
Bernays Project: Text No. 12

Foundations of Mathematics Vol. 1

(1934)

Paul Bernays

(Grundlagen der Mathematik, Vol. 1)

Translation by: Ian Mueller

Comments:

none

1. The Problem of consistency in axiomatics as a decision prob-

lem.

The situation in the field of foundations of mathematics, to which our

presentation is related, is characterized by three kinds of investigations:

1. the development of the axiomatic method, especially in foundations of

geometry,

2. the founding of analysis by today’s rigorous methods through the re-

duction of mathematics [Grössenlehre] to the theory of numbers and sets

of numbers,

3. investigations in the foundations of number theory and set theory.

A deeper set of problems, related to the situation reached through these

investigations, arises when methods are subjected to stricter demands; these
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problems involve a new kind of analysis of the problem of the infinite. We

will introduce these problems by considering axiomatics.

The term ‘axiomatic’ is used in a wider and a narrower sense. We call

the development of a theory axiomatic in the widest sense of the word when

the fundamental concepts and presuppositions are put at the beginning and

marked as such and the further content of the theory is logically derived from

these with the help of definitions and proofs. In this sense the geometry of

Euclid, the mechanics of Newton, and the thermodynamics of Clausius were

axiomatically founded.

The axiomatic point of view was made more rigorous in Hilbert’s Founda-

tions of Geometry ; The greater rigor consists in the fact that in the axiomatic

development of a theory one makes use of only that portion of the represen-

tational subject matter [sachlichen Vorstellungsmaterial] from which the funda-

mental concepts of the theory are formed which is formulated in the axioms;

one abstracts from all remaining content. Another factor in axiomatics in

the narrowest sense is the existential form. This factor serves to distinguish

the axiomatic method from the constructive or genetic method of founding

a theory. (compare Hilbert’s “Über den Zahlenbegriff”) In the constructive

method the objects of a theory are introduced merely as a species of things

(Brouwer and his school use the word “species” in this sense.); but in an

axiomatic theory one is concerned with a fixed system of things (or several

such systems) which constitutes a previously delimited domain of subjects for

all predicates from which the assertions of the theory are constructed.

Except in the trivial cases in which a theory has to do just with a fixed

finite totality of things, the presupposition of such a totality, the so-called
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“domain of individuals”, involves an idealizing assumption over and above

those formulated in the axioms.

It is a characteristic of the more rigorous kind of axiomatics involving

abstraction from material content and also the existential form (“formal ax-

iomatics” for short) that it requires a proof of consistency ; but contentual

axiomatics introduces its fundamental concepts by reference to known expe-

riences and its basic assertions either as obvious facts which a person can

make clear to himself or as extracts from complicated experiences;1 express-

ing the belief that man is on the track of laws of nature and at the same time

intending to support this belief through the success of the theory.

However, formal axiomatics also needs a certain amount of evidence in

the performance of deductions as well as in the proof of consistency; there is,

however, an essential difference: the evidence required does not depend on

any special epistemological relation to the material being axiomatized, but

rather it is one and the same for every axiomatization, and it is that prim-

itive kind of knowledge which is the precondition of every exact theoretical

investigation whatsoever. We will consider this kind of evidence more closely.

The following points of view are especially important for a correct eval-

uation of the significance for epistemology of the relationship between con-

tentual and formal axiomatics:

Formal axiomatics requires contentual axiomatics as a supplement, be-

cause only in terms of this supplement can one give instruction in the choice

1Alternative translation: to known experiences and either presents its basic asser-

tions as obvious facts which a person can make clear to himself or formulates them as

extracts from complicated experiences,
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of formalisms and, in the case of a particular formal theory, give an indication

of its applicability to some part of reality.

On the other hand we cannot just stay at the level of contentual axiomat-

ics, since in science we are almost always concerned with theories which get

their significance from a simplifying idealization of an actual state of affairs

rather than from a complete reproduction of it. A theory of this kind does

not get a foundation through a reference to either the evident truth of its

axioms or to experience; rather such a foundation is given only when the

idealization involved, i.e. the extrapolation through which the concepts and

fundamental assertions of the theory come to overstep the bounds of intuitive

evidence and of experience, is seen to be free of inconsistency. Reference to

the approximate correctness of the fundamental assertions is of no use for

the recognition of consistency; for an inconsistency could arise just because

a relationship which holds only in a restricted sense is taken to hold exactly.

We must then investigate the consistency of theoretical systems without

considering matters of fact and, therefore, from the point of view of formal

axiomatics.

The treatment of this problem up until now, both in the case of geom-

etry and of branches of physics, involved arithmetizing : one represents the

objects of a theory through numbers and systems of numbers and basic re-

lations through equalities and inequalities thereby producing a translation

of the axioms of the theory; under this translation the axioms become ei-

ther arithmetic identities or provable arithmetic assertions (as in the case of

geometry) or (as in physics) a system of conditions the simultaneous satis-

fiability of which can be proved on the basis of certain existence assertions
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of arithmetic. This procedure presupposes the correctness of arithmetic, i.e.

the theory of real numbers (analysis); so we must ask what this correctness

amounts to.

However, before we concern ourselves with this question we want to see

whether there isn’t a direct way of attacking the problem of consistency. We

want to get the structure of this problem clearly before our minds once and

for all. At the same time we want to. be able to familiarize ourselves with

logical symbolism, which proves to be very useful for our purposes and which

we will have to consider more deeply in the sequel.

As an example of axiomatics we take the geometry of the plane; for the

sake of simplicity we will consider only the parallel axiom plus the axioms

for the geometry of position (the axioms which are presented as “axioms

of connection” [Verknüpfung] and “axioms of order” [Anordnung] in Hilbert’s

Grundlagen der Geometrie. For our purpose it is better to diverge from

Hilbert’s axiom system by not taking points and lines as two basic systems

of things but rather to take only points as individuals. Instead of the relation

“points x and y determine the line g” we use the relation between three points

“x, y and z lie on one line” (‘Gxyz’ in symbols). A second fundamental

relation is betweenness: “x lies between y and z”, in symbols ‘Zxyz’. (See

Oswald Veblen “A system of axioms for geometry” for an especially thorough

axiomatization in which only points are taken as individuals and in which

all geometrical relations are defined in term of betweenness.) In addition the

logical concept of the identity of x and y, for which we use the usual identity

sign ‘x = y’, is represented in the axioms.

. . . . . . (There follows a description of the symbolism of first order
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logic.)

The presentation of the axioms does not correspond completely to that

in Hilbert’s Grundlagen der Geometrie. We therefore give in connection

with each group of axioms the relationship of the axioms here presented

as formulas to those of Hilbert. (We do this especially for those familiar

with Hilbert’s Grundlagen der Geometrie. All references are to the seventh

edition.)

I. Axioms of connection

1. (x)(y) Gxxy.

“x, x, y always lie on one line.”

2. (x)(y)(z) (Gxyz → Gyxz & Gxzy).

“If x, y, z lie on a line, then so do y, x, z as well as x, z, y lie on a line.”

3. (x)(y)(z)(u) (Gxyz & Gxyu & x 6= y → Gxzu).

“If x, y are different points and if x, y, z as well as x, y, u lie on a line

then also x, z, u lie on a line.”

4. (∃x)(∃y)(∃z) ¬Gxyz.

“There are points x, y, z which do not lie on a line.”

Of these axioms, 1) and 2) replace the axioms I.1,—because of the changed

concept of line; 3) corresponds to the axiom I.2; and 4) corresponds to the

second part of I.3.

II. Axioms of order

1. (x)(y)(z) (Zxyz → Gxyz)
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2. (x)(y) ¬Zxyy

3. (x)(y)(z) (Zxyz → Zxzy & ¬Zyxz)

4. (x)(y) (x 6= y → (∃z)Zxyz)

“If x and y are different points, there is always a point z such that x

lies between y and z.”

5. (x)(y)(z)(u)(v)

(¬Gxyz & Zuxy & ¬Gvxy & ¬Gzuv → (∃w)(Guvw & (Zwxz∨Zwyz)))

1) and 2) together constitute the first part of Hilbert’s axioms II.1; 3)

unites the last part of Hilbert’s axioms II.1 with II.3; 4) is the axiom II.2;

and 5) is the axiom of plane order II.4.

III. Parallel axiom

Since we are not including congruence axioms, we must take the parallel

axiom in the following broader sense: “For every straight line there is exactly

one line through a point outside it which does not intersect it.” (Compare

page 83 of Hilbert’s Grundlagen der Geometrie.)

To make symbolic formulation easier the symbol

Pxyuv

will be used as an abbreviation for the expression

¬(∃w)(Gxyw & Guvw)

“There is no point which lies on a line both with x and y and with u and v.”
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The axioms is then

(x)(y)(z) (¬Gxyz → (∃u)(Pxyzu & (v)(Pxyzv → Gzuv))).

If we go through the axioms here enumerated and unite them, we get a

single logical formula which represents an assertion about the predicates ‘G’,

‘Z’ and which we designate as

A(G,Z).

In the same way we could represent a theorem of plane geometry involving

only position and order relations as a formula

S(G,Z).

This representation still accords with contentual axiomatics in which the

fundamental relations are viewed as definite in content because referable to

something in experience or in intuition, something about which the state-

ments of the theory make assertions.

On the other hand, in formal axiomatics the fundamental relations are

not conceived as previously determined in content; rather they receive their

determination implicitly through the axioms; and in any consideration of an

axiomatic theory only what is expressly formulated in the axioms is about

the fundamental relations is used.

