
Bernays Project: Text No. 5

Problems of Theoretical Logic

(1927)

Paul Bernays

(Probleme der theoretischen Logik, 1927)

Translation by: Wilfried Sieg

Comments:

none

Lecture given at the 56th meeting of German philologists and schoolmen in

Göttingen.

The topic of this lecture and its title have been chosen in the spirit of

Hilbert. What is called theoretical logic here is usually referred to as symbolic

logic, mathematical logic, algebra of logic, or logical calculus. The purpose

of the following remarks is to present this area of research in a way that

justifies calling it theoretical logic.

Mathematical logic is in general not very popular. Most often it is re-

garded as idle play not suitable for practical reasoning (praktisches Schliessen)

and not contributing significantly to our logical insights.

First of all, the charge of the playfulness of mathematical logic is probably

justified in view of its initial treatment. The formal analogy to algebra was
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considered at first to be of major importance and was pursued often as an

end in itself. But this was the state of affairs decades ago, and today the

problems of mathematical logic are inseparably intertwined with questions

concerning the foundations of the exact sciences, so that one can no longer

speak of its merely playful character.

Secondly, concerning the application to practical reasoning (praktisches

Schliessen), it should first be mentioned that a symbolic calculus could be

advantageous only to someone who has sufficient practice in using it. More-

over, one has to take into consideration that—in contrast to most symbol-

isms, which serve, after all, the purpose of abbreviating and contracting

operations—it is the primary task of the logical calculus to analyze infer-

ences into their ultimate constituents and the represent symbolically each

individual step and thus bring it into our focus. Consequently, the inter-

est connected with the application of the logical calculus is in the main not

technical, but theoretical and fundamental.

This leads me to the third charge; namely that mathematical logic does

not further significantly our logical insights. This view is connected with

a belief about logic that was expressed by Kant in the second preface to

the Critique of Pure Reason, where he says: “Logic has furthermore this

remarkable feature that up to now it has been unable to advance a single

step, and this it seems to be closed and completed.”

I intend to show that this view is mistaken. To be sure, Aristotle’s for-

mulation of the basic principles of reasoning (Prinzipien des Schliessens)

and their immediate consequences is one of the most significant intellec-

tual achievements and one of ht every few items of permanently secured
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philosophical knowledge. This fact will retain its full appreciation. But it

foes not prevent us from recognizing that, even in posing its problems, tra-

ditional logic is essentially incomplete and that its arrangement of facts is

insufficiently adapted to the demands either of a systematic presentation or

of methodological and epistemological insights. Only the newer logic, devel-

oped under the name of algebra of logic or mathematical logic, introduced the

concepts and the kind of starting point for formal logic that make it possible

to meet those demands of a systematic presentation and of philosophy.

The rhelm of logical laws, the world of abstract relations, has been un-

covered in its formal structure by this development and the relationship of

mathematics and logic has been illuminated in a new way. I will try briefly

to give an idea of this transformation and of the results it has brought to

light.

In doing this I shall not be concerned with [resenting the historical devel-

opment and the various forms in which mathematical logic has been pursued.

Instead, I want to choose a presentation of the new logic that facilitates con-

necting and comparing it with traditional logic. As for logical symbols, I

shall employ the symbolism Hilbert uses in his lectures and publications.

Traditional logic subdivides its problems into the investigation of con-

cept formation, of judgement, and of inference (Schliessen). It is not ad-

vantageous to begin with concept formation, because its essential forms are

not elementary but depend already on judgement. Let us begin, therefore,

with judgment. Here, right at the beginning, modern logic takes an essential

new vantage point and replaces classifications by elementary logical opera-

tions. One speaks no longer of the categorical, the hypothetical, the negative
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judgement, but of the categorical, hypothetical connective, and the negation

is called a logical operation. In the same way, one does not classify judge-

ments into universal and particular ones but introduces logical operators for

universality and particularity.

This approach is more appropriate than that of classification for the fol-

lowing reason. Different logical processes are in general combined in judge-

ments, so that a unique characterization according to them is not possible at

all.

First let us consider the categorical relationship, i.e. that of subject and

predicate. We have an object here and a statement about it. The symbolical

representation for this is

P (x),

to be read as: “x has the property P”.

