculi, but corresponding theorems; if, however, the 
same signs are used—and, as mentioned before, this is convenient and usual—then 
corresponding theorems consist even of the same signs.) 

 
18. Higher Mathematical Calculi 
 
     On the basis of a calculus of the arithmetic of natural numbers the whole edifice of 
classical mathematics can be erected without the use of new primitive signs. Whether a 
specific calculus of arithmetic or the logical calculus is taken as a basis does not make 
an essential difference, once the translation of the first into the second is established. It 
is not possible to outline here the construction of mathematics; we can make only a few 
remarks. There are many different possibilities for the introduction of further kinds of 
numbers. A simple method is the following one. The integers (positive and negative) are 
defined as pairs of natural numbers, the fractions as pairs of integers, the real numbers 
as classes either of integers or of fractions, the complex numbers as pairs of real 
numbers. Another way of introducing any one of these kinds of numbers consists in 
constructing a new specific calculus in which the numbers of that kind are taken as 
individuals, like the natural numbers in the Peano calculus. 
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This has been done especially for the real numbers. A specific calculus of this kind can 
be translated in one way or another into a more elementary specific calculus or into the 
logical calculus. (Example: The individual expressions of a specific calculus of real 
numbers may be translated into expressions for classes of integers or of fractions either 
in the Peano calculus or in the logical calculus.) For each of the kinds of numbers, 
functions (summation, multiplication, etc.) can be defined. Further, the concept of limit 
can be defined, and with its help the fundamental concepts of the infinitesimal calculus, 
the differential coefficient, and the integral. 

If a mathematical calculus is based on the Peano calculus by the use of definitions, 
then its customary interpretation is determined by that of the latter. If, on the other 
hand, a mathematical calculus is constructed as an independent specific calculus, we 
can give an interpretation for it by translating it either into an enlarged Peano system 
or into an enlarged logical calculus (as indicated above for a calculus of real numbers.) 
Here we can scarcely speak of “the” customary interpretation, but only of the set of 
customary interpretations. Their forms may differ widely from one another; but they 
have in common the character of logical interpretations. If the interpretation is given 
by a translation either into the Peano system with reference to its customary 
interpretation or by a translation into the logical calculus with reference to its normal 
interpretation, this character is obvious. In a customary interpretation of a mathe-
matical calculus every sign in it is interpreted as a logical sign, and hence every 
sentence consists only of logical signs and is therefore L-determinate (see § 7). 
     If we choose the form of the construction of mathematics within the logical calculus, 
we do not even need a translation; the interpretation is simply the normal interpretation 
of the logical calculus. In this case every mathematical sign is defined on the basis of 
the two primitive signs of the logical calculus, and hence every mathematical sentence is 
an abbreviation for a sentence containing, besides variables, only those two signs. In 
most cases, though, this sentence would be so long that it would 
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not be possible to write it down within a lifetime. Therefore, the abbreviations 
introduced in the construction of mathematics are not only convenient but practically 
indispensable. 
 
19. Application of Mathematical Calculi 
 
     The application of mathematical calculi in empirical science is not essentially 
different from that of logical calculi. Since mathematical sentences are, in the 
customary interpretation, L-determinate, they cannot have factual content; they do not 
convey information about facts which would have to be taken into consideration 
besides those described in empirical science. The function of mathematics for 
empirical science consists in providing, first, forms of expression shorter and more 
efficient than non-mathematical linguistic forms and, second, modes of logical 
deduction shorter and more efficient than those of elementary logic. 

Mathematical calculi with their customary interpretation are distinguished from 
elementary logical calculi chiefly by the occurrence of numerical expressions. There are 
two procedures in empirical science which lead to the application of numerical ex-
pressions: counting and measurement (cf. Lenzen, Vol. I, No. 5, §§ 4 and 5). Counting is 
ascertaining the cardinal number of a class of single, separate things or of events. 
Measuring is ascertaining the value of a magnitude for a certain thing or place at a 
certain time. For each physical magnitude, e.g., length, weight, temperature, electric 
field, etc., there are one or several methods of measurement. The result of a 
measurement is a fraction or a real number. (Irrational real numbers can also occur, 
but only if, besides direct measurement, calculation is applied.) If a deduction has to do 
with results of counting, we may apply, besides an elementary logical calculus, a 
calculus of elementary arithmetic. If it has to do with results of measurements, we may 
apply a calculus of analysis, i.e., of real numbers. 
     Let us look at a very simple example of a logico-mathematical deduction. We apply a 
certain part of the higher functional calculus and an arithmetical calculus. We 
presuppose for the following derivation that in this arithmetical calculus the sentence 
 
186 



‘3+6=9’ (7) has been proved earlier. Whether we take the arithmetical calculus in the 
form of a part of the higher functional calculus (as in § 14) or in the form of a specific 
calculus (as in § 17) does not make any essential difference; in both cases sentence (7) 
is provable. In order to keep in closer contact with ordinary language, we use the 
following definition: ‘there are m F’s’ for ‘F is an m’; further, we write ‘n.i.t.r.’ for ‘now in 
this room’. 
 
Premisses:  1. There are 3 students n.i.t.r.  

2. There are 6 girls n.i.t.r. 
3. For every x [x is a person n.i.t.r. if and only if [x is a student 
    n.i.t.r. or x is a girl n.i.t.r.]]. 
4. For every x [if x is a girl n.i.t.r., then, not x is a student 
    n.i.t.r.]. 

 
Defs. 1-9, 14   5. For every F, G, H, m, n [if [m and n are finite cardinal 
                                  numbers and G is an m and H is an n and for every x [x is an 
       F if and only if, x is a G or x is an H] and for every y (if y is a 
       G then, not y is an H]] then F is an m + n]. 

   [This says that, if a class F is divided into two parts, G and 
H, the cardinal number of F is the sum of the cardinal 
numbers of G and H.] 

 
(1)(2)(3)(4)(5)  6. There are 3+6 persons n.i.t.r. 
 
Arithmet. theorem: 7. 3+6=9. 
 
(6)(7) Conclusion: 8. There are 9 persons n.i.t.r. 
 