As a result, if the names used for fundamental relations in axiomatic ge-

ometry, coincide with those of intuitive geometry, e.g. “lie on” or “between”,

this is only a concession to custom and a means of simplifying the connection

of the theory with intuitive facts. In fact, however, in formal axiomatics the

fundamental relations play the role of variable predicates.
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Here and in the sequel we understand “predicate” in the wider sense

so that it applies to predicates with two or more subjects. We speak of

“one-place”, “two-place”,. . . predicates, using the expressions to indicate the

number of subjects.

In the part of axiomatic geometry considered by us there are two variable

three-place predicates:

Rxyz, Sxyz.

The axiom system consists of a stipulation on two such predicates ex-

pressed in the logical formula A(R, S), which we get from A(G,Z) when we

replace Gxyz with Rxyz, Zxyz with Sxyz. The identity relation x = y which

appears in this formula along with the variable predicates.is to be interpreted

contentually. The acceptance of this predicate as contentually determinate

is no violation of our methodological standpoint. For the contentual deter-

mination of identity (which is no relation at all in the true sense) does not

depend on the particular conceptual content of the field being investigated

axiomatically; rather it is only a question of distinguishing individuals which

must be taken as already given when the domain of individuals is laid down.

From this point of view an assertion of the form S(G,Z) corresponds

to the logical statement that for any predicates Rxyzv, Sxyz satisfying the

stipulation A(R, S) the relation S(R, S) also holds; In other words, for any

two predicates Rxyz, Sxyz the formula

A(R, S)→ S(R, S)

represents a true assertion. In this way a geometrical sentence is transformed

into a sentence of pure predicate logic.
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From this point of view the problem of consistency presents itself in a

corresponding way as a problem of sure predicate logic. In fact it is a question

of whether two three-place predicates Rxyz, Sxyz can satisfy the conditions

expressed in the formula A(R, S) or whether, on the contrary the assumption

that the formula A(R, S) is satisfied for a certain pair of predicates leads to a

contradiction so that in general for every pair of predicates R, S the formula

¬A(R, S) represents a correct assertion. (This imprecise way of putting the

question will be sharpened in the sequel.)

Such questions as these are part of the “decision problem”. In modern

logic this problem is understood to be that of discovering general methods

for deciding the “validity” or “satisfiability” of logical formulas. (This expla-

nation is correct only for the decision problem in its narrower sense. We have

no need here to consider the broader conception of this decision problem.)

In this connection the formulas investigated are composed of predicate

variables and equalities together with variables in subject positions which we

call “individual variables”; It is assumed that every variable is bound by a

universal or existential quantifier.

A formula of this kind is called valid when it represents a true asser-

tion for every determination of the variable predicates; it is called satisfiable

when it represents a true assertion for some appropriate determination of the

predicate variables.

. . . . . . Examples are given.

It is to be noticed that along with the determination of the predicates a

domain of individuals over which the variables x, y, . . . range has to be fixed.

This enters into a logical formula as a kind of hidden variable. However,
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the satisfiability of a logical formula is invariant with respect to a one-one

mapping of a domain of individuals onto another, since the individuals enter

into the formula only as variable subjects; as a result the only essential

determination for a domain of individuals is the number of individuals.

Accordingly, we have to distinguish the following questions in relation to

validity and satisfiability:

1. The question of validity for every domain of individuals (and also of

satisfiability for any domain of individuals).

2. The question of validity or satisfiability for a given number of individ-

uals.

3. The question for which numbers of individuals is a formula valid or

satisfiable.

It should be noted that it is best to leave out of consideration the domain

of 0 individuals. Formally this domain has a rather special position, and

consideration of it is trivial and worthless for applications. (The stipulation

that every domain of individuals should contain at least one thing so that a

true generalization must hold of at least one thing ought not to be confused

with the convention prominent in Aristotelean logic that a judgment of the

form “all S are P” counts as true only if there are in fact things with the

property S. This convention has been dropped in modern logic. A judgment

of this kind is represented symbolically in the form (x)(Sx→ Px); It counts

as true if a thing x, insofar as it has the property Sx, always has the property

Px as well—independently of whether there is anything with the property

Sx at all. . . )
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Furthermore one should notice that only the “course of values” of a pred-

icate is relevant to its determination; that is to say, all that is relevant is for

which values of the variables in subject positions the predicate holds or does

not hold (is “true” or “false”).

This circumstance has as a consequence that for a given finite number

of individuals the validity or satisfiability of a specific logical formula repre-

sents a pure combinatorial fact which one can determine through elementary

testing of all cases.

To be specific, if n is the number of individuals and k the number of

subjects (“places”) of a predicate, then nk is the number of different systems

of values for the variables; and since for every one of these systems of values

the predicate is either true or false, there are

2(nk)

different possible courses of value for a k-place predicate.

If then

R1, . . . , Rt

are the distinct predicate variables occurring in a given formula, and

k1, . . . , kt

the number of their places, then

2(nk1+nk2+...+nkt )

is the number of systems of values to be considered, the number of different

possible predicate systems for short.
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Accordingly validity of the formula means that for all of these

2(nk1+nk2+...+nkt )

explicitly enumerable predicate systems the formula represents a true asser-

tion; its satisfiability means that the formula represents a true assertion for

one of these predicate systems. Moreover, for a fixed predicate system the

truth or falsity of the assertion represented by the formula is decidable by

a finite testing of cases; the reason is that only n values come into consid-

eration for a variable bound by a universal or existential quantifier so that

‘all’ signifies the same thing as a conjunction with n members and ‘there is’

a disjunction with n members.

For example, consider the formulas

(x) Pxx→ (x)(∃y)Pxy

(x)(y) (Pxy & Pyx→ x = y)

of which the first is valid the second satisfiable. We refer these formulas to a

domain of two individuals.

We can indicate these individuals with the numerals 1, 2. In this case we

have t = 1, n = 2, k1 = 2; therefore the number of different predicate systems

is

2(22) = 24 = 16.

In place of (x)Pxx we can put Pll & P22, and in place of (x)(∃y) Pxy

(P11 ∨ P12) & (P21 ∨ P22),

so that the first of the two formulas becomes

P11 & P22→ (P11 ∨ P12) & (P21 ∨ P22).
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This conditional is true for those predicates P for which P11 & P22 is false,

as well as for those for which

(P11 ∨ P12) & (P21 ∨ P22)

is true. One can now verify that for each of the 16 courses of value that one

gets when one assigns one of the truth values “true” or “false” to each of the

pairs of values

(1, 1), (1, 2), (2, 1), (2, 2)

one of the two conditions is fulfilled; thus the whole expression always re-

ceives the value “true” (Verification is simplified in this example because

determination of the values of P11 and P22 suffices to fix the correctness of

the expression.) In this way the validity of our first formula for domains of

two individuals can be determined through a direct test [Ausprobieren].

For domains of two individuals the second formula signifies the same thing

as the conjunction

(P11 & P11→ 1 = 1) & (P22 & P22→ 2 = 2) &

(P12 & P21→ 1 = 2) & (P21 & P12→ 2 = 1).

Since 1 = 1 and 2 = 2 are true the first two members of the conjunction

are always true assertions. The last two members are true when and only

when P12 & P21 is false.

Therefore, to satisfy the formula under consideration one has only to

eliminate those determinations of value for P in which the pairs (1, 2) and

(2, 1) are both assigned the value “true”. Every other determination of value
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produces a true assertion. The formula is therefore satisfiable in a domain

of two elements.

These examples should make clear the purely combinatorial character of

the decision problem in the case of a given finite number of individuals. one

result of this combinatorial character is that for a prescribed finite number

of individuals the validity of a formula F has the same significance as the

unsatisfiability of the formula ¬F ; likewise the satisfiability of of a formula

P signifies the same thing as that ¬P is not valid. Indeed P represents a

true assertion for those predicate systems for which ¬F represents a false

assertion and vice-versa.

We now return to the question of the consistency of an axiom system.

We consider an axiom system presented symbolically and combined into one

formula like our example.

The question of the satisfiability of this formula for a prescribed finite

number of individuals can be decided, in principle at least, through testing.

Suppose then the satisfiability of the formula is determined for a definite

finite number of individuals. The result is a proof of the consistency of the

axiom system; indeed it is a proof by the method of exhibition since the

finite domain of individuals together with the courses of value chosen for the

predicates to satisfy the formula constitutes a model in which we can show

concretely that the axioms are satisfied.

We give an example of such an exhibition from axiomatic geometry. We

begin from the previously presented axiom system but replace the axiom I 4),

which postulates three points not lying on a line, with the weaker axiom

I 4’) (∃x)(∃y) x 6= y.

15



“There are two distinct points.”

Furthermore we drop the axiom of plane order II 5); In its place we add

to the axioms two sentences which can be proved using II 5); First we expand

II 4) to

II 4’) (x)(y) (x 6= y → (∃z)Zzxy & (∃z)Zxyz),

and then add

II 5) (x)(y)(z)(x 6= y & x 6= z & y 6= z → Zxyz ∨ Zyzx ∨ Zzxy)

We keep the parallel axiom.

