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NOTES FOR SYMBOLIC LOGIC. FIRST PART 
 

by 
 

R. Carnap 
 
 

 These notes are not meant as an introduction to symbolic logic. They give merely a 
survey of the symbolism and its rules, with no explanations or only short ones. Sometimes 
references are given to the following books which supply detailed explanations: 
 
Abbreviation   
Carnap - Abr. Carnap, Abriss der Logistik. Vienna 1929.
Carnap - Sy. Carnap, Logical Syntax of Language. N.Y. 1937. 
Hilbert Hilbert and Ackermann, Grundzüge der theoretischen Logik. 
      Berlin 1928.
Lewis Lewis and Langford, Symbolic Logic. N.Y. 1932. 
PM Whitehead and Russell, Principia Mathematica. Vol. I, 
      Cambridge (1910) 2nd ed. 1925. 
 
1. Use of Letters 

 Letters Used Kinds of Symbols Level As Constants As Variables Designate 

sentential symbols -- A,B,C... p,q,r... --(states 
of 

affairs) 
individual symbols 0 a,b,c... x,y,z,u... objects 

predicates 1-place 1 P,Q... F,G... properties 

        “        2-place 1 R,S... H,K... relations 
           

 
2P... 
nP... 

F... 
nF... 

propert. of 
properties 

functors (see #10)  k,l... f,g...  

 
Examples of Sentences Translation 

P(b) the object b has the property P; b is P 
R(a,b) the relation R holds between a and b 

2P(Q)(see #9) the property Q has the property (of properties) 
2P; Q is 2P. 

 

  “       (see #9) 
2
:
n



 In ‘R(a,b)’, ‘a’ and ‘b’ are called arguments. A predicate is called n-place or of degree n 
if it requires n arguments. A sentence consisting of an n-place predicate and n arguments is 
called a full sentence of that predicate. 
2. Sentential Calculus  
 
 Sentential Connectives. 
 (Hilbert Kap.I,#1; Carnap-Abr.#3; Carnap-Sy.#5.) 
 

 Explained by Other 
Connectives Name Translation 

~A  negation not A 

A∨  B  disjunction A or B (or both) 

A . B  conjunction A and B 

A⊃ B ~A ∨  B implication not A, or B; 
if A then B 

A ≡ B (A . B) ∨  (~A . ~B) 
(A ⊃ B) . (B ⊃  A) equivalence 

A and B, or, not A and 
not B; 

if A then B, and if B 
then A; 

A if and only if B 

A|B ~(A . B) 
~(A) ∨  (~B) (incompatibility) 

not, A and B; 
either not A or not B 

or both 
 
 ‘|’ is seldom used in practical application. 
 
The truth-value table of a connective states the truth-value -- i.e., truth (T) or falsehood (F) -- of 
a full sentence with respect to the truth-values of the arguments. (Lewis pp. 200-211; Carnap-
Abr. #3; Carnap-Sy.#5) 
 
I.  A ~A 
 T F 
 F T 
 
II.  A B A∨  B A . B A⊃ B A ≡ B A | B 

T T T T T T F 
T F T F F F T 
F T T F T F T 

 

F F F F T T T 
 



3. Lower Functional Calculus 
 
 Universal and Existential Sentences. 
 (Lewis ch. V; Carnap-Abr. #6; Carnap-Sy. #6) 
 
     Examples of Sentences                          Kinds of Sentences                          Translation 

P (x) open s .  

   ↑ 
free variable 

 
every object is P            universal s. 

bound variable 
             ↓  

(x)      P(x)  

                   ↓         ↓ 
               univ.     operand 
           operator     

             bound var. 
       ↓ 

                    closed s . 

 

            (∃ x)    (P(x)) 
              ↓           ↓ 
           exist.    operand 
        operator  

                    existential s. 

some (at least one) 
object is P; 
there is an object 
which is P 

 
 Formative Rules. 
 
 An expression is a sentence (of the lower functional calculus, including the sentential 
calculus) if and only if it has one of the following forms (where at the place of ‘...’ and ‘---’, 
sentences of any form may stand): 
                                Form                                Kind of Sentence                         Examples 

1. a sentential symbol  A; p 

2. a full sentence of a 
 predicate (see #1) 

P(a); R(x,y) 

3. an identity sentence 

            atomic s. 
 

a = b; x = y 

4.  ~ (…) ~ (A);~ (p ∨  q) 

5.  (...)∨  (---) 
                       molecular s. 

(A) ∨  (B) 

  (...) . (---)  P(a) . (R(b,x)) 

  (...) ⊃ (---)  (F(y)) ⊃  (∃ x)(F(x)) 

  (...) ≡  (---)  (p) ≡  (q) 



 
6.   (x) (…)            where at 

                         the place of 
 (∃ x)(...)          ‘x’ any other indiv. 
                         var. may stand 

 
general s. 

 (x)((P(x)) ∨  (R(x,b))) 
 
 (∃ x) ((y) (R(x,y))) 

 
 Conventions for Avoiding Brackets. 
 
 Brackets enclosing a certain expression may be omitted if one of the following conditions 
is fulfilled: 
 

Rule 
The Enclosed Expression Has the 

Following Form:                    
The Enclosed Expression Occurs in 

the Whole Sentence as Follows: 

1. any atomic sentence as a member of a sentential connection 

2a. negation as a member of any sent. conn. 

2b. disjunction or conjunction as a member of an implication  
or an equivalence 

3a. disjunction as a member of a disjunction 

3b. conjunction as a member of a conjunction 

 (Rule 3a is justified by Th. 34 (see #7); 3b by Th.35) 

4. operator with operand in any way 

5. operand as the smallest sentence immediately 
following the operator 

 
 Examples: 
 

Rule Instead of We May Write 

1. 
~(A) 

(P(a) )∨  (R(b,c)) 
(x = y) ⊃ (y = x) 

~A 
P(a) ∨  R(b,c) 
x = y ⊃ y = x 

2a. 

(~A)∨  B 
(~A) . B 

(~A) ⊃ B 
(~A) ≡ B 

~A∨  B 
~A . B 

~A ⊃  B 
~A ≡ B 

2b. (p .q) ⊃ (p ∨  q) 
(A∨  B) ≡ (C . D) 

p . q ⊃ p ∨  q 
A ∨  B ≡ C . D 

3a. (A ∨  B) ∨  C 
A∨  (B∨  C) 

 
A∨  B∨  C 

 



3b. (A . B) . C 
A . (B . C . ) 

 
A . B . C . 

4. ~ ((x) (P(x) ∨  Q(x))) 
(x) ((y) ((∃ z) (T(x,y,z) . A))) 

~ (x) (P(x) ∨  Q(x)) 
(x) (y) (∃ z) (T (x,y,z) . A) 

5. (x) (P (x)) ∨  A 
(∃ x) (~ (y) (R (x,y))) . B 

(x) P (x) ∨  A 
(∃ x) ~ (y) R (x,y) . B 

 
4. Transformative Rules. (Hilbert, Kap. III, #5; Carnap-Sy. #10)  
 
  Primitive Sentences. 
 
  1. Sentential Calculus.  
   PS 1. p ∨  p ⊃ p 
   PS 2. p ⊃ p ∨  q 
   PS 3. p ∨  q ⊃  q ∨  p 
   PS 4. (p ⊃ q) ⊃  (r ∨  p ⊃ r ∨  q) 
  2. (Lower) Functional Calculus.  
   PS 5. (x)F(x) ⊃ F(y) 
   PS 6. F(y) ⊃  (∃ x)F(x)  
  3. Identity. 
   PS 7. x = x 
   PS 8. x = y ⊃  (F(x) ⊃ F(y)) 
 
 Rules of Inference. 
 
 A sentence S3 is called directly derivable from a sentence S1 or (in the case of R2) from 
two sentences S1 and S2 -- called the premisses,-- if and only if one of the following conditions is 
fulfilled: 
 
 Rl. Rule of Substitution. S3 is constructed out of S1 by substituting for a variable 
wherever it occurs as a free variable in S1 a symbol or expression of a suitable kind (see below, 
(a)-(d)). At all places the same symbol or expression must be substituted. An expression meet not 
be substituted if it contains a free variable which would be bound, after the substitution, at one of 
the substitution places. 



