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Comments:

“Variablengattung” is translated as “type of variables” or “variable type;”

“Art von Variablen” as “sort of variables.” “Inhaltlich” is rendered as “con-

tentually,” “methodisch” as “methodical.”

The long quotations from Hilbert are in a quote environment, without quo-

tation marks. The German text (and page numbering) is from Hilbert’s

Gesammelte Abhandlungen, vol. 3, p. 196–216. Many references in the foot-

notes! Citing of titles as well as proper names have to be unified.

‖196 Hilbert’s first investigations of the foundations of arithmetic follow

temporally as well as conceptually his investigations of the foundations of

geometry. Hilbert begins the paper “On the concept of number”1 by applying

1Jber. dtsch. Math.-Ver. Bd. 8 (1900); reprinted in Hilbert’s “Foundations of Geome-

try,” 3rd-7th ed., as appendix VI.
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to arithmetic, just as to geometry, the axiomatic method, which he contrasts

to the otherwise usually applied “genetic” method.

Let us first recall the manner of introducing the concept of num-

ber. Starting from the concept of the number 1, usually one

thinks at first the further rational positive numbers 2, 3, 4,. . . as

arisen and their laws of calculation developed through the pro-

cess of counting; then one arrives at the negative number by the

requirement of the general execution of subtraction; one further

defines the rational number say as a pair of numbers—then ev-

ery linear function has a zero—, and finally the real number as

a cut or a fundamental sequence—thereby obtaining that every

whole rational indefinite, and generally every continuous indefi-

nite function has a zero. We can call this method of introducing

the concept of number the genetic method, because the most gen-

eral concept of real number is generated by successive expansion

of the simple concept of number.

One proceeds fundamentally differently with the development of

geometry. Here one tends to begin with the assumption of the

existence of all elements, i.e., one presupposes at the outset three

systems of things, namely the points, the lines, and the planes,

and then brings these elements—essentially after the example of

Euclid—into relation with each other by certain axioms, namely

the axioms of incidence, of ordering, of congruency, and of conti-

nuity. Then the necessary task arises of showing the consistency

and completeness of these axioms, i.e., it must be proven that
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the application of the axioms that have been laid down can never

lead ‖197 to contradictions, and moreover that the system of ax-

ioms suffices to prove all geometric theorems. We shall call the

procedure of investigation sketched here the axiomatic method.

We raise the question, whether the genetic method is really the

only one appropriate for the study of the concept of number and

the axiomatic method for the foundations of geometry. It also

appears to be of interest to contrast both methods and to inves-

tigate which method is the most advantageous if one is concerned

with the logical investigation of the foundations of mechanics or

other physical disciplines.

My opinion is this: Despite the great pedagogical and heuristic

value of the genetic method, the axiomatic method nevertheless

deserves priority for the final representation and complete logical

securing of the content of our knowledge.

Already Peano developed number theory axiomatically.2 Hilbert now

2Peano, G. “Arithmetices principia nova methodo exposita.” (Torino 1889.) The

introduction of recursive definitions is here not unobjectionable; the proof of the solvability

of the recursion equations is missing. Such a proof was provided already by Dedekind in

his essay “Was sind und was sollen die Zahlen” (Braunschweig 1887). If one bases the

introduction of recursive functions on Peano’s axioms, it is best to proceed by first proving

the solvability of the recursion equations for the sum following L. Kalmár by induction

on the parameter argument, then defining the concept “less than” with the help of the

sum, and finally using Dedekind’s consideration for the general recursive definition. This

procedure is presented in Landau’s textbook “Grundlagen der Analysis” (Leipzig 1930).

Admittedly here the concept of function is used. If one wants to avoid it, the recursion
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sets up an axiom system for analysis, by which the system of real number

is characterized as a real Archimedean field which cannot be extended to a

more extensive field of the same kind.

A few illustrative remarks about dependencies follow the enumeration

of the axioms. In particular it is mentioned that the law of commutativity

of multiplication can be deduced from the remaining properties of a field

and the order properties with the help of the Archimedean axiom, but not

without it.

The requirement of the non-extendibility is formulated by the “axiom of

completeness.” This axiom has the advantage of conciseness; however, its

logical structure is complicated. In addition it is not immediately apparent

from it that it expresses a demand of continuity. If ‖198 one wants, instead

of this axiom, one that clearly has the character of a demand of continu-

ity and on the other hand does not already include the requirement of the

Archimedean axiom, it is recommended to take Cantor’s axiom of continuity,

which says that if there is a series of intervals such that every interval includes

the following one, then there is a point which belongs to every interval. (The

formulation of this axiom requires the previous introduction of the concept

of number series).3

equations of the sum and product have to be introduced as axioms. The proof of the

general solvability of recursion equations follows then by a method by K. Gödel (cf. “Über

formal unentscheidbare Sätze . . . ” [Mh. Math. Physik, Bd. 38 Heft 1 (1931)], and also

Hilbert-Bernays Grundlagen der Mathematik Bd. 1 (Berlin 1934) p. 412 ff.)
3Concerning the independence of the Archimedean axiom from the mentioned axiom

of Cantor, cf. P. Hertz: “Sur les axiomes d’Archimède et de Cantor.” C. r. soc. de phys. et

d’hist. natur. de Genève Bd. 51 Nr. 2 (1934).

R. Baldus has recently called attention to Cantor’s axiom. See his essay “Zur Ax-
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The purpose which Hilbert pursues with the axiomatic version of analysis

appears particularly clearly at the end of the essay in the following words:

The objections that have been raised against the existence of the

totality of all real numbers and infinite sets in general lose all

their legitimacy with the view identified above: we do not have

to conceive of the set of real numbers as, say, the totality of all

possible laws according to which the elements of a fundamental

sequence can proceed, but rather—as has just been explained—as

a system of things whose relations between each other are given

by the finite and completed system of axioms I–IV, and about

which new propositions are valid, only if they can be deduced

from those axioms in a finite number of logical inferences.