(Both of these sentences were introduced as axioms in earlier editions of

Hilbert’s Grundlagen der Geometrie. It turns out that they are provable

using the axioms of plane order. See pp. 5, 6 of the seventh edition.) The

resulting axiom system corresponds to a formula A′(R, S) instead of the ear-

lier A(R, S); it is satisfiable in a domain of 5 individuals, as Veblen remarked

(in “A system of axioms for geometry”, p. 350). First of all the courses of

value for the predicates R, S is so chosen that the predicate G is determined

to be true for every value triple x, y, z. (We can here use the symbols ‘G’, ‘Z’

with no danger of misunderstanding.) One sees immediately that all axioms

I as well as II 1) and III are satisfied. In order that the axioms II 2), 3),

5′), and 4′) be satisfied it is necessary and sufficient that the following three

conditions be placed on the predicate Z:

1. Z is always false for a triple x.y, z in which two elements coincide.

2. For any combination of three of the 5 individuals there are 6 possible

orderings of the elements; Z is true for 2 of the 6 orderings with a

common first element, false for the remaining 4 orderings.
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3. . Each pair of distinct elements occurs as an initial as well as a final

pair in one of the triples for which Z is true.

The first condition can be directly fulfilled by stipulation. The simulta-

neous satisfaction of the other two conditions is accomplished as follows: We

designate the 5 elements with the numerals 1, 2, 3, 4, 5. The number of

value-triples of three distinct elements for which Z still has to be defined is

5 ∗ 4 ∗ 3− 60. Six of these belong to a given combination; for two of these 3

should be true and false for the rest. We must therefore indicate those 20 of

the 60 triples for which Z is to be defined as true. They are those which one

obtains from the four triples

(1, 2, 5), (1, 5, 2), (1, 3, 4), (1, 4, 3)

by applying the cyclical permutation (1 2 3 4 5).

It is easy to verify that this procedure satisfies all the conditions. Thus

the axiom system is recognized as consistent by the method of exhibition.

(It follows immediately from the fact that the modified axiom system A′ is

satisfiable in a domain of 5 individuals that the axioms of this system do not

completely determine linear ordering.)

The method of exhibition presented in this example has very many dif-

ferent applications in modern axiomatic investigations. It is especially useful

for proofs of independence. The claim that a sentence S is independent of an

axiom system A signifies the same thing as the claim that the axiom system

A & ¬S

which we get when we add the negation of the sentence to the axioms of A,

is consistent. A consistency proof by the method of exhibition can be given
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if this axiom system is satisfiable in a finite domain. (A number of examples

of this procedure can be found in the works on linear and cyclical order by

E.V. Huntington and his associates. See especially “A new set of postulates

for betweenness with proof of complete independence”. Here one also finds

references to previous works.) Thus this method provides a sufficient exten-

sion of the method of deduction for many fundamental investigations in the

sense that the unprovability of a sentence from certain axioms can be proved

through exhibition, its provability through deduction.

But is the application of the method of exhibition restricted to finite

domains of individuals? This does not follow from what we have said up until

now. However, we do see that in the case of infinite domains of individuals

the possible systems of predicates no longer constitute a surveyable multitude

and there can be no talk of testing all courses of value. Nevertheless in the

case of given axioms we might be in a position to show their satisfiability

by given predicates. And this is actually the case. Consider for example the

system of three axioms

(x) ¬Rxx,

(x)(y)(z) (Rxy & Ryz → Rxz),

(x)(∃y) Rxy.

Let us clarify what these say: We start with an object a in the domain of

individuals. According to the third axiom there must be a thing b for which

Rab is true; and because of the first axiom b must be different from a. For

b there must further be a thing c for which Rbc is true, and because of the

second axiom Rac is also true; according to the third axiom c is distinct
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from a and b. For c there must again be a thing d for which Rcd is true.

For this thing Rad and Rbd are also true, and d is distinct from a, b, c. This

process involved here has no end; and it shows us we cannot satisfy the

axioms in a finite domain of individuals. On the other hand we can easily

show satisfaction in an infinite domain of individuals: We take the integers

as individuals and substitute the relation “x is less than y” for Rxy; one sees

immediately that all three axioms are satisfied.

It is the same with the axioms

(∃x)(y) ¬Syx,

(x)(y)(u)(v) (Sxu & Syu & Svx→ Svy),

(x)(∃y) Sxy.

One can easily ascertain that these cannot be satisfied in a finite domain of

individuals. On the other hand they are satisfied in the domain of positive

integers if we replace Sxy with the relation “y immediately follows x”.

However, we notice in these examples that exhibiting in these cases does

not conclusively settle the question of consistency; rather the question is

reduced to that of the consistency of number theory. In the earlier examples

of finite exhibition we took integers as individuals. There, however, this was

only for the purpose of having a simple way to designate individuals. Instead

of numbers we could have taken other things, letters for example. And also

the properties of numbers which were used could have been established by a

concrete proof.

In the cases now before us, however, we cannot produce a concrete repre-

sentation of the numbers; for we make essential use of the assumption that
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the integers constitute a domain of individuals and therefore a complete

totality.

We are, of course, quite familiar with this assumption since in modern

mathematics we are constantly working with it; one is inclined to consider it

self-evident. It was Frege who with a sharp and vigorous critique first estab-

lished that the recreation of the sequence of integers as a complete totality

must be justified by a proof of consistency. (Grundlagen der Arithmetik and

Grundgesetze der Arithmetik) According to Frege such a proof, in the sense

of an exhibition, could be carried out only as a proof of existence; and he

believed the objects for such an exhibition were to be found in the domain

of logic. His exhibition-procedure amounts to defining the totality of inte-

gers with the help of the totality (presupposed to exist) of all conceivable

one-place predicates. However, this basic assumption, which under impar-

tial consideration seems very suspect anyway, was shown to be untenable by

the well-known logical and set-theoretic paradoxes discovered by Russell and

Zermelo. And the failure of Frege’s undertaking has made us even more con-

scious of the problematic character of assuming the totality of the sequence

of integers than did his dialectical critique.

In the light of this difficulty we might try to use some other infinite

domain of individuals instead of the sequence of integers for the purpose of

proving consistency; a domain taken from the realm of sense perception or

physical reality rather than being a pure product of thought like the sequence

of integers. However, if we look more closely we will realize that wherever

we think we encounter infinite manifolds in the realm of sensible qualities

or in physical reality there can be no question of the actual presence of
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such a manifold; rather the conviction that such a manifold is present rests

on a mental extrapolation, the justification of which is as much in need of

investigation as the conception of the sequence of integers.

A typical example in this connection are those cases of the infinite which

gave rise to the well-known paradoxes of Zeno. Suppose some distance is

traversed in a finite time; the traversal includes infinitely many successive

subprocesses the traversal of the first half, then of the next quarter, then the

next eighth, and so on. If we are considering an actual motion, then these

subtraversals must be genuine processes succeeding one another.

People have tried to refute these paradoxes with the argument that the

sum of infinitely many temporal intervals may converge producing a finite

duration. However, this reply does not come to grips with an essential point

of the paradox, namely the paradox that lies in the fact that an infinite suc-

cession, the completion of which we could not accomplish in the imagination

either actually or in principle, should be accomplished in reality.

Actually there is much more radical solution of the paradox. It consists in

pointing out that it is by no means necessary to believe that the mathemati-

cal space-time representation of movement remains physically meaningful for

arbitrarily small segments of space and time; rather there is every reason to

assume that a mathematical model extrapolates the facts of a certain domain

of experience, e.g. movement, below the orders of magnitude accessible to

our observation for the purpose of a simplified conceptual structure; for ex-

ample, continuum mechanics involves an extrapolation in that it is based on

the conception of space as filled with matter; it is no more the case that un-

bounded division of a movement always produces something characterizable
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as movement than that unbounded spatial division of water always produces

water. When this is accepted the paradoxes vanish./conceptual

Its idealizing structure notwithstanding, the mathematical model of move-

ment has a permanent value for the purpose of simplified representation. For

this purpose it must not only coincide approximately with reality but also

the extrapolation it involves must be consistent. From this point of view the

mathematical conception of movement is not in the least shaken by Zeno’s

paradoxes; the mathematical counterargument just referred to has in this

case complete cogency. It is another question however, whether we possess

a real proof of the consistency of the mathematical theory of motion. This

theory depends essentially on the mathematical theory of the continuum; this

in turn depend essentially on the conceptualization of the set of all integers

as a complete totality. We therefore come back by a roundabout.way to the

problem we tried to avoid by referring to the facts about motion.

It is much the same in every case in which a person thinks he can show

directly that some infinity is given in experience or intuition for example

the infinity of the tone row extending from octave to octave to infinity, or

the continuous infinite manifold involved in the passage from one color to

another. Closer consideration shows that nothing infinite is given to us in

these cases at all; rather it is interpolated or extrapolated through some

mental process.

These considerations make us realize that reference to non-mathematical

objects can not settle the question whether an infinite manifold exists; the

question must be solved within mathematics itself. But how should one be-

gin an such a solution? At first glance it seems that something impossible is
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being demanded here: to produce infinitely many individuals is impossible

in principle; therefore an infinite domain of individuals as such can only be

indicated through its structure through relations holding among its elements.

In other words: a proof must be given that for this domain certain formal

relations can be satisfied. The existence of an infinite domain of individuals

can not be represented in any other way than through the satisfiability of cer-

tain logical formulas ; but these are exactly the kind of formulas we were led

to investigate in asking about the existence of an infinite domain of individ-

uals; and the satisfiability of these formulas vas to have been demonstrated

by the exhibition of an infinite domain of individuals. The attempt to apply

the method of exhibition to the formulas under consideration leads then to

a vicious circle.

But exhibition should serve only as a means in proofs of the consistency

of axiom systems. This procedure enabled us to consider domains with a

given finite number of individuals; and we recognized that in such domains

the consistency of a formula has the same significance as its satisfiability.