 (a) For a sentential variable any sentence may be substituted. 
 
 (b) For an individual variable any individual symbol may be substituted. 
 
 (c) For an n-place predicate variable any n-place predicate may be substituted. 
 
 (d) For a full sentence S4 consisting of an n-place predicate variable with n different 
individual variables as arguments, any sentence may be substituted. In S1, S4 is replaced by S5, 
and any other full sentence of the same predicate variable occurring in S1 is replaced by the 
corresponding sentence constructed out of S5 by individual substitutions (see example below). 
An individual variable occurring as a free variable in S5 but not occurring in S4 must not be such 
that it will be a bound variable after the substitution at one of the substitution places. 
 
 R2. Rule of Implication. S1 and S2 have the forms ‘...’ and ‘(…) ⊃ (---)’ respectively, and 
S3 has the form ‘---’, where ‘...’ and ‘---’ stand for two sentences of any form. (In other words, S2 
is an implication sentence with S1 and S3 as members.) 
 
 R3. Rules of the Operators. 
 
 (a) S1 has the form ‘(…) ⊃ (---)’ where ‘x’ does not occur in ‘...’ as a free variable. S3 has 
the form ‘(…) ⊃ (x)(---)’. 
 (b) S1 has the form ‘(…) ⊃ (---)’ where ‘x’ does not occur in ‘---’ as a free variable. S3 
has the form (∃ x ) (…) ⊃ (---)’. 
 In (a) and (b) ‘...’ and ‘---’ stand for sentences of any form; instead of ‘x’ any other 
individual variable may be taken. 
 
 Examples : 
 

Rule One or Two Premisses Directly Derivable from the Premisses 

R1a. p ∨  ~p 
q ∨  ~q 
A ∨  ~A 

R(a,b) ∨  ~R(a,b) 

R1b. P(x) ∨  (∃ y)R(x,y) 
P(z) ∨  (∃ y)R(z,y) 
P(b) ∨  (∃ y)R(b,y) 

 



R1c. F(a) ⊃ F(b) G(a) ⊃ G(b) 
P(a) ⊃  P(b) 

R1d. ..F(x)..F(y)..F(a)..F(c).. ..P(x) ∨  R(x,b)..P(y) ∨  R(y,b).. 
P(a) ∨  R(a,b).. P(c) ∨  R(c,b).. 

 (explanation of this below.) 

R2. A; A ⊃ B 
P(a); P(a) ⊃  (∃ y)R(a,y) 

B 
(∃ y)R(a,y) 

R3a. P(a) ⊃ R(a,x) P(a) ⊃  (x)R(a,x) 

R3b. R(b,y) ⊃ Q(b) (∃ y)R(b,y) ⊃ Q(b) 

 
 Explanation for the example for R1d. The premiss is meant as some sentence containing 
the four full sentences of ‘F’ given here; the dots indicate the rest of the sentence which is 
irrelevant to the substitution. Suppose we are to carry out the substitution of ‘P(x) ∨  R(x,b)’ for 
‘F(x)’. ‘F(x)’ is replaced by ‘P(x) ∨  R(x,b)’; ‘F(y)’ is not replaced by the same sentence, but by 
that sentence which we construct out of it by substituting ‘y’ for ‘x’, i.e., the sentence ‘P(y) ∨  
R(y,b)’; analogously, ‘F(a)’ is replaced by ‘P(a) ∨  R(a,b)’, and ‘F(c)’ by ‘P(c) ∨  R(c,b)’. Thus 
the result given above is attained. 
 
 5. Definitions. (Carnap-Sy. #8,29.) 
 
 A definition is an additional transformative rule which serves for the introduction of a 
new symbol. 
 Examples of definitions (the new symbol defined is in (1) to (5) the first symbol of the 
definiendum., In (6) ‘≡’). 
 

# Definiendum Definiens Kinds of Definitions 

l. 
 
5  = 

      
     4 + 1 

                                     
                                     Explicit def. 
                                       (in narrow sense)

2. A  ≡      R(a,b)             def. sentence 

3. Ql(x)  ≡      P(x) ∨  R(x,c)  

4. Q2(x)  ≡      P(z) ∨  (∃ y)R(x,y)                         
                      def. in use 

5. ‘Q1(x)’  for      ‘P(x) ∨  R(x,c)’ 

6. ‘p ≡ q’  for      ‘(p ⊃ q) . (q ⊃ p)’ 

         
           def. rule 

 
  (Sometimes all definitions of these kinds are called explicit -- in the wider sense -- 
in contradistinction to recursive definitions.) 



 If a definition-rule of the form “ ‘...’ for ‘---’ “  is given, it means the following: 
Whenever a sentence S2 is constructed out of a sentence S1 by replacing the expression ‘...’ (not 
necessarily at all places where it occurs) by the expression ‘---’, then S2 is directly derivable 
from S1 and S1 from S2. If free variables occur, then the mutual replacement is permitted for any 
two expressions constructed out of the definiendum and the definiens by the same substitutions. 
 In the case of definition-sentences of the forms ‘… ≡ ---’ or ‘… = ---’ analogous mutual 
replacements can be carried out (by Th. 90 and 91, #8). 
 Any definition-rule or definition-sentence must fulfill the following conditions: 1. If the 
definiendum contains free variables, they must be different from one another. 2. The definiens 
must not contain any free variable not occurring in the definiendum. 
 Let us take the following as primitive symbols (i.e., undefined symbols) of our language: 
 (1) logical symbols: ‘~’, ‘∨ ’, ‘∃’, comma, brackets, all variables. 
 (2) descriptive symbols: some individual constants and predicate constants (as many as    
       are necessary for the formulation of the theory in question.)  
 For every defined symbol there must be a chain of definitions ending with the definition 
of this symbol. This chain must be such that every symbol occurring in a definiens is either one 
of the primitive symbols or defined by a preceding definition. A defined symbol is called logical 
if no primitive descriptive symbol occurs in its chain of definitions; otherwise it is called de-
scriptive. A symbol is called indefinite if it is defined by a chain of definitions containing at least 
one operator; otherwise it is called definite. 



 Definitions (rules) of some logical symbols.  
 
 Def. 1. ‘p . q’ for ‘~(~p ∨  ~q)’ 
 
 Def. 2. ‘p⊃ q’ for ‘~p ∨  q’ 
 
 Def. 3. ‘p ≡ q’ for ‘(p ⊃ q) . (q ⊃ p)’  
  
 Def. 4. ‘p | q’ for ‘~,(p . q)’ 
 
 (In the PS and in R2 (#4), the defined symbol ‘ ⊃ ’ has been used for the sake of brevity. 
It can easily be eliminated in accordance with Def. 2.) 
 Instead of ‘~’, ‘∨ ’, and ‘∃’, we could take ‘| ’ as primitive. In this case we would lay 
down the following definitions: 
 
 Def. A. ‘~p’ for ‘p | p’ 
 
 Def. B. ‘p ∨  q’ for ‘~p | ~q’ 
 
 Def. C. ‘(∃x)F(x)’ for ‘~ (x)~F(x)’, (where am other individual variable may be put at the  
  place of ‘x’). 
 (For examples of logical definition sentences see #10.) 
 For examples of definitions of descriptive symbols, where ‘a’, ‘b’, ‘c’, ‘P’, and ‘R’ are 
taken as primitive, see preceding examples # 2,3,4,5. ‘Q2’ is indefinite, the other defined symbols 
are definite. 
 
 6. Proof and Derivation. 
 
 (Hilbert Kap. I,#11, Kap. III, #6; Carnap-Sy.#10.) 
 
