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I. INTRODUCTION 
 

I. Our Problem: Confirmation, Testing and Meaning 
 
     Two chief problems of the theory of knowledge are the question of 
meaning and the question of verification. The first question asks under what 
conditions a sentence has meaning, in the sense of cognitive, factual 
meaning.  The second one asks how we get to know something, how we can 
find out whether a given sentence is true or false. The second question 
presupposes the first one. Obviously we must understand a sentence, i.e. we 
must know its meaning, before we can try to find out whether it is true or 
not.  But, from the point of view of empiricism, there is a still closer 
connection between the two problems. In a certain sense, there is only one 
answer to the two questions. If we knew what it would be for a given 
sentence to be found true then we would know what its meaning is.  And if 
for two sentences the conditions under which we would have to take them as 
true are the same, then they have the same meaning.  Thus the meaning of a 
sentence is in a certain sense identical with the way we determine its truth 
or falsehood; and a sentence has meaning only if such a determination is 
possible. 

If by verification is meant a definitive and final establishment of truth, 
then no (synthetic) sentence is ever verifiable, as we shall see. We can only 
confirm a sentence more and more. Therefore we shall speak of the problem 
of confirmation rather than of the problem of verification. We distinguish the 
testing of a sentence from its confirmation, thereby understanding a 
procedure—e. g. the carrying out of certain experiments—which leads to a 
confirmation in some degree either of the sentence itself or of its negation. 
We shall call a sentence testable if we know such a method of testing for it; 
and we call it confirmable if we know under what conditions the sentence 
would be confirmed. As we shall see, a sentence may be confirmable without 
being testable; e.g. if we know that our observation of such and such a 
course of events would confirm the sentence, and such and such 
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a different course would confirm its negation without knowing how to set up 
either this or that observation. 
     In what follows, the problems of confirmation, testing and meaning will be 
dealt with. After some preliminary discussions in this Introduction, a logical 
analysis of the chief concepts connected with confirmation and testing will be 
carried out in Chapter I, leading to the concept of reducibility.  Chapter II 
contains an empirical analysis of confirmation and testing, leading to a 
definition of the terms ‘confirmable’ and ‘testable’ mentioned before. The 
difficulties in discussions of epistemological and methodological problems are, 
it seems, often due to a mixing up of logical and empirical questions; therefore 
it seems desirable to separate the two analyses as clearly as possible.  Chapter 
III uses the concepts defined in the preceding chapters for the construction of 
an empiricist language, or rather a series of languages. Further, an attempt will 
be made to formulate the principle of empiricism in a more exact way, by 
stating a requirement of confirmability or testability as a criterion of meaning. 
Different requirements are discussed, corresponding to different restrictions of 
the language; the choice between them is a matter of practical decision. 
 

2. The Older Requirement of Verifiability 
 
     The connection between meaning and confirmation has sometimes been 
formulated by the thesis that a sentence is meaningful if and only if it is 
verifiable, and that its meaning is the method of its verification. The historical 
merit of this thesis was that it called attention to the close connection between 
the meaning of a sentence and the way it is confirmed. This formulation 
thereby helped, on the one hand, to analyze the factual content of scientific 
sentences, and, on the other hand, to show that the sentences of trans-
empirical metaphysics have no cognitive meaning.  But from our present point 
of view, this formulation, although acceptable as a first approximation, is not 
quite correct. By its oversimplification, it led to a too narrow restriction of 
scientific language, excluding not only metaphysical sentences but also certain 
scientific sentences having factual meaning.  Our 
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present task could therefore be formulated as that of a modification of the 
requirement of verifiability. It is a question of a modification, not of an entire 
rejection of that requirement. For among empiricists there seems to be full 
agreement that at least some more or less close relation exists between the 
meaning of a sentence and the way in which we may come to a verification or 
at least a confirmation of it. 

The requirement of verifiability was first stated by Wittgenstein,1 and its 
meaning and consequences were exhibited in the earlier publications of our 
Vienna Circle;2 it is still held by the more conservative wing of this Circle.3 The 
thesis needs both explanation and modification. What is meant by ‘verifiability’ 
must be said more clearly.  And then the thesis must be modified and 
transformed in a certain direction. 

Objections from various sides have been raised against the requirement 
mentioned not only by anti-empiricist metaphysicians but also by some 
empiricists, e.g. by Reichenbach,4 Popper,5 Lewis,6 Nagel,7 and Stace.8 I believe 
that these criticisms are right in several respects; but on the other hand, their 
formulations must also be modified. The theory of confirmation and testing 
which will be explained in the following chapters is certainly far  

 
1 Wittgenstein [1]. 
2 I use this geographical designation because of lack of a suitable name for the movement 

itself represented by this Circle. It has sometimes been called Logical Positivism, but I am 
afraid this name suggests too close a dependence upon the older Positivists, especially Comte 
and Mach.  We have indeed been influenced to a considerable degree by the historical 
positivism, especially in the earlier stage of our development.  But today we would like a more 
general name for our movement, comprehending the groups in other countries which have 
developed related views (see: Congress [1], [2]).  The term ‘Scientific Empiricism’ (proposed by 
Morris [1] p. 285) is perhaps suitable.  In some historical remarks in the following, concerned 
chiefly with our original group I shall however use the term ‘Vienna Circle’. 
     3Schlick [1] p. 150, and [4]; Waismann [1] p. 229.  
     4Reichenbach [1] and earlier publications; [3]. 
     5Popper [1]. 
     6 Lewis [2] has given the most detailed analysis and criticism of the requirement of 
verifiability. 
     7Nagel [1].  
    8Stace [1]. 
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from being an entirely satisfactory solution.  However, by more exact 
formulation of the problem, it seems to me, we are led to a greater 
convergence with the views of the authors mentioned and with related views 
of other empiricist authors and groups.  The points of agreement and of still 
existing differences will be evident from the following explanations. 
     A first attempt at a more detailed explanation of the thesis of verifiability 
has been made by Schlick9 in his reply to Lewis’ criticisms. Since 
‘verifiability’ means ‘possibility of verification’ we have to answer two 
questions: 1) what is meant in this connection by ‘possibility’? and 2)  what 
is meant by ‘verification’? Schlick—in his explanation of ‘verifiability’—
answers the first question, but not the second one.  In his answer to the 
question: what is meant by ‘verifiability of a sentence S’, he substitutes the 
fact described by S for the process of verifying S.  Thus he thinks e.g. that 
the sentence S1: “Rivers flow up-hill,” is verifiable, because it is logically 
possible that rivers flow up-hill.  I agree with him that this fact is logically 
possible and that the sentence S1 mentioned above is verifiable—or, rather, 
confirmable, as we prefer to say for reasons to be explained soon. But I think 
his reasoning which leads to this result is not quite correct.  S1 is 
confirmable, not because of the logical possibility of the fact described in S1, 
but because of the physical possibility of the process of confirmation; it is 
possible to test and to confirm S1 (or its negation) by observations of rivers 
with the help of survey instruments. 
     Except for some slight differences, e.g. the mentioned one, I am on the 
whole in agreement with the views of Schlick explained in his paper.9 I agree 
with his clarification of some misunderstandings concerning positivism and 
so-called methodological solipsism. When I used the last term in previous 
publications I wished to indicate by it nothing more than the simple fact,10 
that everybody in testing any sentence empirically cannot do otherwise  
     
   9Sch l i ck  [4 ] .  
     10 Comp. :  Erkenntn is  2, p. 461. 
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than refer finally to his own observations; he cannot use the results of other 
people’s observations unless he has become acquainted with them by his own 
observations, e.g. by hearing or reading the other man’s report. No scientist, 
as far as I know, denies this rather trivial fact. Since, however, the term 
`methodological solipsism’-in spite of all explanations and warnings-is so 
often misunderstood, I shall prefer not to use it any longer. As to the fact 
intended, there is, I think, no disagreement among empiricists; the apparent 
differences are due only to the unfortunate term.  A similar remark is perhaps 
true concerning the term ‘autopsychic basis’ (‘eigenpsychische Basis’). 
 
     Another point may be mentioned in which I do not share Schlick’s view. 
He includes in the range of meaningful sentences only synthetic and analytic 
sentences but not contradictory ones (for an explanation of these terms see 
§5). In my view—and perhaps also in his—this question is not a theoretical 
question of truth but a practical question of decision concerning the form of 
the language-system, and especially the formative rules.  Therefore I do not 
say that Schlick is wrong, but only, that I am not inclined to accept his 
proposal concerning the limitation of the range of sentences acknowledged as 
meaningful.  This proposal would lead to the following consequences which 
seem to me to be very inconvenient. In certain cases (namely if S1 is analytic, 
S2 is contradictory, S3 and S4 are synthetic and incompatible with each other) 
the following occurs: 1) the negation of a meaningful sentence S1 is taken as 
meaningless; 2) the negation of a meaningless series of symbols S2 is taken as 
a meaningful sentence; 3) the conjunction of two meaningful and synthetic 
sentences S3 and S4 is taken as meaningless.  By the use of technical terms of 
logical syntax the objection can be expressed more precisely: if we decide to 
include in the range of (meaningful) sentences of our language only analytic 
and synthetic sentences (or even only synthetic sentences,11 then the 
formative rules of our language become indefinite.12 That means that in this 
case we have no fixed finite method of distinguishing between the meaningful 
and the meaningless, i.e. between sentences and expressions which are not 
sentences. And this would obviously be a serious disadvantage. 
 
      11 Comp.: Carnap (6] p. 32, 34. 
     12 Comp.: Carnap (4] §45.—About the indefinite character of the concepts ‘analytic’ and 
‘contradictory’ comp.: Carnap [7] p. 163, or: (4b] §34a and 34d. 
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3. Confirmation instead of Verification 
 
     If verification is understood as a complete and definitive establishment of 
truth then a universal sentence, e.g. a so-called law of physics or biology, can 
never be verified, a fact which has often been remarked. Even if each single 
instance of the law were supposed to be verifiable, the number of instances to 
which the law refers—e.g. the space-time-points—is infinite and therefore can 
never be exhausted by our observations which are always finite in number. We 
cannot verify the law, but we can test it by testing its single instances i.e. the 
particular sentences which we derive from the law and from other sentences 
established previously. If in the continued series of such testing experiments 
no negative instance is found but the number of positive instances increases 
then our confidence in the law will grow step by step. Thus, instead of 
verification, we may speak here of gradually increasing confirmation of the law. 
     Now a little reflection will lead us to the result that there is no fundamental 
difference between a universal sentence and a particular sentence with regard to 
verifiability but only a difference in degree. Take for instance the following 
sentence: “There is a white sheet of paper on this table.” In order to ascertain 
whether this thing is paper, we may make a set of simple observations and then, 
if there still remains some doubt, we may make some physical and chemical 
experiments.  Here as well as in the case of the law, we try to examine sentences 
which we infer from the sentence in question. These inferred sentences are 
predictions about future observations.  The number of such predictions which 
we can derive from the sentence given is infinite; and therefore the sentence can 
never be completely verified.  To be sure, in many cases we reach a practically 
sufficient certainty after a small number of positive instances, and then we stop 
experimenting.  But there is always the theoretical possibility of continuing the 
series of test-observations.  Therefore here also no complete verification is possible 
but only a process of gradually increasing confirmation. We may, if we wish, call a 
sentence disconfirmed13 in a certain degree if its negation is confirmed in that 
degree. 
 
    13 “Erschüttert,” Neurath [6]. 
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     The impossibility of absolute verification has been pointed out and 
explained in detail by Popper.14 In this point our present views are, it seems to 
me, in, full accordance with Lewis15 and Nagel.16  

Suppose a sentence S is given, some test-observations for it have been 
made, and S is confirmed by them in a certain degree. Then it is a matter of 
practical decision whether we will consider that degree as high enough for our 
acceptance of S, or as low enough for our rejection of S, or as intermediate 
between these so that we neither accept nor reject S until further evidence 
will be available. Although our decision is based upon the observations made 
so far, nevertheless it is not uniquely determined by them. There is no general 
rule to determine our decision. Thus the acceptance and the rejection of a 
(synthetic) sentence always contains a conventional component. That does not 
mean that the decision—or, in other words, the question of truth and 
verification—is conventional. For, in addition to the conventional component 
there is always the non-conventional component—we may call it, the objective 
one—consisting in the observations which have been made. And it must 
certainly be admitted that in very many cases this objective component is 
present to such an overwhelming extent that the conventional component 
practically vanishes.  For such a simple sentence as e.g. “There is a white 
thing on this table” the degree of confirmation, after a few observations have 
been made, will be so high that we practically cannot help accepting the 
sentence. But even in this case there remains still the theoretical possibility of 
denying the sentence. Thus even here it is a matter of decision or convention. 
     The view that no absolute verification but only gradual confirmation is 
possible, is sometimes formulated in this way: every sentence is a probability-
sentence; e.g. by Reichenbach17 and Lewis.18 But it seems advisable to 
separate the two assertions.  
 