The connection of the predicate with an object is here explicitly brought out

by the variable. This is just a clearer notation. However, the remark that

several objects can be subjects of a statement is crucial. In that case one

speaks of a relation between several objects. The notation for this is

R(x, y) or R(x, y, z) etc.

Cases and prepositions are used in ordinary language to indicate the different

members of relations.

By taking into account relations logic is extended in an essential way when

compared with its traditional form. I shall speak about the significance of this

extension when discussing the theory of inference (Lehre von den Schlssen).

The forms of universality and particularity are based on the categorical

relationship. Universality is represented symbolically by
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(x)P (x)

“all x have the property P”.

The variable x appears here as a “bound variable”; the statement does not

depend on x—in the same way as the value of an integral does not depend

on the variable of integration.

The particular judgment is first of all sharpened by replacing the some-

what indefinite statement, “some x have the property P”, with the existential

judgment:

“there is an x with the property P”,

written symbolically:

(Ex)P (x).

Adding negation, we obtain the four types of judgement which are de-

noted by the letters “a, e, i, o” in Aristotelian logic. We represent negation

by barring the expression to be negated and thus obtain the following repre-

sentations of the four types of judgment:

a: (x) P (x)

e: (x) P (x)

i: (Ex) P (x)

o: (Ex) P (x)

Already here, in the doctrine of “opposition”, it proves useful for compre-

hending matters to separate out the operations; we recognize, for example,

that the distinction between contradictories and contraries lies in the fact

that in the first case the whole statement, e.g., (x)P (x), is negated, whereas

in that second case only the predicate P (x) is negated.
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Let us now turn to hypothetical relationship.

A→ B “when A, so B”.

This includes a combination (Verknpfung) of two statements (predica-

tions). The members of this combination already have the form of state-

ments, and the hypothetical relationship applies to these statements as un-

divided units. The latter is already true for the negation Ā.

There are still other such combinations of statements, in particular:

The conjunctive combination of A and B: A & B,

and further, the disjunctive combination; there we have to distinguish be-

tween the exclusive “or”, in the sense of the Latin “aut-aut”, and the “or”

in the same sense of “vel”. This latter combination is represented by A ∨ B

in accordance with Russell’s notation.

In ordinary language, conjunctions are used to express such combinations

of statements.

An approach analogous to that in the doctrine of opposition suggests

itself here, namely to combine the binary connectives with negation in one of

two ways, either by negating the individual members of the combination or

by negating the latter as a whole. Now lets see what relations of dependency

result.

To indicate that the two combinations have materially the same meaning

(or are “equivalent”), I will write “eq” between them. (Clearly, “eq” is not

a sign of our logical symbolism.)

In particular the following combinations and equivalences result:
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Ā & B̄: “neither A nor B”

A & B: “A and B are incompatible”

A & B eq Ā ∨ B̄

eq A→ B̄

eq B → Ā

Ā→ B eq A ∨B

B eq B

(double negation is equivalent to affirmation).

From this further results are obtained:

A→ B eq A & B̄

eq Ā ∨B

A ∨B eq Ā→ B

eq Ā & B̄.

These equivalences make it possible to express some of the logical con-

nectives

,̄→,&,∨

by means of others. In fact, according to the above equivalences one can

express

→ by ∨ and ¯

∨ by & and ¯

& by → and ¯

so that each of

& and ¯

or ∨ and ¯

or → and ¯
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suffice alone as basic connectives. One can get along even with a single

basic connective, but not with one of those for which we have a sign. If we

introduce for the combination of incompatibility A & B the sign

A|B

then the following equivalences obtain:

A|A eq Ā

A|B̄ eq A & B̄

eq A→ B.

This shows that with the aid of this connective one can represent negation

as well as → and, consequently, the remaining connectives. In place of the

connective of incompatibility, the connective

“neither — nor” Ā & B̄

can be taken as the only basic connective. Of we introduce for that connective

the sign

A ‖ B,

then we have

A ‖ A eq Ā

Ā ‖ B̄ eq A & B;

thus negation as well as & are expressible by means of ‖.