But the methodical benefit which this view brings also involves a further

requirement: for the axiomatic formulation necessarily entails the task of

proving the consistency for the axiom system in question.

Therefore, the problem of the proof of consistency for the arithmetical

axioms was mentioned in the list of problems that Hilbert posed in his lecture

in Paris “Mathematische Probleme.”4

iomatik der Geometrie”: “I. Über Hilberts Vollständigkeitsaxiom.” Math. Ann. Bd. 100

(1928), “II. Vereinfachungen des Archimedischen und des Cantorschen Axioms,” Atti

Congr. Int. Math. Bologna Bd. 4 (1928), “III. Über das Archimedische und das Can-

torsche Axiom.” S.-B. Heidelberg. Akad. Wiss. Math.-nat. Kl. 1930 Heft 5, as well as the

following essay by A. Schmidt: “Die Stetigkeit in der absoluten Geometrie.” S.-B. Heidel-

berg. Akad. Wiss. Math.-nat. Kl. 1931 Heft 5.
4Held at the International Congress of Mathematicians 1900 in Paris, published in

Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1900, cf. also this volume essay no. 17.
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To accomplish the proof Hilbert thought to get by with a suitable ‖199

modification of the methods used in the theory of real numbers.

But in the more detailed engagement with the problem he was immedi-

ately confronted with the considerable difficulties that exists for this task. In

addition, the set theoretic paradox that was discovered in the meantime by

Russell and Zermelo prompted increased caution in the inference rules. Frege

and Dedekind were forced to withdraw their investigations in which they

thought they had provided unobjectionable foundations of number theory—

Dedekind using the general concepts of set theory, Frege in the framework

of pure logic5—since it resulted from that paradox that their considerations

contained inadmissible inferences.

The talk6 “Über die Grundlagen der Logik und der Arithmetik” held in

1904 shows us a completely novel point of view. Here first the fundamental

difference is pointed out between the problem of the consistency proof for

arithmetic and for geometry. The proof of consistency for the axioms of

geometry uses an arithmetical interpretation of the geometric axiom system.

However, for the proof of consistency of arithmetic “it seems that the appeal

to another foundational discipline is not allowed.”

To be sure, one could think of a reduction to logic.

But by attentive inspection we become aware that certain arith-

metical basic concepts are already used in the traditional formu-

lation of the laws of logic, e,g., the concept of set, in part also

5R. Dedekind: “Was sind und was sollen die Zahlen?” Braunschweig 1887. G. Frege:

“Grundgesetze der Arithmetik” (Jena 1893).
6At the International Congress of Mathematicians in Heidelberg 1904, printed in

“Grundlagen der Geometrie,” 3-7 ed., as appendix VII.
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the concept of number, in particular cardinal number. So we get

into a quandary and to avoid paradoxes a partly simultaneous

development of the laws of logic and arithmetic is required.

Hilbert now presents the plan of such a joint development of logic and

arithmetic. This plan contains already in great part the leading viewpoints

for proof theory, in particular the idea of transforming the proof of consis-

tency into a problem of elementary-arithmetic character by translating the

mathematical proofs into the formula language of symbolic logic. Also rudi-

ments of the consistency proofs can be already found here.

But the execution remains still in its beginnings. ‖200 In particular, the

proof for the “existence of the infinite” is carried out only in the framework

of a very restricted formalism.

The methodical standpoint of Hilbert’s proof theory is also not yet de-

veloped to its full clarity in the Heidelberg talk. Some passages suggest that

Hilbert wants to avoid the intuitive idea of number and replace it with the

axiomatic introduction of the concept of number. Such a procedure would

lead to a circle in the proof theoretic considerations. Also the viewpoint of

the restriction in the contentual application of the forms of the existential

and general judgment is not yet brought to bear explicitly and completely.

In this preliminary state Hilbert interrupted his investigations of the foun-

dations of arithmetic for a long period of time.7 Their resumption is found

7A continuation of the direction of research that was inspired by Hilbert’s Heidelberg

talk was carried out by J. König, who, in his book “Neue Grundlagen der Logik, Arithmetik

und Mengenlehre” (Leipzig 1914), surpasses the Heidelberg talk both by a more exact

formulation and a more thorough presentation of the methodical standpoint, as well as
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announced in the 1917 talk8 “Axiomatisches Denken.”

This talk comes in the wake of the manifold successful axiomatic inves-

tigations that had been pursued by Hilbert himself and other researchers in

the various fields of mathematics and physics. In particular in the field of the

foundations of mathematics the axiomatic method had led in two ways to an

extensive systematization of arithmetic and set theory. Zermelo formulated

in 1907 his axiom system for set theory9 by which the processes of set forma-

by the execution. Julius König died before finishing the book; it was edited by his son

as a fragment. This work, which is a precursor of Hilbert’s later proof theory, exerted

no influence on Hilbert. But later J. v. Neumann followed the approach of König in his

investigation “Zur Hilbertschen Beweistheorie” [Math. Z. Bd. 26 Heft 1 (1927)]
8At Naturvorscherversammlung Zürich, published in Math. Ann. Bd. 78 Heft 3/4; see

also this volume essay no. 9.
9Zermelo E. “Untersuchungen über die Grundlagen der Mengenlehre I.: Math. Ann.