   1 4  Popper [1 ] .  
     15 “Lewis [2) p. 137, note 12:  “No verification of the kind of knowledge commonly stated in 
propositions is ever absolutely complete and final.” 
     16 Nagel [1 p. 144f.  
     17 Reichenbach [1]. 
   18 Lewis [2 ]  p .  133. 
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Most empiricists today will perhaps agree with the first thesis, but the second 
is still a matter of dispute.  It presupposes the thesis that the degree of 
confirmation of a hypothesis can be interpreted as the degree of probability in 
the strict sense which this concept has in the calculus of probability, i.e. as 
the limit of relative frequency.  Reichenbach19 holds this thesis. But so far he 
has not worked out such an interpretation in detail, and today it is still 
questionable whether it can be carried out at all.  Poppers20 has explained the 
difficulties of such a frequency interpretation of the degree of confirmation; 
the chief difficulty lies in how we are to determine for a given hypothesis the 
series of “related” hypotheses to which the concept of frequency is to apply. It 
seems to me that at present it is not yet clear whether the concept of degree of 
confirmation can be defined satisfactorily as a quantitative concept, i.e. a 
magnitude having numerical values. Perhaps it is preferable to define it as a 
merely topological concept, i.e. by defining only the relations: “S1 has the 
same (or, a higher) degree of confirmation than S2 respectively,” but in such a 
way that most of the pairs of sentences will be incomparable.  We will use the 
concept in this way—without however defining it—only in our informal 
considerations which serve merely as a preparation for exact definitions of 
other terms.  We shall later on define the concepts of complete and incomplete 
reducibility of confirmation as syntactical concepts, and those of complete 
and incomplete confirmability as descriptive concepts. 
 

4. The Material and the Formal Idioms 
 
     It seems to me that there is agreement on the main points between the 
present views of the Vienna Circle, which are the basis of our following 
considerations, and those of Pragmatism, as interpreted e.g. by Lewis.21 This 
agreement is especially marked with respect to the view that every (synthetic) 
sentence is a hypothesis, i.e. can never be verified completely and defini- 
 
     19 Reichenbach [2] p. 271 ff. ; (3] p. 154 ff. 
     20 Popper [1] Chapter VIII; for the conventional nature of the problem compare my remark 
in “Erkenntnis” vol. 5, p. 292. 
     21 Lewis (2], especially p. 133. 
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tively. One may therefore expect that the views of these two empiricist 
movements will continue to converge to each other in their further 
development; Morris22 believes that this convergence is a fact and, moreover, 
tries to promote it. 
     However, in spite of this agreement on many important points, there is a 
difference between our method of formulation and that which is customary 
in other philosophical movements, especially in America and England. This 
difference is not as unimportant as are the differences in formulation in 
many other cases. For the difference in formulation depends on the 
difference between the material and the formal idioms.23 The use of the 
material idiom is very common in philosophy; but it is a dangerous idiom, 
because it sometimes leads to pseudo-questions.  It is therefore advisable to 
translate questions and assertions given in the material idiom into the 
formal idiom.  In the material idiom occur expressions like ‘facts’, ‘objects’, 
‘the knowing subject’, ‘relation between the knowing subject and the known 
subject’, ‘the given’, ‘sense-data’, ‘experiences’ etc.  The formal idiom uses 
syntactical terms instead, i.e. terms concerning the formal structure of 
linguistic expressions. Let us take an example. It is a pseudo-thesis of 
idealism and older positivism, that a physical object (e.g. the moon) is a 
construction out of sense-data.  Realism on the other hand asserts, that a 
physical object is not constructed but only cognized by the knowing subject. 
We—the Vienna Circle—neither affirm nor deny any of these theses, but 
regard them as pseudo-theses, i.e. as void of cognitive meaning. They arise 
from the use of the material mode, which speaks about ‘the object’; it 
thereby leads to such pseudo-questions as the “nature of this  
 
    22 Morris [1], [2]. 
     23 Here I can give no more than some rough indications concerning the material and 
the formal idioms. For detailed explanations compare Carnap [4]. Ch. V. A shorter and 
more easily understandable exposition is contained in [5] p. 85-88.—What I call the 
formal and the material idioms or modes of speech, is not the same as what Morris ([1], p. 
8) calls the formal and the empirical modes of speech. To Morris’s empirical mode belong 
what I call the real object-sentences; and these belong neither to the formal nor to the 
material mode in my sense (comp. Carnap [4], §74, and [5], p. 61).  The distinction 
between the formal and the material idioms does not concern the usual sentences of 
science but chiefly those of philosophy, especially those of epistemology or methodology. 
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object”, and especially as to whether it is a mere construction or 
not.  The formulation in the formal idiom is as follows: “A physical object-name 
(e.g. the word ‘moon’) is reducible to sense-data predicates (or perception 
predicates).”  Lewis24 seems to believe that logical positivism—the Vienna 
Circle—accepts the idealistic pseudo-thesis mentioned. But that is not the 
case. The misunderstanding can perhaps be explained as caused by an unin-
tentional translation of our thesis from the formal into the more accustomed 
material idiom, whereby it is transformed into the idealistic pseudo-thesis. 

The same is true concerning our thesis: “My testing of any sentence, even 
one which contains another man’s name and a psychological predicate (e.g. 
“Mr. X is now cheerful”), refers back ultimately to my own observation-
sentences.” If we translate it into: “Your mind is nothing more than a 
construction which I put upon certain data of my own experience,” we have the 
pseudo-thesis of solipsism, formulated in the material idiom. But this is not 
our thesis. 

The formulation in the material idiom makes many epistemological 
sentences and questions ambiguous and unclear. Sometimes they are meant 
as psychological questions. In this case clearness could be obtained by a 
formulation in the psychological language. In other cases questions are not 
meant as empirical, factual questions, but as logical ones.  In this case they 
ought to be formulated in the language of logical syntax.  In fact, however, 
epistemology in the form it usually takes—including many of the publications 
of the Vienna Circle—is an unclear mixture of psychological and logical 
components.  We must separate it into its two kinds of components if we wish 
to come to clear, unambiguous concepts and questions. I must confess that I 
am unable to answer or even to understand many epistemological questions of 
the traditional kind because they are formulated in the material idiom. The 
following are some examples taken from customary discussions: “Are you more 
than one of my ideas”?, “Is the past more than the present recollection”?, “Is 
the future more than  

 
24 Lewis [2], p. 127-128. 
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the present experience of anticipation”?, “Is the self more than one of those ideas I 
call mine”?, “If a robot is exhibiting all the behavior appropriate to tooth-ache, is 
there a pain connected with that behavior or not” ? etc. 
     I do not say that I have not the least understanding of these sentences. I see 
some possibilities of translating them into unambiguous sentences of the formal 
idiom. But unfortunately there are several such translations, and hence I can 
only make conjectures as to the intended meaning of the questions. Let me take 
another example. I find the following thesis25 formulated in the material mode: 
“Any reality must, in order to satisfy our empirical concept of it, transcend the 
concept itself.  A construction imposed upon given data cannot be identical with a 
real object; the thing itself must be more specific, and in comparison with it the 
construction remains abstract.” As a conjecture, selected from a great number of 
possibilities, I venture the following translation into the formal idiom: “For any 
object-name and any given finite class C of sentences (or: of sentences of such 
and such a kind), there are always sentences containing that name such that 
neither their confirmation nor that of their negation is completely reducible to that 
of C (in syntactical terminology: there are sentences each of which is neither a 
consequence of C nor incompatible with C).” Our present views, by the way,—as 
distinguished from our previous ones—are in agreement with this thesis, provided 
my interpretation hits the intended meaning. The translation shows that the 
thesis concerns the structure of language and therefore depends upon a 
convention, namely the choice of the language-structure. This fact is concealed by 
the formulation in the material mode. There the thesis seems to be independent of 
the choice of language, it seems to concern a certain character which `reality’ 
either does or does not possess. Thus the use of the material idiom leads to a 
certain absolutism, namely to the neglect of the fact that the thesis is relative to 
the chosen language-system. The use of the formal idiom reveals that fact. And 
indeed our present agreement with the thesis  
 
     25 Lewis [2], p. 138. 
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mentioned is connected with our admission of incompletely confirmable 
sentences, which will be explained later on.   
     The dangers of the material idiom were not explicitly noticed by our Vienna 
Circle in its earlier period. Nevertheless we used this idiom much less frequently 
than is customary in traditional philosophy; and when we used it, we did so in 
most cases in such a way that it was not difficult to find a translation into the 
formal idiom. However, this rather careful use was not deliberately planned, but 
was adopted intuitively, as it were.  It seems to me that most of the formulations 
in the material idiom which are considered by others as being theses of ours have 
never been used by us.  In recent years we have become increasingly aware of the 
disadvantages of the material idiom. Nevertheless we do not try to avoid its use 
completely.  For sometimes its use is preferable practically, as long as this idiom 
is still more customary among philosophers.  But perhaps there will come a time 
when this will no longer be the case.  Perhaps some day philosophers will prefer to 
use the formal idiom—at least in those parts of their works which are intended to 
present decisive arguments rather than general preliminary explanations. 

 
II. LOGICAL ANALYSIS OF CONFIRMATION AND TESTING 

 
5. Some Terms and Symbols of Logic 

 
     In carrying out methodological investigations especially concerning verification, 
confirmation, testing etc., it is very important to distinguish clearly between 
logical and empirical, e.g. psychological questions. The frequent lack of such a 
distinction in so-called epistemological discussions has caused a great deal of am-
biguity and misunderstanding. In order to make quite clear the meaning and 
nature of our definitions and explanations, we will separate the two kinds of 
definitions. In this Chapter II we are concerned with logical analysis. We shall 
define concepts belonging to logic, or more precisely, to logical syntax, although 
the choice of the concepts to be defined and of the way in which they are defined 
is suggested in some respects by a consideration of empirical questions—as is 
often the case in laying down logical 
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definitions. The logical concepts defined here will be applied later on, in Chapter III, 
in defining concepts of an empirical analysis of confirmation. These descriptive, i.e. 
non-logical, concepts belong to the field of biology and psychology, namely to the 
theory of the use of language as a special kind of human activity. 
     In the following logical analysis we shall make use of some few terms of logical 
syntax, which may here be explained briefly.26 The terms refer to a language-
system, say L, which is supposed to be given by a system of rules of the following 
two kinds. The formative rules state how to construct sentences of L out of the 
symbols of L.  The transformative rules state how to deduce a sentence from a class 
of sentences, the so-called premisses, and which sentences are to be taken as true 
unconditionally, i.e., without reference to premisses.  The transformative rules are 
divided into those which have a logico-mathematical nature; they are called logical 
rules or L-rules (this ‘L-’ has nothing to do with the name ‘L’ of the language); and 
those of an empirical nature, e.g. physical or biological laws stated as postulates; 
they are called physical rules or P-rules.  
     We shall take here ‘S’, ‘S1’, ‘S2’  etc. as designations of sentences (not as 
abbreviations for sentences). We use ‘~S’ as designation of the negation of S. (Thus, 
in this connection, ‘~’ is not a symbol of negation but a syntactical symbol, an 
abbreviation for the words ‘the negation of’.) If a sentence S can be deduced from 
the sentences of a class C according to the rules of L, S is called a consequence of 
C; and moreover an L-consequence, if the L-rules are sufficient for the deduction, 
otherwise a P-consequence.  S1 and S2 are called equipollent (with each other) if 
each is a consequence of the other.  If S can be shown to be true on the basis of the 
rules of L, S is called valid in L; and moreover L-valid or analytic, if true on the 
basis of the L-rules alone, otherwise P-valid. If, by application of the rules of L, S 
can be shown to be false, S is called contravalid; and L-contravalid or contradictory, 
if by L-rules alone, otherwise P-contravalid. If S is neither valid  
 
     26For more exact explanations of these terms see Carnap [4]; some of them are explained also in 
[5]. 
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nor contravalid S is called indeterminate.  If S is neither analytic 
nor contradictory, in other words, if its truth or falsehood cannot be 
determined by logic alone, but needs reference either to P-rules or to the 
facts outside of language, S is called synthetic. Thus the totality of the 
sentences of L is classified in the following way: 
 

 
A sentence S1 is called incompatible with S2 (or with a class C of 

sentences), if the negation ~S, is a consequence of S2 (or of C, respectively). 
The sentences of a class are called mutually independent if none of them is 
a consequence of, or incompatible with, any other of them. 