     The premisses of this derivation describe some facts empirically established by 
observation (including counting). The conclusion is also a factual sentence; but its 
content, the amount of factual information it conveys, does not go beyond that of the 
premisses. We have discussed earlier (at the end of § 9) the application of proved 
theorems in a derivation; here (5) and (7) are examples of this method. These sentences 
do not contribute to the factual content of the conclusion; they merely help in 
transforming the premisses into the conclusion. To say that the result (8) is “calculated” 
from the data (1)-(4), means just this: it is obtained by a formal procedure involving a 
mathematical calculus. The effect of the application of a mathemati- 
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cal calculus is always, as in this example, the possibility of presenting in a shorter and 
more easily apprehensible way facts already known. 
     Here an objection will perhaps be raised. That the application of mathematics 
consists merely in a transformation of the premisses without adding anything to what 
they say about the facts, may be true in trivial cases like the example given. If, 
however, we predict, with the help of mathematics, a future event, do we not come to a 
new factual content? Let us discuss an example of a derivation of this kind. The 
derivation—called D1— leads to the prediction of a thermic expansion as in a former 
example (§ 15), but now with quantitative determinations. The premisses of D1 relate 
the results of measurements of the temperature of an iron rod at two time-points and 
its length at the first; further, the law of thermic expansion is one of the premisses, 
but now in quantitative formulation; and, finally, there is included a statement of the 
coefficient of thermic expansion. The conclusion states the amount of the expansion of 
the rod. We shall not represent D1 here in detail because a similar derivation D2 will be 
discussed later (§ 23) ; the premisses of D1 are not only the sentences (1)-(5) of D2 but 
also (6) and (10); the conclusion in D1 is the same as in D2. In D1 a calculus of real 
numbers (or at least of fractions) is applied. The conclusion describes a fact which has 
not yet been observed but could be tested by observations. Now, the question is 
whether the derivation D1 does not lead, with the help of a mathematical calculus, to a 
factual content beyond that of the premisses. This might seem so if we look only at the 
singular sentences among the premisses. But two laws also belong to the premisses of 
D1 (the sentences [6] and [10] of D2). They are universal; they say that certain 
regularities hold not only in the cases so far observed but at any place at any time. 
Thus, these sentences are very comprehensive. The conclusion merely restates what is 
already stated by the universal premisses for all cases and hence also for the present 
case, but now explicitly for this case. Thus, the logico-mathematical derivation merely 
evolves what is implicitly involved in the premisses. To be sure, if we state a new law 
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on the basis of certain observations, the law says much more than the observation 
sentences known; but this is not a deduction. If, on the other hand, a law is used 
within a derivation with the help of a logico-mathematical calculus, then the law must 
be among the premisses, and hence the conclusion does not say more than the 
premisses. The situation is different in the application of a physical calculus, as we 
shall see later (§ 23). 
     On the basis of the presupposed interpretation, the premisses and the conclusion 
of the derivation D1 are factual. But D1 also contains sentences which are proved in a 
logico-mathematical calculus and hence, when interpreted, are L-true, e.g., the sen-
tences which in D2 occur as (7) and (13) (§ 23). As explained before, derivations are 
immensely simplified by the method of laying down for any future use certain partial 
sequences occurring in many derivations and containing only provable sentences. 
Each sequence of this kind is a proof of its last sentence; wherever it occurs in other 
proofs or derivations it may be represented by its last element, i.e., the theorem 
proved. Thus a logical or mathematical theorem is, regarded from the point of view of 
its application in empirical science, a device or tool enabling us to make a very 
complex and long chain of applications of the rules of the calculus by one stroke, so to 
speak. The theorem is itself, even when interpreted, not a factual statement but an 
instrument facilitating operations with factual statements, namely, the deduction of a 
factual conclusion from factual premisses. The service which mathematics renders to 
empirical science consists in furnishing these instruments; the mathematician not 
only produces them for any particular case of application but keeps them in store, so 
to speak, ready for any need that may arise. 
 
     It is important to notice the distinction between ‘primitive sentence’ and ‘premiss’. A 
primitive sentence of a calculus C (no matter whether it belongs to the basic calculus or is one 
of the specific axioms, and no matter whether, in an interpretation, it becomes L-true or 
factual) is stated as C-true by the rules of the calculus C. Therefore, it has to become a true 
proposition in any adequate (i.e., true) interpretation of C. The premisses of a derivation D in C, 
on the other hand, need not be C-true in C or true in a true interpretation 
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of C. It is merely shown by D that a certain other sentence (the conclusion of D) is derivable 
from the premisses of D and must therefore, in a true interpretation, be true if the premisses 
happen to be true; but whether this is the case is not determined by D. 
 
20. The Controversies over “Foundations” of Mathematics 
 
     There have been many discussions in modern times about the nature of 
mathematics in general and of the various kinds of numbers, and, further, about the 
distinction and relationship between knowledge in mathematics and knowledge in 
empirical science. In the course of the last century, mathematicians found that all 
mathematical signs can be defined on the basis of the signs of the theory of natural 
numbers. 

 
The fundamental concepts of the infinitesimal calculus (differential coefficient and integral) 

were defined by Cauchy and Weierstrass in terms of the calculus of real numbers, with the 
help of the concept ‘limit (of a sequence of real numbers)’. Thereby they succeeded in entirely 
eliminating the dubious concept of “infinitely small magnitudes” and thus giving the 
infinitesimal calculus a rigorous basis in the theory of real numbers. The next step was made 
by Frege and Russell, who defined real numbers as classes of natural numbers or of fractions. 
(Fractions can easily be defined as pairs of natural numbers.) 

 
     The reduction mentioned was entirely inside of mathematics. Therefore, it left the 
more general and fundamental problems unanswered. These have been discussed 
especially during the last fifty years, usually under the heading “foundations of 
mathematics”. Among the different doctrines developed in this field, three are 
outstanding and most often discussed; they are known as logicism, formalism, and 
intuitionism. We will indicate briefly some characteristic features of the three 
movements. Logicism was founded by Frege and developed by Russell and 
Whitehead. Its chief thesis is that mathematics is a branch of logic. This thesis was 
demonstrated by constructing a system for the whole of classical mathematics within 
a logical calculus (see § 14 and some remarks in § 18). Truth conditions for the 
primitive signs of the logical calculus were given; thereby an interpretation for the 
whole mathematical system was determined. In this interpretation all mathematical 
signs became logical signs, all mathematical theorems L-true propositions. 
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Formalism, founded by Hilbert and Bernays, proposed, in contradistinction to 
logicism, to construct the system of classical mathematics as a mere calculus without 
regard to interpretation. The theory developed is called metamathematics; it is, in our 
terminology, a syntax of the language system of mathematics, involving no semantics. 
Hilbert’s system is a combination of a logical basic calculus with a specific 
mathematical calculus using as specific primitive signs ‘0’ and ‘ ′ ’ as did Peano’s 
system (§ 17). The controversy between the two doctrines concerning the question 
whether first to construct logic and then mathematics within logic without new 
primitive signs, or both simultaneously, has at present lost much of its former 
appearance of importance. We see today that the logico-mathematical calculus can be 
constructed in either way and that it does not make much difference which one we 
choose. If the method of logicism is chosen, constructing the system of mathematics 
as a part of the logical calculus, then by the normal interpretation of the latter we get 
an interpretation, and moreover the customary one, of the former. The formalists have 
not concerned themselves much with the question how the mathematical calculus, if 
constructed according to their method, is to be interpreted and applied in empirical 
science. As already explained (§ 17), the interpretation can be given by rules of 
translation for the specific primitive signs into the logical calculus. Another way would 
be to lay down L-semantical rules for these signs, stating the truth conditions for the 
descriptive sentences in which they occur. Formalists do not give an interpretation for 
the mathematical calculus and even seem to regard it as impossible for the 
nonelementary parts of the calculus, but they emphasize very much the need for a 
proof of the consistency for the mathematical calculus and even regard it as the chief 
task of metamathematics. There is some relation between the two questions; if a proof 
of consistency for a calculus can be given, then a true interpretation and application of 
the calculus is logically possible. So far, a proof of consistency has been given only for 
a certain part of arithmetic; the most comprehensive one has been constructed by 
Gentzen (1936). 
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     Gödel has shown (1931) that it is not possible to construct a proof for the consistency of a 
calculus C containing arithmetic, within a metalanguage possessing no other logical means 
(forms of expression and modes of deduction) than C. Hilbert’s aim was to construct the proof 
of consistency in a “finitist” metalanguage (similar to an intuitionist system, see below). At 
the present, it is not yet known whether this aim can be reached in spite of Gödel’s result. In 
any case, the concept of “finitist logic” is in need of further clarification. 
 