These reflections border on the playful. Nevertheless, it is remarkable that

the discovery of so simple a fact as that of the reduction of all connectives

to a single one was reserved for the 20th century. The equivalences between

combinations of statements were not at all systematically investigated in the
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old logic.1 There are only a few observations like, for example, that of the

equivalence of

A→ B̄ and B → Ā

on which the inference by “contraposition” is based. The systematic search

for equivalences is, however, all the more rewarding as one reaches here a self-

contained and entirely perspicuous part of logic, the so-called propositional

calculus. I want to explain in some detail the value of this calculus for

reasoning (Schliessen).

Let us consider what the sense of equivalence is. When I say

A & B eq Ā ∨ B̄

I claim not that the two combinations of statements are identical in sense

(sinnesgleich) but only that they are identical in truth value (wahrheitsgle-

ich). That is, no matter how the individual statements A,B are chosen,

A ∨ B and A & B are simultaneously true or false, and consequently these

two expressions can represent each other with respect to truth.

Indeed, any combination of statements A and B can be viewed as a

mathematical function assigning to each pair A,B one of the values “true”

1Today these historical remarks stand in need of correction. In the first place, the

reducibility of all connectives to a single one was already discovered in the 19th century

by Charles S. Peirce, a fact which became more generally known only with the publication

of his collected works in 1933. Further, the equivalences between combinations of state-

ments were considered systematically in the old logic—clearly not in Aristotelian logic,

but rather in other Greek schools of philosophy. (See Bochenski’s book Formal Logic.)

Remark: This footnote, as well as the next three, are subsequent additions occasioned by

the republication of this lecture.
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or “false.” The exact content of the statements A,B does not matter at all.

What matters is whether A is true or false and whether B is true or false. So

we are dealing with truth functions : to a pair of truth values another truth

value is assigned. Every function of this kind can be given by a schema; the

four possible combinations of two truth values (assigned to the statements

A,B) are represented by four squares, and in each of these the corresponding

truth value of the function (“true” or “false”) is written down.

The schemata for A & B,A ∨B,A→ B are given here.

A & B :

B

A
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true false

false false false

A ∨B :

B

A
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true true

false true false

A→ B :

B

A
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true false

false true true

One can easily determine that there are exactly 16 different such func-

tions. The number of different functions of n truth values

A1, A2, . . . . . . , An
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is, correspondingly, 2(2n).

To each function of two or more truth values corresponds a class of inter-

substitutable2 combinations of statements. One class among them is distin-

guished, namely the class of those combinations that are always true.

These combinations represent all valid logical sentences in which the in-

dividual propositions occur only as undivided units.3 We are going to call

the expressions representing valid sentences valid formulas.

We master prepositional logic if we know the valid formulas (among com-

binations of statements), or if we can decide for a given combination whether

or not it is valid. After all, the task for reasoning (Schliessen) in prepositional

logic is formulated as follows:

Certain combinations

V1, V2 . . . . . . , Vk,

are given; they are built up from elementary statements A,B, . . . . . ., and

represent true sentences for a certain interpretation of the elementary state-

ments. The question is whether (the truth of) another given combina-

tion W of these elementary statements follows logically from the truth of

V1, V2 . . . . . . , Vk, and, in fact, without considering the exact content of the

statements A,B, . . . . . ..

This question has an affirmative answer if and only if

(V1 & V2 & . . . . . . & Vk)→ W,

expressed by A,B, . . . . . ., represents a valid formula.

2Editorial footnote: Ref. To H.B, I, 47;line 19.
3Editorial footnote: conc: allgemein gültig versus allgemeingültig
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The decision concerning the validity of a combination of statements can

in principle always be reached by trying out all possible truth values. The

method of considering equivilances, however, provides a more convenient pro-

cedure. That is to say, by means of equivalent transformations each formula

can be put into a certain normal form in which only the logical symbols

&,∨,¯ occur, and from this normal form one can read off directly whether or

not the formula is valid.

The rules of transformation are also quite simple. In particular, one can

manipulate &and∨ in analogy to + and · in algebra. Indeed, matters are

here even simpler, for & and ∨ can be treated symmetrically.

By considering the equivalences we enter the domain of inferences, as

already mentioned. But we made inferences here in a naive way, so to speak,

on the basis of the meaning of the logical connectives, and we transformed

the task of reasoning (Schliessen) into a decision problem.

But for logic there remains the task of systematically presenting the rules

of reasoning.

Aristotelian logic lays down the following principles of reasoning (Schliessen):

1. Rule of categorical reasoning: the “dictum de omni et nullo” : what

holds universally, holds in each particular instance.