 The primitive sentences and rules of inference are used for two purposes, namely for 
proofs and for derivations. A proof shows that a certain sentence is logically true; such a 
sentence is called demonstrable. A derivation shows that a certain sentence follows logically 
from other sentences called the premisses; such a sentence is called derivable from the 
premisses. Neither the premisses nor the sentences derived from them need be logically true; 
they may refer to empirical facts. By a proof the sentence proved is asserted as true and, more-
over, logically true. By a derivation the sentence derived from the premisses is not asserted, but 
it is merely stated that if the premisses hold the derived 



sentence must hold too. The definitions of the two procedures explained are as follows: 
 A proof is a (finite) series of sentences each of which is either a primitive sentence or a 
definition sentence or directly derivable from one or two sentences which precede it in the series 
in accordance with a rule of inference or a definition rule. A sentence is called demonstrable if it 
is the last sentence in a proof. 
 A derivation with specified premisses is a (finite) series of sentences each of which is 
either one of the premisses or a primitive sentence or a definition sentence or directly derivable 
from one or two sentences which precede it in the series in accordance with a rule of inference or 
a definition rule. A sentence is called derivable from certain sentences if it is the last sentence in 
a derivation with those sentences as premisses. -- Thus a proof is a special case of a derivation 
whose class of premisses is null. 
 
 Example of a proof. 
 
 (In the explanation, ‘…/---’ means that ‘---’ is substituted for ‘...’ in accordance with R1.) 
 

Explanation of the 
Single Steps 

The Proof 
(as a series of sentences) Sent. # 

                       PS1      p ∨  p ⊃ p 1 

                       PS4      (p ⊃ q) ⊃  (r ∨  p ⊃ r ∨ q) 2 

                       (2) p/p ∨  p      (p∨  p ⊃ q) ⊃  (r ∨  (p ∨  p) ⊃ r ∨  q) 3 

                       (3) q/p      (p ∨  p ⊃ p) ⊃  (r ∨  (p ∨  p) ⊃ r ∨  p) 4 

                       (4) r/~p      (p ∨  p ⊃ p) ⊃  (~p ∨  (p ∨  p) ⊃ ~p ∨  p) 5 

                       (1) (5) R2                            ~p ∨  (p ∨  p) ⊃ ~p ∨  p      6 

                       (6) Def. 2                            (p ⊃ p ∨ p) ⊃ ~p ∨  p 7 

                       PS2                              p ⊃ p ∨  q 8 

 



                       (8) q/p                               p ⊃ p ∨  p 9 

                       (9) (7) R2                                                        ~p ∨  p 10 

Thus ‘~p ∨  p’ is demonstrable.  

 
  Example of a derivation. 
 

Explanation Derivation Sent. # 

          (x) (P(x) ⊃ Q(x)) 1  
     2 premisses 

          P(a) 2 

     PS5           (x)F(x) ⊃  F(y) 3 

     (3) R1d, F(x)/P(x) ⊃ Q(x)           (x) (P(x) ⊃ Q(x)) ⊃ (P(y) ⊃ Q(y)) 4 

     (1)(4) R2                                             P(y) ⊃ Q(y) 5 

     (5) y/a                                             P(a) ⊃ Q(a) 6 

     (2)(6) R2                                             Q(a) 7 

Thus from ‘(x) (P(x) ⊃ Q(x))’ and ‘P(a)’, ‘Q(a)’ is derivable. 

 
 7. Theorems about Demonstrability and Derivability. 
 
 Th. 1. If ‘(…) ⊃ (---)’ is demonstrable, ‘---’ is derivable from ‘...’. 
 
 Th. 2. If ‘(...) ≡  (---)’ is demonstrable, ‘...’ and ‘---’ are derivable from one another. 
 
 The following table contains a series of theorems. Part (a) of each states that a certain 
sentence is demonstrable. Part (b) states the corresponding relationship of derivability according 
to Th. 1 or 2. (The sentences given in (b) are merely examples: instead of the constants 
occurring in them any other constants of the same kind may be taken; instead of the sentential 
constants any other closed sentences; instead of ‘P(x)’ any other sentence containing the free 
variable ‘x’.) 



           1. Sentential Calculus. (PM *2-5; Hilbert Kap. I#2) 

 (a) (b) 

Theorem Demonstrable Sentences The 2nd Sentence is 
Derivable from the 1st 

3 p ∨  ~p   

4 p ⊃  p A A 

5 p . q ⊃ p A . B A 

6 p . q ⊃ q A . B B 

7 p ⊃ p∨  q A A∨  B 

8 q ⊃ p∨  q B A∨  B 

9 q ⊃ (p ⊃ q) B A⊃ B 

10 ~p ⊃ (p ⊃ q) ~A A⊃ B 

11 (p ≡ q) ⊃ (p ⊃ q) A ≡ B A⊃ B 

12 (p ≡ q) ⊃ (q ⊃ p) A ≡ B B⊃ A 

13 p . ~p ⊃ q A . ~A any sentence 
 

 (a) (b) 

Theorem Demonstrable Sentences The Last Sentence Is Derivable from the 
1st Two 

20 p . (p ⊃ q) ⊃ q A A⊃ B B 

21 p . (p ⊃ q) ⊃ q A A ≡ B B 

22 (p ⊃ q) . (q ⊃ r) ⊃  (p ⊃ r) A⊃ B B⊃ C A⊃ C 

 



23 (p ≡ q) . (q ≡ r) ⊃  (p ≡ r) A ≡ B B ≡ C A ≡ C 

24 p . ~p ⊃ q  (like Th. 13) A ~A any sentence 

 
 (a) (b) 

Theorem Demonstrable Sentences The Two Sentences Are 
Derivable from each other 

30 p ≡ p A A 

31 ~~p ≡ p ~~A A 

32 p ∨  q ≡ q ∨  p A ∨  B B∨  A 

33 p . q ≡ q . p A . B B . A 

34 p∨  (q ∨  r) ≡ (p ∨  q) ∨  r A∨  (B∨  C)  (A∨  B) ∨  C 

35 p . (q . r) ≡ (p . q) . r A . (B . C) (A . B) . C 

36 p ∨  (q . r) ≡ (p ∨  q) . (p ∨  r) A ∨  (B . C) (A ∨  B) . (A ∨  C) 

37 p . (q ∨  r) ≡ (p . q) ∨  (p . r) A . (B ∨  C) (A . B) ∨  (A . C) 

38 ~(p ∨  q) ≡ ~p . ~q ~(A ∨  B) ~A . ~B 

39 ~(p . q) ≡ ~p ∨  ~q ~(A . B) ~A ∨  ~B 

40 ~(p ⊃ q) ≡ p . ~q ~(A ⊃ B) A . ~B 

41 ~(p ≡ q) ≡ (p . ~q) ∨  (~p . q) ~(A ≡ B) (A . ~B) ∨  (~A . B)

42 (p ⊃ q) ≡ (~q ⊃ ~p) A⊃ B ~B⊃ ~A 

43 [p⊃  (q ⊃ r)] ≡ (p . q ⊃ r) A⊃  (B⊃ C) A . B⊃ C 

44 (p ≡ q) ≡ (q ≡ p) A ≡ B B ≡ A 

45 (p ≡ q) ≡  (~p ≡ ~q) A ≡ B ~A ≡ ~B 
 



           2.(Lower) Functional Calculus. (PM *9-11; Hilbert Kap III, #6) 

 (a) (b) 

Theorem Demonstrable Sentences The 2nd Sentence is Derivable from the 1st 

50 (x)F(x) ⊃ F(Y) (x)P(x) P(a) 

51 ------------- P(x) P(a) 

52 F(y) ⊃  (∃ x)F(x) P(a) (∃ x)P(x) 

53 (∃ x)(y)H(x,y) ⊃  (y)(∃ x)H(x,y) (∃ x)(y)R(x,y) (y)(∃ x)R(x,y) 

 
  The Last Sentence is Derivable 

from the First Two

60 (x)(F(x) ⊃ G(x)) . (x)F(x) ⊃  (x)G(x) (x)(P(x) ⊃ Q(x))          (x)P(x) (x)Q(x) 

61 (x)(F(x) ⊃ G(x)) . (∃ x)F(x)   
⊃  (∃ x) G(x) (x)(P(x) ⊃ Q(x))        (∃ x)P(x) (∃ x)Q(x) 

62 
         (x)(F1(x) ⊃ F2(x))       

                    . (x) (F2(x) ⊃ F3(x)) 
⊃ (x) ((Fl(x) ⊃ F3(x)) 