     The doctrine of intuitionism was originated by Brouwer (1912) and Weyl (1918) on the 
basis of earlier ideas of Kronecker and Poincaré. This doctrine rejects both the purely 
formal construction of mathematics as a calculus and the interpretation of mathematics 
as consisting of L-true sentences without factual content. Mathematics is rather 
regarded as a field of mental activities based upon “pure intuition”. A definition, a 
sentence, or a deduction is only admitted if it is formulated in “constructive” terms; that 
is to say, a reference to a mere possibility is not allowed unless we know a method of 
actualizing it. Thus, for instance, the concept of provability (in the mathematical system) 
is rejected because there is no method which would lead, for any given sentence S, 
either to a proof for S or to a proof for the negation of S. It is only allowed to call a 
sentence proved after a proof has been constructed. For similar reasons, the principle of 
the excluded middle, the indirect proof of purely existential sentences, and other 
methods are rejected. In consequence, both elementary logic and classical mathematics 
are considerably curtailed and complicated. However, the boundary between the 
admissible and the nonadmissible is not stated clearly and varies with the different 
authors. 
     Concerning mathematics as a pure calculus there are no sharp controversies. These 
arise as soon as mathematics is dealt with as a system of “knowledge”; in our 
terminology, as an interpreted system. Now, if we regard interpreted mathematics as an 
instrument of deduction within the field of empirical knowledge rather than as a system 
of information, then many of the controversial problems are recognized as being 
questions not of truth but of technical expedience. The question is: Which form of the 
mathematical system is technically most suitable for the purpose mentioned? Which 
one provides the greatest safety? 
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If we compare, e.g., the systems of classical mathematics and of intuitionistic 
mathematics, we find that the first is much simpler and technically more efficient, while 
the second is more safe from surprising occurrences, e.g., contradictions. At the present 
time, any estimation of the degree of safety of the system of classical mathematics, in 
other words, the degree of plausibility of its principles, is rather subjective. The majority 
of mathematicians seem to regard this degree as sufficiently high for all practical 
purposes and therefore prefer the application of classical mathematics to that of 
intuitionistic mathematics. The latter has not, so far as I know, been seriously applied 
in physics by anybody. 

 
The problems mentioned cannot here be discussed more in detail. Such discussion is 

planned for a later volume of this Encyclopedia. A more detailed discussion can be found in 
those of the books which deal with mathematics mentioned in the “Selected Bibliography” at 
the end of this monograph. 

 
21. Geometrical Calculi and Their Interpretations 
 
     When we referred to mathematics in the previous sections, we did not mean to 
include geometry but only the mathematics of numbers and numerical functions. 
Geometry must be dealt with separately. To be sure, the geometrical calculi, aside from 
interpretation, are not fundamentally different in their character from the other calculi 
and, moreover, are closely related to the mathematical calculi. That is the reason why 
they too have been developed by mathematicians. But the customary interpretations of 
geometrical calculi are descriptive, while those of the mathematical calculi are logical. 
     A geometrical calculus is usually constructed as an axiom system, i.e., a specific 
calculus presupposing a logical calculus (with normal interpretation). Such a calculus 
describes a structure whose elements are left undetermined as long as we do not make 
an interpretation. The geometrical calculi describe many different structures. And for 
each structure, e.g., the Euclidean, there are many different possible forms of calculi 
describing it. As an example let us consider an axiom system of Euclidean geometry. We 
choose a form having six primitive signs; three 
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for classes of individuals, ‘P1’, ‘P2’, ‘P3’, and three for relations, ‘I ’, ‘B’, ‘K’. We write 
‘I(x, y)’ for ‘the relation I holds between x and y’, and ‘B(x,y,z)’ for ‘the (triadic) 
relation B holds for x, y, z’. We will give only a few examples out of the long series of 
axioms: 
 
G1. For every x, y [if [x is a P1 and y is a P1] then, for some z [z is a P2 and I (x,z) and 

I (y, z)]]. 
G 2. For every x [if x is a P3 then, for some y [y is a P1 and, not I (y, x)]].  
G 3. For every x, y, z [if B (x,y,z) then, not B (y,x,z)]. 
G 4. For every x, y, z [if [x is a P1 and y is a P2 and z is a P3 and I (x,z) and I (y, z) 

and, not I (x,y)] then there is (exactly) 1 u such that [u is a P2 and I (x, u) and I 
(u,z) and, for every t [if I (t, u) then, not I (t, y)] ]]. (Euclidean parallel axiom.) 

 
     For a geometrical calculus there are many interpretations, and even many quite 
different and interesting interpretations, some of them logical, some descriptive. The 
customary interpretation is descriptive. It consists of a translation into the physical 
calculus (to be dealt with in the next section) together with the customary 
interpretation of the physical calculus. Rules of translation: (1) ‘P1’ is translated into 
‘point’, (2) ‘P2’ into ‘straight line’, (3) ‘P3’ into ‘plane’, (4) ‘I (x, y)’ into ‘x is lying on y’ 
(incidence), (5) ‘B (x, y, z)’ into ‘the point x is between the points y and z on a straight 
line’, (6) ‘K (x, y, u, v)’ into ‘the segment x, y is congruent with the segment u, v (i.e., 
the distance between x and y is equal to the distance between u and v)’. It is to be 
noticed that the words ‘point’, etc., are here signs of the physical calculus in its 
customary interpretation. Hence we may think of a point as a place in the space of 
nature; straight lines may be characterized by reference to light rays in a vacuum or 
to stretched threads; congruence may be characterized by referring to a method of 
measuring length, etc. Thus the specific signs of a geometrical calculus are 
interpreted as descriptive signs. (On the other hand, the specific signs of a 
mathematical calculus are interpreted as logical signs, even if they occur in 
descriptive factual sentences stating the results of counting or measuring; see, e.g., 
the logical sign ‘3’, defined by Def. 13, § 14, occurring in premiss [1], § 19.) The 
axioms and 
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theorems of a geometrical calculus are translated into descriptive, factual 
propositions of interpreted physics; they form a theory which we may call physical 
geometry, because it is a branch of physics, in contradistinction to mathematical 
geometry i.e., the geometrical calculus. As an example, the four axioms stated above 
are translated into the following sentences of the physical calculus (formulated here, 
for simplicity, in the forms of ordinary language). 
 