The situation is more complicated in the case of infinite domains of in-

dividuals. It is true in this case also that an axiom system represented by a

formula A is inconsistent if and only if the formula ¬A is valid. But since

we are no longer dealing with a surveyable supply of courses of value for the

variable predicates, we can no longer conclude that if ¬A is not valid there

is some model for satisfying the axiom system A at our disposal.

Accordingly, when we are dealing with infinite domains of individuals,

the satisfiability proves to be a sufficient but not a necessary condition of

consistency. We cannot therefore expect that in general a proof of consistency
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can be accomplished by means of a proof of satisfiability. On the other hand

we are not forced to prove consistency by establishing satisfiability; we can

just hold to the original negative sense of inconsistency. That is to say—if

we again imagine an axiom system. again represented by a formula A—we

do not have to show that satisfiability of the formula A, but only need to

prove that the assumption that A, is satisfied by certain predicates cannot

lead to a logical inconsistency.

To attack the problem in these terms we must first get an overview of

the possible logical inferences that can be made from an axiom system. The

formalization of logical inference as developed by Frege, Schröder, Peano,

and Russell presents itself as an appropriate means to this end.

We have now arrived at the following tasks: 1. to formalize rigorously the

principles of logical inference and turn them into a completely surveyable

system of rules; 2. to show for a given axiom system A, (which is to be

proved consistent) that starting with this system A no inconsistency can

arise via logical deductions, that is to say, no two formulas of which one is

the negation of the other can be proved.

However, we do not have to carry out this proof for each axiom system

individually; for we can make use of the method of arithmetizing to which we

referred at the beginning. From the point of view we have reached now this

procedure can be characterized as follows: we want an axiom system A which

on the one hand has a sufficiently surveyable structure so that we can give

a proof of consistency (in the sense of the second task); on the other hand,

however, A must be sufficiently comprehensive to enable us to derive the

satisfiability of axiom systems for geometry and branches of physics from the
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presupposition that A is satisfied by a system S of things and relations; such a

derivation would involve the representation of the objects,pf an axiom system

B by individuals or complexes of individuals from S and the substitution

for the fundamental relations of predicates constructed from the fundamental

relations of S using logical operations.

This suffices to show that the axiom system B is in fact consistent; for

any inconsistency produced in this system -would represent an inconsistency

derivable from the axiom system A even though the axiom system A is known

to be consistent.

Axiomatic arithmetic presents itself as such an A.

The “reduction” of axiomatic theories to arithmetic does not depend upon

arithmetic being a set of facts presentable to the intuition; arithmetic need

be no more than an ideal structure which we can prove consistent and which

provides a systematic framework encompassing the axiom systems of the

theoretical sciences; because they are encompassed in this framework the

idealizations of what is actually given which they involve will also be proved

consistent.

We now summarize the results of our latest considerations: The problem

of the satisfiability of an axiom system or a logical formula can be positively

solved in the case of a finite domain of individuals by exhibition; but in

the case where the satisfaction of the axioms requires an infinite domain of

individuals this method is no longer applicable because it is not determined

whether an infinite domain of individuals exists; the introduction of such an

infinite domain is not justified prior to a proof of the consistency of an axiom

system characterizing the infinite.

25



Because of the refutation of a positive method of deciding, there remains

only one possibility: to give a proof of consistency in the negative sense,

i.e. a proof of impossibility ; such a proof requires a formalization of logical

inference.

If we are going to approach the task of giving such a proof of impossibility

we must be clear that it cannot be carried out using axiomatic-existential

methods.of inference. Rather we must use only those kinds of inferences

which are free from idealizing assumptions of existence.

As a result of these considerations the following thought comes to mind:

If this proof of impossibility can be carried out without axiomatic-existential

assumptions, shouldn’t it also be possible to found arithmetic directly in the

same way and make the proof of impossibility completely superfluous? We

will consider this question in the following paragraphs.

2. Elementary number theory.—Finitistic inference and its lim-

its.

The question raised at the end of the previous paragraph was whether we

couldn’t found arithmetic directly by a method independent of axiomatics

and make a special proof of consistency superfluous; this question gives us

reason to recall that the technique of rigorous axiomatics and its pre- suppo-

sition of a fixed domain of individuals (and especially existential inference)

is by no means the original mathematical method.

Geometry was indeed built up axiomatically from the beginning. But

Euclid’s axiomatization is intended to be contentual and intuitive. In this

axiomatization there is no abstraction from the intuitive significance of fig-

ures. Moreover the axioms are not in existential form. Euclid does not
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presuppose that points and lines constitute any fixed domain of individuals

whatsoever. And that is why he does not formulate any existence-axioms

but only construction-postulates.

An example of such a postulate is: one can join two points with a straight

line; or, one can draw a circle around a given point with a prescribed radius.

The methodological standpoint involved here can only be carried out if the

postulates are looked on as the expression of known facts or as immediately

evident. As is well known the question which arises in this connection, namely

‘In what domain do the axioms of geometry hold, is a very controversial and

difficult one; and it is an essential advantage of formal axiomatics that it

makes the foundation of geometry independent of deciding this question.

In arithmetic we are free of this whole set of problems which are connected

with the character of geometric knowledge; in fact we find in this domain,

in elementary number theory and algebra, the purest examples of direct

contentual investigation without axiomatic assumptions. The mark of such

an investigation is that deliberations are in the form of thought experiments

involving objects assumed to be concretely given. In number theory the

concretely given objects are numbers, in algebra expressions involving letters

with given numerical coefficients.

We wish to consider the methods involved here more closely and make

the methodological principles somewhat more precise. In number theory we

have a beginning object and a method of continuing. We must determine

both intuitively. The particular determination is inessential here, but once it

is made it must be maintained for the whole theory. We choose the numeral 1

as beginning object and the adjunction of 1 as the method of continuing. The
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things which we obtain by applying the method of continuing, be- ginning

from the numeral 1 are, for example,

1, 11, 1111;

what are obtained in this way are figures beginning with 1 and ending with 1;

on every 1 which is not the end of the figure there follows an adjoined 1. These

figures are obtained by applying the method of continuing and,. therefore

by a concrete construction which terminates; this construction [Aufbau] can,

therefore be reversed in terms of a step-by-step decomposition [Abbau].

These figures constitute a kind of numeral; we propose to use the word

“numeral” to designate these figures only.

As is usual we imagine that a certain amount of latitude is allowed con-

cerning the exact formal configuration of numerals; for example, small dif-

ferences in construction such as the shape of the 1 or its size or the distance

between 1’s, will not be taken into consideration. All that we require is (1)

that both 1 and the affixing of 1 are intuitive objects which can always be

recognized in an unambiguous way, and (2) that we can always survey the

discrete parts from which a numeral is constructed.

In addition to numerals we introduce further signs, “communication-

signs”. These signs are fundamentally different from numerals which con-

stitute the objects of number theory.

In itself a communication-sign is also a figure; and we presuppose that it

can always be recognized in an unambiguous way and that small differences

in its construction are irrelevant. However, within the theory itself it is not

considered as an object; it is only a means for formulating facts, assertions,

and assumptions briefly and clearly.
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In number theory we use the following kinds of communication-signs:

1. Small Latin letters to designate any indeterminate numeral;

2. the usual number-signs abbreviating definite numerals, e.g. 2 for 11, 3

for 111;

3. Signs for certain operations which we perform with numerals and for

certain processes of construction by which we get from given numerals

other numerals;

4. the sign = to indicate coincidence between figures, the sign 6= to indi-

cate the difference between two figures: the sign < to indicate a relation

of magnitude between numbers which has not yet been explained;

5. Parentheses as signs for the order of operations when there is a possi-

bility of ambiguity.

How these signs are manipulated and how contentual deliberations are

carried out becomes clearest if we develop number theory in its basic features

somewhat further.

The first thing we determine for numbers is the relationship of magni-

tude. Let a be a numeral different from a numeral b. Let us consider how

this is possible. Both begin with 1, and the construction continues in the

same way for both unless one of the numerals comes to an end while the

construction of the other continues. This must in fact occur at some time,

and so the one numeral coincides with a portion of the other; in more precise

terms: the construction of one numeral coincides with an initial portion of

the construction of the other.
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If a numeral a coincides with a portion of b, we say that a is smaller than

b or that b is bigger than a; in symbols

a < b, b > a.

Our considerations show that for numerals a and b one of the relations

a = b, a < b, b < a

must hold; and it is obvious from the intuitive meaning that these relations

exclude one another. Similarly it is an immediate consequence that if a < b

and b < c then also a < c.

Addition is very closely bound up with the relationship of magnitude. If

a numeral b coincides with a portion of a, the remainder is also a numeral

c; one gets the numeral a by affixing c to b in such a way that the 1 with

which c begins is attached to the 1 with which b ends in conformity with

the method of continuing. This kind of concatenation of numerals we call

addition; and we use the sign + for it.

We conclude directly from this definition of addition: if b < a then from

the comparison of b with a one gets a representation of a in the form b + c,

with c a numeral. And if one starts with any numerals b, c then addition

produces another numeral a, such that

a = b+ c;

in this case we have

b < a.

The significance of numerical equalities and inequalities such as 2 < 3, 2+3 =

5 is clear from the above definitions. 2 < 3 says that the numeral 11 coincides
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with a portion of 111; 2 + 3 = 5 says that the numeral 11111 results from

the affixing of 111 with 11.

In both of these cases it is a question of the representation of a correct

assertion, but, for example 2+3 = 4 is the representation of a false assertion.

We now have to determine that computational laws hold for intuitively

defined addition.