The most important kind of predicates occurring in a language of science 
is that of the predicates attributed to space-time-points (or to small space-
time-regions). For the sake of simplicity we shall restrict the following 
considerations—so far as they deal with predicates—to those of this kind. 
The attribution of a certain value of a physical function, e.g. of 
temperature, to a certain space-time-point can obviously also be expressed 
by a predicate of this kind. The following considerations, applied here to 
such predicates only, can easily be extended to descriptive terms of any 
other kind. 

In order to be able to formulate examples in a simple and exact way we 
will use the following symbols. We take ‘a’, ‘b’, etc. as names of space-time-
points (or of small space-time-regions), i.e. as abbreviations for quadruples 
of space-time-coördinates; we call them individual constants. ‘x’, ‘y’, etc. will 
be used as corresponding variables; we will call them individual variables. 
We shall use ‘P’, ‘P1’, ‘P2’ etc., and ‘Q’, ‘Q1’ etc. as predicates; if no other 
indication is given, they are supposed to be predicates of the kind 
described. The sentence ‘Q1 (b)’ is to mean: “The space-time-point b has 
the property Q1.” Such a sentence consisting 
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of a predicate followed by one or several individual constants as arguments, will 
be called a full sentence of that predicate.  
     Connective symbols: ‘ ~’ for ‘not’ (negation), ‘V’ for ‘or’ (disjunction), ‘ .’ for ‘and’ 
(conjunction), ‘⊃’ for ‘if - then’ (implication), ‘≡’ for ‘if - then - , and if not - then not 
–’ (equivalence). ‘~Q(a)’ is the negation of a full sentence of ‘Q’; it is sometimes also 
called a full sentence of the predicate ‘~Q’.  
     Operators: ‘(x)P(x)’ is to mean: “every point has the property P” (universal 
sentence; the first ‘(x)’ is called the universal operator, and the sentential function 
‘P(x)’ its operand). ‘(∃x)P(x)’ is to mean: “There is at least one point having the 
property P” (existential sentence; ‘(∃x)’ is called the existential operator and ‘P(x)’ 
its operand). (In what follows, we shall not make use of any other operators than 
universal and existential operators with individual variables, as described here.) 
In our later examples we shall use the following abbreviated notation for universal 
sentences of a certain form occurring very frequently. If the sentence ‘(x) [- - -]’ is 
such that ‘- - -’ consists of several partial sentences which are connected by ‘~’, ‘V’ 
etc. and each of which consists of a predicate with ‘x’ as argument, we allow 
omission of the operator and the arguments.  Thus e.g. instead of ‘(x) (P1(x) ⊃ 
P2(x))’ we shall write shortly ‘P1 ⊃ P2’; and instead of ‘(x) [Ql(x) ⊃ (Q3(x) ≡ Q2(x))]’ 
simply ‘Q1 ⊃ (Q3 ≡ Q2)’.  The form ‘P1 ⊃ P2’ is that of the simplest physical laws; it 
means: “If any space-time-point has the property P1, it has also the property P2.” 
 

6. Reducibility of Confirmation 
 
     The number of sentences for which, at a certain moment, we have found a 
confirmation of some degree or other, is always finite. If now a class C of 
sentences contains a finite sub-class C′ such that the sentence S is a 
consequence of C′, then, if the sentences of C′ are found to be confirmed to a 
certain degree, S will be confirmed to at least the same degree. In this case we 
have, so to speak, a complete confirmation of S by C′.  (It is to be noticed that 
“complete” is not meant here in an absolute sense, but in a relative sense with 
respect to certain premisses.)  On the other hand, 
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suppose that S is not a consequence of any finite sub-class of C, but each 
sentence of an infinite sub-class C′′ of C is a consequence of S, - e.g. if S is a 
universal sentence and C′′ the class of its instances. In this case, no complete 
confirmation of S by sentences of C is possible; nevertheless, S will be confirmed 
by the confirmation of sentences of C′′ at least to some degree, though not neces-
sarily to the same degree.  Suppose moreover that the sentences of C′′ are 
mutually independent.  Since their number is infinite, they cannot be exhausted. 
Therefore the degree of confirmation of S will increase by the confirmation of more 
and more sentences of C′′ but without ever coming to a complete confirmation. On 
the basis of these considerations we will lay down the definitions 1 to 6.  In 
Definitions 1 and 2 C is a class of sentences.  The terms defined in Definitions 1 
a, b and c are only auxiliary terms for Definition 2. 
 
     Definition 1.  a. We will say that the confirmation of S is completely reducible 
to that of C, if S is a consequence of a finite subclass of C. 

b. We will say that the confirmation of S is directly incompletely reducible to 
that of C, if the confirmation of S is not completely reducible to that of C but if 
there is an infinite sub-class C′ of C such that the sentences of C′ are mutually 
independent and are consequences of S. 
     c. We will say that the confirmation of S is directly reducible to that of C, if it is 
either completely reducible or directly incompletely reducible to that of C. 

Definition 2.  a. We will say that the confirmation of S is reducible to that of C, 
if there is a finite series of classes C1, C2, . . . Cn such that the relation of directly 
reducible confirmation subsists 1) between S and C1, 2) between every sentence of 
Ci and Ci+1 (i = 1 to n - 1), and 3) between every sentence of Cn and C. 
     b. We will say that the confirmation of S is incompletely reducible to that of C, 
if it is reducible but not completely reducible to that of C. 

Definition 3.  We will say that the confirmation of S is reducible (or completely 
reducible, or incompletely reducible) to that of a class C of predicates (or to that of 
its members) if it is reduc- 
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ible (or completely reducible, or incompletely reducible, respectively) to a not 
contravalid sub-class of the class which contains the full sentences of the 
predicates of C and the negations of these sentences. -The sub-class is 
required not to be contravalid because any sentence whatever is a 
consequence of a contravalid class, as e.g. {‘P(a)’, ‘~P(a)’ }, and hence its 
confirmation is reducible to that of this class. 

The following definitions concerning predicates are analogous to the 
previous ones concerning sentences. 

Definition 4.  We will say that the confirmation of a predicate ‘Q’ is reducible 
(or completely reducible, or incompletely reducible) to that of a class C of 
predicates, say ‘P1’, ‘P2’, etc., if the confirmation of every full sentence of ‘Q’ 
with a certain argument, e.g. ‘Q(a)’, is reducible (or completely reducible, or 
incompletely reducible, respectively) to that of the class C′ consisting of the 
full sentences of the predicates of C with the same argument and the 
negations of those sentences (‘P1(a)’, ‘~P1(a)’, ‘P2(a)’, ‘~P2 (a)’, etc.). 

Definition 5.  A predicate ‘Q’ is called reducible (or completely reducible, or 
incompletely reducible) to a class C of predicates or to its members, if the 
confirmation both of ‘Q’ and of ‘~Q’ is reducible (or completely reducible, or 
incompletely reducible, respectively) to C. 

When we speak of sentential functions, sentences are understood to be 
included because a sentence may be taken as a special case of a sentential 
function with the number zero of free variables. Therefore the following 
definitions are also applied to sentences. 

Definition 6.  A sentential function is said to have atomic form if it consists of 
one predicate followed by one or several arguments (individual constants or 
variables).  (Examples: ‘P(x)’, ‘Q(a, x)’, ‘P(a)’. 

Definition 7. A sentential function is said to have molecular form if it is 
constructed out of one or several sentential functions with the help of none, 
one or several connective symbols (but without operators). 

Definition 8.  a. A sentential function is said to have generalized form if it 
contains at least one (unrestricted) operator. 
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     b. A sentential function is said to have essentially generalized 
form if it has generalized form and cannot be transformed into a molecular 
form containing the same descriptive predicates. 

We have to distinguish between a sentence of atomic form and an atomic 
sentence (see Definition 15a, §9; here the predicate occurring must fulfill 
certain conditions); and likewise between a sentence of molecular form and a 
molecular sentence (see Definition 15b, §9). Since the sentences of atomic 
form are included in those of molecular form, the important distinction is 
that between molecular and (essentially) generalized form. 

In what follows we will apply the concepts of reducibility of confirmation, 
defined before, first to molecular sentences and then to generalized 
sentences. 

Theorem 1.  If the confirmation both of S1 and of S2 is completely reducible 
to that of a class C of predicates, then the confirmation both of their 
disjunction and of their conjunction is also completely reducible to that of C. 

Proof. The disjunction is a consequence of S1; the conjunction is a 
consequence of S1 and S2. 

Theorem 2.  If S is a sentence of molecular form and the descriptive 
predicates occurring in S belong to C, the confirmation of S is completely 
reducible to that of C. 
     Proof.  Let C′ be the class of the full sentences of the predicates of C and 
their negations.  According to a well known theorem of logic, S can be 
transformed into the so-called disjunctive normal form,27 i.e. into a 
disjunction of conjunctions of sentences of C′.  Now, the confirmation of a 
sentence of C′ is completely reducible to that of C. Therefore, according to 
Theorem I, the confirmation of each of the conjunctions is also completely 
reducible to that of C, and, again according to Theorem I, the same is true 
for the disjunction of these conjunctions, and hence for S. 

The application of the concepts defined before to sentences of generalized 
form may be explained by the following examples.  
S1: ‘(x)P(x)’ 

 S 2 : ‘ ( x ) ~P ( x ) ’  (in words: every point has the property not-P; in other words: 
no point has the property P). 

2 7  Compare Hilbert [1] p. 13. 
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C1 may be taken as the class of the full sentences of ‘P’, i.e. the class of the 

particular sentences ‘P(a)’, ‘P(b)’, etc.; C2 as the class of the negations of these 
sentences: ‘~ P(a)’, etc.; and C as the sum of C1 and C2. Then, according to a well 
known result (see §3), the confirmation of S1 is directly reducible to that of C1 
and hence to that of C, but only incompletely, because S1 is not a consequence 
of any finite sub-class of C, however large this may be. On the other hand, ~ S1 
is a consequence of each sentence of C2, e.g. of ‘~ P(a)’. Therefore the 
confirmation of ~S1 is completely reducible to that of C2 and hence to that of C. 

S2 bears the same relation to C2 as S1 does to Cl.  Therefore the confirmation 
of S2 is incompletely reducible to that of C2, and the confirmation of ~S2 is 
completely reducible to that of C1. This can easily be seen when we transform 
~S2 into the existential sentence ‘(∃x)P(x)’ which is a consequence of each 
sentence of C1, e.g. of ‘P(a)’. The results of these considerations may be exhibited 
by the following table which gives two formulations for each of the four 
sentences, one containing a universal operator and the other an existential 
operator.  Some of the results, which we need later on, are formulated in the 
following Theorems 3 and 4. 

 

 
 
     Theorem 3. Let S be the universal sentence ‘(x)P(x)’. The confirmation of S 
is incompletely reducible to that of the full sentences of ‘P’ and hence to that of 
‘P’.  The confirmation of  
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~ S is completely reducible to that of the negation of any full sentence of ‘P’ 
and hence to that of ‘P’. 

Theorem 4.  Let S be the existential sentence ‘(∃x)P(x)’.  The confirmation of S 
is completely reducible to that of any full sentence of ‘P’ and hence to that of 
‘P’.  The confirmation of ~ S is incompletely reducible to that of the negations 
of the full sentences of ‘P’ and hence to that of ‘P’. 

The Theorems 3 and 4 correspond to the following usual, but not quite 
correct formulations: 1) “A universal sentence is not verifiable but 
falsifiable,” 2) “An existential sentence is verifiable but not falsifiable.” Still 
closer corresponding theorems will be stated later on (Theorems 19 and 20, 
§24). 

 
7. Definitions 

 
By an (explicit) definition of a descriptive predicate ‘Q’ with one argument 

we understand a sentence of the form 
 
(D:) Q(x) ≡ . . . x ... 
 
where at the place of ‘. . . x . . .’ a sentential function — called the definiens 
— stands which contains ‘x’ as the only free variable. For several arguments 
the form is analogous. We will say that a definition D is based upon the 
class C of predicates if every descriptive symbol occurring in the definiens of 
D belongs to C. If the predicates of a class C are available in our language 
we may introduce other predicates by a chain of definitions of such a kind 
that each definition is based upon C and the predicates defined by previous 
definitions of the chain. 

Definition 9.  A definition is said to have atomic (or molecular, or 
generalized, or essentially generalized) form, if its definiens has atomic (or 
molecular, or generalized, or essentially generalized, respectively) form. 
     Theorem 5.  If ‘P’ is defined by a definition D based upon C, ‘P’ is reducible 
to C.  If D has molecular form, ‘P’ is completely reducible to C. If D has 
essentially generalized form, ‘P’ is incompletely reducible to C. 

Proof.  ‘P’ may be defined by ‘P(x) ≡ . . . x. . .’.  Then, for any b, ‘P(b)’ is 
equipollent to ‘. . . b . . .’ and hence in the case of 
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molecular form, according to Theorem 2, completely reducible to C, and in the 
other case, according to Theorems 3 and 4, reducible to C. 