Bd. 65. Different investigations followed in newer time this axiom system. A. Fraenkel

added the axiom of replacement, an extension of the admissible formation of sets in the

spirit of Cantor’s set theory; J. v. Neumann added an axiom, which rules out that the

process of going from a set to one of its elements can, for any given set, be iterated

arbitrarily many times. Moreover, Th. Skolem, Fraenkel, and J. v. Neumann have made

more precise, all in a different way, in the sense of a sharper implicit characterization

of the concept of set the concept of “definite proposition” which was used by Zermelo

in vague generality. The result of these refinements is presented in the most concise

way in v. Neumann’s axiomatic; namely it is achieved here, that all axioms are of the

“first order” (in the sense of the terminology of symbolic logic). Zermelo rejects such

a refinement of the concept of set, in particular in the light of the consequence that

was first discovered by Skolem that such a sharper axiom system of set theory can be

realized in the domain of individuals of the whole numbers.—A presentation of these

investigations up to the year 1928, with detailed references, is contained in the textbook

by A. Fraenkel: “Einleitung in die Mengenlehre,” third edition (Berlin 1928). See also:
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tion ‖201 are delimited in such a way that on the one hand the set theoretic

paradoxes are avoided and on the other hand the set theoretic inferences

that are customary in mathematics are retained. And Frege’s project of a

logical foundation of arithmetic—for which to be sure the method that Frege

employed himself turned out to be faulty—was reconstructed by Russell and

Whitehead in their work “Principia Mathematica.”10

Hilbert says about this axiomatization of logic that one could “see the

crowning of the work of axiomatization in general” in the completion of this

enterprise. But this praise and acknowledgment is immediately followed by

the remark that the completion of the project “still needs new work on many

fronts.”

In fact, the viewpoint of Principia Mathematica contains an unsolved

problematic. What is supplied by this work is the elaboration of a clear

system of assumptions for a simultaneous deductive development of logic and

mathematics, as well as the proof that this set-up in fact succeeds. For the

reliability of the assumptions, besides their contentual plausibility (which also

from the point of view of Russell and Whitehead does not yield a guarantee of

consistency), only their testing in the deductive use is put forward. But this

testing too provides us in regard to consistency only an empirical confidence,

not complete certainty. The complete ‖202 certainty of consistency, however,

J. v. Neumann “Über eine Widerspruchsfreiheitsfrage in der axiomatischen Mengenlehre”

J. reine angew. Math. Bd. 160 (1929), Th. Skolem: “Über einige Grundlagenfragen der

Mathematik” Skr. norske Vid.-Akad., Oslo. I. Mat. Nat. Kl. 1929 Nr. 4, E. Zermelo: “Über

Grenzzahlen und Mengenbereiche.” Fund. math. Bd. XVI, 1930.
10Russell, B., and Whitehead, A. N.: Principia Mathematica. Cambridge, vol. I 1910,

vol. II 1912, vol. III 1913.
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is regarded by Hilbert as a requirement of mathematical rigor.

Thus the task of providing a consistency proof remains also for those

assumptions, according to Hilbert. To handle this task as well as various fur-

ther fundamental questions, e.g., “the problem of the solvability in principle

of every mathematical question” or “the questions of the relation between

content and formalism in mathematics and logic,” Hilbert thinks it necessary

to make “the concept of specifically mathematical proof itself the object of

an investigation.”

In the following years, in particular since 1920, Hilbert devoted himself

especially to the plan, hereby taken up anew, of a proof theory.11 His drive in

this direction was strengthened by the opposition which Weyl and Brouwer

directed at the usual procedure in analysis and set theory.12

Thus Hilbert begins his first communication about his “Neubegründung

der Mathematik”13 by discussing the objections of Weyl and Brouwer. It is

noteworthy in this dispute that Hilbert, despite his energetic rejection of the

11To collaborate on this enterprise Hilbert then invited P. Bernays with whom he has

regularly discussed his investigations since then.
12H. Weyl: “Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Anal-

ysis” (Leipzig 1918).—“Der circulus vitiosus in der heutigen Begründung der Analysis”

Jber. dtsch. Math.-Ver. Bd. 28 (1919).—“Über die neue Grundlagenkrise der Mathe-

matik” Math. Z. Bd. 10 (1921). L. E. J. Brouwer: “Intuitionisme en formalisme.” In-

augural address. Groningen 1912.—“Begründung der Mengenlehre unabhängig vom lo-

gischen Satz vom ausgeschlossenen Dritten.” I and II. Verh. d. Kgl. Akad. d. Wiss.

Amsterdam, 1. Sekt., part XII no. 5 and 7 (1918/19).—“Intuitionistische Mengenlehre.”

Jber. dtsch. Math.-Ver. Bd. 28 (1919).—“Besitzt jede reelle Zahl eine Dezimalbruchen-

twicklung?” Math. Ann. Bd. 83 (1921).
13Talk, given in Hamburg 1922, published in Abh. math. Semin. Hamburg. Univ. Bd. 1

Heft 2, see also this volume essay no. 10.
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objections that have been raised against analysis, and despite his advocacy

for the legitimacy of the usual inferences, agrees with the opposing standpoint

that the usual treatment of analysis is not immediately evident and does

not conform to the requirements of mathematical rigor. The “legitimacy”

that Hilbert, from this point of view, grants to the usual procedure is not

based on evidence, but on the reliability of the axiomatic method, of which

Hilbert explains that if it is appropriate anywhere at all, then it is here.

This is a conception from which the problem of a proof of consistency for the

assumptions of analysis arises.