These laws will be here conceived as propositions about arbitrary given

numerals and investigated in terms of intuitive deliberation.

The associative law, according to which if a, b, c are any numerals,

a+ (b+ a) = (a+ b) + c,

is directly inferred from the definition of addition. The commutative law,

which says that

a ∗ b = b ∗ a

always holds is not so directly given. We need here the method of proof by

complete induction. We first make clear how this kind of inference is to be

understood from our elementary point of view: Consider any assertion about

a numeral which has an elementary intuitive content. The assertion holds for

1, and one knows that if it holds for a numeral n then in every case it also

holds for the numeral n + 1. One infers that the expression holds for every

given numeral a.

In fact the numeral a is constructed when one applies the process of

adjoining 1 beginning from 1. If one establishes that the assertion under

consideration holds for 1 and that it holds for the result of adjoining a 1 to

a numeral for which it is supposed to hold, then, with the completion of the

construction of a one determines that the assertion holds for a.
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Complete induction then is not an independent principle but a conse-

quence of the concrete construction of numerals.

Using this method of inference we can now show in the usual way that

for every numeral

1 + a = a+ 1,

and from this that one always has

a+ b = b+ a.

We will now sketch briefly the introduction of multiplication and division

and the method of constructing.concepts connected with it,

Multiplication can be defined in the following way: a ∗ b signifies the

numeral which one gets from b when one replaces every 1 with an a in con-

structing b; thus one first constructs a and affixes a in every place where a 1

is introduced in the construction of b.

The associative law for multiplication as well as the distributive law

a ∗ (b+ c) = (a ∗ b) + (a ∗ c)

are immediate from the definition. The other distributive law

(b+ c) ∗ a = (b ∗ a) + (c ∗ a)

is seen to hold with the help of complete induction using the laws of addition.

In this way one also gets the commutative law of multiplication.

In order to get at division we must first introduce some preliminary con-

siderations. The construction of a numeral is such that the adjunction of a

numeral always produces a new numeral. The formation of a numeral a then
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involves the formation of a concrete row of numerals beginning with 1 and

ending with a in which every numeral arises from its predecessor through the

adjoining of l. One sees equally that this row contains except for a itself only

numerals which are < a and that a numeral which is < a must occur in this

row. We call this sequence of numerals “the row of numerals from 1 to a”

for short.

Let b be a numeral different from 1 and < a. b has the form 1 + c; thus

b ∗ a = (1 ∗ a) + (c ∗ a) = a+ (c ∗ a),

and therefore

a < b ∗ a.

If we multiply b successively with the numerals in the row from 1 to a we get

the row of numerals

b ∗ 1, b ∗ 11, . . . , b ∗ a;

the first of these is < a, and the last > a. We go through this row until we

first come upon a numeral > a; its predecessor (call it b ∗ q) is either = a or

< a, while

b ∗ (q + 1) = (b ∗ q) + b > a.

Then either

a = b ∗ q

or we have a representation

a = (b ∗ q) + r;

in the latter case we have

(b ∗ q) + r < (b ∗ q) + b
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and so

r < b.

In the first case a is “divisible by b” (“b divides a”), and in the second

case there is division with a remainder.

In general we say a is divisible by b if the numeral a occurs in the row

b ∗ 1, b ∗ 11, . . . , b ∗ a;

This occurs if b = 1 or if b = a or in the first case just described.

From the definition of divisibility it follows immediately that if a is divis-

ible by b the determination that it is yields a representation

a = b ∗ q.

But the converse also holds; the divisibility of a by b follows from an equation

a = b ∗ q since the numeral q must belong to the row of numerals from 1 to

a.

If a 6= 1 and no divisor of a other than 1 and a occurs in the row of

numerals from 1 to a, then every product m ∗ n in which m and n belong to

the row of numerals from 2 to a is distinct from a; in such a case we call a a

prime number.

If a is a numeral different from 1 then there is a first numeral in the row

from 1 to n which is distinct from 1 and a divisor of n. It is easy to show

that this “least divisor of n distinct from 1” is a prime number.

Now we can also prove in the same way as Euclid did that for any numeral

a a prime number > a, can be determined: One multiplies together the

numbers from the row from 1 to a, adds 1, and then gets the least divisor t
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distinct from 1 of the numeral thus obtained. This is a prime number, and

one sees easily that t cannot occur in the row of numbers from 1 to a and so

is > a.

The further development of elementary number theory is clear; only one

point still requires fundamental discussion, the method of recursive definition.

We recall the nature of this method: A new function-symbol, say, φ, is

introduced, and the definition of the function involves two equations which

in the simplest case have the form

φ(1) = a

φ(n+ 1) = ψ(φ(n), n).

Here a is a numeral and ψ is a function constructed from functions already

known so that ψ(b, c) can be computed for given numerals b, c and has as

value a numeral.

For example the function

ρ(n) = 1 ∗ 2 ∗ . . . n

is defined by the equations

ρ(1) = 1

ρ(n+ 1) = φ(n) ∗ (n+ 1).

What sense this method of definition has is not self-evident. To clarify

it we must first make precise the concept of function. We understand a

function to be intuitive instructions on the basis of which a numeral can be

paired with a given numeral. A pair of equations of the above kind, which we
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call a “recursion”, we interpret as an abbreviated indication of the following

instructions:

Let m be some numeral. If m = 1, then m is to be paired with the

numeral a. Otherwise m has the form b+ l. First one writes schematically

ψ(φ(b), b).

If b = 1 then one replaces φ(b) here with a; otherwise b has the form c + 1

and one replaces φ(b) with

ψ(φ(c), c).

Again, either a = 1 or a is of the form d + 1. In the first case one replaces

φ(c) with a and in the second with

ψ(φ(d), d).

This procedure terminates in every case. For the numerals

b, c, d, . . . ,

which we obtain in sequence arise from the decomposition of the numeral

m; and this, like the construction of m must terminate. When the decom-

position reaches 1, φ(1) is replaced with a; the resulting configuration no

longer contains the sign φ; rather only ψ occurs as a function sign, perhaps

in several strata, and the innermost arguments are numerals. We have then

obtained a computable expression; for ψ is supposed to be an already known

function. This computation has to be done from the inside out; the numeral

obtained is the numeral to be paired with m.

The content of these instructions shows us first that in principle they

can be carried out for any case for a given numeral m and that the result
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is uniquely fixed. At the same time we see that for a given numeral n the

equation

φ(n+ 1) = ψ(φ(n), n)

is satisfied if we replace φ(n) and φ(n + l) with the numerals paired with

n, and n + 1 according to our directions and then substitute for the known

function ψ its definition.

The somewhat more general case in which one or more undetermined

numerals occur as “parameters” in the function being defined is handled in

much the same way. In the case where there is one parameter t the recursion

equations have the form

φ(t, 1) = α(t)

φ(t, n+ 1) = ψ(φ(t, n), t, n);

here both α and ψ are known functions. For example, the function φ(tn) = tn

is defined by the recursion

φ(t, 1) = t

φ(t, n+ 1) = φ(t, n) ∗ t.

Definition by recursion does not involve an independent principle of defini-

tion; within the framework of elementary number theory it has only the signif-

icance of a convention for abbreviating the description of certain construction-

processes through which one gets from one or more given numerals another

numeral.

We take as an example to indicate that we can carry out a proof of impos-

sibility in the framework of intuitive number theory the assertion expressing
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the irrationality of
√

2: There cannot be two numerals m,n such that

m ∗m = 2 ∗ n ∗ n.

(We follow customary procedure in writing products involving several factors

without parentheses; this procedure is permissible because of the associative

laws for multiplication.) As is well known, the proof proceeds as follows:

One shows first that every numeral is either divisible by 2 or of the form

(2 ∗ k) + 1; therefore a ∗ a is divisible by 2 only if a is divisible by 2.

If a pair of numbers m,n satisfying the above equation were given, we

could examine all number-pairs a, b with

a belonging to the row 1, . . . ,m,

b belonging to the row 1, . . . , n,

and determine whether or not

a ∗ a = 2 ∗ b ∗ b.

We choose from among the pairs of values satisfying the equation the one in

which b has the smallest value. There can only be one such; call it m′, n′. In

accordance with our previous remark, it follows from the equation

m′ ∗m′ = 2 ∗ n′ ∗ n′

that m′ is divisible by 2:

m′ = 2 ∗ k′;

therefore we have

2 ∗ k′ ∗ 2 ∗ k′ = 2 ∗ n′n′,

2 ∗ k′ ∗ k′ = n′ ∗ n′.
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But then n′, k′, would be a pair of numbers satisfying our equation with

k′ < n′. This however is inconsistent with the way in which n′ was picked.

Of course, the sentence just proved can be expressed positively: If m and

n are any two numerals m ∗m is different from 2 ∗ n ∗ n.

Let this much suffice as a characterization of the elementary treatment

of number theory. We have developed it as a theory of numerals, i.e. of a

certain kind of especially simple figure. The significance of this theory for

epistemology depends upon the relation of numerals to the ordinary concept

of ordinal number [Anzahl-Begriff ]. We obtain this relation in the following

way:

Imagine a concrete (and therefore finite) collection of things. One con-

siders the things in the collection successively and correlates them in a row

with the numerals 1, 11, 111, . . . as numbers. When no thing is left a certain

numeral has been reached. This numeral is then the ordinal number of the

collection of things taken in the sequence chosen.