(x)(P1(x) ⊃ P2(x))  
(x)(P2(x) ⊃ P3(x)) (x) (P1(x) ⊃ P3(x)

 



 
 (a) (b) 

Theorem Demonstrable Sentences The Two Sentences Are Derivable 
from Each Other 

70 ------------------ (x)P(x) P(x) 

71 ~(x)F(x) ≡ (∃ x)~F(x) ~(x)P(x) (∃ x)~P(x) 

72 ~(∃ x)F(x) ≡ (x)~F(x) ~(∃ x)P(x) (x)~P(x) 

73 (x)F(x) ≡ ~(∃ x)~F(x) (x)P(x) ~(∃ x)~P(x) 

74 (∃ x)F(x) ≡ ~(x)~F(x) (∃ x)P(x) ~(x)~P(x) 

75 (x)(p ∨  F(x)) ⊃  p ∨  (x)F(x) (x)(A ∨  P(x)} A ∨  (x)P(x) 

76 (x)(y)H(x,y) ≡ (y)(x)H(x,y) (x)(y)R(x,y) {y)(x)R(x,y) 

77 (∃ x)(∃ y)H(x,y) ≡ (∃ y)(∃ x)H(x,y) (∃ x)(∃ y)R(x,y) (∃ y)(∃ x)R(x,y) 

 
 3. Identity  
 
 Identity is reflexive, symmetrical, and transitive 
 

 (a) (b) 

Theorem Demonstrable Sentences The last Sentence Is Derivable 
from the 1st or the 1st Two 

80 x = x ---------- --------- 

81 x = y ⊃ y = x a = b b = a 

82 x = y . y = z ⊃ x = z a = b       b = c a = c 

 



 8. Theorems about Replacement.  
 
 (Hilbert Kap.III,#7; Carnap-Sy.#13D) 
 
 Th. 90. Theorem of Equivalence. The two members of an equivalence may be replaced 
by each other in any context. 
 Explanation. Let ‘...’ and ‘---’ be any two sentences, closed or open. Let ‘..(...)..’ be a 
sentence containing ‘...’ as part and ‘..(---)..’ the corresponding sentence with ‘---’ instead of ‘...’. 
Then ‘..(---)..’ is derivable from ‘..(...)..’ and ‘(...) ≡  (---)’; and if the equivalence sentence is 
demonstrable, ‘..(...).:’ and ‘..(---)..’ are derivable from each other. (The derivability stated holds 
even in the case where ‘...’ contains free variables which are bound in ‘..(...)..’, -- see the third 
example below.) 
 (The Theorem of Equivalence holds likewise in any enlarged system, e.g., in the higher 
functional calculus to be explained below, provided no intensional connective or predicate 
occurs in the system.) 
 
 Examples. 
 

Two Premisses Derivable from the Two Premisses 

A ≡ B              ~A ~B 

A ≡ B              C . (A ∨  D) C . (B ∨  D) 

Pl(x) = P2(x)        A ⊃ (∃ x)(P1(x) ∨  Q(x)) A ⊃ (∃ x)(P2(x) ∨  Q(x)) 

 
 Th. 91. Theorem of Identity. The two members of an identity sentence my be replaced by 
each other in any context. 
 Explanation. Let ‘..a..’ be a sentence containing ‘a’, and ‘..b..’ the corresponding sentence 
containing ‘b’ in place of ‘a’. Then ‘..b..’ is derivable from ‘..a..’ and ‘a = b’. The same holds in 
any enlarged system where ‘=’ is used not only between individual symbols but also between the 
expressions of other types, even if they contain free variables, provided sentences analogous to 
PS 7 and 8 are demonstrable for those other types. 



 Example. ‘(∃ y)R(b,y)’ is derivable from ‘(∃ y)R(a,y)’ and ‘a = b’.  
 Theorems 90 and 91 make it possible to formulate definition sentences by means of ‘≡’ 
and ‘=’ (see #5). 
 
 9. Higher Functional Calculus. 
 
 (Hilbert Kap.IV #1; Carnap-Abr.#9,13; Carnap-Sy.#27.) 
 
 The H.F.C. is characterized by the admission of predicates of higher levels, i.e., those 
whose arguments may themselves be predicates. Every predicate -- constant or variable -- is 
assigned to a certain level and within this level to a certain type; for a predicate variable, only 
predicates of the same type may be substituted. A predicate variable of any type may occur also 
in a universal or existential operator. The formative and transformative rules stated above for the 
lower functional calculus (#3,4) would then need to be supplemented accordingly. 
 
 Classification of Levels and Types. 
 
 The level and the type of a predicate is determined by the level and type of its arguments 
in the following way: 
 1.  Every individual symbol belongs to the zero-level and the type 0.  
 2. A series of n arguments which have the types t1, t2, ... and tn respectively, has the 
type tl, t2, …, tn. Its level number is the highest of the level numbers of the arguments. 
 3.  A symbol which is the predicate of a series of arguments of the type tl and the 
level m, belongs to the type (t1) and to the level m + 1. 



Example. 

 The Argument Expression Is of 
 

Therefore the Predicate Is of 
 

Expression (See #1) Type Level Type Level 

P(a) 0 0 (0) 1 

R(a,b) 0,0 0 (0,0) 1 

T(a,b,c) 0,0,0 0 (0,0,0) 1 
2P(P) (0) 1 ((0)) 2 

2R(P,P) (0),(0) 1 ((0),(0)) 2 
2S(a,P) 0,(0) 1 (0,(0)) 2 

3T(2R,a,P) ((0),(0)),0,(0) 2 (((0),(0)),0,(0)) 3 

 
 10. Functors. (Carnap-Sy. #3, 27) 
 
 A functor, like a predicate, has arguments; but unlike a predicate, its full expression 
(consisting of the n-place functor and n arguments) is not a sentence, but an individual 
expression, a predicate expression, or a functor expression. 
 If the series of arguments of a certain functor belongs to the type t1 and the level ml, and 
the full expression belongs to the type t2 and the level m2, then we assign the functor itself to the 
type (t1 : t2) and its level number is m + 1, where m is the higher of the numbers ml and m2. 
 
 Examples of Functors. 
 
Full Expression 
of the Functor Explanation 

mem1(R)  the first domain of R, i.e., the class (or property) of the 1st-place members  
     of R, i.e., of those objects which bear the relation R to something. 

mem2(R) 
 the second (or converse) domain of R, i.e., the class of the 2nd-place     
     members of R, i.e., of those objects to which something bears the    
     relation R. 

mem(R)  the field of R, i.e., the class of the members of R. 

 



init(R)  the class of the initial members of R, i.e., of those which are first-place   
     but not 2nd-place members of R. 

sm(2P)  the class-sum of 2P, i.e., the class of those objects which belong to at least 
     one element-class of 2P. 

pr(2P)  the class-product of 2P, i.e., the class of those objects which belong to  
     every element-class of 2P. 

 
 Example:  ‘mem(R)(b)’ means: “b has the property mem(R), i.e., is a member of the  
   relation R.” 
    
     functor  argument of  
     the functor 
 

   mem (R)(b) 
 
      argument of the 
   full expression  predicate expression  
   of the functor; 
   it is a predicate  
   expression 
 
 Definitions of the functors explained above:  
 
 Def. 10.  mem1(H)(x) ≡ (∃ y)H(x,y) 
 Def. 11. mem2(H)(x) ≡ (∃ y)H(y,x) 
 Def. 12. mem(H)(x) ≡ meml(H)(x) ∨  mem2(H)(x) 
 Def. 13. init(H)(x) ≡ meml(H)(x) . ~mem2(H)(x)  
 Def. 14.  sm(2F)(x) ≡ (∃G)[2F(G) . G(x)[ 
 Def. 15. pr(2F)(x) ≡ (G)[2F(G) ⊃ G(x)] 
 
 Determination of type and level for ‘mem’. (It is the same for the functors ‘meml’, 
‘mem2’, and ‘init’.) 
 