Let us consider the question whether the so-called disposition-concepts can be 
defined, i.e. predicates which enunciate the disposition of a point or body for 
reacting in such and such a way to such and such conditions, e.g. ‘visible’, 
‘smellable’, ‘fragile’, ‘tearable’, ‘soluble’, ‘indissoluble’ etc. We shall see that such 
disposition-terms cannot be defined by means of the terms by which these 
conditions and reactions are described, but they can be introduced by sentences 
of another form. Suppose, we wish to introduce the predicate ‘Q3 ’ meaning 
“soluble in water.” Suppose further, that ‘Q1’ and ‘Q2’ are already defined in such 
a way that ‘Q1(x, t)’ means “the body x is placed into water at the time t,” and 
‘Q2(x,t)’ means “the body x dissolves at the time t.” Then one might perhaps think 
that we could define ‘soluble in water’ in the following way: “x is soluble in water” 
is to mean “whenever x is put into water, x dissolves,” in symbols: 

 
(D:) Q3(x) ≡ ( t )  [Q1(x,t )  ⊃  Q2(x, t ) ] .  
 
But this definition would not give the intended meaning of ‘Q3’. For, suppose that 
c is a certain match which I completely burnt yesterday. As the match was made 
of wood, I can rightly assert that it was not soluble in water; hence the sentence 
‘Q3(c)’ (S1) which asserts that the match c is soluble in water, is false. But if we 
assume the definition D, S1 becomes equipollent with ‘(t) [Q1(c, t) ⊃ Q2 (c,t)]’ (S2). 
Now the match c has never been placed and on the hypothesis made never can be 
so placed.  Thus any sentence of the form ‘Q1(c,t)’ is false for any value of ‘t’. 
Hence S2 is true, and, because of D, S1 also is true, in contradiction to the 
intended meaning of S1. ‘Q3’ cannot be defined by D, nor by any other definition. 
But we can introduce it by the following sentence: 
 
(R:) (x ) ( t )  [Q1(x) t )  ⊃  Q3 (x) ≡ Q2 (x,t ) ) ] ,  
 
in words: “if any thing x is put into water at any time t, then, if x is soluble in 
water, x dissolves at the time t, and if x is not soluble 
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in water, it does not.” This sentence belongs to that kind of sentences which we 
shall call reduction sentences. 
 

8. Reduction Sentences 
 
Suppose, we wish to introduce a new predicate ‘Q3’ into our language and state 

for this purpose a pair of sentences of the following form: 
 

(R1) Q1 ⊃ (Q2 ⊃~ Q3) 
(R2) Q4 ⊃ (Q5 ⊃ ~ Q3) 
 
Here, ‘Q1’ and ‘Q4’ may describe experimental conditions which we have to fulfill 
in order to find out whether or not a certain space-time-point b has the property 
Q3, i.e. whether ‘Q3(b)’ or ‘~ Q3(b)’ is true.  ‘Q2’ and ‘Q5’ may describe possible 
results of the experiments.  Then R1 means: if we realize the experimental 
condition Q1 then, if we find the result Q2, the point has the property Q3.  By the 
help of R1, from ‘Q1(b)’ and ‘Q2(b)’, ‘Q3 (b)’ follows.  R2 means: if we satisfy the 
condition Q4 and then find Q5 the point has not the property Q3.  By the help of 
R2, from ‘Q4(b)’ and ‘Q5 (b)’, ‘~ Q3(b)’ follows. We see that the sentences R1 and R2 
tell us how we may determine whether or not the predicate ‘Q3’ is to be attributed 
to a certain point, provided we are able to determine whether or not the four 
predicates ‘Q1’, ‘Q2’, ‘Q4’; and ‘Q5’ are to be attributed to it.  By the statement of R1 
and R2 ‘Q3’ is reduced in a certain sense to those four predicates; therefore we 
shall call R1 and R2 reduction sentences for ‘Q3’ and ‘~ Q3’ respectively.  Such a 
pair of sentences will be called a reduction pair for ‘Q3’. By R1 the property Q3 is 
attributed to the points of the class Q1 • Q2, by R2 the property ~ Q3 to the points 
of the class Q4 • Q5.  If by the rules of the language — either logical rules or 
physical laws — we can show that no point belongs to either of these classes (in 
other words, if the universal sentence ‘~ [(Q1 • Q2) V (Q4 • Q5) ]’ is valid) then the 
pair of sentences does not determine Q3 nor ~ Q3 for any point and therefore does 
not give a reduction for the predicate Q3.  Therefore, in the definition of ‘reduction 
pair’ to be stated, we must exclude this case. 
     In special cases ‘Q4’ coincides with ‘Q1’, and ‘Q5’ with ‘~ Q2’. 
 
441 



In that case the reduction pair is ‘Q1 ⊃ (Q2 ⊃ Q3)’ and ‘Q1 ⊃ (~Q2 ⊃~Q3)’; the 
latter can be transformed into ‘Q1 ⊃(Q3 ⊃ Q2)’.  Here the pair can be replaced 
by the one sentence ‘Q1 ⊃(Q3 ≡ Q2)’ which means: if we accomplish the condi-
tion Q1, then the point has the property Q3 if and only if we find the result Q2. 
This sentence may serve for determining the result ‘Q3(b)’ as well as for ‘~Q3(b)’; 
we shall call it a bilateral reduction sentence. It determines Q3 for the points of 
the class Q1 • Q2, and ~Q3 for those of the class Q1 • ~Q2; it does not give a 
determination for the points of the class ~ Q1.  Therefore, if  ‘(x)(~Ql(x))’ is valid, 
the sentence does not give any determination at all.  To give an example, let 
‘Q′1(b)’ mean “the point b is both heated and not heated”, and ‘Q′′1(b)’: “the point 
b is illuminated by light-rays which have a speed of 400,000 km/sec”. Here for 
any point c, ‘Q′1(c)’ and ‘Q′′1(c)’ are contravalid — the first contradictory and the 
second P-contravalid; therefore, ‘(x) (~Q1′ (x))’ and ‘(x) (~Q1′′ (x))’ are valid — the 
first analytic and the second P-valid; in other words, the conditions Q′1 and Q′′1 

are impossible, the first logically and the second physically. In this case, a 
sentence of the form ‘Q′1 ⊃ (Q3 ≡ Q2)’ or ‘Q′′1 ⊃ (Q3 ≡ Q2)’ would not tell us 
anything about how to use the predicate ‘Q3’ and therefore could not be taken as 
a reduction sentence. These considerations lead to the following definitions. 
     Definition 10. a. A universal sentence of the form 
 
(R) Q1 ⊃ (Q2 ⊃ Q3)  
 
is called a reduction sentence for ‘Q3’ provided ‘~ (Q1 • Q2)’ is not valid. 

b. A pair of sentences of the forms  
(R1) Q1 ⊃ (Q2 ⊃ Q3) 
(R2) Q4 ⊃(Q5 ⊃~ Q3) 
 
is called a reduction pair for ‘Q3’ provided ‘~ [(Q1 • Q2) V (Q4 • Q5)]’ is not 
valid. 
     c. A sentence of the form 
 
(Rb) Q1 ⊃(Q3 ≡ Q2) 
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is called a bilateral reduction sentence for ‘Q3’ provided ‘(x) (~Ql(x))’ is not 
valid. 
     Every statement about reduction pairs in what follows applies also to 
bilateral reduction sentences, because such sentences are comprehensive 
formulations of a special case of a reduction pair. 
     If a reduction pair for ‘Q3’ of the form given above is valid — i.e. either 
laid down in order to introduce ‘Q3’ on the basis of ‘Q1’, ‘Q2’, ‘Q4’, and ‘Q5’, or 
consequences of physical laws stated beforehand — then for any point c 
‘Q3(c)’ is a consequence of ‘Q1(c)’ and ‘Q2(c)’, and ~Q3(c)’ is a consequence of 
‘Q4(c)’ and ‘Q5(c)’. Hence ‘Q3’ is completely reducible to those four predicates. 
     Theorem 6. If a reduction pair for ‘Q’ is valid, then ‘Q’ is completely 
reducible to the four (or two, respectively) other predicates occurring. 

We may distinguish between logical reduction and physical reduction, 
dependent upon the reduction sentence being analytic or P-valid, in the 
latter case for instance a valid physical law. Sometimes not only the 
sentence ‘Q1 ⊃ (Q3 ≡ Q2) is valid, but also the sentence ‘Q3 ≡ Q2’. (This is e.g. 
the case if ‘(x)Q1(x)’ is valid.) Then for any b, ‘Q3(b)’ can be transformed into 
the equipollent sentence ‘Q2(b)’, and thus ‘Q3’ can be eliminated in any 
sentence whatever.  If ‘Q3 ≡ Q2’ is not P-valid but analytic it may be 
considered as an explicit definition for ‘Q3’.  Thus an explicit definition is a 
special kind of a logical bilateral reduction sentence. A logical bilateral 
reduction sentence which does not have this simple form, but the general 
form ‘Q1 ⊃ (Q3 ≡ Q2)’, may be considered as a kind of conditioned definition. 
     If we wish to construct a language for science we have to take some 
descriptive (i.e. non-logical) terms as primitive terms. Further terms may 
then be introduced not only by explicit definitions but also by other 
reduction sentences. The possibility of introduction by laws, i.e. by physical 
reduction, is, as we shall see, very important for science, but so far not 
sufficiently noticed in the logical analysis of science. On the other hand the 
terms introduced in this way have the disadvantage that in general it is not 
possible to eliminate them, i.e. to translate a sentence containing such a 
term into a sentence containing previous terms only. 
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     Let us suppose that the term ‘Q3’ does not occur so far in our language, 
but ‘Q1’, ‘Q2’, ‘Q4’, and ‘Q5’ do occur. Suppose further that either the following 
reduction pair R1, R2 for ‘Q3’: 
 
(R1) Q1 ⊃(Q2 ⊃Q3) 
(R2)                                       Q4 ⊃(Q5 ⊃ ~Q3) 
 
or the following bilateral reduction sentence for ‘Q3’:  
(Rb)                                      Q1 ⊃ (Q3 ≡ Q2) 
 
is stated as valid in order to introduce ‘Q3’, i.e. to give meaning to this new 
term of our language. Since, on the assumption made, ‘Q3’ has no antecedent 
meaning, we do not assert anything about facts by the statement of Rb. This 
statement is not an assertion but a convention. In other words, the factual 
content of Rb is empty; in this respect, Rb is similar to a definition.  On the 
other hand, the pair R1, R2 has a positive content. By stating it as valid, 
beside stating a convention concerning the use of the term ‘Q3’, we assert 
something about facts that can be formulated in the following way without the 
use of ‘Q3’. If a point c had the property Q1 • Q2 • Q4 • Q5, then both ‘Q3(c)’ and 
‘~ Q3(c)’ would follow. Since this is not possible for any point, the following 
universal sentence S which does not contain ‘Q3’, and which in general is 
synthetic, is a consequence of R1 and R2: 
 
(S:) ~ (Q1 • Q2 • Q4 • Q5). 
 
In the case of the bilateral reduction sentence Rb ‘Q4’ coincides with ‘Q1’ and 
‘Q5’ with ‘~Q2’.  Therefore in this case S degenerates to ‘~(Q1 • Q2 • Q1 • ~Q2)’ 
and hence becomes analytic.  Thus a bilateral reduction sentence, in contrast 
to a reduction pair, has no factual content. 
 

9. Introductive Chains 
 

For the sake of simplicity we have considered so far only the introduction of 
a predicate by one reduction pair or by one bilateral reduction sentence. But 
in most cases a predicate will be introduced by either several reduction pairs 
or several bilateral reduction sentences. If a property or physical magnitude 
can 
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be determined by different methods then we may state one reduction pair or 
one bilateral reduction sentence for each method.  The intensity of an electric 
current can be measured for instance by measuring the heat produced in the 
conductor, or the deviation of a magnetic needle, or the quantity of silver 
separated out of a solution, or the quantity of hydrogen separated out of 
water etc. We may state a set of bilateral reduction sentences, one 
corresponding to each of these methods. The factual content of this set is not 
null because it comprehends such sentences as e.g. “If the deviation of a 
magnetic needle is such and such then the quantity of silver separated in one 
minute is such and such, and vice versa” which do not contain the term 
‘intensity of electric current’, and which obviously are synthetic. 
     If we establish one reduction pair (or one bilateral reduction sentence) as 
valid in order to introduce a predicate ‘Q3’, the meaning of ‘Q3’ is not 
established completely, but only for the cases in which the test condition is 
fulfilled.  In other cases, e.g. for the match in our previous example, neither 
the predicate nor its negation can be attributed. We may diminish this region 
of indeterminateness of the predicate by adding one or several more laws 
which contain the predicate and connect it with other terms available in our 
language. These further laws may have the form of reduction sentences (as in 
the example of the electric current) or a different form.  In the case of the 
predicate ‘soluble in water’ we may perhaps add the law stating that two 
bodies of the same substance are either both soluble or both not soluble.  
This law would help in the instance of the match; it would, in accordance with 
common usage, lead to the result “the match c is not soluble,” because other 
pieces of wood are found to be insoluble on the basis of the first reduction 
sentence. Nevertheless, a region of indeterminateness remains, though a 
smaller one.  If a body b consists of such a substance that for no body of this 
substance has the test-condition — in the above example: “being placed into 
water” — ever been fulfilled, then neither the predicate nor its negation can be 
attributed to b.  This region may then be diminished still further, step by 
step, by stating new laws.  These laws do not have the conventional character 
that definitions have; 
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rather are they discovered empirically within the region of meaning which 
the predicate in question received by the laws stated before. But these laws 
are extended by convention into a region in which the predicate had no 
meaning previously; in other words, we decided to use the predicate in such 
a way that these laws which are tested and confirmed in cases in which the 
predicate has a meaning, remain valid in other cases. 