‖203 Moreover, as far the methodical attitude on which Hilbert bases his

proof theory and which he explains using the intuitive treatment of number

theory, there is a great drawing near to the standpoint of Kronecker14—

despite the position Hilbert took against Kronecker. This consists in par-

ticular in the application of the intuitive concept of number and also in the

fact that the intuitive form of complete induction (i.e., the inference which

is based on the intuitive idea of the “setup” of the numerals) is regarded as

acceptable and as not requiring any further reduction. By deciding to adopt

this methodical assumption Hilbert also got rid of the basis of the objec-

tion that Poincaré had raised at that time against Hilbert’s enterprise of the

foundation of arithmetic based on the exposition in the talk in Heidelberg.15

14In a later talk “Die Grundlegung der elementaren Zahlenlehre” (held in Hamburg

1931. Math. Ann. Bd. 104 Heft 4, an excerpt of it in this volume no. 12) Hilbert has

spoken more clearly about this. After mentioning Dedekind’s investigation “Was sind und

was sollen die Zahlen?” he explains: “Around the same time, thus already more than a

generation ago, Kronecker clearly articulated a view which today in essence coincides with

our finite attitude, and illustrated it with many examples.
15H. Poincaré: “Les mathématiques et la logique.” Rev. de métaph. et de morale,
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The beginning of proof theory, as it is laid down in the first communica-

tion, already contains the detailed formulation of the formalism. In contrast

to the Heidelberg talk, the sharp separation of the logical-mathematical for-

malism and the contentful “metamathematical” consideration is prominent,

and is expressed in particular by the distinction of signs “for communication”

and symbols and variables of the formalism.

But the formal restriction of the negation to inequalities appears as a

remnant of the stage when this separation had not yet been performed, while

a restriction is really only needed in the metamathematical application of

negation.

A characteristic of Hilbert’s approach, the formalization of the “tertium

non datur” by transfinite functions, appears already in the first commu-

nication. In particular the “tertium non datur” for the whole numbers is

formalized with the function function χ(f), whose argument is a number

theoretic function, and which has the value 0 if f(a) has the value 1 for all

number values a, but otherwise represents the smallest number value a for

which f(a) has a value different than 1.

The leading idea for the proof of the consistency of the transfinite func-

tions (i.e., of their axioms), which Hilbert already ‖204 possessed, is not

presented in this communication. A proof of consistency is rather provided

here only for a certain part of the formalism; but this proof is only important

as an example of a metamathematical proof.16

vol. 14 (1906).
16The method of proof rests here mainly on the fact that the elementary inference rules

for the implication, which are formalized by the “Axioms of logical inference” (numbered

10 through 13), are not included in the part of the formalism under consideration.
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In the Leipzig talk “Die logischen Grundlagen der Mathematik,”17 which

followed soon after the first communication, we find the approach and re-

alization of proof theory developed further in various respects. I want to

mention briefly the main respects in which the presentation of the Leipzig

talk goes beyond those of the first communication:

1. The fundamental way in which ordinary mathematics goes beyond the

intuitive approach (which consists in the unrestricted application of the

concepts “all,” “there exists” to infinite totalities) is pointed out and

the concept of “finite logic” is elaborated. Furthermore, a comparison

between the role of “transfinite” formulas and that of ideal elements is

carried out here for the first time.

2. The formalism is freed from unnecessary restrictions (in particular the

avoidance of negation).

3. The formalization of the “tertium non datur” and also of the principle

of choice using transfinite functions is simplified.

4. The main features of the formalism of analysis are developed.

5. The proof of consistency is provided for the elementary number the-

oretic formalism, which results from the exclusion of bound variables.

The task of proving the consistency of number theory and analysis is

then focused on the treatment of the “transfinite axiom”

A(τ(A))→ A(a),

17Held at the Deutschen Naturforscher-Kongreß 1922. Math. Ann. Bd. 88 Heft 1/2, this

volume essay no. 11.

13



which is employed in two ways, since the argument of A is related on

the one hand to the domain of ordinary numbers and on the other hand

to the number series (functions).

6. A method (which is successful at least in the simplest cases) is stated

for the treatment of the “transfinite axiom” in the consistency proof.

The basic structure of proof theory was reached with its formulation as

presented in the Leipzig talk.

‖205 Hilbert’s next two publications on proof theory, the Münster talk

“Über das Unendliche”18 and the (second) talk in Hamburg “Die Grundlagen

der Mathematik,”19 in which the basic idea and the formal approach of proof

theory is presented anew and in more detail, still show various changes and

extensions in the formalism. However, they serve only in smaller part the

original goal of proof theory; they are used mainly with respect to the plan

to solve Cantor’s continuum problem, i.e., the proof of the theorem that the

continuum (the set of real numbers) has the same cardinality as the set of

numbers of the second number class.

Hilbert had the idea to order the number theoretic functions, i.e., the

functions that map every natural number to another—(the elements of the

continuum surely can be represented by such functions) —in accordance with

the type of the variables which are needed for their definition, and to achieve

a mapping of the continuum to the set of numbers of the second number class

on the basis of the ascent of the variable types, which is analogous to that

18Presented in 1925 on the occasion of a meeting organized in honor of the memory of

Weierstrass, published in Math. Ann. vol. 95.
19Presented in 1927, published in Abh. math. Semin. Hamburg. Univ. Bd. IV Heft 1/2.
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of the transfinite ordinal numbers. But the pursuit of this goal did not get

beyond a sketch, and Hilbert therefore left out the parts which refer to the

continuum problem in the reprints of both mentioned talks in “Grundlagen

der Geometrie.”20

Hilbert’s considerations about the treatment of the continuum problem

have nevertheless produced various fruitful suggestions and viewpoints.