PG 1. For any two points there is a straight line on which they lie.  
PG 2. For any plane there is a point not lying on it. 
PG 3. If the points x, y, and z lie on a straight line and x is between y and z, then y  
         is not between x and z. 
PG 4. If the point x and the line y lie in the plane z, but x not on y, then there is 

one and only one line a in the plane z such that x lies on u and no point is 
both on u and y (hence u is the parallel to y through x). 

 
22. The Distinction between Mathematical and Physical Geometry 
 
     The distinction between mathematical geometry, i.e., the calculus, and physical 
geometry is often overlooked because both are usually called geometry and both 
usually employ the same terminology. Instead of artificial symbols like ‘P1’, etc., the 
words ‘point’, ‘line’, etc., are used in mathematical geometry as well. The axioms 
are then not formulated like G 1-4 but like PG 1-4, and hence there is no longer 
any difference in formulation between mathematical and physical geometry. This 
procedure is very convenient in practice—like the analogous procedure in the 
mathematical calculus, mentioned previously because it saves the trouble of 
translating, and facilitates the understanding and manipulating of the calculus. 
But it is essential to keep in mind the fundamental difference between mathe-
matical and physical geometry in spite of the identity of formulation. The difference 
becomes clear when we take into consideration other interpretations of the 
geometrical calculus. 
     Of especial importance for the development of geometry in the past few centuries 
has been a certain translation of the geometrical calculus into the mathematical 
calculus. This leads, in combination with the customary interpretation of the mathe-
matical calculus, to a logical interpretation of the geometrical 
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calculus. The translation was found by Descartes and is known as analytic geometry or 
geometry of coordinates. ‘P1’ (or, in ordinary formulation, ‘point’) is translated into 
‘ordered triple of real numbers’; ‘P3’ (‘plane’) into ‘class of ordered triples of real numbers 
fulfilling a linear equation’, etc. The axioms, translated in this way, become C-true 
sentences of the mathematical calculus; hence the translation is C-true. On the basis of 
the customary interpretation of the mathematical calculus, the axioms and theorems of 
geometry become L-true propositions. 
     The difference between mathematical and physical geometry became clear in the 
historical development by the discovery of non-Euclidean geometry, i.e., of axiom 
systems deviating from the Euclidean form by replacing the parallel axiom (G 4) by some 
other axiom incompatible with it. It has been shown that each of these systems, 
although they are incompatible with one another, does not contain a contradiction, 
provided the Euclidean system is free from contradictions. This was shown by giving a 
translation for each of the non-Euclidean systems into the Euclidean system. 
Mathematicians regarded all these systems on a par, investigating any one indifferently. 
Physicists, on the other hand, could not accept this plurality of geometries; they asked: 
“Which one is true? Has the space of nature the Euclidean or one of the non-Euclidean 
structures?” It became clear by an analysis of the discussions that the mathematician 
and the physicist were talking about different things, although they themselves were not 
aware of this in the beginning. Mathematicians have to do with the geometrical 
calculus, and with respect to a calculus there is no question of truth and falsity. 
Physicists, however, are concerned with a theory of space, i.e., of the system of possible 
configurations and movements of bodies, hence with the interpretation of a geometrical 
calculus. When an interpretation of the specific signs is established—and, to a certain 
extent, this is a matter of choice—then each of the calculi yields a physical geometry as 
a theory with factual content. Since they are incompatible, at most one can be true 
(truth of a class of sentences [see § 6]). The theories are factual. 
 
196 
 



The truth conditions, determined by the interpretation, refer to facts. Therefore, it is the 
task of the physicist, and not of the mathematician, to find out whether a certain one 
among the theories is true, i.e., whether a certain geometrical structure is that of the 
space of nature. (Of course, the truth of a system of physical geometry, like that of any 
other universal factual sentence or theory, can never be known with absolute certainty 
but at best with a high degree of confirmation.) For this purpose, the physicist has to 
carry out experiments and to see whether the predictions made with the help of the 
theory under investigation, in connection with other theories confirmed and accepted 
previously, are confirmed by the observed results of the experiments. The accuracy of 
the answer found by the physicist is, of course, dependent upon the accuracy of the in-
struments available. The answer given by classical physics was that the Euclidean 
system of geometry is in accordance with the results of measurements, within the limits 
of the accuracy of observations. Modern physics has modified this answer in the general 
theory of relativity by stating that the Euclidean geometry describes the structure of 
space, though not exactly, yet with a degree of approximation sufficient for almost all 
practical purposes; a more exact description is given by a certain non-Euclidean system 
of geometry. Physical geometry is in its methods not fundamentally different from the 
other parts of physics. This will become still more obvious when we shall see how other 
parts of physics can also take the form of calculi (§ 23). 
     The doctrine concerning geometry acknowledged by most philosophers in the past 
century was that of Kant, saying that geometry consists of “synthetic judgments a 
priori”, i.e., of sentences which have factual content but which, nevertheless, are 
independent of experience and necessarily true. Kant attributed the same character also 
to the sentences of arithmetic. Modern logical analysis of language, however, does not 
find any sentences at all of this character. We may assume that the doctrine is not to be 
understood as applying to the formulas of a calculus; there is no question of truth with 
respect to them 
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because they are not assertions; in any case they are not synthetic (i.e., factual). The 
doctrine was obviously meant to apply to arithmetic and geometry as theories, i.e., 
interpreted systems, with their customary interpretations. Then, however, the 
propositions of arithmetic are, to be sure, independent of experience, but only because 
they do not concern experience or facts at all; they are L-true (analytic), not factual 
(synthetic). For geometry there is also, as mentioned before, the possibility of a logico-
mathematical interpretation; by it the sentences of geometry get the same character as 
those of mathematics. On the basis of the customary interpretation, however, the sen-
tences of geometry, as propositions of physical geometry, are indeed factual (synthetic), 
but dependent upon experience, empirical. The Kantian doctrine is based on a failure to 
distinguish between mathematical and physical geometry. It is to this distinction that 
Einstein refers in his well-known dictum: “So far as the theorems of mathematics are 
about reality they are not certain; and so far as they are certain they are not about 
reality.” 

The question is frequently discussed whether arithmetic and geometry, looked at 
from the logical and methodological point of view, have the same nature or not. Now we 
see that the answer depends upon whether the calculi or the interpreted systems are 
meant. There is no fundamental difference between arithmetic and geometry as calculi, 
nor with respect to their possible interpretations; for either calculus there are both 
logical and descriptive interpretations. If, however, we take the systems with their 
customary interpretation—arithmetic as the theory of numbers and geometry as the 
theory of physical space—then we find an important difference: the propositions of 
arithmetic are logical, L-true, and without factual content; those of geometry are 
descriptive, factual, and empirical. 