But now we easily convince ourselves that the resulting numeral n is in

no way dependent on what sequence is chosen. For let

a1, a2, . . . , an

be the things of the collection in the sequence chosen,

b1, b2, . . . , bk

the things in some other sequence. We can go from the first enumeration

to the second by a succession of interchanges of numbers in the following

manner: If a1, is different from b1, then we interchange the number r which

b1 had in the first enumeration with 1, that is to say we correlate ar with the
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number r, a1 with the number 1. In the resulting enumeration b1, has the

number 1; following it and correlated to the number 2 is the thing b2 unless

this thing has in this enumeration some other number s, (necessarily distinct

from 1); if it does we exchange this number s with 2 in the enumeration; the

result is an enumeration in which b1 has the number 1, b2 the number 2. In

the resulting enumeration b3 has the number 3 or some other, t,distinct from

1 and 2; we exchange the latter with 3.

This procedure must terminate; for with every interchange the enumera-

tion is brought at least one step closer to agreement with the enumeration

b1, b2, . . . , bk;

as a result one will eventually get the number 1 for b1, the number 2 for

b2, . . . , the number k for bk; and then there is no other thing left. On the

other hand the stock of numbers used remains exactly the same with every

interchange; for all that happens is that the number of one thing is exchanged

with that of another. Therefore in every case the enumeration goes from 1

to n .and as a result we have

k = n.

Thus the numeral n is assigned to the collection under consideration inde-

pendently of any sequence; in this sense we can correlate n with the collec-

tion as its cardinal number [Anzahl]. We say that the collection consists of

n things. (These considerations were put forward by von Helmholtz in his

essay “Zahlen und Messen”.)

If two concrete collections have a common cardinal number, we get from

an enumeration of each a one-one correlation of the things in one collection
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with those in the other. On the other hand, if we have such a correlation be-

tween two given collections of things the two have the same cardinal number;

this is an immediate consequence of our definition of cardinal number.

Contentual considerations enable us to pass from the definition of cardinal

number to the fundamental theorems of the theory of cardinal numbers, e.g. to

the assertion that the uniting of two collections of cardinality a and b and

without a common element gives rise to a collection of a+ b things.

After the representation of elementary number theory we would like to

indicate briefly the character of the elementary contentual point of view in

algebra. We shall deal with the elementary theory of integral functions of

one or more variables with integers as coefficients.

The objects of the theory are again certain figures, “polynomials”; they

are constructed from a determinate stock of letters, x, y, z, . . ., called “vari-

ables” and the numerals with the help of the signs +,−, ∗ and parentheses.

In this case then the signs +, ∗ belong to the objects of the theory; they

should not be construed as communication-signs as in elementary number

theory.

We again use small Latin letters as communication-signs, not just for

numerals but also for arbitrary polynomials.

The construction of polynomials out of the signs indicated above follows

these rules:

A variable and also a numeral can be considered in itself a polynomial.

From two polynomials a, b the polynomials

a+ b, a− b, a ∗ b

can be constructed; from a polynomial a (−a) can be constructed. The usual
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rules for parentheses hold here. As communication-signs we also introduce:

– the numbers 2, 3, . . .,

– the number-signs 2, 3, . . ., as in elementary number theory;

– the sign 0 for 1− 1;

– the usual signs for powers: for example, if z is a numeral xz signifies

the polynomial which results from z when x is put in place of every 1

and the sign “∗” is put between every two successive x’s;

– the sign = indicates the mutual substitutability of ’two polynomials.

Substitutability is determined by the following contentual rules:

1. The associative and commutative rules for “+” and “∗”.

2. The distributive law a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

3. Rules for “−”: a− b = a+ (−b), (a+ b)− b = a.

4. 1 ∗ a = a

5. If neither variables nor “−” occur in two polynomials m,n and the

equality m = n holds in the sense of equality for elementary number

theory, then n is substitutable form.

These rules of substitutability relate to polynomials occurring as parts of

other polynomials. It is possible to derive from them further assertions about

substitutability, sentences which constitute the “identities” and theorems of

elementary algebra. As examples of simple provable identities we mention
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a+ 0 = a −(a− b) = b− a

a− a = 0 −(−a) = a

a ∗ 0 = 0 (−a) ∗ (−b) = a ∗ b

Of the theorems which can be established from contentual considerations

we mention the following fundamental assertions:

a) If a, b are two mutually substitutable polynomials of which at least one

contains the variable x and if a1, b1 result from a, b when the variable x is

replaced throughout with the polynomial c, then b1 is substitutable for a1.

b) Substitution of numerals for variables in a correct equation between

polynomials yields a correct numerical equation in the sense of number theory

(if we suppose computation with negative numbers is introduced into number

theory).— The meaning of b) may be illustrated by a simple example: The

equation

(x+ y) ∗ (x+ y) = x2 + 2 ∗ x ∗ y + y2

says nothing except that we have determined that x2 + 2 ∗ x ∗ y + y2 is

substitutable for (x+ y) ∗ (x+ y). On the basis of sentence b), however, we

can infer that if m and n are number signs (m + n) ∗ (m + n) and m ∗m +

2 ∗m ∗ n+ n ∗ n coincide in the number-theoretic sense.

c) Every polynomial can be substituted for either by 0 or by a sum of

powers of variables, each conjoined with a positive or negative numerical

multiplicand; in this connection the polynomial 1 counts as a sum of products

of powers of variables.

This normal form makes possible a procedure for deciding for two given

polynomials whether or not they are mutually substitutable. For the follow-

ing assertion holds:
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d) A polynomial which is the sum of different products of powers with

numerical factor 0 is not substitutable for a polynomial which is the sum

of different products of powers with numerical multiplicands, and two such

polynomials are mutually substitutable if and only if they coincide when the

order of the summands and the order of the factors in the products of powers

with their numerical multiplicands is overlooked.

The second part of this assertion follows from the first; and the first can be

proved with the help of b) by considering suitable substitutions of numerals.

The following is a particular consequence of d):

e) if a numeral n is substitutable for a numeral m, conceived as a poly-

nomial, m and n coincide.

A methodological point about these assertions should be noted: The sub-

stitutability of polynomials assumed in a), e) is to be understood as the

assumption that the substitutability has been determined according to the

rules. The assertion of substitutability in c) is more closely determined be-

cause a method of establishing it is given and described in the proof of the

theorem.

And so here we are just as much in the domain of elementary contentual

inferences as we were in the case of elementary number theory. And the same

is true of the other assertions and proofs of elementary algebra.

The consideration of the principles of number theory and algebra has

served to show us the application and use of direct contentual inference car-

ried out in thought experiments performed on intuitively imagined objects

and free from axiomatic assumptions. We will call this kind of inference

“ [finitistic]” [finit] inference in order to have a short expression; likewise we
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shall call the attitude underlying this kind of inference the “finitistic” atti-

tude or point of view. We will speak of finitistic concepts or assertions in

the same sense; in using the word “finitistic” we convey the idea that the

consideration, assertion or definition in question remains within the limits of

objects which it is in principle possible to observe and of processes which it

is in principle possible to complete; that it is carried out in the framework of

concrete thought.

To characterize the finitistic point of view further we consider certain

general aspects relating to the use of the forms of judgment as classified in

logic in finitistic thinking; we consider assertions about numerals as examples.

A universal judgment about numerals can only be interpreted in a hy-

pothetical sense from a finitistic point of view; that is to say, it can only

be interpreted as an assertion about any given numeral. Such a judgment

expresses a law which must be confirmed in every particular case.

An existential sentence about numerals, i.e. a sentence of the form “there

is a numeral n with the property A(n)” is to be construed finitistically as a

“partial judgment”; it is an incomplete communication of a more precisely

determined assertion, either a direct indication of a numeral with the prop-

erty A(n) or the indication of such a procedure a definite bound must be

given to the number of operations involved.

Judgments in which a universal assertion is conjoined with an existen-

tial one are to be interpreted in a corresponding way. So. for example, a

sentence of the form “for every numeral k with the property A(k) there is

a numeral 1 such that B(k, 1)” is constructed finitistically as an incomplete

communication of a procedure which for any given numeral k makes possible
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the finding of a numeral 1 with the property A(k) makes possible the finding

of a numeral 1 which stands to k in the relation B(k, 1).

The application of negation demands special attention.

Denial is unproblematic in the case of “elementary” judgments, which

involve a question decidable by a direct intuitive determination (an “inspec-

tion”). For example, if k, 1 are particular numerals it can be directly deter-

mined whether or not

k + k = 1,

i.e. whether or not k + k and 1 coincide or are different.

The negation of such an elementary judgment says simply that the result

of the intuitive decision diverges from the situation asserted to obtain by the

judgment; and one has directly for an elementary judgment a dichotomy:

either it or its negation is correct.

On the other hand it is not immediately clear what should count as the

negation of a universal or existential judgment in the finitistic sense.

We consider first assertions of existence. The assertion that there is not

a numeral with the property A(n) might mean (in an imprecise sense) that

we are unable to indicate a numeral with this property; no such numeral is

at our disposal. But such an assertion has no objective significance because

it involves an accidental epistemological condition. If, however, one wishes

to maintain the unavailability of a numeral with the property A(n) indepen-

dently of epistemological conditions, he can do it in a finitistic sense only

with an assertion of impossibility, an assertion that a numeral can not have

the property A(n).

In this way we arrive at a rigorous negation; however, it is not exactly
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the contradictory opposite of an assertion of existence, “there is a numeral

n with the property A(n)”, which, as a partial judgment, points to a known

numeral with this property or to a procedure for producing such a numeral

which we possess.