Thus W. Ackermann has been inspired to his investigation “Zum Hil-

bertschen Aufbau der reellen Zahlen”21 by the considerations regarding the

recursive definitions. Hilbert lectures in his talk in Münster on the question

and the result of this paper (which had not been published at the time):

“Consider the function

a+ b;

‖206 by iterating n times and equating it follows from this:

a+ a+ . . .+ a = a · n.

Likewise one arrives from

a · b to a · a · . . . a = an,

further from

an to a(aa), a(a(aa)), . . . .

So we successively obtain the functions

a+ b = ϕ1(a, b),
20Both talks are included in the seventh edition of “Grundlagen der Geometrie” as

appendix VIII and IX. Other than the omissions also small editorial changes have been

done, in particular with respect to the notation of the formulas.
21Math. Ann. Bd. 29 Heft 1/2 (1928).
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a · b = ϕ2(a, b),

ab = ϕ3(a, b).

ϕ4(a, b) is the bth value in the series:

a, aa, a(aa), a(a(aa)), . . . .

In analogous way one obtains ϕ5(a, b), ϕ6(a, b) etc.

It would now be possible to define ϕn(a, b) for variable n by substitution

and recursion; but these recursions would not be ordinary successive ones,

but rather one would be lead to a crossed recursion of different variables at

the same time (simultaneous), and to resolve this into ordinary successive

recursions is only possible by using the concept of a function variable: the

function ϕa(a, a) is an example for a function of the number variable a, which

can not be defined by substitution and ordinary successive recursion alone,

if one allows only for number variables.22 How the function ϕa(a, a) can be

defined using function variables is shown by the following formulas:

ι(f, a, 1) = a,

ι(f, a, n+ 1) = f(a, ι(f, a, n));

ϕ1(a, b) = a+ b

ϕn+1(a, b) = ι(ϕn, a, b).

Here ι stands for an individual function with two arguments, of which the

first one is itself a function of two ordinary number variables.”

The investigation of recursive definitions has been recently carried forward

by Rozsa Péter. She proved that all recursive definitions which proceed only
22W. Ackermann has provided a proof for this claim. (Footnote in Hilbert’s text.)
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after the values of one variable and which do not require any other sort of

variables than the free number variables, can be reduced to the simplest

recursion schema. Using this result ‖207 she also simplified substantially the

proof of the paper of Ackermann just mentioned.23

These results concern the use of recursive definitions to obtain number

theoretic functions. In Hilbert’s proof plan recursive definitions also occur

in a different way, namely as a procedure for constructing numbers of the

second number class and also types of variables. Here Hilbert presupposes

certain general ideas concerning the sorts of variables, of which he gives the

following short summary in the talk “Die Grundlagen der Mathematik”:

The mathematical variables are of two sorts:

1. the basic variables

2. the types of variables

1. While one gets by with the ordinary whole number as the

only basic variable in all of arithmetic and analysis, now a basic

variable for each one of Cantor’s transfinite number classes is

added, which is able to assume the ordinal numbers belonging to

this class. To each basic variable there accordingly corresponds a

proposition that characterizes it as such; this is defined implicitly

by axioms.

To each basic variable belongs a kind of recursion, which is used

to define functions whose argument is such a basic variable. The

23See R. Péter: “Über den Zusammenhang der verschiedenen Begriffe der rekursiven

Funktionen.” Math. Ann. Bd. 111 Heft 4 (1935).

17



recursion belonging to the number variable is the “usual recur-

sion” by which a function of a number variable n is defined by

specifying which value it has for n = 0 and how the value for n′

is obtained from the value at n.24 The generalization of the usual

recursion is the transfinite recursion, whose general principle is

to determine the value of the function for a value of the variable

using the previous values of the function.

2. We derive further kinds of variables from the basic variables

by applying logical connectives to the propositions for the ba-

sic variables, e.g., to Z.25 The so defined variables are called

types of variables, the statements defining them are called type-

statements; for each of these a new individual symbol is intro-

duced. Thus the formula

Φ(f) ∼ (x)(Z(x)→ Z(f(x)))

yields the simplest example of a type of variables; this formula

defines ‖208 the type of function variables (being a function). A

further example is the formula

Ψ(g) ∼ (f)(Ψ(f)→ Z(g(f)));

it defines “being a function-function”; the argument g is the new

function-function variable.

For the construction of higher variable types the type-statements

24Here n′ is the formal expression for “the number following n”.
25The formula Z(a) corresponds to the proposition “a is an ordinary whole number”.
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have to be equipped with indices which enables a method of re-

cursion.

These concept formations are applied in particular in the theory of num-

bers of the second number class. Here a new suggestion emerged from

Hilbert’s conjecture that every number of the second number class can be

defined without transfinite recursion, but using ordinary recursion alone—

assuming a basic element 0, the operation of progression by one (“stroke-

function”) and the limit process, furthermore the number variable and the

basic variable of the second number class —.