We have seen that a new predicate need not be introduced by a definition, 
but may equally well be introduced by a set of reduction pairs.  (A bilateral 
reduction sentence may here be taken as a special form of a reduction pair.) 
Consequently, instead of the usual chain of definitions, we obtain a chain of 
sets of sentences, each set consisting either of one definition or of one or 
several reduction pairs. By each set a new predicate is introduced. 

Definition 11.  A (finite) chain of (finite) sets of sentences is called an 
introductive chain based upon the class C of predicates if the following 
conditions are fulfilled. Each set of the chain consists either of one definition 
or of one or more reduction pairs for one predicate, say ‘Q’; every predicate 
occurring in the set, other than ‘Q’, either belongs to C or is such that one of 
the previous sets of the chain is either a definition for it or a set of reduction 
pairs for it. 

Definition 12. If the last set of a given introductive chain based upon C 
either consists in a definition for ‘Q’ or in a set of reduction pairs for ‘Q’, ‘Q’ 
is said to be introduced by this chain on the basis of C. 

For our purposes we will suppose that a reduction sentence always has 
the simple form ‘Q1 ⊃ (Q2 ⊃ Q3) ’ and not the analogous but more complicated 
form ‘(x) [---x--- ⊃ (... x... ⊃ Q3(x))]’ where ‘---x---’ and ‘...x...’ indicate 
sentential functions of a non-atomic form. This supposition does not re-
strict the generality of the following considerations because a reduction 
sentence of the compound form indicated may always be replaced by two 
definitions and a reduction sentence of the simple form, namely by:  

Q1 ≡ ---x---    
Q2 ≡ ...x...   
Q1 ⊃ (Q2 ⊃ Q3) 
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     The above supposition once made, the nature of an introductive chain is 
chiefly dependent upon the form of the definitions occurring.  Therefore we 
define as follows. 

Definition 13. An introductive chain is said to have atomic form (or 
molecular form) if every definition occurring in it has atomic form (or 
molecular form, respectively); it is said to have generalized form (or 
essentially generalized form) if at least one definition of generalized form (or 
essentially generalized form, respectively) occurs in it. 
     Theorem 7.  If ‘P’ is introduced by an introductive chain based upon C, ‘P’ 
is reducible to C. If the chain has molecular form, ‘P’ is completely reducible 
to C; if the chain has essentially generalized form, ‘P’ is incompletely 
reducible to C. — This follows from Theorems 5 (§ 7) and 6 (§ 8). 

We call primitive symbols those symbols of a language L which are 
introduced directly, i.e. without the help of other symbols. Thus there are 
the following kinds of symbols of L: 
     1) primitive symbols of L, 
    2) indirectly introduced symbols, i.e. those introduced by introductive chains 
        based upon primitive symbols; here we distinguish: 
        a) defined symbols, introduced by chains of definitions, 

              b) reduced symbols, i.e. those introduced by introductive chains  
                  containing at least one reduction sentence; here we may further 
                  distinguish: 

                     α) L-reduced symbols, whose chains contain only L-reduction pairs, 
                     β) P-reduced symbols, whose chains contain at least one P-reduction 
                        pair. 

Definition 14.  a. An introductive chain based upon primitive predicates of a 
language L and having atomic (or molecular, or generalized, or essentially 
generalized, respectively) form is called an atomic (or molecular, or 
generalized, or essentially generalized, respectively) introductive chain of L. 

b. A predicate of L is called an atomic (or molecular) predicate if it is either a 
primitive predicate of L or introduced by an atomic (or molecular, 
respectively) introductive chain of L; it is called a generalized (or essentially 
generalized) predicate if it is intro- 
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duced by a generalized (or essentially generalized, respectively) introductive 
chain of L. 

Definition 15.  a. A sentence S is called an atomic sentence if S is a full 
sentence of an atomic predicate. — b. S is called a molecular sentence if S has 
molecular form and contains only molecular predicates. — c. S is called a 
generalized sentence if S contains an (unrestricted) operator or a generalized 
predicate. — d. S is called an essentially generalized sentence if S is a 
generalized sentence and is not equipollent with a molecular sentence. 

It should be noticed that the term ‘atomic sentence’, as here defined, is not 
at all understood to refer to ultimate facts.28 Our theory does not assume 
anything like ultimate facts. It is a matter of convention which predicates are 
taken as primitive predicates of a certain language L; and hence likewise, 
which predicates are taken as atomic predicates and which sentences as 
atomic sentences. 

 
10. Reduction and Definition 

 
In § 8 the fact was mentioned that in some cases, for instance in the case of 

a disposition-term, the reduction cannot be replaced by a definition. We now 
are in a position to see the situation more clearly. Suppose that we introduce 
a predicate ‘Q’ into the language of science first by a reduction pair and that, 
later on, step by step, we add more such pairs for ‘Q’ as our knowledge about 
‘Q’ increases with further experimental investigations. In the course of this 
procedure the range of indeterminateness for ‘Q’, i.e. the class of cases for 
which we have not yet given a meaning to ‘Q’, becomes smaller and smaller. 
Now at each stage of this development we could lay down a definition for ‘Q’ 
corresponding to the set of reduction pairs for ‘Q’ established up to that stage. 
But, in stating the definition, we should have to make an arbitrary decision 
concerning the cases which are not determined by the set of reduction pairs.  
A definition determines the meaning of the new term once for all. We could 
either decide to attribute ‘Q’ in the cases not determined by the set, or to 

 
28 In contradistinction to the term ‘atomic sentence’ or ‘elementary sentence’ as used by 

Russell or Wittgenstein. 
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attribute ‘~Q’ in these cases.  Thus for instance, if a bilateral reduction 
sentence R of the form ‘Q1 ⊃ (Q3 ≡ Q2)’ is stated for ‘Q3’, then the predicate ‘Q3’ 
is to be attributed to the points of the class Q1 • Q2, and ‘~ Q3’ to those of the 
class Q1 • ~ Q2, while for the points of the class ~Q1, the predicate ‘Q3’ has no 
meaning. Now we might state one of the following two definitions: 
 
(D1) Q3 ≡ (Q1 • Q2) 
(D2) Q3 ≡ (~Q1 V Q2) 
 
If c is a point of the undetermined class, on the basis of D1, ‘Q3(c)’ is false, and 
on the basis of D2 it is true.  Although it is possible to lay down either D1 or D2, 
neither procedure is in accordance with the intention of the scientist 
concerning the use of the predicate ‘Q3’.  The scientist wishes neither to 
determine all the cases of the third class positively, nor all of them negatively; 
he wishes to leave these questions open until the results of further investiga-
tions suggest the statement of a new reduction pair; thereby some of the 
cases so far undetermined become determined positively and some negatively. 
If we now were to state a definition, we should have to revoke it at such a new 
stage of the development of science, and to state a new definition, 
incompatible with the first one.  If, on the other hand, we were now to state a 
reduction pair, we should merely have to add one or more reduction pairs at 
the new stage; and these pairs will be compatible with the first one.  In this 
latter case we do not correct the determinations laid down in the previous 
stage but simply supplement them. 

Thus, if we wish to introduce a new term into the language of science, we 
have to distinguish two cases. If the situation is such that we wish to fix the 
meaning of the new term once for all, then a definition is the appropriate 
form. On the other hand, if we wish to determine the meaning of the term at 
the present time for some cases only, leaving its further determination for 
other cases to decisions which we intend to make step by step, on the basis of 
empirical knowledge which we expect to obtain in the future, then the method 
of reduction is the appropriate one rather than that of a  definition.  A set of 
reduction pairs is a partial determination of meaning only and can therefore 
not be replaced by a 
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definition.  Only if we reach, by adding more and more reduction pairs, a 
stage in which all cases are determined, may we go over to the form of a 
definition. 

We will examine in greater detail the situation in the case of several 
reduction pairs for ‘Q3’: 

 
(R1) Q1 ⊃(Q2 ⊃ Q3) 
(R2) Q4 ⊃(Q5 ⊃ ~Q3) 
(R′1) Q′1 ⊃ (Q′2 ⊃ Q3) 
(R′2) Q′4 ⊃(Q′5 ⊃ ~Q3) etc. 
 
Then ‘Q3’ is determined by R1 for the points of the class Q1 • Q2, by R′1 for the 
class Q′1 • Q′2, etc., and therefore, by the totality of reduction sentences for 
‘Q3’, for the class (Q1 • Q2) V (Q′1 • Q′2) V .... This class may shortly be 
designated by ‘Q1,2’. Analogously ‘~ Q3’ is determined by the reduction 
sentences for ‘~ Q3’ for the points of the class (Q4 • Q5) V (Q′4 • Q′5) V . . . , 
which we designate by ‘Q4,5’. Hence ‘Q3’ is determined either positively or 
negatively for the class Q1,2 V Q4,5. Therefore the universal sentence ‘Q1,2 V 
Q4,5’ means, that for every point either ‘Q3’ or ‘~Q3’ is determined. If this 
sentence is true, the set of reduction sentences is complete and may be 
replaced by the definition ‘Q3 ≡ Q1,2’.  For the points of the class ~(Q1,2 V Q4,5), 
‘Q3’ is not determined, and hence, in the stage in question, ‘Q3’ is without 
meaning for these points.  If on the basis of either logical rules or physical 
laws it can be shown that all points belong to this class, in other words, if the 
universal sentence ‘~(Q1,2 V Q4,5)’ is valid — either analytic or P-valid — then 
neither ‘Q3’ nor ‘~Q3’ is determined for any point and hence the given set of 
reduction pairs does not even partly determine the meaning of ‘Q3’ and 
therefore is not a suitable means of introducing this predicate. 

The given set of reduction pairs asserts that a point belonging to the class 
Q4,5 has the property ~Q3 and hence not the property Q3, and therefore 
cannot belong to Q1,2 because every point of this class has the property Q3. 
What the set asserts can therefore be formulated by the universal sentence 
saying that no point belongs 
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to both Q1,2 and Q4,5, i.e. the sentence ‘~(Q1,2 • Q4,5)’. This sentence represents, 
so to speak, the factual content of the set.  In the case of one reduction pair 
this representative sentence is ‘~(Q1 • Q2 • Q4 • Q5)’; in the case of one 
bilateral reduction sentence this becomes ‘~ (Q1 • Q2 • Q1 • ~Q2)’ or ‘(x)(Q2(x) V 
~Q2(x))’, which is analytic. 

The following diagram shows the tripartition of the class of all points by a 
reduction pair (or a bilateral reduction sentence, or a set of reduction pairs, 
respectively). For the first class ‘Q3’ is determined, for the second class ‘~ Q3’. 
The third class lies between them and is not yet determined; but some of its 
points may be determined as belonging to Q3 and some others as belonging to 
~Q3 by reduction pairs to be stated in the future. 

 
reduction pair: Q1 • Q2   ~[(Q1 • Q2) V (Q4 • Q5)]  Q4 • Q5 
bilat. reduction sentence: Q1 • Q2                  ~Q1 Q •~Q2 
set of reduction pairs:                Q1,2                         ~(Q1,2 V Q4,5)             Q4,5 
 

 
 
If we establish a set of reduction pairs as new valid sentences for the 

introduction of a new predicate ‘Q’3, are these valid sentences analytic or P-
valid? Moreover, which other sentences containing ‘Q3’ are analytic? The 
distinction between analytic and P-valid sentences refers primarily to those 
sentences only in which all descriptive terms are primitive terms. In this case 
the criterion is as follows:29 a valid sentence S is analytic if and only if every 
sentence S′ is also valid which is obtained from S when any descriptive term 
wherever it occurs in S is replaced by any other term whatever of the same 
type; otherwise it is P-valid. A sentence S containing defined terms is 
analytic if the sentence S′ resulting from S by the elimination of the defined 
terms is analytic; otherwise it is P-valid. A definition, e.g. ‘Q(x) ≡ . . . x ...’ 
 