 
23. Physical Calculi and Their Interpretations 
 
     The method described with respect to geometry can be applied likewise to any other 
part of physics: we can first construct a calculus and then lay down the interpretation 
intended 
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in the form of semantical rules, yielding a physical theory as an interpreted system 
with factual content. The customary formulation of a physical calculus is such that it 
presupposes a logico-mathematical calculus as its basis, e.g., a calculus of real 
numbers in any of the forms discussed above (§ 18). To this basic calculus are added 
the specific primitive signs and the axioms, i.e., specific primitive sentences, of the 
physical calculus in question. 
     Thus, for instance, a calculus of mechanics of mass points can be constructed. Some 
predicates and functors (i.e., signs for functions) are taken as specific primitive signs, 
and the fundamental laws of mechanics as axioms. Then semantical rules are laid down 
stating that the primitive signs designate, say, the class of material particles, the three 
spatial coordinates of a particle x at the time t, the mass of a particle x, the class of 
forces acting on a particle x or at a space point s at the time t. (As we shall see later [§ 
24], the interpretation can also be given indirectly, i.e., by semantical rules, not for the 
primitive signs, but for certain defined signs of the calculus. This procedure must be 
chosen if the semantical rules are to refer only to observable properties.) By the 
interpretation, the theorems of the calculus of mechanics become physical laws, i.e., 
universal statements describing certain features of events; they constitute physical 
mechanics as a theory with factual content which can be tested by observations. The 
relation of this theory to the calculus of mechanics is entirely analogous to the relation 
of physical to mathematical geometry. The customary division into theoretical and 
experimental physics corresponds roughly to the distinction between calculus and 
interpreted system. The work in theoretical physics consists mainly in constructing 
calculi and carrying out deductions within them; this is essentially mathematical work. 
In experimental physics interpretations are made and theories are tested by 
experiments. 
     In order to show by an example how a deduction is carried out with the help of a 
physical calculus, we will discuss a calculus which can be interpreted as a theory of 
thermic expansion. To the primitive signs may belong the predicates ‘Sol’ and 
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‘Fe’, and the functors ‘lg’, ‘te’, and ‘th’. Among the axioms may be A 1 and A 2. (Here, 
‘x’, ‘β’, and the letters with subscripts are real number variables; the parentheses do 
not contain explanations as in former examples, but are used as in algebra and for 
the arguments of functors.) 
 
A 1. For every x, t1, t2, l1, l2, T1, T2, β [if [x is a Sol and lg (x, t1) = l1 

            and lg (x, t2) = l2 and te (x, t1) = T1 and te (x, t2) = T2 and th(x)= β] then l2 = l1 X  
        (1+ β X (T2 - T1))]. 
A 2. For every x, if [x is a Sol and x is a Fe] then th (x) = 0.000012. 
 
     The customary interpretation, i.e., that for whose sake the calculus is 
constructed, is given by the following semantical rules. ‘lg (x, t)’ designates the length 
in centimeters of the body x at the time t (defined by the statement of a method of 
measurement); ‘te (x, t)’ designates the absolute temperature in centigrades of x at 
the time t (likewise defined by a method of measurement); ‘th(x)’ designates the 
coefficient of thermic expansion for the body x; ‘Sol’ designates the class of solid 
bodies; ‘Fe’ the class of iron bodies. By this interpretation, A 1 and A 2 become 
physical laws. A 1 is the law of thermic expansion in quantitative form, A 2 the 
statement of the coefficient of thermic expansion for iron. As A 2 shows, a statement 
of a physical constant for a certain substance is also a universal sentence. Further, 
we add semantical rules for two signs occuring in the subsequent example: the name 
‘c’ designates the thing at such and such a place in our laboratory; the numerical 
variable ‘t’ as time coordinate designates the time-point t seconds after August 17, 
1938, 10:00 A.M. 

Now we will analyze an example of a derivation within the calculus indicated. This 
derivation D2 is, when interpreted by the rules mentioned, the deduction of a 
prediction from premisses giving the results of observations. The construction of the 
derivation D2, however, is entirely independent of any interpretation. It makes use 
only of the rules of the calculus, namely, the physical calculus indicated together 
with a calculus of real numbers as basic calculus. We have discussed, but not 
written down, a similar derivation D1 (§ 19), which, however, made use only of the 
mathematical calculus. Therefore the 
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physical laws used had to be taken in D1 as premisses. But here in D2 they belong to 
the axioms of the calculus (A 1 and A 2, occurring as [6] and [10]). Any axiom or 
theorem proved in a physical calculus may be used within any derivation in that 
calculus without belonging to the premisses of the derivation, in exactly the same 
way in which a proved theorem is used within a derivation in a logical or 
mathematical calculus, e.g., in the first example of a derivation in § 19 sentence (7), 
and in D1 (§ 19) the sentences which in D2 are called (7) and (13). Therefore only 
singular sentences (not containing variables) occur as premisses in D2. (For the 
distinction between premisses and axioms see the remark at the end of § 19.) 
 
Derivation D2: 
 
Premisses:  1. c is a Sol. 
   2. c is a Fe. 
   3. te (c, 0) = 300. 
   4. te (c, 600) = 350 
   5. lg (c, 0) = 1,000 
 
Axiom A 1  6. For every x, For every x, t1, t2, l1, l2, T1, T2, β [if [x is a Sol and 
                               lg (x,t1) = l1 and lg (x, t2) = l2 and te (x, t1) = T1 and te (x, t2) = T2 

                                                and th(x)= β] then l2 = l1 X (1 + β X (T2 –T1))]. 
 
Proved mathem. 7. l1, l2, T1, T2, β [l2 - l1 = l1 X β X (T2 -T1)  
theorem:  if and only if l2 = l1 X (1+ β X (T2 -T1))]. 
 
(6) (7)  8. For every x, t1, . . . (as in [6]) ... [if [- - -]  
  then l2 – l1 = l1 X β X (T2-T1)]. 
 
(1)(3)(4)(8)  9. For every l1, l2, β [if [th(c)=β and lg(c, 0)= l1 and 
   lg (c, 600) = l2] then l2 - l1 = l1 X β X (350-300)]. 
 
Axiom A 2  10. For every x, if [x is a Sol and x is a Fe] then  

th(x)=0.000012.                              
 
(1)(2)(10)  11. th (c) = 0.000012.                              
 
(9)(11)(12)  12. For every l1, l2 [if [lg (c, 0) = l1 and lg (c, 600) = l2]  

then l2 - l1 = 1,000 X 0.000012 X (350-300)]. 
 
Proved mathem. 

theorem:  13. 1,000 X 0.000012 X (350-300) = 0.6. 
 