The first examples of such definitions that go beyond the most elementary

cases, namely the definition of the first ε-number (in Cantor’s terminology)

and the first critical ε-number,26 have already been given by P. Bernays and

J. v. Neumann. Hereby already recursively defined types of variables are

used.27

But these various considerations, which refer to the recursive definitions,

already go beyond the narrower domain of proof theoretic questions. Since

26An ε-number is a transfinite ordinal number α with the property α = ωα. The first

ε-number is the limit of the series

α0, α1, α2, . . . ,

where α0 = 1, αn+1 = ωαn . the first critical ε-number is the limit of the series

β0, β1, β2, . . . ,

where β0 = 1, βn+1 is the βn-th ε-number.
27Cf. the statement in Hilbert’s talk “Die Grundlagen der Mathematik” (“Grundlagen

der Geometrie,” 7 ed. appendix IX, p. 308.—The examples mentioned have not been

published yet.
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Hilbert’s Leipzig talk it was the task of this narrower field of investigation of

proof theory to prove consistency according to Hilbert’s approach, including

the transfinite axiom. Shortly after the talk in Leipzig the transfinite axiom

was brought into the form of the logical “ε-axiom”

A(a)→ A(εxA(x))

‖209 by the introduction of the choice function ε(A) (in detail: εxA(x)) re-

placing the earlier function τ(A). The role of this ε-axiom is explained by

Hilbert in his talk in Hamburg in with following words:

The ε-function is applied in the formalism in three ways.

a) It is possible to define “all” and “there exists” with the help

of ε, namely as follows:28

(x)A(x) ∼ A(εxA(x)),

(Ex)A(x) ∼ A(εxA(x)).

Based on this definition the ε axioms yields the valid logical no-

tations for the ‘for all’ and ‘there exists’ symbols, like

(x)A(x)→ A(a) (Aristotelian axiom),

(x)A(x)→ (Ex)A(x) (Tertium non datur).

b) If a proposition A is true of one and only one thing, then ε(A)

is that thing for which A holds.

28Instead of the double arrow used by Hilbert the symbol of equivalence ∼ is applied

in both following formulas; the remarks on the introduction of the symbol ∼ in Hilbert’s

text are thus dispensable.
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Thus, the ε-function allows one to resolve such a proposition A

that holds of only one thing into the form

a = ε(A).

c) Moreover, the ε plays the role of a choice function, i.e., in the

case that A holds of more than one thing, ε(A) is any of the

things a of which A holds.

The ε-axiom can be applied to different types of variables. For a formal-

ization of number theory the application to number variables suffices, i.e.,

the type of natural numbers. In this case the number theoretic axioms

a′ 6= 0,

a′ = b′ → a = b,

as well as the recursion equations for addition and multiplication29 and the

principle of inference of complete induction, have to be added to the the

logical formalism and the axioms of equality. This principle of inference can

be formalized using the ε symbol by the formula

εxA(x) = b′ → A(b)

in connection with the elementary formula

a 6= 0→ a = (δ(a))′.

‖210 The additional formula for the ε symbols corresponds to a part of the

statement of the least number principle 30 and the added elementary formula
29Cf. footnote 1 on p. 197 of this report.
30I.e., the principle of the existence of a least number in every nonempty set of numbers.
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represents the statement that for every number different than 0 there is a

preceeding one.

For the formalization of analysis one has to apply the ε-axiom also to a

higher type of variables. Different alternatives are possible here, depending

on whether one prefers the general concept of predicate, set, or function.

Hilbert chooses the type of function variables, i.e., more precisely, of the

variable number theoretic function of one argument.

The introduction of higher types of variables allows for the replacement

of the inference principle of complete induction by a definition of the concept

of natural number following the method of Dedekind.

The essential factor in the extension of this formalism is based on the

connection between the ε-axiom and the replacement rule for the function

variable, whereby the “impredicative definitions” of functions, i.e., the defi-

nitions of functions in reference to the totality of functions, are incorporated

into the formalism.

The task of proving the consistency for the number theoretic formalism

and for analysis is hereby mathematically sharply delimited. For its treat-

ment one had Hilbert’s approach at one’s disposal, and at the beginning it

seemed that only an insightful and extensive effort was needed to develop

this approach to a complete proof.

However, this vision has been proved mistaken. In spite of intensive

efforts and a manifold of contributed proof ideas the desired goal has not

been achieved. The expectations that had been entertained have been dis-

appointed step by step, whereby it also became apparent that the danger of

mistake is particularly great in the domain of metamathematical considera-
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tions.

At first the proof for the consistency of analysis seemed to succeed, but

this appearance soon revealed itself as an illusion. Hereafter one believed to

have reached the goal at least for the number theoretic formalism. Hilbert’s

talk in Hamburg “Die Grundlagen der Mathematik” falls in this stage, where

at the end he cites a report on a consistency proof by Ackermann, as well

as the talk “Probleme der Grundlegung der Mathematik,”31 held in 1928 in

Bologna, where Hilbert gave an overview of the situation in proof theory

at that time and put forward in part problems of consistency and in part

problems of completeness.

‖211 Here Hilbert connects all problems of consistency to the ε-axiom,

presenting the mathematical domains that are encompassed in place of the

various formalisms.

In this presentation is expressed the view, shared at that time by all

parties, that the proof for the consistency of the formalism of number theory

had been given already by the investigations of Ackermann and v. Neumann.

That in fact this goal had not been achieved yet was only realized when

it became dubious, based on a general theorem of K. Gödel, whether it was

at all possible to provide a proof for the consistency of the number theoretic

formalism with elementary combinatorial methods in the sense of the “finite

standpoint”.

The theorem mentioned is one of the various important results of Gödel’s

paper “Über formal unentscheidbare Sätze der Principia Mathematica und

31Math. Ann. Bd. 102 Heft 1.
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verwandter Systeme I,”32 which has clarified in a fundamental way the re-

lation between content and formalism—the investigation of which was men-

tioned by Hilbert in “Axiomatisches Denken” as one of the aims of proof

theory.

The basic message of the theorem is that a proof of the consistency of

a consistent formalism encompassing the usual logical calculus and number

theory cannot be represented in this formalism itself; more precisely: it is

not possible to deduce the elementary arithmetical theorem which represents

the claim of the consistency of the formalism—based on a certain kind of

enumeration of the symbols and variables and an enumeration of the formulas

and of the finite series of formulas derived from it—in the formalism itself.