Unlike an elementary assertion and its negation, an existential assertion

and its rigorous negation are not assertions about the only two possible results

of one and the same decision; they correspond to two distinct epistemolog-

ical possibilities: on the one hand the discovery of a numeral with a given

property, on the other the discernment of a general law about numerals.

It is not logically obvious that one of these two possibilities must be

realized. From the finitistic point of view then we cannot use the alternative:

either there is a numeral n such that A(n) or the holding of A(n) for a

numeral is precluded.

The situation is much the same in the case of a universal judgment of the

form “for every numeral n A(n) holds” with respect to finitistic negation. The

denial that such a judgment holds does not have a direct finitistic sense; if it is

made precise as the assertion that the universal truth of A(n) can be refuted

by a counterexample, then this rigorous negation no longer constitutes the

contradictory opposite of a universal judgment; for again it is not logically

obvious that either a universal judgment or its rigorous negation must hold,

i.e. that either A(n) holds for every given numeral n or that a numeral can

be given for which A(n) does not hold.

Of course, it must be noted that the discovery of a counterexample is

not the only possibility for refuting a universal judgment. Pursuing the

consequences of a universal judgment can lead to a contradiction in other

47



ways. This circumstance, however, does not eliminate any difficulties but

only increases the complications. For it is no more obvious that logically

obvious that a universal judgment about numerals must either hold or lead

to a contradiction in its consequences and therefore be refutable than it is

that such a judgment if refutable is refutable through a counterexample.

The complicated situation that we find here with respect to the denial

of judgments from the finitistic point of view corresponds to the thesis of

Brouwer that the law of the excluded middle does not hold for infinite col-

lections. This thesis also holds from the finitistic point of view insofar as we

are unable to find a notion of negation with finitistic content which satisfies

the law of the excluded middle for existential and universal judgments.

These considerations will perhaps suffice as an indication of the finitistic

point of view. If we look at customary treatments of arithmetic we realize

that our methodological point of view does not obtain; arithmetic inferences

and concepts often go beyond the limits of the finitistic way of thinking in

many ways.

The inferences of number theory already go be yond the finitistic point of

view; for here assertions about the existence of integers are permitted, and

no attention is paid to the possibility of actually determining the number in

question; (in ordinary mathematics we speak of integers instead of “numer-

als” (more exactly we speak of “positive integers” or of “numbers” for short)

and also use is made of the alternative that an assertion about integers either

holds for all integers or there is a number for which it does not hold.

This alternative, the “tertium non datur” for integers is implicit in the

application of the “least number principle”; “If an assertion about integers

48



holds for at least one number, there is a least number for which it holds”.

In its elementary applications the least number principle has a finitistic

character. Indeed, if A(a) is the assertion about a number a and m is a

definite number for which A(m) holds, then one need only go through the

numbers from 1 to m; for one must come in this way to a first number k for

which A(k) holds since m is such a number. k is then the least number with

the property A.

But these considerations depend on two presuppositions which are not

always fulfilled in non-elementary applications of the least number principle.

In the first place it is presupposed that A holds of a number in the sense that

a number m with the property A(m) is actually given; but in applications the

existence of a number with the property A is often proved using the “tertium

non datur” so that no actual determination of such a number is possible. The

second presupposition is that it can be decided for any number k in the row

from 1 to m whether or not A(k) holds; of course, it is possible to decide

this for elementary assertions A(m); on the other hand, for a non-elementary

expression A(a) the question whether it holds for a given number k may

constitute an unsolved problem.

For example, let ψ(a) be a function defined by a sequence of recursions

and substitutions, and so admissible in finitistic number theory; and let A(b)

stand for the assertion that there is a number a for which ψ(a) = b. Then, for

a given number k, the question whether A(k) holds is not in general (i.e. when

the function ψ is not especially simple) decidable by direct inspection; rather

it has the character of a mathematical problem. For the recursions which

enter into the definition of ψ give the value of the function only for a given
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argument ; but the question whether there is a number a for which ψ(a) has

the value k involves the whole course of values of the function psi.

In any case then where these presuppositions of the finitistic justification

of the least number principle are not fulfilled, the justification of the principles

requires reference to the “tertium non datur” for integers.

We give some examples of number-theoretic disjunctions which result

from the tertium non datur for integers but which are not provable in a

finitistic way, given our present knowledge:

“Either every even number greater than 2 is representable as the sum

of two prime numbers or there is an even number greater than 2 and not

representable as the sum of two prime numbers.”

“Either every integer of the form 2(2k) + 1 with k > 4 is divisible into two

factors greater than 1 or there is a prime number of the form 2(2k) + 1 with

k > 4.”

“Either every sufficiently great integer is representable as the sum of less

than 8 cubes or for every integer n there is an integer m greater than n and

not representable as the sum of less than 8 cubes.”

“Either there are arbitrarily great prime numbers p with the property

that p + 2 is also a prime number or there is a greatest prime number with

this property.”

“Either for every integer n > 2 and arbitrary positive integers a, b, c the

inequality an + bn 6= cn holds or there is a least integer n > 2 for which the

equation an + bn = cn has a solution in the positive integers.” This kind of

example is appropriate for making clear the simplest forms of non-finitistic

argumentation. However, we will not really feel the need to go beyond the
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finitistic point of view in number theory; for there is hardly any number-

theoretic proof in which the non-finitistic inferences that happen to be made

can not be circumvented with rather easy simple modifications.

It is quite different in the case of analysis (infinitesimal calculus); here

non-finitistic methods of constructing concepts and carrying out proofs are

a basic tools of the theory.

We first recall the fundamental concept of analysis, the concept of a real

number. The real numbers are defined either as a strictly increasing sequence

of rational numbers

r1 < r2 < r3 < . . .

which are all less than a given bound (“fundamental sequence”), or as an

infinite decimal, or fraction, or as a partition of the rational numbers into

two classes, every member of the first class being smaller than every member

of the second (“Dedekind cut”).

In all of these definitions the idea of the rational numbers as a determinate

totality which can be considered as a domain of individuals is fundamental.

And in analysis the totality of possible sequences of rational numbers or of

possible partitions of all rational numbers is also conceived as a domain of

individuals.

Of course, it is sufficient to consider the totality of integers rather than the

totality of rational numbers and the totality of all partitions of integers rather

than that of all rational numbers. For in fact every positive rational number

is given by a pair of numbers m,n and every rational number whatever can

be represented as the difference between two positive rational numbers, i.e. as
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a pair of pairs of numbers (m,n; p, q). Also every fraction of the form

0, a1a2a3 . . .

with a1, a2, a3, . . . all either = 0 or = 1 can be interpreted as a partition of

all integers: namely the partition into those numbers k for which ak = O

and into those for which ak = 1. From this point of view there is a one-one

correspondence between the partitions of the positive integers and the binary

fractions of the above form; and on the other hand every real number can be

represented as the sum of a positive integer and binary fraction of this form.

It is possible to consider sets of integers instead of partitions; for every

set of integers determines the partition into the numbers which belong to the

set and those which do not; and equally every set of integers is completely

determined by such a partition. The same remark holds for the Dedekind

cut; it likewise can be represented by a set of rational numbers, namely the

set containing the smaller rational numbers. This set is characterized by

the following properties: 1. it contains at least one and not every rational

number; 2. if it contains a rational number it contains all smaller and at least

one bigger rational number.

These transformations, however, weaken the existential presupposition

which must be at the basis of analysis in an unessential way only. It is still

necessary to construe the manifold of the integers and that of the sets of

integers as a fixed domain of individuals; the “tertium non datur” is taken

to hold for these domains, and an assertion of the existence of an integer or

set of integers with a property P is taken to be meaningful whether or not

it has significance as a partial judgment. So even though the infinitely large

and the infinitely small in any genuine sense are excluded by these theories
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of real numbers and remains only as a way of speaking, still the infinite

as a totality is retained. One can even say that the rigorous foundation

of analysis introduced and validated the representation of infinite totalities

systematically for the first time.

We wish to convince ourselves that the presupposition of the totality of

the domain of integers or rational numbers and of the domain of sets (par-

titions) of integers or rational numbers has an essential application in the

founding of analysis; for this purpose we need to introduce certain funda-

mental concepts and ideas.

If the reals are defined as increasing sequences of rational numbers

r1 < r2 < r3 < . . . ,

the concept of equality for real numbers is already non-finitistic, For whether

or not two such sequences of rational numbers define the same real number

depends upon whether or not for every number in one of the sequences there

is a larger in the other and vice-versa. But we do not have a general procedure

for deciding this question.

If, however, we begin with the definition of real numbers via Dedekind

cuts, we have to prove that every bounded increasing sequence of rational

numbers gives rise to a cut representing the upper bound of the sequence.

One gets this cut by partitioning the rational numbers into those which are

less than at least one member of the sequence and those which are not.

That is to say: a rational number r is said to be in the first or second class

according to whether there is in the sequence a number > r or whether all

numbers in the sequence are ≤ r. This, however, is no finitistic distinction.

The case is similar if real numbers are defined via infinite decimal or
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binary fractions. Again it must be shown that a bounded sequence of rational

numbers

r1 < r2 < r3 < . . . ,

determines a decimal (or binary) fraction. For simplicity let us suppose we

are dealing with a sequence of positive proper fractions:

0 < b1 < b2 < . . . < 1;

we wish to determine the binary fraction which represents the upper bound

of the sequence of fractions. This is done as follows:

a1 is 0 or 1 depending on whether or not all fractions bn are < 1/2;

am+1 is 0 or 1 depending on whether or not all fractions bn are less than

a1

2
+
a2

4
+ . . .+

am
2m

+
1

2m+1
.