(12)(13) Conclusion: 14. lg (c, 600) - lg(c, 0) = 0.6. 
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     On the basis of the interpretation given before, the premisses are singular sentences 
concerning the body c. They say that c is a solid body made of iron, that the temperature 
of c was at 10:00 A.M. 300° abs., and at 10:10 A.M. 350° abs., and that the length of c at 
10:00 A.M. was 1,000 cm. The conclusion says that the increase in the length of c from 
10:00 to 10:10 A.M. is 0.6 cm. Let us suppose that our measurements have confirmed the 
premisses. Then the derivation yields the conclusion as a prediction which may be tested 
by another measurement. 
     Any physical theory, and likewise the whole of physics, can in this way be presented in 
the form of an interpreted system, consisting of a specific calculus (axiom system) and a 
system of semantical rules for its interpretation; the axiom system is, tacitly or explicitly, 
based upon a logico-mathematical calculus with customary interpretation. It is, of course, 
logically possible to apply the same method to any other branch of science as well. But 
practically the situation is such that most of them seem at the present time to be not yet 
developed to a degree which would suggest this strict form of presentation. There is an 
interesting and successful attempt of an axiomatization of certain parts of biology, 
especially genetics, by Woodger (Vol. I, No. 10). Other scientific fields which we may 
expect to be soon accessible to this method are perhaps chemistry, economics, and some 
elementary parts of psychology and social science. 
     Within a physical calculus the mathematical and the physical theorems, i.e., C-true 
formulas, are treated on a par. But there is a fundamental difference between the 
corresponding mathematical and the physical propositions of the physical theory, i.e., the 
system with customary interpretation. This difference is often overlooked. That physical 
theorems are sometimes mistaken to be of the same nature as mathematical theorems is 
perhaps due to several factors, among them the fact that they contain mathematical 
symbols and numerical expressions and that they are often formulated incompletely in 
the form of a mathematical equation (e.g., A 1 simply in the form of the last equation 
occurring in it). A mathematical proposition may contain only logical signs, e.g., ‘for every 
m, n, m +  n = n + m’, or 
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descriptive signs also, if the mathematical calculus is applied in a descriptive system. In 
the latter case the proposition, although it contains signs not belonging to the 
mathematical calculus, may still be provable in this calculus, e.g., ‘lg (c) + lg (d) = lg (d) + 
lg (c)’ (‘lg’ designates length as before). A physical proposition always contains descriptive 
signs, because otherwise it could not have factual content; in addition, it usually contains 
also logical signs. Thus the difference between mathematical theorems and physical 
theorems in the interpreted system does not depend upon the kinds of signs occurring 
but rather on the kind of truth of the theorems. The truth of a mathematical theorem, 
even if it contains descriptive signs, is not dependent upon any facts concerning the 
designata of these signs. We can determine its truth if we know only the semantical rules; 
hence it is L-true. (In the example of the theorem just mentioned, we need not know the 
length of the body c.) The truth of a physical theorem, on the other hand, depends upon 
the properties of the designata of the descriptive signs occurring. In order to determine its 
truth, we have to make observations concerning these designata; the knowledge of the 
semantical rules is not sufficient. (In the case of A 2, e.g., we have to carry out 
experiments with solid iron bodies.) Therefore, a physical theorem, in contradistinction to 
a mathematical theorem, has factual content. 
 
24. Elementary and Abstract Terms 
 
     We find among the concepts of physics—and likewise among those of the whole of 
empirical science—differences of abstractness. Some are more elementary than others, in 
the sense that we can apply them in concrete cases on the basis of observations in a more 
direct way than others. The others are more abstract; in order to find out whether they 
hold in a certain case, we have to carry out a more complex procedure, which, however, 
also finally rests on observations. Between quite elementary concepts and those of high 
abstraction there are many intermediate levels. We shall not try to give an exact definition 
for ‘degree of abstractness’; what is meant will become sufficiently clear by 
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the following series of sets of concepts, proceeding from elementary to abstract 
concepts: bright, dark, red, blue, warm, cold, sour, sweet, hard, soft (all concepts of this 
first set are meant as properties of things, not as sense-data) ; coincidence; length; 
length of time; mass, velocity, acceleration, density; pressure; temperature, quantity of 
heat; electric charge, electric current, electric field; electric potential, electric resistance, 
coefficient of induction, frequency of oscillation; wave function. 
     Suppose that we intend to construct an interpreted system of physics—or of the 
whole of science. We shall first lay down a calculus. Then we have to state semantical 
rules of the kind SD for the specific signs, i.e., for the physical terms. (The SL-rules are 
presupposed as giving the customary interpretation of the logico-mathematical basic 
calculus.) Since the physical terms form a system, i.e., are connected with one another, 
obviously we need not state a semantical rule for each of them. For which terms, then, 
must we give rules, for the elementary or for the abstract ones? We can, of course, state 
a rule for any term, no matter what its degree of abstractness, in a form like this: ‘the 
term ‘te’ designates temperature’, provided the meta-language used contains a 
corresponding expression (here the word ‘temperature’) to specify the designatum of the 
term in question. But suppose we have in mind the following purpose for our syntactical 
and semantical description of the system of physics: the description of the system shall 
teach a layman to understand it, i.e., to enable him to apply it to his observations in 
order to arrive at explanations and predictions. A layman is meant as one who does not 
know physics but has normal senses and understands a language in which observable 
properties of things can be described (e.g., a suitable part of everyday nonscientific 
English). A rule like ‘the sign ‘P’ designates the property of being blue’ will do for the 
purpose indicated; but a rule like ‘the sign ‘Q’ designates the property of being 
electrically charged’ will not do. In order to fulfil the purpose, we have to give semantical 
rules for elementary terms only, connecting them with observable properties of things. 
For our further dis- 
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cussion we suppose the system to consist of rules of this kind, as indicated in the 
following diagram. 