To be sure, nothing is said hereby directly about the possibility of finite

consistency proofs; but a criterion follows, which every proof of the consis-

tency for a formalism of number theory or a more comprehensive formalism

has to meet: a consideration must occur in the proof which can not be

represented—based on the arithmetical translation—in the given formalism.

By means of this criterion one became aware that the existing consistency

proofs were not yet sufficient for the full formalism of number theory.33

Moreover, the conjecture was prompted that ‖212 it was in general im-

possible to provide a proof for the consistency of the number theoretic for-

malism within the framework of the elementary intuitive considerations that

conformed to the “finite standpoint” upon which Hilbert had based proof

theory.

32Mh. Math. Physik Bd. 38 Heft 1 (1931).
33V. Neumann’s proof referred to a narrower formalism from the outset; but it appeared

that the extension to the entire formalism of number theory would be without difficulties.
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This conjecture has not been disproved yet.34 However, K. Gödel and

G. Gentzen have noticed35 that it is rather easy to prove the consistency of the

usual formalism of number theory36 assuming the consistency of intuitionistic

arithmetic37 as formalized by A. Heyting.

From the standpoint of Brouwer’s Intuitionism the proof of the consis-

tency of the formalism of number theory has hereby been achieved. But this

does not disprove the conjecture mentioned above, since intuitionistic arith-

metic goes beyond the realm of intuitive, finite considerations by having also

contentful proofs as objects besides the proper mathematical objects, and

therefore needs the abstract general concept of an intelligible inference.—

A brief compilation of various finite consistency proofs for formalisms of

parts of number theory that have been given will be presented here. Let the

formalism which is obtained from the logical calculus (of first order) by adding

axioms for equality and number theory, but where the application of complete

induction is restricted to formulas without bound variables, be denoted by F1;

with F2 we denote the formalism that results from F1 by adding the ε-symbol

and the ε-axiom,—whereby the formulas and schemata for the universal and

34But see postscriptum on p. 216.
35K. Gödel: “Zur intuitionistischen Arithmetik und Zahlentheorie”. Erg. math. Kol-

loqu. Wien 1933 Heft 4. G. Gentzen has withdrawn his paper about the subject matter

which was already in print because of the publication of Gödel’s note.
36Namely it is possible to show that every formula that is deducible in the usual for-

malism of number theory, which does not contain any formula variable, disjunction, or

existential quantifier, can be deduced also in Heyting’s formalism.
37A. Heyting: “Die formalen Regeln der intuitionistischen Logik” and “Die formalen

Regeln der intutionistischen Mathematik,” S.-B. preuß. Akad. Wiss. Phys.-math. Klasse

1930 II.
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existential quantifiers can be replaced by explicit definitions of the universal

and existential quantifiers.38 A consistency proof for F2 immediately results

in the consistency of F1.

‖213 The consistency of F2 is shown:

1. by a proof of W. Ackermann, which proceeds from the approach

presented in Hilbert’s Leipzig talk “Die logischen Grundlagen der Mathe-

matik”39;

38See in this paper p. 209.—With regard to the axioms of equality it is to be observed

that they appear in the formalism in the more general form

a = a, a = b→ (A(a)→ A(b))

so that in particular the formula

a = b→ εxA(x, a) = εxA(x, b)

can be deduced. In the formalism F1 the formula

a = b→ (A(a)→ A(b))

can be replaced by the more special axioms

a = b→ (a = c→ b = c), a = b→ a′ = b′.

39The concluding portion of the proof is not yet carried out in detail in Ackermann’s

dissertation “Begründung des ‘tertium non datur’ mittels der Hilbertschen Theorie der

Widerspruchsfreiheit” [Math. Ann. Bd. 93 (1924)]. Later Ackermann provided a complete

and at the same time more simple proof. This definitive version of Ackermann’s proof

has not been published yet; so far only Hilbert’s already mentioned report in his second

talk in Hamburg “Die Grundlagen der Mathematik” and the more detailed “Appendix”

by P. Bernays which appeared with the talk in Abh. math. Semin. Hamburg Univ. Bd. 6

(1928) are available. (The remark at the end of the appendix with regard to the inclusion
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2. by a proof by J. v. Neumann, who proceeds from the same assump-

tions40;

3. using a second so far unpublished approach of Hilbert executed by

Ackermann; the idea behind this approach consists in applying a disjunctive

rule of inference to eliminate the ε symbol instead of replacing the ε by

number values.41

The consistency of F1 is shown:

1. by a proof of J. Herbrand which rests on a general theorem about

the logical calculus42 that has been stated for the first time and proved by

Herbrand in his thesis “Recherches sur la théorie de la démonstration”43;

‖214

2. by a proof of G. Gentzen, which results from a sharpening and exten-

sion of Herbrand’s theorem mentioned above found by Gentzen.44

For the time being one has not gone beyond these results, which are

important mainly for theoretical logic and elementary axiomatics, and for

the uncovering mentioned above of the relation between the usual number

theoretic formalism and that of intuitionistic arithmetic.

But all the problems of completeness which Hilbert posed in his talk

of complete induction has to be abandoned.)
40J. v. Neumann: “Zur Hilbertschen Beweistheorie.” Math. Z. Bd. 26 (1927).
41Cf. the statement in the talk “Methoden des Nachweises von Widerspruchsfreiheit und

ihre Grenzen” Verh. d. int. Math.-Kongr. Zürich 1932, second volume, by P. Bernays.
42J. Herbrand: “Sur la non-contradiction de l’arithmétique.” J. reine angew. Math.,

vol. 166 (1931).
43Thèse de l’Univ. de Paris 1930, published in Travaux de la Soc. Sci Varsovie 1930.
44G. Gentzen: “Untersuchung über das logische Schließen” Math. Z. Bd. 39 Heft 2 u. 3

(1934).
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“Probleme der Grundlegung der Mathematik” have been treated in various

directions.