     29 Carnap [4] §51. 
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is, according to this criterion, itself analytic; for, after it has been stated as a 
valid sentence, by the elimination of ‘Q’ we get from it ‘...x ...≡...x...’, which is 
analytic. 

In the case of a new descriptive term introduced by a set of reduction 
pairs, the situation is not as simple as in the case of a definition because 
elimination is here not possible. Let us consider the question how the 
criterion is to be stated in this case. The introduction of a new term into a 
language is, strictly speaking, the construction of a new language on the basis 
of the original one.  Suppose that we go over from the language L1, which does 
not contain ‘Q’, to the language L2 by introducing ‘Q’ by a set R of reduction 
pairs, whose representative sentence (in the sense explained before) may be 
taken to be S.  Then S as not containing ‘Q’ is a sentence of L1 also; its logical 
character within L1 does not depend upon ‘Q’ and may therefore be supposed 
to be determined already.  By stating the sentences of R as valid in L2, S 
becomes also valid in L2 because it is a consequence of R in L2. If now S is 
analytic in L1, it is also analytic in L2; in this case R does not assert anything 
about facts, and we must therefore take its sentences as analytic. According 
to this, every bilateral reduction sentence is analytic, because its 
representative sentence is analytic, as we have seen before. If S is either P-
valid or indeterminate in L1, it is valid and moreover P-valid in L2 in conse-
quence of our stating R as valid in L2.  In this case every sentence of R is 
valid; it is P-valid unless it fulfills the general criterion of analyticity stated 
before (referring to all possible replacements of the descriptive terms, see p. 
451). If S is either P-contravalid or contradictory in L1, it has the same 
property in L2 and is simultaneously valid in L2. It may be analytic in L2, if it 
fulfills the general criterion.  In this case every sentence of R is both valid and 
contravalid, and hence L2 is inconsistent.30  If S is contradictory in L1 and at 
least one sentence of R is analytic according to the general criterion, then L2 
is not only inconsistent but also L-inconsistent. The results of these 
considerations may be exhibited by the following table; column (1) gives a 
complete classification of the sentences of a language (see the diagram in § 5). 
 
     30 Compare Carnap [4] §59. 



 
 

The representative sentence S 

in L1 in L2 

a reduction in 
sentence of R (in 

L2) 
L2 

1. analytic analytic analytic 

2. P-valid P-valid valid* 

consistent (if L1 

is consistent) 

3. indeterminate P-valid valid*  
4. P-contravalid valid and P- valid* and P- inconsistent 
 contravalid contravalid  
5. contradictory valid and con- valid* and con- inconsistent† 
 tradictory tradictory  

* analytic if fulfilling the general criterion (p. 451); otherwise P-valid. 

† and moreover L-inconsistent if at least one sentence of R is analytic on the basis of the 
general criterion (p. 451). 

Now the complete criterion for ‘analytic’ can be stated as follows: 

Nature of S Criterion for S being analytic 

1. S does not contain any 
descriptive symbol. S is valid. 

2. All descriptive symbols 
of S are primitive. 

Every sentence S′ which results from S 
when we replace any descriptive symbol 
at all places where it occurs in S by any 
symbol whatever of the same type—and 
hence S itself also—is valid. 

3. S contains a defined 
descriptive symbol ‘Q’. 

The sentence S′ resulting from S by the 
elimination of ‘Q’ is valid. 

4. S contains a descriptive 
symbol ‘Q’ introduced by a 
set R of reduction pairs; 
let L′ be the sub- 
language of L not 
containing ‘Q’, and 
S′ the representative 
sentence of R (comp. p. 
451) 

S′ is analytic in L′, and S is an L-conse- 
quence of R (e.g. one of the sentences of 
R); in other words, the implication sen- 
tence containing the conjunction of the 
sentences of R as first part and S as second 
part is analytic (i.e. every sentence re- 
sulting from this implication sentence 
where we replace ‘Q’ at all places by any 
symbol of the same type occurring in L′ 
is valid in L′). 
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III. EMPIRICAL ANALYSIS OF CONFIRMATION AND TESTING 
 

II. Observable and Realizable Predicates 
 
     In the preceding chapter we analyzed logically the relations which subsist 
among sentences or among predicates if one of them may be confirmed with 
the help of others. We defined some concepts of a syntactical kind, based 
upon the concept ‘consequence’ as the chief concept of logical syntax. In 
what follows we shall deal with empirical methodology. Here also we are 
concerned with the questions of confirming and testing sentences and 
predicates. These considerations belong to a theory of language just as the 
logical ones do. But while the logical analysis belongs to an analytic theory 
of the formal, syntactical structure of language, here we will carry out an 
empirical analysis of the application of language. Our considerations belong, 
strictly speaking, to a biological or psychological theory of language as a 
kind of human behavior, and especially as a kind of reaction to observations. 
We shall see, however, that for our purposes we need not go into details of 
biological or psychological investigations.  In order to make clear what is 
understood by empirically testing and confirming a sentence and thereby to 
find out what is to be required for a sentence or a predicate in a language 
having empirical meaning, we can restrict ourselves to using very few 
concepts of the field mentioned.  We shall take two descriptive, i.e. non-
logical, terms of this field as basic terms for our following considerations, 
namely ‘observable’ and ‘realizable’. All other terms, and above all the terms 
‘confirmable’ and ‘testable’, which are the chief terms of our theory, will be 
defined on the basis of the two basic terms mentioned; in the definitions we 
shall make use of the logical terms defined in the foregoing chapter. The two 
basic terms are of course, as basic ones, not defined within our theory. 
Definitions for them would have to be given within psychology, and more 
precisely, within the behavioristic theory of language.We do not attempt 
such definitions, but we shall give at least some rough explanations for the 
terms, which will make their meaning clear enough for our purposes. 
     Explanation 1.  A predicate ‘P’ of a language L is called observable for an 
organism (e.g. a person) N, if, for suitable argu- 
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ments, e.g. ‘b’, N is able under suitable circumstances to come to a decision 
with the help of few observations about a full sentence, say ‘P(b)’, i.e. to a 
confirmation of either ‘P(b)’ or ‘~P(b)’ of such a high degree that he will either 
accept or reject ‘P(b)’. 

This explanation is necessarily vague.  There is no sharp line between 
observable and non-observable predicates because a person will be more or 
less able to decide a certain sentence quickly, i.e. he will be inclined after a 
certain period of observation to accept the sentence.  For the sake of simplicity 
we will here draw a sharp distinction between observable and non-observable 
predicates. By thus drawing an arbitrary line between observable and non-
observable predicates in a field of continuous degrees of observability we partly 
determine in advance the possible answers to questions such as whether or not 
a certain predicate is observable by a given person.  Nevertheless the general 
philosophical, i.e. methodological question about the nature of meaning and 
testability will, as we shall see, not be distorted by our oversimplification. Even 
particular questions as to whether or not a given sentence is confirmable, and 
whether or not it is testable by a certain person, are affected, as we shall see, 
at most to a very small degree by the choice of the boundary line for observable 
predicates. 

According to the explanation given, for example the predicate ‘red’ is 
observable for a person N possessing a normal colour sense. For a suitable 
argument, namely a space-time-point c sufficiently near to N, say a spot on the 
table before N, N is able under suitable circumstances — namely, if there is 
sufficient light at c — to come to a decision about the full sentence “the spot c 
is red” after few observations — namely by looking at the table. On the other 
hand, the predicate ‘red’ is not observable by a colour-blind person. And the 
predicate ‘an electric field of such and such an amount’ is not observable to 
anybody, because, although we know how to test a full sentence of this 
predicate, we cannot do it directly, i.e. by a few observations; we have to apply 
certain instruments and hence to make a great many preliminary observations 
in order to find out whether the things before us are instruments of the kind 
required. 
     Explanation 2. A predicate ‘P’ of a language L is called 
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‘realizable’ by N, if for a suitable argument, e.g. ‘b’, N is able under suitable 
circumstances to make the full sentence ‘P(b)’ true, i.e. to produce the property 
P at the point b. 

When we use the terms ‘observable’ and ‘realizable’ without explicit reference 
to anybody, it is to be understood that they are meant with respect to the 
people who use the language L to which the predicate in question belongs. 

Examples. Let ‘P1(b)’ mean: ‘the space-time-point b has the temperature 
100°C’. ‘P1’ is realizable by us because we know how to produce that 
temperature at the point b, if b is accessible to us. — ‘P2(b)’ may mean: ‘there is 
iron at the point b’. ‘P2’ is realizable because we are able to carry a piece of iron 
to the point b if b is accessible. — If ‘P3(b)’ means: ‘at the point b is a substance 
whose index of light refraction is 10’, ‘P3’ is not realizable by anybody at the 
present time, because nobody knows at present how to produce such a 
substance. 

 
12. Confirmability 

 
In the preceding chapter we have dealt with the concept of reducibility of a 

predicate ‘P’ to a class C of other predicates, i.e. the logical relation which 
subsists between ‘P’ and C if the confirmation of ‘P’ can be carried out by that 
of predicates of C. Now, if confirmation is to be feasible at all, this process of 
referring back to other predicates must terminate at some point. The reduction 
must finally come to predicates for which we can come to a confirmation 
directly, i.e. without reference to other predicates. According to Explanation i, 
the observable predicates can be used as such a basis. This consideration 
leads us to the following definition of the concept ‘confirmable’. This concept is 
a descriptive one, in contradistinction to the logical concept ‘reducible to C’ — 
which could be named also ‘confirmable with respect to C’. 

Definition 16. A sentence S is called confirmable (or completely confirmable, 
or incompletely confirmable) if the confirmation of S is reducible (or completely 
reducible, or incompletely reducible, respectively) to that of a class of 
observable predicates.  

Definition 17. A sentence S is called bilaterally confirmable 
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(or bilaterally completely confirmable) if both S and ~ S are confirmable (or 
completely confirmable, respectively). 

Definition 18. A predicate ‘P’ is called confirmable (or completely confirmable, 
or incompletely confirmable) if ‘P’ is reducible (or completely reducible, or 
incompletely reducible, respectively) to a class of observable predicates. 
     Hence, if ‘P’ is confirmable (or completely confirmable) the full sentences 
of ‘P’ are bilaterally confirmable (or bilaterally completely confirmable, 
respectively). 

When we call a sentence S confirmable, we do not mean that it is possible 
to arrive at a confirmation of S under the circumstances as they actually 
exist.  We rather intend this possibility under some possible circumstances, 
whether they be real or not. Thus e.g. because my pencil is black and I am 
able to make out by visual observation that it is black and not red, I cannot 
come to a positive confirmation of the sentence “My pencil is red.” 
Nevertheless we call this sentence confirmable and moreover completely 
confirmable for the reason that we are able to indicate the — actually non-
existent, but possible — observations which would confirm that sentence. 
Whether the real circumstances are such that the testing of a certain 
sentence S leads to a positive result, i.e. to a confirmation of S, or such that 
it leads to a negative result, i.e. to a confirmation of ~ S, is irrelevant for the 
questions of confirmability, testability and meaning of the sentence though 
decisive for the question of truth i.e. sufficient confirmation. 
     Theorem 8.  If ‘P’ is introduced on the basis of observable predicates, ‘P’ is 
confirmable. If the introductive chain has molecular form, ‘P’ is completely 
confirmable. — This follows from Theorem 7 (§ 9). 
     Theorem 9. If S is a sentence of molecular form and all predicates 
occurring in S are confirmable (or completely confirmable) S is bilaterally 
confirmable (or bilaterally completely confirmable, respectively). — From 
Theorem 2 (§ 6). 

Theorem 10.  If the sentence S is constructed out of confirmable 
predicates with the help of connective symbols and universal or existential 
operators, S is bilaterally confirmable. — From Theorems 2, 3, and 4 (§ 6). 
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13. Method of Testing 
 
     If ‘P’ is confirmable then it is not impossible that for a suitable point b 
we may find a confirmation of ‘P(b)’ or of ‘~ P(b)’. But it is not necessary 
that we know a method for finding such a confirmation.  If such a 
procedure can be given — we may call it a method of testing — then ‘P’ is not 
only confirmable but — as we shall say later on — testable.  The following 
considerations will deal with the question how to formulate a method of 
testing and thereby will lead to a definition of ‘testable’. 
     The description of a method of testing for ‘Q3’ has to contain two other 
predicates of the following kinds: 
     1) A predicate, say ‘Q1’, describing a test-condition for ‘Q3,’ i.e. an 
experimental situation which we have to create in order to test ‘Q3’ at a 
given point. 
     2) A predicate, say ‘Q2’, describing a truth-condition for ‘Q3’ with respect to 
‘Q1’, i.e. a possible experimental result of the test-condition Q1 at a given 
point b of such a kind that, if this result occurs, ‘Q3’ is to be attributed to 
b. Now the connection between ‘Q1’, ‘Q2’, and ‘Q3’ is obviously as follows: if 
the test-condition is realized at the given point b then, if the truth-
condition is found to be fulfilled at b, b has the property to be tested; and 
this holds for any point. Thus the method of testing for ‘Q3’ is to be 
formulated by the universal sentence ‘Q1 ⊃ (Q2 ⊃ Q3)’, in other words, by a 
reduction sentence for ‘Q3’.  But this sentence, beside being a reduction 
sentence, must fulfill the following two additional requirements: 
     1) ‘Q1’ must be realizable because, if we did not know how to produce 
the test-condition, we could not say that we had a method of testing. 