Expression Kind of Expression Type Level 

mem(R)(b) sentence --- --- 

b individual 0 0 

mem(R) predicate expression (0) 1 

R predicate (0,0) 1 

mem functor ((0,0) : (0)) 2 
 



NOTES FOR SYMBOLIC IDGIC. SECOND PART 
 

by 
 

Rudolf Carnap 
 

11. PREDICATE EXPRESSIONS; IDENTITY 
 

 We use the sentential connectives not only for sentences but also for connecting 
predicates to compound predicate expressions. If such an expression is followed by arguments it 
is included in brackets. 
 
 Def. 20. (~F) (x) ≡ ~(F (x)) 
 Def. 21. (F ∨  G) (x) ≡ F (x) ∨  G (x) 
 Def. 22. (F . G) (x) ≡ F (x) . G (x) 
 Def. 23. (F ⊃ G) (x) ≡ (F (x) ⊃ G (x)) 
 Def. 24. (F ≡ G) (x) ≡ (F (x) ≡ G (x)) 
 
Conventions for Avoiding Brackets (analogous to those on p. 4): 
 ‘~’ binds more strongly than ‘|’ (#13, Def. 55); this binds more strongly than ‘∨ ’ and ‘.’; 
and these bind more strongly than ‘⊃ ’ and ‘≡’. Instead of ‘(R | S) | T’, which is equivalent to 
‘R |  (S | T)’ (see #14, Theorem 131), we may write ‚R | S | T’. 
 A predicate expression (or a predicate) in curved brackets is used as an abbreviation for 
the (closed) universal sentence of that predicate expression. If such a predicate expression 
included in curved brackets is a separate sentence (i.e., not a part of another sentence) the curved 
brackets may be omitted. (Whenever such a sentence is inserted into another sentence, e.g., by 
substitution, the curved brackets must of course be restored.) As an abbreviation for ‘(∃ x)[( ...) 
(x)]’, where any predicate expression stands at the place of ‘...’, we write ‘(∃ {…}’. Instead of 
‘({…}) we may write ‘{…}’. 



 Examples abbreviation for 

1. {P} 

2. P 
          (x)P(x) 

3. {~P} 

4. ~P 
          (x)~P(x) 

5. ~{P}           ~(x)P(x) 

6. {P ⊃ Q} 

7. P ⊃ Q 
          (x)(P(x) ⊃ Q(x)) 

8. Pl . P2 ≡ Ql ∨  Q2 
          (x)[(P1 . P2 ≡ Ql ∨  Q2)(x)] 
          (x)[P1 (x) . P2 (x) ≡ Ql (x) ∨  Q2 (x)] 

9. {Pl . P2} ≡ {Ql ∨  Q2}           (x)[(P1 . P2 (x)] ≡ (x) [(Ql ∨  Q2) (x)] 
          (x)(P1 (x) . P2 (x) ≡ (x)(Ql (x) ∨  Q2(x)) 

10. R ⊃ S           (x) (y) (R (x, y) ⊃ S (x, y)) 

11. 2P ⊃  2Q           (F) (2P (F) ⊃ 2Q (F)) 

12. ∃ {P}           (∃ x) P (x) 

13. ~∃ {P} ≡ {~P}           ~(∃ x) P (x) ≡ (x)~P(x) 

14. ∃ {R . S}           (∃ x)(∃ y) (R (x,y) . S (x,y)) 

15. ∃ {2P}           (∃F) 2P (F) 

 
 Explanation in class-terminology. 1. Predicate-expressions: The class P is the 
complement of the class P; P ∨  Q is the sum, P . Q the product of the classes P and Q.  
2. Sentences: ‘{P ⊃ Q}’  says that the class P is contained in Q (or: P is a sub-class of Q);  
‘{P ≡ Q}’ says that the class P is the same as the class Q. 
 Instead of introducing identity among individuals by primitive sentences (PS 7 and 8, 
Part I, p. 5) we may introduce it by a definition (this is possible only in the higher functional 
calculus): 
 
Def.26. (x = y) ≡ (F)(F(x) ⊃  F(y)) (comp. PM., vol. I. #13) 



The same sentences as before are then demonstrable, e.g., PS 7 and 8 (p. 5), and Theorems 80, 
81, and 82 (p. 15). 
 In an analogous way, identity among predicates of any type and identity among functors 
of any type may be defined: 
 
Def. 27. (nF =  nG) ≡ (n+1F) [n+1F(nF) ⊃ n+1F(nG)] 
Def. 28. (nf =  ng) ≡ (n+1F) [n+1F(nf) ⊃ n+1F(ng)] 
 
Here, analogous theorems hold. Also the Theorem of Identity (Th. 91, p. 16) holds for all these 
kinds of identity. 
 

12. λ -EXPRESSIONS 
 
 A λ-expression has the form ‘(λ x) (...x.…)’; ‘(λ x)’ is called the λ -operator, ‘...x...’ its 
operand. 
 1. λ-predicate-expressions. If the operand ‘...x...’ is a sentence the λ-expression is a 
predicate expression which moans “the property of x such that ...x...” (or: “the class of all x such 
that ...x.…”). Hence a full sentence ‘[(λ x) (...x...)] (a)’ means the same as ‘...a...’. Analogously, 
‘(λ x, y)’ is used for constructing a two-place predicate expression, ‘(λ F)’ for a second level 
predicate expression, etc. In accordance with this explanation the system of primitive sentences 
(#3) would have to be supplemented by  
‘[(λx 1, x2,...xn)(K(xl, x2,... xn))](ul, u2,...un) ≡ K(ul, u2,...un)’, 
where n may be any of the numbers 1, 2, etc. (‘λ x)P(x)’ corresponds to ‘ x̂ (φ x)’ in PM, Vol. I, 
#20). 
 In using λ -expressions, careful attention has to be paid to the brackets. We will apply 
rule 4 (p.4) also in the case of a λ -operator, but not rule 5. That means, the brackets including a 
whole λ -expression may be omitted; instead of ‘[(λ x) (P(x))] (a)’ one may write ‘(λ x) (P(x)) 
(a)’. But the brackets including a λ -operand, e.g. ‘P (x)’ it the given example, 



must not be omitted. Consequently, an expression of the form ‘(λ x)(..x..) (a)’ is to be interpreted 
as ‘[(λx) (..x..)] (a) t and not as ‘(λ x) [(..x..) (a)]’ 
 

Examples Formulation in other symbols or in words 

1.      (λ x)(P(x))      P 

2.      (λ x)(P(x)) (a)      P(a) 

3.      (λ x,y) (R(x,y))      R 

4.      (λ x,y)(R(x,y)) (a,b)      R(a,b) 

5.      (λ x)(P(x) ∨  Q(x) )      P ∨  Q 

6.      (λ x)(P(x) ∨  (∃ y)R(x,y) ) (a)      P(a) ∨  (∃ y)R(a,y) 

7.      5((λ x)(P(x) ∨  (∃ y)R(x,y)))      there are five objects x (see #15) such that 
     P(x) ∨   (∃ y)R(x,y). 

 
 2. λ -functor-expressions. If the operand ‘...x...’ is not a sentence, the λ -expression is a 
functor-expression. In this case, as before, the full expression ‘(λ x)( ...x...) (a)’ is to mean the 
same as ‘...a....’. But in this case, ‘...a...’, and hence also the full expression, is not a sentence; it 
may be an individual expression, a predicate-expression, or again a functor-expression (see #10, 
p. 18). 
 Example. The predicate expression ‘(λ x) (∃ y)R(x,Y) t has the same meaning as ‘meml 
(R)’ (see Part I, p. 19). The functor expression ‘(λ H) (λ x) (∃ y) H(x, y)’ has the same meaning 
as the functor ‘meml’. 
  Distinction between ‘(λ x,y)’ and ‘(λ x)( λ y)’. ‘(λ x,y) ( ..x..y..)’ is a two-place predicate 
expression; ‘(λ x,y)(..x..y..) (a,b)’ mean the same as ‘..a..b..’. ‘(λx)(λ y) (..x..y..)’ is (according to 
rule 4, not 5) an abbreviation for ‘(λx) [(λy)(..x..y..)]’ and hence is a one-place functor 
expression; ‘(λ x) (λ y) (..x..y..) (a)’ is a one-place predicate expression with the same meaning 
as ‘(λ y) (..a..y.. )’. Hence 



‘(λ x) (λ y)(..x..y..)(a) (b)’, which is short for ‘[[(λx) [(λ y) (..x..y..)]](a)] (b)’, is a sentence 
having the same meaning as ‘..a..b..’, and hence the same as the sentence in the first example. 
 The use of a λ -expression as definiens makes it possible to give any definition of a 
predicate or a functor the form of an explicit definition in the narrower sense (see p. 7), the 
definiendum consisting of the defined symbol only. There are many examples of this in the next 
section.  
 