2. Rule of hypothetical reasoning: if the antecedent is given, then the

consequent is given, i.e. if A and if A→ B, then B.

3. Laws of negation: Law of contradiction and of excluded middle: A and

Ā cannot both hold, and at least one of the two statements holds.
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4. Rule of disjunctive reasoning: if at least one of A or B holds and if

A→ C as well as B → C, then C holds.

One can say that each of these laws represents the implicit definition for

a logical process: 1. For universality, 2. For the hypothetical relationship, 3.

For negation, 4. For disjunction (∨).

These laws contain indeed what is essential for reasoning. But for a

complete analysis of inferences this does not suffice. For this we demand

that nothing need be considered anymore, once the principles of reasoning

have been laid down. The rules of reasoning must be constituted in such a

way that they eliminate logical thinking. Otherwise we would have to have

logical rules specifying in turn how to apply those rules.

This demand to drive out the intellect (to dispense with thinking, to

eliminate logical thinking—Austreibung des Geistes) can indeed be satisfied.

The structure of the system of inference obtained in this way is analogous

to the axiomatic structure of a theory. Certain logical laws written down

as formulas correspond to the axioms, and acting externally (on formulas)

according to fixed rules, whose application leads from the initial formulas

to further ones, corresponds to contextual reasoning that usually leads from

axioms to theorems.

Each formula that can be derived in this way represents a valid logical

sentence.

Once again it is advisable to separate out propositional logic, which rests

on the principles 2., 3., and 4. Only the following rules are needs when

representing the elementary propositions by variables

X, Y, . . .
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The first rule states: any combination of statements can be substituted for

a variable (substitution rule).

The second rule is the inference schema

S

S→ T

T

according to which the formula T is obtained from two formulas S,S→ T.

The initial formulas can be chosen in a number of quite different ways.

One has tried very hard to get by with the smallest number of axioms, and

in this respect the limits of what is possible have indeed been reached. For

the purposes of logical investigation it is better, however, to separate, as in

the axiomatic presentation of geometry, various groups of axioms from one

another such that each of them expresses the roles of one logical operation.

The following list then emerges:

I Axioms of implication

II a) Axioms for &

II b) Axioms for ∨

III Axioms of negation

This system of axioms4 generates through application of the rules all

valid formulas of propositional logic.5 The completeness of the axiom system

4Editorial footnote: fixing the axioms as in HB I, p. 65.
5We refer only to those formulas that can be built up with the operations →,&,∨ and

with negation. If further operational symbols are added, then they can be introduced

by replacement rules. Of course, one is not bound to distinguish the four mentioned

operations in this particular way.
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can be characterized even more sharply by the following fact: if we add any

underivable formula to the axioms, then we can deduce any arbitrary formula

with the help of the rules.

A particular advantage of dividing the axioms into groups is that it allows

one to separate out positive logic. That is the system of combinations of

statements that are valid without assuming that every statement can be

negated.6 Examples of such are:

(A & B)→ A

(A & (A→ B))→ B.

The system of these formulas is obtained in out axiomatization as the

totality of the formulas is obtained in our axiomatization as the totality of

the formulas that are derivable without using axiom group III. This system

is not nearly so perspicuous as the system of all valid formulas. And no

decision method is known that allows one to determine in accordance with

a definite procedure whether a formula is in the system.7 In particular, it is

not correct that every formula expressible with →,&,∨, which is valid and

therefor derivable on the basis of I–III, is already derivable from I–II. One

can rigorously prove that this is not the case.

One example is provided by the formula

A ∨ (A→ B).

Representing → by ∨ and ¯ this formula turns into

A ∨ (Ā ∨B),
6Editorial footnote: Ref. to HB I, p. 67.
7Since then decision methods for positive logic have been given by Gerhard Gentzen

and Mordechaj Wajsberg (editorial footnote).
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and this formula is immediately recognized as valid. However, it can be

shown that the formula is not derivable within positive logic, i.e. on the

basis of axioms I–II. Hence, it does not represent a law of positive logic.