 2) We must know beforehand how to test the truth condition Q2; 
otherwise we could not test ‘Q3’ although it might be confirmable. In order 
to satisfy the second requirement, ‘Q2’ must be either observable or 
explicitly defined on the basis of observable predicates or a method of 
testing for it must have been stated. If we start from observable predicates 
— which, as we know, can be tested without a description of a method of 
testing being necessary — and then introduce other predicates by explicit 
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definitions or by such reduction sentences as fulfill the require- 
ments stated above and hence are descriptions of a method of testing, then 
we know how to test each of these predicates. Thus we are led to the 
following definitions. 
     Definition 19.  An introductive chain of such a kind that in 
each of its reduction sentences, say ‘Q1 ⊃ (Q2 ⊃ Q3)’ or ‘Q4 ⊃ (Q5 ⊃ ~Q3)’, the 
first predicate — ‘Q1’ or ‘Q4’, respectively — is realizable, is called a test 
chain.  A reduction sentence (or a reduction pair, or a bilateral reduction 
sentence) belonging to a test chain is called a test sentence (or a test pair, or 
a bilateral test sentence, respectively). 

A test pair for ‘Q’, and likewise a bilateral test sentence for ‘Q’, describes a 
method of testing for both ‘Q’ and ‘~ Q’. A bilateral test sentence, e.g. ‘Q1 ⊃ 
(Q3 ≡ Q2)’ may be interpreted in words in the following way: “If at a space-
time-point x the test-condition Q1 (consisting perhaps in a certain 
experimental situation, including suitable measuring instruments) is 
realized then we will attribute the predicate ‘Q3’ to the point x if and only if 
we find at x the state Q2 (which may be a certain result of the experiment, 
e.g. a certain position of the pointer on the scale)”. To give an example, let 
‘Q3(b)’ mean: “The fluid at the space-time-point b has a temperature of 100°”; 
‘Q1(b)’: “A mercury thermometer is put at b; we wait, while stirring the liquid, 
until the mercury comes to a standstill”; ‘Q2(b)’: “The head of the mercury 
column of the thermometer at b stands at the mark 100 of the scale.” If here 
‘Q3’ is introduced by ‘Q1 ⊃ (Q3 ≡ Q2)’ obviously its testability is assured.  
 

14. Testability 
 
    Definition 20.  If a predicate is either observable or introduced 
by a test chain it is called testable.  A testable predicate is called completely 
testable if it is either observable or introduced by a test chain having 
molecular form; otherwise incompletely testable. 

Let us consider the question under what conditions a set of laws, e.g. of 
physics, which contain a predicate ‘Q’ can be transformed into a set of 
reduction-sentences or of test-sentences for ‘Q’.  Suppose a set of laws is 
given which contain ‘Q’ and have 
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the following form. Each of the laws is a universal sentence containing only 
individual variables (no predicate variables); ‘Q’ is followed wherever it 
occurs in the sentence by the same set of variables, which are bound by 
universal operators applying to the whole sentence. Thus each of the laws 
has the form ‘(x) [...Q(x) ... Q(x) ... ]’. The majority of the laws of classical 
physics can be brought into this form. Now the given set of laws can be 
transformed in the following way. First we write down the conjunction of 
the laws of the given set and transform it into one universal sentence ‘(x)[... 
Q(x) ... Q(x) ... ]’. Then we transform the function included in square 
brackets into the so-called conjunctive normal form,31 i.e. a conjunction of 
say n disjunctions of such a kind that ‘Q’ occurs only in partial sentences 
which are members of such disjunctions and have either the form ‘Q(x)’ or  
‘~Q(x)’. Finally we dissolve the whole universal sentence into n universal 
sentences in accordance with the rule that ‘(x)[P1(x) • P2 (x )• . . . •Pn (x ) ] ’  can 
be transformed into ‘(x)P1(x) • (x)P2(x) . . . . (x)Pn(x)’.  Thus we have a set of n  
universal sentences; each of them is a disjunction having among its 
members either ‘Q(x)’ or ‘~Q(x)’ or both.  If we employ ‘~ P(x)’ as abbreviation 
for the disjunction of the remaining members not containing ‘Q’ these 
sentences have one of the following forms: 
 
1.  Q  V ~ P ,  
2 .         ~Q  V ~ P  
3 .            Q  V  ~ Q  V  ~ P .  
 
A sentence of the form (3) is analytic and can therefore be omitted without 
changing the content of the set. (1) can be given the form ‘P ⊃ Q’ and, by 
analysing ‘P’ in some way or other into a conjunction ‘P1•  P2 ’ ,  the form ‘ (P1  
•  P2 )  ⊃  Q’ and hence ‘P1 ⊃ (P2 ⊃  Q) ’  which is a reduction sentence of the 
first form. In the same way (2) can be transformed into ‘P ⊃ ~Q’ and hence 
into ‘(P1 • P2) ⊃ ~Q’ and into ‘P1 ⊃ (P2 ⊃ ~Q)’ which is a reduction sentence of 
the second form. An analysis of ‘P’ into ‘P1 • P2’ is obviously always possible; 
if not otherwise then in the triv- 
 
     31 Compare Hilbert [1 ]  p .  13 ;  Carnap [4b] §34b, RR 2. 
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ial way of taking an analytic predicate as ‘P1’ and ‘P’ itself as ‘P2’. If ‘P’ is 
testable then we may look for such an analysis that ‘P1’ is realizable. If we can 
find such a one then — since ‘P2’ is also testable in this case — the reduction 
sentence ‘P1 ⊃ (P2 ⊃ Q)’ or ‘P1 ⊃ (P2 ⊃ Q)’ is a test-sentence. 

Thus we have seen that a set of laws of the form here supposed can always 
be transformed into a set of reduction sentences for ‘Q’, and, if a special 
condition is fulfilled, into a set of test-sentences. This condition is fulfilled in 
very many and perhaps most of the cases actually occurring in physics 
because nearly all predicates used in physics are testable and perhaps most 
of them are realizable. — 
     Theorem 11.  If a predicate is testable it is confirmable; if it is completely 
testable it is completely confirmable. — By Theorem 8, § 12. 

On the other hand, ‘P’ may be confirmable without being testable. This is the 
case, if ‘P’ is introduced by an introductive chain based upon observable 
predicates but containing a reduction sentence (‘Q1⊃ (Q2 ⊃  Q3) ’  of such a 
kind that ‘Q1’, although it is of course confirmable and may even be testable, 
is not realizable. If this should be the case, there is a possibility that by a 
happy chance the property Q3 will be found at a certain point, although we 
have no method which would lead us with certainty to such a result. Suppose 
that ‘Q1’ and ‘Q2 ’  are completely confirmable, i.e. completely reducible to 
observable predicates — they may even be observable themselves — and that 
‘Q3’ is introduced by ‘Q1 ⊃ (Q3 ≡ Q2) ’ .   Let c be a point in our spatio-temporal 
neighborhood such that we are able to observe its properties. Then by happy 
chance ‘Q1(c)’ may be true.  If so, we are able to find this out by observation 
and then, by either finding ‘Q2(c)’ or ‘~ Q2(c)’, to arrive at the conclusion either 
of ‘Q3(c)’ or of ‘ ~ Q3(c)’. But if that stroke of luck does not happen, i.e. if 
‘Q1(c)’ is false — no matter whether we find that out by our observations or 
not — we are not in a position to determine the truth or falsehood of ‘Q3(c)’, 
and it is impossible for us to come to a confirmation of either ‘Q3(c)’ or ‘ ~Q3(c)’ 
in any degree whatsoever.  To give an example, let ‘Q1(c)’ mean that at the 
space-time point c there is a 
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person with a certain disease.  We suppose that we know symptoms both for 
the occurrence of this disease as well as for its non-occurrence; hence ‘Q1’ is 
confirmable.  It may even be the case that we know a method by which we 
are able to find out with certainty whether or not a given person at a given 
time has this disease; if we know such a method ‘Q1’ is not only confirmable 
but testable and moreover completely testable. We will suppose, however, 
that ‘Q1’ is not realizable, i.e. we do not know at present any method of 
producing this disease; whether or not ‘~ Q1’ is realizable, in other words, 
whether or not we are able to cure the disease, does not matter for our 
considerations.  Let us suppose further that clinical observations of the 
cases of this disease show that there are two classes of such cases, one 
characterized by the appearance of a certain symptom, i.e. a testable or even 
observable predicate, say ‘Q2’, the other by the lack of this symptom, i.e. by 
‘~ Q2’.  If this distinction turns out to be relevant for the further development 
of the disease and for its consequences, physicians may wish to classify all 
persons into two classes: those who are disposed to show the symptom Q2 in 
case they acquire the disease Q1, and those who do not, i.e. those who show 
~ Q2 if they get Q1. The first class may be designated by ‘Q3’ and hence the 
second by ‘~Q3’. Then ‘Q3’ can be introduced by the bilateral reduction 
sentence ‘Q1 ⊃ (Q3 ≡ Q2)’.  The classification by ‘Q3’ and ‘~Q3’ will be useful if 
observations of a long series of cases of this disease show that a person who 
once belongs to the class Q3 (or ~ Q3) always belongs to this class. Moreover, 
other connections between Q3 and other biological properties may be 
discovered; these connections will then be formulated by laws containing 
‘Q3’; under suitable circumstances these laws can be given the form of 
supplementary reduction pairs for ‘Q3’.  Thus ‘Q3’ may turn out to be a 
useful and important concept for the formulation of the results of empirical 
investigation. But ‘Q3’ is not testable, not even incompletely, because we do 
not know how to decide a given sentence ‘Q3(a)’, i.e. how to make 
experiments in order to find out whether a given person belongs to the class 
Q3 or not; all we can do is to wait until this person happens to get the 
disease Q1 and then to find out whether he shows the symptom Q2 or not.  It 
may happen, how- 
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ever, in the further development of our investigations, that we find that every 
person for whom we find ‘Q1’ and ‘Q2’ and to whom we therefore attribute 
‘Q3’ shows a certain constant testable property Q4, e.g. a certain chemical 
property of the blood, and that every person for whom we find ‘Q1’ and ‘~Q2’ 
and whom we therefore classify into ~Q3, does not show Q4.  On the basis of 
such results we would state the law ‘Q3 ≡ Q4’. By this law, ‘Q3’ becomes 
synonymous — not L-synonymous, but P-synonymous — with the testable 
predicate ‘Q4’ and hence becomes itself testable.  But until we are in a 
position to state a law of this or a similar kind, ‘Q3’ is not testable. 

This example shows that a non-testable predicate can nevertheless be 
confirmable, and even completely confirmable, and its introduction and use 
can be helpful for the purposes of empirical scientific investigation. 

Definition 21. If a sentence S is confirmable (or completely confirmable) and 
all predicates occurring in S are testable (or completely testable), S is called 
testable (or completely testable, respectively).  If S is testable but not 
completely testable it is called incompletely testable. If S is bilaterally 
confirmable (or bilaterally completely confirmable) and all predicates 
occurring in it are testable (or completely testable), S is called bilaterally 
testable (or bilaterally completely testable, respectively). 

Theorem 12.  If S is a full sentence of a testable (or completely testable) 
predicate, S is bilaterally testable (or bilaterally completely testable, 
respectively). 

Theorem 13.  If S is a sentence of molecular form and all predicates 
occurring in S are testable (or completely testable) S is bilaterally testable (or 
bilaterally completely testable, respectively). — By Theorem 11 and 9 (§ 12). 

Theorem 14.  If the sentence S is constructed out of testable predicates 
with the help of connective symbols and universal or existential operators, S 
is bilaterally testable. — From Theorem 11 and 10 (§ 12). 
 