One of these problems deals with the proof of the completeness of the

system of logical rules which are formalized in the logical calculus (of first

order). This proof has been given by K. Gödel in the sense that he showed45:

if it can be shown that a formula of the first order logical calculus is not

deducible, then it is possible to give a counterexample to the universal validity

of that formula in the framework of number theory (using “tertium non

datur,” in particular in the form of the least number principle).

The other problem of completeness regards the axioms of number theory;

it is be shown: If a number theoretic statement can be shown to be consistent

(on the basis of the axioms of number theory), then it is also provable. This

claim contains also the following: “If it can be shown that a sentence46 S

is consistent with the axioms of number theory, then the consistency with

those axioms can not also be shown for the sentence S (the converse of S).”

This problem is so far indeterminate, in that it is not specified on which

formalism of logical inference it should be based. However, it was shown that

the claim of completeness is justified for all logical formalisms, as long as one

maintains the requirement of the rigorous formalization of the proofs.

This result stems again from K. Gödel, who ‖215 proved the following

general theorem in the paper mentioned above “Über formal unentscheidbare

Sätze der Principia Mathematica und verwandter Systeme I:” If a formalism

45K. Gödel: “Die Vollständigkeit der Axiome des logischen Funktionenkalküls.”

Mh. Math. Pysik Bd. 37 Heft 2 (1930).
46A sentence is meant which can be represented in the formalism of number theory

without free variables.

28



F is consistent in the sense that it is impossible to deduce the negation of a

formula (x)A(x) provided that the formula A(z) can be deduced in F for all

numerals z, and if the formalism is sufficiently comprehensive to contain the

formalism of number theory (or an equivalent formalism), then it is possible

to state a formula with the property that neither it itself nor its negation is

deducible.47 Thus, under these conditions, the formalism F does not have

the property of deductive completeness (in the sense of Hilbert’s claim for

the case of number theory).48

Even before this result of Gödel was known Hilbert already had given up

47Moreover this formula has the special form

(x)(ϕ(x) 6= 0),

where ϕ(x) is a function defined by elementary recursion, and the non-deducibility of

this formula as well as the correctness and deduciblity of the formula ϕ(z) 6= 0 for every

given numeral z follows already from consistency in the ordinary sense without the more

restricted requirement mentioned above.
48A different kind of incompleteness has been shown recently by Th. Skolem for the for-

malism of number theory (“Über die Unmöglichkeit einer vollständigen Charakterisierung

der Zahlenreihe mittels eines endlichen Axiomensystems.” Nordk. Mat. Forenings Skifter,

Ser. II Nr. 1–12 1933). The formalism is not “categorical” (the term is used in analogy to

O. Veblen’s expression), as it is possible to state an interpretation of the relations =, < and

of the functions a′, a+ b, a · b in relation to a system of things (they are number theoretic

functions)—using “tertium non datur” contentually for whole numbers—, such that on

the one hand every number theoretic theorem that can be deduced in the formalism of

number theory remains true also for that interpretation, but on the other hand that the

system is by no means isomorphic to the number sequence (with regard to the relations

under consideration), but that it contains in addition to the subset that is isomorphic to

the number sequence also elements that are greater (in the sense of the interpretation)

than all elements of that subset.
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the original form of his problem of completeness. In his talk “Die Grundle-

gung der elementaren Zahlenlehre”49 he treated the problem for the special

case of formulas of the form (x)A(x), which do not contain any bound vari-

ables other than x. He modified the task by adding an inference rule which

says that a formula (x)A(x) of the kind under consideration can be always

taken as a basic formula if it is possible to show that the formula A(z) rep-

resents a true statement (according to the elementary arithmetic interpreta-

tion) for all numerals z.

‖216 With the addition of this rule the result follows very easily from the

fact that if a formula of the special form under consideration is consistent,

then it is also true under the contentful interpretation.50

The method by which Hilbert enforces, so to speak, the positive solution

of the completeness problem (for the special case that he considers) means a

deviation from the previous program of proof theory. In fact, the requirement

for a complete formalization of the rules of inference is abandoned by the

introduction of the additional inference rule.

One does not have to regard this step as final. But in light of the dif-

ficulties that have arisen with the problem of consistency, one will have to

consider the possibility of widening the previous methodical framework of

49Held 1930 in Hamburg, published in Math. Ann. Bd. 104 Heft 4; in this collection,

essay no. 12.
50Hilbert had already mentioned earlier this fact in his second Hamburg talk “Die Grund-

lagen der Mathematik”. There he used it to show that the finite consistency proof for a

formalism also yields a general method for obtaining a finite proof from a proof of an ele-

mentary arithmetical theorem in the formalism, for example of the character of Fermat’s

theorem.
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the metamathematical considerations.

This previous framework is not explicitly required by the basic ideas of

Hilbert’s proof theory. It will be crucial for the further development of proof

theory if one succeeds in developing the finite standpoint appropriately, such

that the main goal, the proof of the consistency of usual analysis, remains

achievable—regardless of the restrictions of the goals of proof theory that

follow from Gödel’s results—.

During the printing of this report the proof for the consistency of the

full number theoretic formalism has been presented by G. Gentzen,51 using a

method that conforms to the fundamental demands of the finite standpoint.

Thereby the mentioned conjecture about the range of the finite methods

(p. 212) is disproved.

51This proof will be published soon in the Math. Ann.
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