13. THEORY OF RELATIONS 
 

(Carnap, Abr. #15, 16, 19, 21, 23, 27; PM, vol. I) 
 
 In what follows we define some of the frequently used concepts of the theory of relations, 
and a few of the theory of classes, including some special relations and functors, properties of 
relations, relations between relations, etc. From a definition schema containing ‘n’ one gets a 
series of definitions by putting ‘l’, ‘2’, ‘3’, etc., one after the other, at the place of ‘n’. 
In these definitions, ‘H’, ‘Hl’, et c. are taken as predicate variables of degree 2; ‘K’, ‘K1’, etc. as 
predicate variables of any degree n. A predicate of degree n designates an n-place attribute; i.e., 
if n = 1, a property or class, and if n >1, an n-place relation. For ‘meml’, etc. see Part I, p. 19. As 
predicates, we take groups of one or more letters beginning with a capital; as functors, those 
beginning with a small letter. 
 
Definitions. 
 

Number Definiendum Definiens 

Def.      30 n21 x;....x;x  (λu)[u = x1 ∨  u = x2 ∨….∨  u = xn] 

             31 n21 x;....x;x  (λu1, u2,….un)[u1 = x1 . u2 = x2 . …. un = xn] 

             32 Vn (λx1, x2,….xn)(x1 = x1) 

             33 Λn (λx1, x2,….xn) ~ (x1 = x1) 

 
(Comp. PM, 

Vol. I, #24,25) 

 



Number Definiendum Definiens 

34 smn 
(λN)(λx1, x2, ..xn)(∃K)[N(K) . K(x1, x2, ...xn)]         
                                                                                    (PM, #40, 41) 

35 prn 

n 
(λN)(λx1, x2, ..xn)( K)[N(K) ⊃ K(x1, x2, ...xn)] 

36 subn (λK1)(λK2){K2⊃ K1}                                                  (PM, #60,61) 

40 In (λx1, x2, ..xn)(x1 = x2 . x2 = x3 . … . xn-1 = xn]                   (PM, #50) 

41 I I2 

42 Jn 
(λx1, x2, ..xn)[~(x1 = x2) . ~(x1 = x3) . … . ~(x1 = xn)  
     . ~(x2 = x3) . ~(x2 = x4) . … . ~(x2 = xn)  
     … . ~(xn-2 = xn-1) . ~(xn-2 = xn)]                 (for n > 1) 

43 J J2 

50 H(-,y) (λx)(H(x,y))                                                                (PM, #32, ‘ R
r

‘y’) 

51 H(x,-) (λx)(H(x,y))                                                                (PM, #32, ‘ R
r

‘x’) 

55  Hl | H2 (λx,y)(∃ u)[H1(x,u) . H2(u,y)]                                     (PM, #34) 

56 K in F (λx1, x2, ..xn)[ K(x1, x2, ...xn) . F(x1) . F(x2) … F(xn)]  (PM, #36) 

57 H “ F (λx)(∃ y)[F(y) . H(x,y)]                                                      (PM, #37) 

60 H0 I in mem(H) 

61 Hl H 

62 Hn+1 Hn | H 

63 H-n (λx,y)(Hn(y,x)        (‘H-1’ : PM, #31, ‘ R
(

’) 

64 Her (λF,H) (x)(y)[F(x) . H(x,y) ⊃ F(y)]           (PM, #90) 

65 H ≥ 0 
(λx,y) [mem(H)(x) . (F)(Her(F,H) . F(x) ⊃ F(y))]  (PM, #90, ‘R*’) 

66 H > 0 H | H ≥ 0                   (PM, #91, ‘Rpo’) 

70 Sym (λH)(H ⊃ H-1) 

71 As (λH)(H ⊃ ~H-1) 

72 Trans (λH)(H2 ⊃ H)                                                    (PM, II, #201) 

73 Intr (λH)(H2 ⊃ ~H) 

74 Refl (λH)(H0 ⊃ H) 

75 Irr (λH)(H ⊃ J)                                                       (PM, II, #200) 
 



Number Definiendum Definiens 

76 Reflex (λH)(I ⊃ H) 

77 Connex (λH)(J in mem(H) ⊃ H ∨  H-1)                                 (PM II, #202) 

78 Ser Irr. Trans. Connex                                                     (PM II, #204) 

79 Dense (λH)(H⊃ H2)                                                           (PM II, #270, ‘comp’)

80 Un1 (λH)(H | H-1⊃ I) 

81 Un2 (λH)( H-1 | H ⊃ I) 

82 UnUn Un1 . Un2 

 
 

(PM, #71,72,’1→Cls’,            
‘Cls→1’, ‘1→1’) 

90 Corrn 
(λH, K1, K2) [UnUn(H) . {mem(K1) ⊃ mem1(H)} . {mem(K2) 
⊃ mem2(H)} . (x1)(y1)(x2)(y2)…(xn)(yn) 
[H(x1,y1) . H(x2,y2)… . H(xn,yn) ⊃ (K1(x1,x2,…xn) ≡ K2(y1,y2…,(yn))]] 

91 Isn 
(λ K1, K2)(∃H) Corrn(H, K1, K2)                 (PM, I, #73,  
                                                                      ‘sm’; II, #151, ‘smor’) 

92 Strn (λ K1)(λ K2)(Isn (K2, K1))                       (PM, II, #100, ‘Nc’; #152, ‘Nr’) 
93 Strn (λ N)(∃K) {N ≡ Strn(K)}                      (PM, II, #100, ‘NC’; #152, ‘NR’)

94 Structn (λ N)(Her(N, Isn)) 

 
 Instead of ‘( ... )’ we may write ‘ ... ’ 
 
 Explanations. Def. 30. n2l ;...aa;a  is the class whose only members are al,a2…an. a  is 

the unit class of a. 31. n2l ,...aa,a  is the n-place relation whose only n-ad is al,a2…an. 32. Vn is 
the universal. attribute (i.e. class or relation ) of degree n, hence Vl the universal class. 33.Λn is 
the null attribute, Λ1 the null class. 34, 35. If M is a class of classes, sml (M) is the sum 
(disjunction) of the classes which are members of M, and prl (M) their product (conjunction). If 
M is a class of two-place relations sm2 (M) is the sum (disjunction) of the relations belonging to 
M, and pr2(M) their product (conjunction). 36. subl(P) is the class of the subclasses of P; sub2(R) 
is the class of the sub-relations of R. 40-43. I is 