We recognize here quite clearly that negation plays the role of an ideal

element whose introduction aims at rounding off the logical system to a to-

tality with a simpler structure, just as the system of real numbers is extended

to a more perspicuous totality by the introduction of imaginary numbers and

just as the ordinary plane is completed to a manifold with a simpler projec-

tive structure by the addition of points at infinity. Thus the method of ideal

elements, fundamental to science, is already encountered in logic, even if we

are usually not aware of its significance here.

A special part of positive logic is the theory of chain inferences (Ketten-

schlüsse) discussed already in Aristotelian logic. In this area there are also

natural problems and simple results, not known to traditional logic and re-

quiring again the use of specifically mathematical considerations. I am think-

ing here of Paul Hertz’s investigations of sentence-systems (Satzsysteme).—8

So far our axiomatization is concerned only with those inferences which

depend solely on the rules for the conditional, for disjunction and negation.

There remains the task of incorporating categorical reasoning into our ax-

iomatization. How this is done I will describe only briefly.

Of the dictum de omni et nullo we need also the converse: “what holds

in each particular instance, holds generally.” Furthermore, we have to take

into account the particular judgement. For it we have similarly:

“If a statement A(x) is true of some object x, then there is an object of

8Editorial footnote.
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which it is true, and vice versa.”

Thus we obtain four principles of reasoning that are represented in the

axiomatization by two new initial formulas and two rules. A substitution

rule for the individual variables x, y, . . . is added.

Moreover, the substitution rule concerning variables for statementsX,Y, . . .

has to be extended now in such a way that the formulas of propositional logic

can also be used for expressions containing individual variables.

Let us now see how the typical Aristotelian inferences are worked out

from this standpoint. For that it is necessary first to say something about

the interpretation of the universal judgment “all S are P”.

According to Aristotelian view, such a judgment presupposes that there

are certain objects with property S, and it is then claimed that all these

objects have property P . This interpretation, to which Franz Bretano in

particular objected from a philosophical point of view, is as a matter of fact

quite correct in itself. But it is suited neither to the purposes of theoretical

science not to the formalization of logic, since its implicit presupposition

creates unnecessary complications. We shall therefor restrict the content of

the judgment, “all S are P”, to the assertion, “an object having property S

has also property P .”

Accordingly, such a judgment is simultaneously universal and hypotheti-

cal. It is represented in the form

(x)(S(x)→ P (x)).

The so-called categorical inferences contain consequently a combination of

categorical and hypothetical modes of inference. I want to illustrate this by

a classical example:
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“All men are mortal, Cajus is a man, therefor Cajus is mortal.”

If we represent “x is human” and “x is mortal” in our notation by H(x)

and M(x) respectively9, then the premises are

(x)(H(x)→M(x)),

H(Cajus),

And the conclusion is: M(Cajus).

With the inference from the general to the particular one deduces from

(x)(H(x)→M(x))

the formula

H(Cajus)→M(Cajus).

This statement together with

H(Cajus)

yields with the schema of the hypothetical inference:

M(Cajus).

It is characteristic that in this representation of the inference no quan-

titative interpretation is given to the categorical judgement (in the sense of

subsumption). One recognizes here particularly clearly that mathematical

logic does not in the least depend upon being a logic of extensions.

Our rules and initial formulas permit us to derive all the familiar Aris-

totelian inference moods that agree with our interpretation of the universal

9Editorial footnote.
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judgment—that leaves just 15. Thus it is recognized that one is dealing with

a very small number of genuinely different kinds of inferences. Furthermore,

one gets the impression that the underlying problem is delimited in a quite

arbitrary way.

A more general problem, which is indeed solved in mathematical logic,

consists in finding a decision method that allows one to determine whether or

not a predicate formula is valid. With that, one masters deductive reasoning

in the domain of predicates, just as one masters propositional logic with the

decision method mentioned earlier.

But our rules of inference extend much further. The real wealth of logi-

cal connections is revealed only when we consider relations (predicates with

several subjects). Only then is it possible to give a complete logical analysis

of mathematical proofs.

However, here one is led to use additional extensions which are suggested

to us also by ordinary language.

The first extension consists in introducing a formal expression for “x is

the same object as y”, or “an object different from y”. For this purpose the

“identity of x and y” has to be formally represented as a particular relation,

the properties of which are to be formulated as axioms.