  
     Now let us go back to the construction of the calculus. We have first to decide at 
which end of the series of terms to start the construction. Should we take 
elementary terms as primitive signs, or abstract terms? Our decision to lay down 
the semantical rules for the elementary terms does not decide this question. Either 
procedure is still possible and seems to have some reasons in its favor, depending 
on the point of view taken. The first method consists in taking elementary terms as 
primitive and then introducing on their basis further terms step by step, up to those 
of highest abstraction. In carrying out this procedure, we find that the introduction 
of further terms cannot always take the form of explicit definitions; conditional 
definitions must also be used (so-called reduction sentences [see Vol. 1, No. 1, p. 
50]). They describe a method of testing for a more abstract term, i.e., a procedure for 
finding out whether the term is applicable in particular cases, by referring to less 
abstract terms. The first method has the advantage of exhibiting clearly the 
connection between the system and observation and of making it easier to examine 
whether and how a given term is empirically founded. However, when we shift our 
attention from the terms of the 
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system and the methods of empirical confirmation to the laws, i.e., the universal 
theorems, of the system, we get a different perspective. Would it be possible to 
formulate all laws of physics in elementary terms, admitting more abstract terms 
only as abbreviations? If so, we would have that ideal of a science in 
sensationalistic form which Goethe in his polemic against Newton, as well as some 
positivists, seems to have had in mind. But it turns out—this is an empirical fact, 
not a logical necessity—that it is not possible to arrive in this way at a powerful 
and efficacious system of laws. To be sure, historically, science started with laws 
formulated in terms of a low level of abstractness. But for any law of this kind, one 
nearly always later found some exceptions and thus had to confine it to a 
narrower realm of validity. The higher the physicists went in the scale of terms, 
the better did they succeed in formulating laws applying to a wide range of 
phenomena. Hence we understand that they are inclined to choose the second 
method. This method begins at the top of the system, so to speak, and then goes 
down to lower and lower levels. It consists in taking a few abstract terms as 
primitive signs and a few fundamental laws of great generality as axioms. Then 
further terms, less and less abstract, and finally elementary ones, are to be 
introduced by definitions; and here, so it seems at present, explicit definitions will 
do. More special laws, containing less abstract terms, are to be proved on the 
basis of the axioms. At least, this is the direction in which physicists have been 
striving with remarkable success, especially in the past few decades. But at the 
present time, the method cannot yet be carried through in the pure form 
indicated. For many less abstract terms no definition on the basis of abstract 
terms alone is as yet known; hence those terms must also be taken as primitive. 
And many more special laws, especially in biological fields, cannot yet be proved 
on the basis of laws in abstract terms only; hence those laws must also be taken 
as axioms. 
     Now let us examine the result of the interpretation if the first or the second method 
for the construction of the calculus is chosen. In both cases the semantical rules 
concern the elementary signs. In the first method these signs are taken as primi- 
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tive. Hence, the semantical rules give a complete interpretation for these signs and 
those explicitly defined on their basis. There are, however, many signs, especially on 
the higher levels of abstraction, which can be introduced not by an explicit definition 
but only by a conditional one. The interpretation which the rules give for these signs is 
in a certain sense incomplete. This is due not to a defect in the semantical rules but to 
the method by which these signs are introduced; and this method is not arbitrary but 
corresponds to the way in which we really obtain knowledge about physical states by 
our observations. 
     If, on the other hand, abstract terms are taken as primitive—according to the 
second method, the one used in scientific physics—then the semantical rules have no 
direct relation to the primitive terms of the system but refer to terms introduced by 
long chains of definitions. The calculus is first constructed floating in the air, so to 
speak; the construction begins at the top and then adds lower and lower levels. 
Finally, by the semantical rules, the lowest level is anchored at the solid ground of the 
observable facts. The laws, whether general or special, are not directly interpreted, but 
only the singular sentences. For the more abstract terms, the rules determine only an 
indirect interpretation, which is—here as well as in the first method—incomplete in a 
certain sense. Suppose ‘B’ is defined on the basis of ‘A’; then, if ‘A’ is directly 
interpreted, ‘B’ is, although indirectly, also interpreted completely; if, however, ‘B’ is 
directly interpreted, ‘A’ is not necessarily also interpreted completely (but only if ‘A’ is 
also definable by ‘B’). 
 
     To give an example, let us imagine a calculus of physics constructed, according to the 
second method, on the basis of primitive specific signs like ‘electromagnetic field’, ‘gravitational 
field’, ‘electron’, ‘proton’, etc. The system of definitions will then lead to elementary terms, e.g., 
to ‘Fe’, defined as a class of regions in which the configuration of particles fulfils certain 
conditions, and ‘Na-yellow’ as a class of space-time regions in which the temporal distribution 
of the electromagnetic field fulfils certain conditions. Then semantical rules are laid down 
stating that ‘Fe’ designates iron and ‘Na-yellow’ designates a specified yellow color. (If ‘iron’ is 
not accepted as sufficiently elementary, the rules can be stated for more elementary terms.) In 
this way 
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the connection between the calculus and the realm of nature, to which it is to be applied, is 
made for terms of the calculus which are far remote from the primitive terms. 
 
     Let us examine, on the basis of these discussions, the example of a derivation D2 (§ 
23). The premisses and the conclusion of D2 are singular sentences, but most of the 
other sentences are not. Hence the premisses and the conclusion of this as of all other 
derivations of the same type can be directly interpreted, understood, and confronted 
with the results of observations. More of an interpretation is not necessary for a 
practical application of a derivation. If, in confronting the interpreted premises with our 
observations, we find them confirmed as true, then we accept the conclusion as a 
prediction and we may base a decision upon it. The sentences occurring in the 
derivation between premisses and conclusion are also interpreted, at least indirectly. 
But we need not make their interpretation explicit in order to be able to construct the 
derivation and to apply it. All that is necessary for its construction are the formal rules 
of the calculus. This is the advantage of the method of formalization, i.e., of the 
separation of the calculus as a formal system from the interpretation. If some persons 
want to come to an agreement about the formal correctness of a given derivation, they 
may leave aside all differences of opinion on material questions or questions of 
interpretation. They simply have to examine whether or not the given series of formulas 
fulfils the formal rules of the calculus. Here again, the function of calculi in empirical 
science becomes clear as instruments for transforming the expression of what we know 
or assume. 
     Against the view that for the application of a physical calculus we need an 
interpretation only for singular sentences, the following objection will perhaps be raised. 
Before we accept a derivation and believe its conclusion we must have accepted the 
physical calculus which furnishes the derivation; and how can we decide whether or not 
to accept a physical calculus for application without interpreting and understanding its 
axioms? To be sure, in order to pass judgment about the applicability of a given physical 
calculus we have to confront it in some way or 
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other with observation, and for this purpose an interpretation is necessary. But we need 
no explicit interpretation of the axioms, nor even of any theorems. The empirical 
examination of a physical theory given in the form of a calculus with rules of inter-
pretation is not made by interpreting and understanding the axioms and then 
considering whether they are true on the basis of our factual knowledge. Rather, the 
examination is carried out by the same procedure as that explained before for obtaining 
a prediction. We construct derivations in the calculus with premisses which are singular 
sentences describing the results of our observations, and with singular sentences which 
we can test by observations as conclusions. The physical theory is indirectly confirmed 
to a higher and higher degree if more and more of these predictions are confirmed and 
none of them is disconfirmed by observations. Only singular sentences with elementary 
terms can be directly tested; therefore, we need an explicit interpretation only for these 
sentences. 
 