identity, J diversity, (non-identity) for two arguments, I3 and J3 for three arguments, etc. 50, 51. 
R(-,b) is the class of those objects which have the relation R to b, called the referents of b; R(a,-) 
is the class of those objects to which a has the relation R, called the rolata of a. 55. R | S is called 
the relative product of R and S; it holds between a and c if there is an intermediate member b 
such that R(a,b) and S(b,c). 56. T in P is the sub-relation of T which we get by restricting the 
field to the class P. 57. R “ P is the class of those objects which have the relation R to some 
member of P. 60-62. The powers of a relation: R0 is identity among members of R; R1 is R 
itself; R2 is R | R; R3 is R2 | R, etc. 63. R-1 is called the converse of R; it holds for the same pairs 
of members as R, but in the inverse order. R-2 is the converse of R2, etc. 64. ‘Her(P,R)’ means 
that the property P is hereditary with respect to R, i.e., that it is transferred from any member a to 
any other member b to which a has the relation R. 65,66. Ancestral relations of first and second 
kind. ‘R≥0(a,b)’ means that a is a member of R and b has all hereditary properties of a. This is the 
case if there is a finite number n ≥ 0 such that Rn(a,b). ‘R>0(a,b)I holds if there is a finite number 
n > 0 such that Rn(a,b). Definitions 70 to 82 define second-level predicates which designate 
properties of two-place relations. 70. ‘Sym(R)’ means that R is symmetrical, i.e., if R holds for a 
pair of members then it holds for the inverse pair also. (Examples: cousin, similar, parallel). 71. 
‘As(R)’: R is asymmetrical, i.e., R does not hold in any pair in both directions. (Examples: 
father, <). 72. ‘Trans(R)’: R is transitive, i.e., if R(x,y) and R(y,z) then R(x,z). (Ex.: ancestor, 
parallel, <). 73. ‘Intr(R)’: R is intransitive, i.e. if R(x,y) and R(y,z) then not R(x,z). (Ex.: father). 
74. ‘Refl(R)’: R is reflexive, i.e. if x is a member of R then R(x,x). (Ex.: equal in weight, similar, 
≤). 75. ‘Irr(R)’: R is irreflexive, i.e., if x is a member of R then not R(x,x). (Ex.: father, brother, 
<). 76. ‘Reflex(R) ‘; R is totally reflexive, i.e., for every x, R(x,x). 



(Ex.: equal in weight, similar). 77. ‘Connex(R)’: R is connected, i.e., R holds in any pair of two 
different members of R in at least one of the two directions. (Ex.: <, ≤). 78. ‘Ser(R)’: R is a 
series, i.e., R is irreflexive, transitive, and connected. (Ex.: <). 79. ‘Dense(R)’: R is dense, i.e., 
for any x and y such that R(x,y) there is an intermediate member u such that R(x,u) and R(u,y). 
(Ex.: <among fractions). 80. ‘Unl(R)’: R is a one-many relation, or: R is univocal with respect to 
the first argument, i.e., no two different members have the relation R to any member. (Ex.; 
father, square). 81. ‘Un2(P)’: R is a many-one relation, or: R is univocal with respect to the 
second argument, i.e., no member has the relation R to more than one member. (Ex.: square 
root). 82. ‘UnUn(R)’:R is a one-one relation, or: R is univocal in both directions, i.e., R is both 
one-many and many-one. (Ex.: successor among natural numbers.) 
 90. ‘Corrn(R,Tl,T2)’: R is a correlator for the n-place relations T1 and T2, i.e., R is one-
one, the members of T1 are first-place members of R, the members of T2 are second-place 
members of R, an n-ad of Tl is correlated by R with an n-ad of T2 and vice versa. 91. ‘Isn(T1,T2)’:  
T1 is isomorphic with T2, i.e., there is a correlator for T1 and T2. ‘Isl(P1,P2)’: the classes 
P1 and P2 are isomorphic (i.e. equal in number). 92. strn(T) is the (n-place) structure of the (n-
place) relation T, i.e., the class of those relations which are isomorphic with T. str1(P) is the 
cardinal number of the class P. 93. ‘Strn(M)’ means that the (second-level) class M is an n-place 
structure, i.e., the n-place structure of some n-place relation. ‘Strl(M)’: M is a oneplace structure, 
i.e., a cardinal number. 94. ‘Structn(M)’: the (second-level) property M is a structural property of 
n-place relations, i.e., if T is M, then any relation isomorphic with T is also M. ‘Struct1 M)’: M is 
a structural property of classes, i.e., a property of classes dependent only upon their cardinal 
number. 



14. THEOREMS IN THE THEORY OF RELATIONS 
 
 On each line, the sentences in columns (a) and (b) are derivable from one another; if no 
sentence is written in (b), the sentence in (a) is demonstrable. 
 

Theorem 
No. (a) (b) 

100 a (b) b = a 

101 21 a;a  (b) b = al ∨  b = a2 

102 21 a,a  (bl,b2)  bl = al . b2 = a2 
103 vl(x)  

104 P ≡ Vl {P} 

105 F⊃ V1  

106 V2 (x,y)  

107 ~Λ1(x)  
108 P ≡ Λ1 ~∃ {P} 

109 Λ1⊃ F  

110 ~Λ 2(x,y)  

111 Λ n ≡ ~Vn  

112 sml(2P) (a) (∃F) (2P(F) . F (a)) 

113 prl(2P) (a) (F) (2P) (F) ⊃ F(a)) 

114 sub1(P) (Q) Q ⊃ P 

115 sub2(R) (S) S ⊃ R 

120 I(a,b) a = b 

121 13(a,b,c) a = b . b = c 

122 J(a,b) ~(a = b) 

123 J3(a,b,c) ~(a = b) . ~(a = c) .~(b = c) 

130 (R | S) (a,b) (∃ y) (R(a,y) . S(y,b)) 

131 (Hl | H2) | H3 ≡ H1| (H2 | H3)  
 



Theorem 
No. (a) (b) 

132 (R in P) (a,b) R(a,b) . P(a) . P(b) 

133 (R “ P) (a) (∃ y)(P(y) . R (a,y)) 

140 R0(a,b) a = b . mem(R) (a) 

14l Rl(a,b) R(a,b) 

142 R2(a,b) (∃ y) (R(a,y) . R(y,b)) 

143 R-1(a,b) R(b,a) 

144 (R-1)-1(a,b) R(a,b) 

150 Her(P,R) (x)(y) [P(x) . R(x,y) ⊃ P(y)] 

151 R≥0(a,b) mem(R) (a) . (F) [Her(F,R) . F(x) ⊃ F(y)] 

152 H0⊃ H≥0  

153 H ⊃ H≥0  

154 H2⊃ H≥0    etc.  

155 R>0(a,b) (∃ y) [R(a,y) . R≥0 (y,b)] 

156 H⊃ H>0  

157 H2⊃ H>0  

158 H3⊃ H>0  

 etc.  

159 H>0⊃ H≥0  

160 R≥0 (a,b) R>0(a,b) ∨  R0(a,b) 

170 Sym(R) R ⊃ R-1 

171 Sym(R) (x) (y) (R(x,y) ⊃ R(y,x)) 

172 As(R) R⊃ ~R-1 

173 As(R) (x) (y) (R(x,y) ⊃ ~R(y,x)) 

174 Trans (R) R2 ⊃ R 

175 Intr(R) R2 ⊃ ~R 

176 Refl (R) R0⊃ R 

177 Refl(R) mem(R) (x) ⊃ R (x,x) 
 



Theorem 
No. (a) (b) 

178 Irr(R) R ⊃ J 

179 Irr(R) (x)~R(x,x) 

180 Trans.Sym ⊃ Refl  

181 As⊃ Irr  

182 Trans ⊃  (As ≡ Irr)  

183 Reflex(R) I ⊃ R 

184 Reflex(R) (x)R(x,x) 

185 Reflex(R) Refl(R) . {mem(R)} 

186 Connex(R) mem(R)(x) . mem(R)(y) . ~(x = y) ⊃ R(x,y)∨  R(y,x) 

187 Ser(R) (Irr . Trans . Connex)(R) 

188 Ser(R) (As . Trans . Connex)(R) 

189 Dense(R) R ⊃ R2 

190 Dense (R) R(x,z) ⊃ (∃ y)(R(x,y) . R(y,z)) 

191 Unl(R) R | R-1 ⊃ I 

192 Unl(R) R(x,z) . R(y,z) ⊃ x = y 

193 Un2(R) R-1 | R ⊃ I 

194 Un2(p) R(x,y) . R(x,z) ⊃ y = z 

195 Un2(R) Unl(R-1) 

196 UnUn(R) Unl(R) . Un2(R) 

197 UnUn(R) UnUn(R-1) 

210 Corrl(R,Pl,P2) UnUn(R) . {P1 ⊃ R “ P2} . {P2 ⊃ R-1 “ Pl } 

211 Corr2(R,S1,S2) UnUn(R) . {mem(S2) ⊃ mem2(R)} . {S1 ≡ R | S2 | R-1} 

212 Isl(Pl,P2) (∃H) Corrl(H,Pl,P2) 

213 Is2(S1,S2) (∃H) Corr2(H,Sl,S2) 

214 strn(T1)(T2) Isn(T2,Tl) 

215 Strn (2P) (∃K){2P ≡ strn(K)} 

216 Structn(2P) Her(2P,Isn) 

217 Structn(2p) (Kl)(K2)[2P(K2) . Isn(Kl,K2) ⊃ 2P(K2)] 
 



15. CARDINAL NUMBERS 
 

(PM, vol. II, Part III; Carnap-Abr. #19, 21,26) 
 
 The cardinal numbers are the (one-place) structures of classes. We will here define some 
finite cardinal numbers (0,1,2,etc.), the class of progressions (Prog), and the smallest transfinite 
cardinal number, λλ0 (aleph-zero); this is the cardinal number of any progression. If λλ0 (P), P is 
called a denumerable class. 
 ‘3m(P)’ is to mean: “there are at least 3 P-objects”; ‘3(P)’: “P has the cardinal number 3”; 
i.e., “there are 3 P-objects”. For ‘mem’ and ‘init’ see Part I, p. 19. 
 