15. A Remark about Positivism and Physicalism 
 
One of the fundamental theses of positivism may perhaps be formulated in 

this way: every term of the whole language L of 
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science is reducible to what we may call sense-data terms or perception 
terms. By a perception term we understand a predicate ‘P’ such that ‘P(b)’ 
means: “the person at the space-time-place b has a perception of the kind 
P”. (Let us neglect here the fact that the older positivism would have referred 
in a perception sentence not to a space-time-place, but to an element of 
“consciousness”; let us here take the physicalistic formulation given above.) I 
think that this thesis is true if we understand the term ‘reducible’ in the 
sense in which we have defined it here.  But previously reducibility was not 
distinguished from definability.  Positivists therefore believed that every 
descriptive term of science could be defined by perception terms, and hence, 
that every sentence of the language of science could be translated into a 
sentence about perceptions. This opinion is also expressed in the former 
publications of the Vienna Circle, including mine of 1928 (Carnap [I]), but I 
now think, that it is not entirely adequate.  Reducibility can be asserted, but 
not unrestricted possibility of elimination and re-translation; the reason 
being that the method of introduction by reduction pairs is indispensable. 

Because we are here concerned with an important correction of a 
widespread opinion let us examine in greater detail the reduction and 
retranslation of sentences as positivists previously regarded them. Let us 
take as an example a simple sentence about a physical thing: 

  
 (1)  “On May 6, 1935, at 4 P.M., there is a round black table in my room.” 

 
According to the usual positivist opinion, this sentence can be translated 
into the conjuncton of the following conditional sentences (2) about 
(possible) perceptions. (For the sake of simplicity we eliminate in this 
example only the term “table” and continue to use in these sentences some 
terms which are not perception terms e.g. “my room”, “eye” etc., which by 
further reduction would have to be eliminated also.) 
 
(2a)  “If on May ... somebody is in my room and looks in such and such  

                                             direction, he has a visual perception of such and such a 
                                             kind.” 
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(2a′), (2a′′), etc.  Similar sentences about the other possible aspects of the 
                         table. 
(2b)  “If ... somebody is in my room and stretches out his hands in such and 

                                  such a direction, he has touch perceptions of such and such a 
                                  kind.” 

(2b′), (2b′′), etc.  Similar sentences about the other possible touchings of the 
                                          table. 

(2c) etc.  Similar sentences about possible perceptions of other senses.  
 
    It is obvious that no single one of these sentences (2) nor even a 
conjunction of some of them would suffice as a translation of (1); we have to 
take the whole series containing all possible perceptions of that table.  Now 
the first difficulty of this customary positivistic reduction consists in the fact 
that it is not certain that the series of sentences (2) is finite. If it is not, then 
there exists no conjunction of them; and in this case the original sentence (1) 
cannot be translated into one perception sentence.  But a more serious 
objection is the following one. Even the whole class of sentences (2) — no 
matter whether it be finite or infinite — is not equipollent with (1), because it 
may be the case that (1) is false, though every single sentence of the class (2) 
is true.  In order to construct such a case, suppose that at the time stated 
there is neither a round black table in my room, nor any observer at all. (1) is 
then obviously false.  (2a) is a universal implication sentence: 
 
“(x)  [(x is ... in my room and looks ... ) ⊃ (x perceives ...)]”, 
 
which we may abbreviate in this way: 
 
(3)   (x) [P(x) ⊃ Q(x)] 
 
which can be transformed into 
 
(4) (x) [~ P(x) V Q(x)] 
 
((2) can be formulated in words in this way: “For anybody it is either not the 
case that he is in my room on May... and looks ... or he has a visual 
perception of such and such a kind”.)  Now, 
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according to our assumption, for every person x it is false that x is at that 
time in my room and looks ... ; in symbols: 
 
(5) (x)(~ P(x)). 

 
Therefore (4) is true, and hence (2a) also, and analogously every one of the 

other sentences of the class (2), while (1) is false. In this way the positivistic 
reduction in its customary form is shown to be invalid.  The example dealt 
with is a sentence about a directly perceptible thing. If we took as examples 
sentences about atoms, electrons, electric field and the like, it would be even 
clearer that the positivistic translation into perception terms is not possible. 

Let us look at the consequences which these considerations have for the 
construction of a scientific language on a positivistic basis, i.e. with 
perception terms as the only primitive terms. The most important 
consequence concerns the method of introduction of further terms.  In 
introducing simple terms of perceptible things (e.g. ‘table’) and a fortiori the 
abstract terms of scientific physics, we must not restrict the introductive 
method to definitions but must also use reduction.  If we do this the 
positivistic thesis concerning reducibility above mentioned can be shown to be 
true.  

Let us give the name ‘thing-language’ to that language which we use in 
every-day life in speaking about the perceptible things surrounding us. A 
sentence of the thing-language describes things by stating their observable 
properties or observable relations subsisting between them. What we have 
called observable predicates are predicates of the thing-language. (They have 
to be clearly distinguished from what we have called perception terms; if a 
person sees a round red spot on the table the perception term ‘having a visual 
perception of something round and red’ is attributed to the person while the 
observable predicate ‘round and red’ is attributed to the space-time point on 
the table.) Those predicates of the thing-language which are not observable, 
e.g. disposition terms, are reducible to observable predicates and hence 
confirmable.  We have seen this in the example of the predicate ‘soluble’ (§ 7). 
     Let us give the name ‘physical language’ to that language which 
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is used in physics.  It contains the thing-language and, in addition, those 
terms of a scientific terminology which we need for a scientific description of 
the processes in inorganic nature. While the terms of the thing-language for 
the most part serve only for a qualitative description of things, the other 
terms of the physical language are designed increasingly for a quantitative 
description. For every term of the physical language physicists know how to 
use it on the basis of their observations. Thus every such term is reducible 
to observable predicates and hence confirmable. Moreover, nearly every such 
term is testable, because for every term — perhaps with the exception of few 
terms considered as preliminary ones — physicists possess a method of 
testing; for the quantitative terms this is a method of measurement. 
     The so-called thesis of Physicalism32 asserts that every term of the 
language of science — including beside the physical language those sub-
languages which are used in biology, in psychology, and in social science — 
is reducible to terms of the physical language. Here a remark analogous to 
that about positivism has to be made. We may assert reducibility of the 
terms, but not — as was done in our former publications — definability of 
the terms and hence translatability of the sentences. 
     In former explanations of physicalism we used to refer to the physical 
language as a basis of the whole language of science. It now seems to me 
that what we really had in mind as such a basis was rather the thing-
language, or, even more narrowly, the observable predicates of the thing-
language. In looking for a new and more correct formulation of the thesis of 
physicalism we have to consider the fact mentioned that the method of 
definition is not sufficient for the introduction of new terms. Then the 
question remains: can every term of the language of science be introduced 
on the basis of observable terms of the thing-language by using only 
definitions and test-sentences, or are reduction sentences necessary which 
are not test sentences? In other words, which of the following formulations 
of the thesis of physicalism is true? 
 
32 Comp. Neurath [1], [2], [3]; Carnap [2], [8]. 
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1. Thesis of Physicalistic Testability: “Every descriptive predicate of the 

language of science is testable on the basis of observable thing-predicates.” 
2. Thesis of Physicalistic Confirmability: “Every descriptive predicate of the 

language of science is confirmable on the basis of observable thing-
predicates.” 
     If we had been asked the question at the time when we first stated 
physicalism, I am afraid we should perhaps have chosen the first 
formulation. Today I hesitate to do this, and I should prefer the weaker 
formulation (2). The reason is that I think scientists are justified to use and 
actually do use terms which are confirmable without being testable, as the 
example in § 14 shows. 
     We have sometimes formulated the thesis of physicalism in this way: 
“The language of the whole of science is a physicalistic language.” We used 
to say: a language L is called a physicalistic language if it is constructed 
out of the physical language by introducing new terms.  (The introduction 
was supposed to be made by definition; we know today that we must 
employ reduction as well.) In this definition we could replace the reference 
to the physical language by a reference to the thing-language or even to the 
observable predicates of the thing-language.  And here again we have to 
decide whether to admit for the reduction only test-chains or other 
reduction chains as well; in other words, whether to define ‘physicalistic 
language’ as ‘a language whose descriptive terms are testable on the basis 
of observable thing-predicates’ or ‘. . . are confirmable . . .’. 
 

16. Sufficient Bases 
 
A class C of descriptive predicates of a language L such that every 

descriptive predicate of L is reducible to C is called a sufficient reduction 
basis of L; if in the reduction only definitions are used, C is called a 
sufficient definition basis. If C is a sufficient reduction basis of L and the 
predicates of C — and hence all predicates of L — are confirmable, C is 
called a sufficient confirmation basis of L; and if moreover the predicates of C 
are completely testable, for instance observable, and every predicate of L is 
reducible to C by a test chain — and hence is testable — C is called a 
sufficient test basis of L. 
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     As we have seen, positivism asserts that the class of perception 
terms is a sufficient basis for the language of science; physicalism asserts the 
same for the class of physical terms, or, in our stronger formulation, for the 
class of observable thing-predicates. Whether positivism and physicalism are 
right or not, at any rate it is clear that there can be several and even mutually 
exclusive bases. The classes of terms which positivism and physicalism assert 
to be sufficient bases, are rather comprehensive. Nevertheless even these bases 
are not sufficient definition bases but only sufficient reduction bases.  Hence it 
is obvious that, if we wish to look for narrower sufficient bases, they must be 
reduction bases. We shall find that there are sufficient reduction bases of the 
language of science which have a far narrower extension than the positivistic 
and the physicalistic bases. 
     Let L be the physical language. We will look for sufficient reduction bases of 
L. If physicalism is right, every such basis of L is also a basis of the total 
scientific language; but here we will not discuss the question of physicalism.  
We have seen that the class of the observable predicates is a sufficient 
reduction basis of L. In what follows we will consider only bases consisting of 
observable predicates; hence they are confirmation bases of the physical 
language L.  Whether they are also test bases depends upon whether all 
confirmable predicates of L are also testable; this question may be left aside for 
the moment.  The visual sense is the most important sense; and we can easily 
see that it is sufficient for the confirmation of any physical property.  A deaf 
man for instance is able to determine pitch, intensity and timbre of a physical 
sound with the help of suitable instruments; a man without the sense of smell 
can determine the olfactory properties of a gas by chemical analysis; etc. That 
all physical functions (temperature, electric field etc.) can be determined by the 
visual sense alone is obvious. Thus we see that the predicates of the visual 
sense, i.e. the colour-predicates as functions of space-time-places, are a 
sufficient confirmation basis of the physical language L. 
     But the basis can be restricted still more. Consider a man who cannot 
perceive colours, but only differences of brightness. Then he is able to 
determine all physical properties of things or events which we can determine 
from photographs; and that 
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means, all properties.  Thus he determines e.g. the colour of a light with the 
help of a spectroscope or a spectrograph. Hence the class of predicates which 
state the degree of brightness at a space-time-place — or the class consisting of 
the one functor33 whose value is the degree of brightness — is a sufficient basis 
of L. 
     Now imagine a man who’s visual sense is still more restricted.  He may be 
able to distinguish neither the different colours nor the different degree of 
brightness, but only the two qualities bright  and dark (= not bright) with their 
distribution in the visual field. What he perceives corresponds to a bad 
phototype which shows no greys but only black and white. Even this man is 
able to accomplish all kinds of determinations necessary in physics.  He will 
determine the degree of brightness of a light by an instrument whose scale and 
pointer form a black-white-picture.  Hence the one predicate ‘bright’ is a 
sufficient basis of L. 

But even a man who is completely blind and deaf, but is able to determine 
by touching the spatial arrangements of bodies, can determine all physical 
properties. He has to use instruments with palpable scale-marks and a 
palpable pointer (such e.g. as watches for the blind). With such a 
spectroscope he can determine the colour of a light; etc.  Let ‘Solid’ be a 
predicate such that ‘Solid(b)’ means: “There is solid matter at the space-time-
point b”.  Then this single predicate ‘Solid’ is a sufficient basis of L. 

Thus we have found several very narrow bases which are sufficient 
confirmation bases for the physical language and simultaneously sufficient test 
bases for the testable predicates of the physical language. And, if physicalism 
is right, they are also sufficient for the total language of science. Some of 
these bases consist of one predicate only.  And obviously there are many 
more sufficient bases of such a small extent.  This result will be relevant for 
our further considerations.  It may be noticed that this result cannot at all be 
anticipated a priori; neither the fact of the existence of so small sufficient bases 
nor the fact that just the predicates mentioned are sufficient, is a logical 
necessity.  
 
     33 Compare Carnap [4] §3. 



Reducibility depends upon the validity of certain universal sentences, and 
hence upon the system of physical laws; thus the facts mentioned are special 
features of the structure of that system, or — expressed in the material idiom 
— special features of the causal structure of the real world. Only after 
constructing a system of physics can we determine what bases are sufficient 
with respect to that system. 
 

(To be continued) 
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