In each case one considers the alternative whether all rational numbers

in a given sequence

r1, r2, r3, . . .

satisfy a certain inequality or whether there is at least one exception to

this inequality. This alternative depends upon the “tertium non datur” for

integers; for it is presupposed that for every integer n the rational number

rn, satisfies the inequality in question or there is at least one integer n such

that rn fails to satisfy it.

Moreover, the use of the totality of integers as a domain of individuals is

not sufficient for analysis; we need in addition the totality of real numbers.

As we saw, this totality is essentially equivalent to that of the sets of integers.
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The need for the real numbers as a domain of individuals is made clear

in connection with the theorem of the upper bound of a bounded set of

real numbers. Consider the proof of the existence of the upper bound of a

bounded set of real numbers, e.g. reals in the interval between 0 and 1, for real

numbers defined on the basis of Dedekind cuts; in this proof one considers

the partition of the rational numbers into those which are and those which

are not exceeded by a real number in the set. Thus one counts a rational

number r as being in the first class if and only if there is a real number a > r

in the set.

Now one must be clear that in analysis a set is usually given only by

a defining property; that is to say, the set is introduced as the collection

of those real numbers which satisfy a certain condition B. Therefore the

question whether there is a real number greater than r in a set under con-

sideration amounts to the question whether there is a real number greater

than r and also satisfying a certain condition B. Construing it in the latter

way makes clear that the totality of real numbers is presupposed as a. do-

main of individuals. (This situation was made especially clear by Weyl in his

monograph “Das Kontinuum”.)

It should also be remarked that the process just described for constructing

an upper bound amounts to taking a set-theoretic union. In fact every real

number is defined by a partition of the rational numbers into larger and

smaller (or it is defined as the set of the smaller rational numbers). The

given set of real numbers is therefore represented as a set M of sets of rational

numbers, And the upper bound of the set M is constructed from the set of

those rational numbers which belong to at least one of the sets in M . The
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collection of these rational numbers is, however, the union of M .

Defining the real numbers by means of fundamental sequences or binary

fractions instead of using Dedekind’s definition does not make it possible to

circumvent the introduction of the real numbers as a. domain of individuals.

In deed these definitions make the procedure even more complicated because

an additional recursive technique enters. We will indicate what is involved in

the case of the definition of real numbers via binary fractions. We are then

concerned with a set of binary fractions

0.a1a2a3 . . .

which is again determined by a certain criterion B; and the upper bound is

represented by a binary fraction

0.b1b2 . . .

defined in the following way:

b1 = 0 if 0 stands in the first binary position in all binary fractions

satisfying the condition B; otherwise b1 = 1;

bn+1 = 0 if 0 stands in the (n + 1)th position in all binary fractions

satisfying the condition B and having the first n numerals coincident with

b1, b2, . . . , bn respectively; otherwise bn+1 = 1.

Here the totality of the real numbers enters as the totality of all binary

fractions; and we use the assumption that the “tertium n6n datur” holds for

infinite sequences of zeros and ones; otherwise bn+1 = 1.

But this presupposition of the totality of all real numbers (all binary

fractions) is not sufficient. This can be seen in the following simple case: Let

a be the upper bound of a set of real numbers. We want to show that there
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is a sequence of real numbers from the set which converges toward a. To do

this we argue as follows:

It follows.from the properties of an upper bound that for every integer n

there is a number cn in the set such that

a− 1

n
< cn < a;

and so

|a− cn| <
1

n
.

The numbers cn constitute therefore a sequence which converges toward a,

and they all belong to the set under consideration.

When we argue in this way our manner of expression hides an important

point in the proof. For when we write cn we presuppose that a for each

number n a definite one of the real numbers c belonging to the set under

consideration and satisfying the inequality

a− 1

n
< c ≤ a

has been distinguished for each number n.

There is an assumption involved here. All we can immediately infer is

this: for every number n there is a subset Mn of the set under consideration

which consists of those numbers satisfying the above inequality; and for every

n this subset has at least one element. Now what is assumed is that in each

of these sets

M1,M2,M3, . . .

we can distinguish an element c1, in M1, c2 in M2, . . . cn in Mn and thereby

get a determinate infinite sequence of real numbers.

57



We have here a special case of the axiom of choice; its general formulation

is the following: “If for every thing x in a species G1 there is at least one

thing y in the species G2 which stands to x in the relation B(x, y), then there

is a function φ which correlates each thing x in the species G1 with one thing

φ(x) in the species G2 which stands to x in the relation B(x, φ(x)).”

In the case at hand the species G1 is that of the positive integers, G2 that

of the real numbers; the relation B(x, y) is the inequality

a− 1

x
< y ≤ a

and the function φ the existence of which is derived from the axiom of choice,

correlates the real number cx with its number x.

Zermelo was the first to recognize the axiom of choice as a special assump-

tion and to formulate it set-theoretically; its use involves a further overstep-

ping of the finitistic point of view and goes beyond the application of the

“tertium non datur”. The above consideration of methodological examples

teaches us that the founding of analysis foundations of the infinitesimal cal-

culus, as they have been given since the discovery of rigorous techniques, does

not involve a reduction to finitistic number-theoretic thought. In this sense

the arithmetizing of mathematics is not complete since it involves certain

systematic and fundamental conceptions which do not belong to the domain

of intuitive arithmetic thinking. The insight which the rigorous foundation

of analysis has brought us is that these few fundamental assumptions already

suffice to build up mathematics as a theory of sets of numbers.

Large areas of mathematics, such as function theory, differential geom-

etry, and topology (analysis situs) are governed dominated by the methods

of analysis. General set theory, the methods of which have penetrated mod-
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ern abstract algebra and topology, goes well beyond the presuppositions of

analysis and makes the most extensive use of non-finitistic assumptions.

The usual treatment of arithmetic is by no means an expression of the

finitistic point of view but depends essentially upon additional principles of

inference. We see then that if we want to keep arithmetic in its current form

while acknowledging the demands of the finitistic point of view with respect

to evidence, we are confronted with the task of justifying the application of

those principles which transcend finitistic thinking by means of a consistency

proof. The success of such a proof of the consistency of the techniques of ar-

gument customary in arithmetic would give us a guarantee that the results of

using these techniques could never be contradicted by a finitistic determina-

tion or reflection; for finitistic methods are a part of ordinary arithmetic, and

a finitistic contradiction of an assertion proved by the techniques of ordinary

arithmetic would indicate a contradiction within ordinary arithmetic.

We return.then to the problem raised in #1. It remains to answer the

question from which the considerations of this section began: whether in-

stead of using the formalization of inference to prove the impossibility of a

contradictions arising in arithmetic, we couldn’t found all of arithmetic di-

rectly without additional assumptions and make the proof of impossibility

superfluous.

The answer to this question is partly positive, partly negative. The in-

vestigations of Kronecker and Brouwer have shown what is involved in the

possibility of a direct finitistic founding of enough arithmetic for practical

applications.

Kronecker was the first to insist on the requirements of the finitistic point
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of view; he intended to eliminate completely non-finitistic modes of inference

from mathematics. He succeeded with the theory of algebraic numbers and

number fields. Maintaining the finitistic point of view was possible in this

case without giving up anything essential in the way of theorems or proof-

techniques. (Kronecker did not systematically publish the results of these

investigations but only presented them in lectures.)

The criticisms of Kronecker were completely rejected for a long time; later

Brouwer set himself the task of founding arithmetic independently of the law

of the excluded middle and developed important parts of analysis and set

theory in terms of this program. Of course, his methods require giving up

essential theorems and putting up with considerable complications in the

construction of concepts. (A detailed list of Brouwer’s publications in this

area is found in A. Fraenkels textbook Einleitung in die Mengenlehre, third

edition.)

The methodological standpoint of “Intuitionism” which Brouwer makes

fundamental constitutes something of an extending of the finitistic position;

Brouwer permits the introduction of the assumption that an inference or a

proof is given even though the intuitive nature of the.inference or proof is

not determined. For example, from Brouwer’s point of view assertions of the

following forms are permissible: “if on the assumption that A the sentence

B holds, then C holds too” or “the assumption that A is refutable leads to

a contradiction” (as Brouwer puts it: “the absurdity of A is absurd”).

An extension of the finitistic point of view of this kind turns out to be

necessary if one is going to go beyond a certain elementary domain on the

basis of finitistic considerations; from an epistemological point of view this
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extension amounts recounting as intuitive judgments and considerations of a

general logical character. We will be led to the necessity of this extension at

a late stage of our investigations.

The investigations we have been discussing indicate a way by which one

can go far into mathematics without using non-finitistic techniques of in-

ference; Nevertheless they in no way make a proof of the consistency of

the methods of ordinary arithmetic superfluous. For they do not achieve

an avoidance of non-finitistic methods of inference in the sense of completely

replacing these methods with other processes; the avoidance succeeds in anal-

ysis and related areas of mathematics only at the cost of an essential loss in

systematization and proof-technique.

A mathematician, however, cannot be expected to accept such a loss

without compelling reasons. The methods of analysis have been tested to a

greater extent than almost any other scientific assumption, and they have

been validated most impressively. If we criticize these methods from the

point of view of evidence, then we face the task of tracing the ground of their

applicability, just as we do everywhere in mathematics where a successful

technique is applied on the basis of conceptions which, in terms of evidence,

leave much to be desired.

Insofar as we accept the finitistic point of view we cannot escape the

problem of obtaining a clear understanding about the applicability of non-

Ian Mueller’s translation ends here.
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