Secondly, we need a symbolic representation of the logical relation we

express linguistically with the aid of the genitive or the relative pronoun in

such phrases as “the son of Mr. X” or “the object which”. This relation forms

the basis of the function concept in mathematics. It is crucial here that an

object that uniquely has a certain property or satisfies a certain relation to

particular objects is characterized by this property or relation.
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The most significant extension, however, is brought about by the cir-

cumstance that we are led to consider predicates and relations themselves

as objects, just as we do in ordinary language when we say, for example,

“patience is a virtue”. We can state properties of predicates and relations,

and furthermore, relationships between predicates and also between relations.

The forms of universality and particularity can also be used with respect to

predicates and relations. In this way we arrive at second order logic. For

its formalization the laws of categorical reasoning have to be extended in an

appropriate way to the domain of predicates and relations.

We have enlarged the range of logical relationships by the inclusion of

relations and by the other extensions mentioned above. Here the solution

of the decision problem—which, incidentally, is in a natural way subsumed

under a more general problem—presents an enormous task. Its solution

would mean that we have a method that, at least in principle, permits us to

decide for any given mathematical statement whether or not it is provable

from a given list of axioms. And we are indeed far from a given solution to this

problem. Nevertheless, several considerable results of a very general character

have been obtained in this area through the investigations of Löwenheim and

Behmann; in particular the decision problem for second order predicate logic

was solved.10

We see here that the traditional theory of inferences comprises only a

miniscule part of what really belongs to the domain of logical reasoning.

10Notice that one speaks here of “predicate logic” in the sense of the distinction between

predicates and relations. By “predicate logic” is meant what today is mostly called the

logic of monadic predicates. Even the first order logic of polyadic predicates is not generally

decidable, as has been shown by Alonzo Church.
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As yet I have not even mentioned concept formation. And, for lack of

time, I cannot consider it in detail. I will say just this much: a truly pen-

etrating logical analysis of concept formation becomes possible only on the

basis of the theory of relations. It is only by means of this theory that one

recognizes what kind of complicated combinations of logical expressions (re-

lationships, existence statements, etc.) are concealed by short expressions of

ordinary language. Such an analyses of concept formation has been begun,

especially by Bertrand Russell, and it has led to the recognition of general

logical processes of concept formation. Through their clarification, the un-

derstanding of the methods of science is furthered considerably.

I now come to the end of my remarks. I have tried to show that logic,

that is to say, the real classical logic as it was always intended, obtains

its genuine rounding off, its proper development and systematic completion,

only through its mathematical treatment. The mathematical viewpoint is

introduced here not artificially, but rather arises entirely on its own in the

further pursuit of problems.

The resistance to mathematical logic is widespread, particularly among

philosophers; it has—apart from the reasons mentioned earlier—an addi-

tional basic reason. Many approve of letting mathematics be absorbed into

logic. Here, the opposite is seen, namely, that the system of logic is absorbed

into mathematics. Logic appears as a specific interpretation and as an ap-

plication of a mathematical formalism, exhibiting the same relation to the

formalism which obtains, for example, between the theory of electricity and

mathematical analysis, when the former is treated according to Maxwell’s

theory.
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That does not contradict the generality of logic; it does, however, con-

tradict the view that logic is of greater generality than mathematics. Logic

treats of certain contents (Inhalte) that find application to any subject mat-

ter whatsoever, insofar as it is thought about. Mathematics, on the other

hand, treats of the most general laws of any combination whatsoever. This is

also a kind of highest generality namely, in the direction towards the formal.

All reflections, including the mathematical ones, are subject to logical laws;

but equally well, all structures, all manifolds however primitive (and thus also

the manifold given in the combination of sentences or parts of sentences) fall

under the laws of mathematics.

If we wanted a logic free of mathematics, no theory at all would be left,

but only pure reflection on the most simple connections of meaning. Such

purely contentual considerations—which can be comprised in ’philosophical

logic”—are, in fact, indispensable and decisive as a starting point for the

logical theory; in the same way in which the purely physical considerations

serving as the starting point for a physical theory constitute the fundamental

conceptual achievement for that theory. But such considerations do not

form the theory itself. Its development requires the mathematical formalism.

Exact systematic theory of a subject is mathematical treatment, and it is

in this sense that Hilbert’s dictum holds: “Whatever can be the object of

scientific thought at all, as soon as it is ripe for the formation of a theory. . .

it will fall into mathematics.” Even logic cannot escape this fate.
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