Definitions. 
 

Number definiendum definiens 

100 lm  (λF) (∃ {F}) 

101 2m  (λF) (∃ {J2 inF}) 

102 3m  (λF) (∃ {J3 inF}) 

 etc.  

105 0  ~1m 

106 1  lm . ~2m                                      (Comp. PM, vol. II, #101) 

107 2 2m . ~3m 

108 3 3m . ~4m 

 etc.  

110 Prog (λH) [UnUn(H) . 1(init(H)) . 0(init(H-1)) . Connex(H>0)] (PM #122) 

111 λλ0 (λF) (∃H)[Prog(H) . {F ≡ mem(H)}]  (PM #123) 

120 Nl +N2 (λF) (∃Gl)(∃G2) [{F ≡ Gl ∨  G2} . ~∃ {Gl . G2} . Nl(G1) . N2(G2)]  
 



Number definiendum definiens 

121 Pred (λN1,N2){Nl +l ≡ N2} 

122 Fin (λN) (Pred ≥ 0(0,N)) 
 
 Explanations to Def. 120-122. A class F has the cardinal number N1 + N2, the 
(arithmetical) sum of N1 and N2, if F can be divided into two mutually exclusive subclasses G1 
and G2 which have the cardinal numbers N1 and N2 respectively. N1 is the predecessor of N2 if 
N2 is N1+1. N is a finite cardinal number if 0 has the relation Pred ≥ 0 to N. 
 Theorems. The sentences (a) and (b) are derivable from one another; where no sentence 
(b) is given, sentence (a) is demonstrable. 
 

Theorem 
No. (a) (b) 

230 0(P) ~∃ {P} 
231 0 = strl(Λ1)  
232 0(P) P ≡ Λ1 
233 1(P) (∃ x)(y)(P(y) ≡ x = y) 

234 1(P)  (∃ x){P ≡ x } 

235 1 ≡ Str1 x  (∃ x)(∃ y)(P(x) . P(y) . ~(x = y)) . ~(∃ x)(∃ y)(∃ z)
(P(x) . P(y) . P(z) . ~(x = y) . ~(x = z) . ~(y = z)) 

236 2(P) (∃ x)(∃ y)(J(x,y) . {P ≡ yx, }) 

237 2(P) str1 ba,  ≡ 2 

238 J(a,b)  

244 Str1(0)  

245 Str1(1)  

246 Str1(2)  

 etc.  

250 Prog(H) ⊃ λλ0 (mem(H))  
 



 Principle of Infinity. Several formulations: 1. “There is an infinite number, i.e., at least a 
denumerable class, of individuals”: ‘∃ {λλ0}’. 2. “For any finite cardinal number there is a class 
(of individuals) having that cardinal number”: “Fin(N) ⊃ ∃ {N}. 3. “There is a progression of 
individuals”: ‘∃ { Prog}’. (Comp. PM, vol. II, #125). The following sentences are derivable from 
the Principle of Infinity and hence demonstrable if some formulation of this principle is taken as 
a primitive sentence : ‘Str2(Prog)’, ‘Str1(λλ0)’ i.e., Prog is a structure of relations,) λλ0 is a cardinal 
number.  
 

16. DESCRIPTIONS 
 
(PM, vol. I, .#14, 30; Carnap-Abr. #7b, l4a; Carnap-Sy. #38c) 
 
 An expression of the form ‘(ιx) (...x...) ‘ is to mean, “the object x such that ...x...”. ‘(ιx)’ 
is called a ι-operator (iota-operator), ‘...x...’ its operand; the expression ‘(ιx) (...x,..)’ is called a 
description; ‘x’ is bound within the description. Descriptions are used chiefly as arguments for 
predicates. According to rule 4, p. 4, we may omit the brackets including a description. Example: 
‘Q(ιx) (..x..)’. This sentence is to mean: “the object x such that ..x.., is Q,” or more exactly: 
“there is exactly one x such that ..x.., and this x (or, in other words: every x such that ..x..) is Q.” 
(Example: “the brother of b is ill”: ‘Ill(ιx)Br(x,b)’). In accordance with this explanation the 
following may be stated as a primitive sentence for the introduction of the ι-operator: ‘G(ιx) 
(F(x)) = 1(F) . { F ⊃ G}’. 
 ‘R ′  b’ is used as an abbreviation for the description ‘(ιx)R(x,b)’. Hence it means “the 
object which has the relation R to b”. (Example: ‘Br ′ b’, “the brother of b”). 
 It is to be noticed that the rule of substitution does not permit the substitution of a 
description of either kind (‘(ιx)(P(x))’ or ‘R ′  b’) for a variable. 



Theorems. The sentences in each of the following pairs are derivable from one another. 
 

Theorem 
No. (a) (b) 

260 Q(ιx) (P(x)) 1(P) . {P ⊃ Q} 

261 ~Q(ιx) (P(x)) 0(P) ∨  2m(P) ∨  ∃ {P . ~Q} 

262 (ιx) (P(x)) = a l(P) . P(a) 

263 (ιx) (P(x)) = a P ≡ a  

264 (ιx) (P(x)) = (ιx) (Q(x)) 1(P) . 1(Q) . {P ≡ Q} 

265 Q(R ′ b) 1(R(-,b)) . {R(-,b) ⊃ Q} 
 



ERRATA 
 

First Part. 
 
p. 3, below, and p. 4 above. Cross out the whole content of the column “Kind of Sentences.” 
p. 4, 1 ne 1. Instead of  “(x) (P (x)) ∨  (R (x, b))” read “(x)((P (x)) ∨  (R (x,b))”. 
p. 4, after line 4, add: “A sentence is called atomic if it has one of the forms 1, 2, 3; molecular, if 
no operator occurs; general, if an operator occurs.” 
p. 4, rule 4. Instead of “operator with operand “ read “operator (of any kind) with operand.” 
p. 4, rule 5. Instead of “operand” read “operand (except with a λ- operator).” 
p. 4, below, Example 2a, last column, 

instead of: “A∨  B 
                         A . B 
                         A ⊃ B 
                         A ≡ B”

read: “~A∨  B 
          ~A . B 
          ~A ⊃ B 
          ~A ≡ B”

 
p. 5, line 8 from below, instead of “premiss” read “premisses”. 
p. 6, below. Cross out “instead of ‘x’ any other individual variable may be taken” and add the 
following: 
“R4. Rule of Bound Variables. S3 is constructed out of Sl by replacing an individual variable in 
an operator and at all places where it occurs as a variable which is free within the operand 
belonging to the operator, by another individual variable which does not occur in the original 
operand.” 
p. 7, after R3b, add the following: 
 “R4 |    (u) P (u) | (v) P (v)” 
p. 18, line 2 of #10, instead of “then-n-place read “the n-place.” 
 
Second Part. 
p. 32, Def.110. Instead of “Prog.” read “Prog”. 
p. 35, line 1. Instead of “sentence” read “sentences”. 
The spaces left between a predicate and its arguments or between an operator and its operand at 
many places in the Second Part (esp. on p.20, 21, 34, 35, 36) are of course unnecessary. 
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