25. “Understanding” in Physics 
 
     The development of physics in recent centuries, and especially in the past few 
decades, has more and more led to that method in the construction, testing, and 
application of physical theories which we call formalization, i.e., the construction of a 
calculus supplemented by an interpretation. It was the progress of knowledge and the 
particular structure of the subject matter that suggested and made practically possible 
this increasing formalization. In consequence it became more and more possible to 
forego an “intuitive understanding” of the abstract terms and axioms and theorems 
formulated with their help. The possibility and even necessity of abandoning the 
search for an understanding of that kind was not realized for a long time. When 
abstract, nonintuitive formulas, as, e.g.. Maxwell’s equations of electromagnetism, 
were proposed as new axioms, physicists endeavored to make them “intuitive” by 
constructing a “model”, i.e., a way of representing electromagnetic micro-processes by 
an analogy to known macro-processes, e.g., movements of visible things. Many 
attempts have been made in this 
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direction, but without satisfactory results. It is important to realize that the discovery of a 
model has no more than an aesthetic or didactic or at best a heuristic value, but is not at 
all essential for a successful application of the physical theory. The demand for an intuitive 
understanding of the axioms was less and less fulfilled when the development led to the 
general theory of relativity and then to quantum mechanics, involving the wave function. 
Many people, including physicists, have a feeling of regret and disappointment about this. 
Some, especially philosophers, go so far as even to contend that these modern theories, 
since they are not intuitively understandable, are not at all theories about nature but “mere 
formalistic constructions”, “mere calculi”. But this is a fundamental misunderstanding of 
the function of a physical theory. It is true a theory must not be a “mere calculus” but 
possess an interpretation, on the basis of which it can be applied to facts of nature. But it is 
sufficient, as we have seen, to make this interpretation explicit for elementary terms; the 
interpretation of the other terms is then indirectly determined by the formulas of the 
calculus, either definitions or laws, connecting them with the elementary terms. If we 
demand from the modern physicist an answer to the question what he means by the 
symbol ‘0’ of his calculus, and are astonished that he cannot give an answer, we ought to 
realize that the situation was already the same in classical physics. There the physicist 
could not tell us what he meant by the symbol ‘E’ in Maxwell’s equations. Perhaps, in order 
not to refuse an answer, he would tell us that ‘E’ designates the electric field vector. To be 
sure, this statement has the form of a semantical rule, but it would not help us a bit to 
understand the theory. It simply refers from a symbol in a symbolic calculus to a 
corresponding word expression in a calculus of words. We are right in demanding an 
interpretation for ‘E’, but that will be given indirectly by semantical rules referring to 
elementary signs together with the formulas connecting them with ‘E’. This interpretation 
enables us to use the laws containing ‘E’ for the derivation of predictions. Thus we 
understand ‘E’, if “understanding” of an expression, a sentence, or a theory means 
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capability of its use for the description of known facts or the prediction of new facts. An 
“intuitive understanding” or a direct translation of ‘E’ into terms referring to observable 
properties is neither necessary nor possible. The situation of the modern physicist is not 
essentially different. He knows how to use the symbol ‘Ψ’ in the calculus in order to derive 
predictions which we can test by observations. (If they have the form of probability 
statements, they are tested by statistical results of observations.) Thus the physicist, 
although he cannot give us a translation into everyday language, understands the symbol 
‘Ψ,’ and the laws of quantum mechanics. He possesses that kind of understanding which 
alone is essential in the field of knowledge and science. 
 
Selected Bibliography 
 
CARNAP, R. Abriss der Logistik. Wien, 1929. 
_____. “Die Mathematik als Zweig der Logik,” Blätter für deutsche Philosophie, Vol. IV 
           (1930). 
_____. Logical Syntax of Language. (Orig., Wien, 1934.) London and New York, 1937. 
_____. “Formalwissenschaft und Realwissenschaft,” Erkenntnis, Vol. V (1935). 
_____. “Testability and Meaning,” Philosophy of Science, Vols. III (1936) and IV (1937). 
 
DEDEKIND, R. Was sind und was sollen die Zahlen? Braunschweig, 1888.  
 
EINSTEIN, A. Geometrie and Erfahrung. Berlin, 1921. 
 
FRAENKEL, A. Einleitung in die Mengenlehre. 3d ed. Berlin, 1928. 
 
FRANK, P. Interpretations and Misinterpretations of Modern Physics. Paris, 1938. 
 
FREGE, G. Die Grundlagen der Arithmetik. Breslau, 1884. 
_____. Grundgesetze der Arithmetik, Vols. I and II. Jena, 1893 and 1903.  
 
HARN, H. Logik, Mathematik und Naturerkennen. Wien, 1933. 
 
HEYTING, A. Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie. 

Berlin, 1934. 
 
HILBERT, D. “Axiomatisches Denken,” Math. Annalen, Vol. LXXVIII (1918). 
 
HILBERT, D., and ACKERMANN, W. Grundzüge der theoretischen Logik. Berlin, 1928. 

2d ed., 1938. 
HILBERT, D., and BERNAYS, P. Grundlagen der Mathematik, Vol. I. Berlin, 1934. 
 
211 



LEWIS, C. L, and LANGFORD, C. H. Symbolic Logic. New York and London, 1932. 
 
MENGER, K. “The New Logic,” Philosophy of Science, Vol. IV (1937).  
 
MORRIS, C. W. Logical Positivism, Pragmatism, and Scientific Empiricism. Paris, 1937. 
 
PEIRCE, C. S. Collected Papers (esp. Vol II). Cambridge, Mass., 1931 ff. 
 
QUINE, W. V. “Truth by Convention,” in Philosophical Essays for A. N. Whitehead. 
   London and New York, 1936. 
 
REICHENBACH, H. Philosophie der Raum-Zeit-Lehre. Berlin, 1928. 
 
RUSSELL, B. The Principles of Mathematics. Cambridge, 1903. 2d ed., 1938.  
_____. Introduction to Mathematical Philosophy. London, 1919. 2d ed.,1920. 
 
SCHOLZ, H. Geschichte der Logik. Berlin, 1931. 
 
TARSKI, A. “Der Wahrheitsbegriff in den formalisierten Sprachen,” Studia 
     philosophica, Vol. I (1935). 
_____. “Grundlegung der wissenschaftlichen Semantik,” in Actes du congrès  
     international de philosophie scientifique. Paris, 1936. 
_____. Einführung in die mathematische Logik. Wien, 1937.  
 
WAISMANN, F. Einführung in das mathematische Denken. Wien, 1936.  
 
WHITEHEAD, A. N. and RUSSELL, B. Principia mathematica, Vols. I, II, and III. 
     Cambridge, (1910) 1925, (1912) 1927, and (1913) 1927.  
 
WITTGENSTEIN, L. Tractatus logico-philosophicus. London, 1922. 
 
 
212 



 

Index of Terms 
[The numbers refer to the sections of this monograph.) 

Abstract term, 24 Logical sign, 4 
Axiom system, 16 Logicism, 20 
Basic calculus, 16 Mathematical calculi, 17 
C-..., 8, 9 Metalanguage, 3 
Calculus, 8 Name, 5 
Classification of signs, 5 Normal interpretation, 13, 14 
Conclusion, 9 Number, 14, 17, 18 
Consistent, 8  
Convention, It Object-language, 3 
Customary interpretation, 13  
 Physical calculi, 23 
Definition, 13 Pragmatics, 2, 3 
Derivable, derivation, 9 Predicate 5 
Descriptive sign, 4 Prediction, 1, 15 
Designatum, 2 Premiss, 9, (19) 
 Primitive sentence, 9, (19) 
Elementary term, 24 Proof, provable, 9 
Equivalent , 6 Proposition, 5, 9 
Exclude, 6  
Explanation, 1, 15 Rules of formation, 5, 9 
Expression, 4 Rules of inference, 9 
 Rules of transformation, 9 
F-..., factual, 7  
False, 5 Semantics, 2, 4 
Finite rule, calculus, 10 Sentence, 2 
Formal, 8 Sentential calculus, 13 
Formalism, 20 Sign, 4 
Formalization, 25 Singular sentence, 15 
Formula, 9 Specific calculus, sign, 16 
 Synonymous, 6 
Geometry, 21 Syntax, 2, 8 
  
Implicate, 6  
Interpretation, 10 Transfinite rule, calculus, 10 
Intuitionism, 20 Translation, 17 
 True, 5 
L-..., 7  
L-exhaustive, 10 Understanding, 5, 25 
Logical calculi, 13, 14 Universal sentence, 15 
 
213 
 

 
 
 



 


