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Part I: The Nature of Mathematical Knowledge

‖A17 When we read and hear today about the foundational crisis in math-

ematics or of the dispute between “formalism” and “intuitionism,” then those

who are unfamiliar with the activity of mathematical science may think that

this science is shaken to its very foundations. In reality, mathematics has

been moving for a long time in such quiet waters, that one rather senses a

lack of stronger sensations, although there is no lack of significant systematic

advances and brilliant achievements.
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In fact, the current discussion of the foundations of mathematics does

not spring at all from a predicament of mathematics itself. Mathematics

is in a completely satisfactory state of methodical certainty. In particular,

the concern caused by the paradoxes of set theory has long been overcome,

ever since it was recognized that, for avoiding the known contradictions, it

is sufficient to make restrictions that do not encroach in the least on the

demands of mathematical theories on set theory.

The problems, the difficulties, and the differences of opinion really begin

only when one inquires not just about the mathematical facts, but about

the epistemological foundations and the demarcation of mathematics. These

philosophical questions have become more urgent since the transformation,

which the methodical approach of mathematics underwent towards the end

of the nineteenth century.

The characteristic aspects of this transformation are: the emergence of the

concept of set, by means of which the rigorous foundation of the infinitesimal

calculus was achieved, and further the rise of existential axiomatics, that is,

the method of developing a mathematical discipline as the theory of a system

of things with certain relations whose properties constitute the content of

the axioms. In addition, as a consequence of the two aforementioned ‖A18

aspects, a closer connection between mathematics and logic is established.

‖235

This development confronted the philosophy of mathematics with a com-

pletely new situation and entirely new insights and problems. Since then no

agreement has been reached in the discussion of the foundations of mathe-

matics. The present stage of this discussion is centered around the struggle
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with the difficulties, which are caused by the role of the infinite in mathe-

matics.

The problem of the infinite, however, is neither the first nor the most

general question which one has to address in the philosophy of mathematics.

Here, the first task is to gain clarity about what constitutes the specific

nature of mathematical knowledge. We intend to concern ourselves with this

question first and thereby recall the development of the different points of

view, although only in terms of general features and not in exact chronological

order.

§ 1. The Development of Conceptions of Mathematics

The older conception of mathematical knowledge proceeded from the di-

vision of mathematics into arithmetic and geometry; according to it math-

ematics was characterized as a theory of two particular kinds of domains,

that of numbers and that of geometric figures. This division could no longer

be maintained in the face of the rise to prominence of arithmetical methods

in geometry. Also geometry was not restricted to the study of the prop-

erties of figures but was broadened to a general theory of manifolds. The

completely changed situation of geometry found a particularly concise ex-

pression in Klein’s Erlangen Program, which systematically summarized the

various branches of geometry from a group-theoretical point of view.

In the light of this situation the possibility arose to incorporate geome-

try into arithmetic. And since the rigorous foundations of the infinitesimal

calculus by Dedekind, Weierstrass, and Cantor reduced the more general

concepts of number—as required by the mathematical theory of quantities
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(rational number, real number)—to the usual (“natural”) numbers 1, 2, . . . ,

the conception emerged that the natural numbers constitute the true object

of mathematics and that mathematics is precisely the theory of numbers.

‖A19 This conception has many supporters. In its favor is the fact that all

mathematical objects can be represented through numbers, or combinations

of numbers, or through higher set formations obtained from the number

sequence. From a foundational perspective the characterization of mathe-

matics as a theory of numbers is already unsatisfactory, because it remains

open what one considers here as essential to number. The question concern-

ing the nature of mathematical knowledge is thereby shifted to the question

concerning the nature of numbers.

This question, however, appears to be completely idle to the proponents

of the conception of mathematics as the science of numbers. They proceed

from the attitude common to mathematical thought, that numbers are a sort

of things, which by their nature are completely familiar to us, so much so

that an answer to the question concerning the nature of numbers could only

consist in reducing something familiar to something less familiar. From this

standpoint one sees the reason for the special status of numbers in the fact

that numbers make up an essential component of the world order. This order

is ‖236 comprehensible to us in a rigorous scientific way just to the extent to

which it is governed by the aspect of number.

Opposing this view, according to which number is something completely

absolute and final, there emerged soon, in the aforementioned epoch of the

development of set theory and axiomatics, a completely different conception.

This conception denies that mathematical knowledge is of a particular and
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characteristic kind and holds that mathematics is to be obtained from pure

logic. One was led naturally to this conception through axiomatics, on the

one hand, and through set theory, on the other.

The new methodical turn in axiomatics consisted in giving prominence

to the fact that for the development of an axiomatic theory the epistemic

character of its axioms is irrelevant. Rigorous axiomatics demands that in

the proofs no other knowledge from the given subject be used than what is

expressly formulated in the axioms. This is intended already in Euclid in his

axiomatics, even though the program is not completely carried through at

certain points.

According to this demand, the development of an axiomatic theory shows

the logical dependence of the theorems on the axioms. But for this logical

dependence it does not matter whether the axioms placed at the beginning

are true sentences or not. It represents a ‖A20 purely hypothetical connec-

tion: If it is as the axioms say, then the theorems hold. Such a separation

of deduction from asserting the truth of the initial statements is in no way

idle hair splitting. On the contrary, an axiomatic development of theories,

without regard to the truth of the fundamental sentences taken as starting

points, can be of great value for our scientific knowledge: in this way, on

the one hand, it is possible to test, in relation to the facts, assumptions of

doubtful correctness by systematic development of their logical consequences;

furthermore, the possibilities of a priori theory construction can be investi-

gated mathematically from the point of view of systematic simplicity and, as

it were, to develop a supply. With the development of such theories math-

ematics takes over the role of the discipline formerly called mathematical
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natural philosophy.

By completely ignoring the truth of the axioms of an axiom system, also

the content of the basic concepts becomes irrelevant, and thus one is lead to

completely abstract from all intuitive content of the theory. This abstraction

is also supported by a second aspect, which comes as an addition to recent

axiomatics, as it was developed in particular in Hilbert’s Foundations of

Geometry, and which is, in general, essential for the formation of recent

mathematics, namely, the existential conception of the theory.

Whereas Euclid always thinks of the figures under consideration as con-

structed ones, contemporary axiomatics proceeds from the idea of a system

of objects, which is fixed in advance. In geometry, for example, one conceives

of the points, lines, and planes in their totality as such a system of things.

Within this system one considers the relations of incidence (a point lies on

a line, or in a plane), of betweenness (a point lies between two others), and

of congruence as being determined from the outset. Now, regardless of their

intuitive meaning, these relations can be characterized purely abstractly as

certain basic predicates. (We will use the term “predicate” also in the case of

a relation between several objects, so that we also speak of predicates with

several subjects.)1

‖A21 Thus, e.g., in Hilbert’s system the Euclidean construction postulate,

which demands the possibility of connecting two points with a line, is replaced

by the existence axiom: For any two points there is always a straight line

1This terminology follows a suggestion of Hilbert. It has certain advantages over the

usual distinction between “predicates” and “relations” for the conception of what is logical

in principle and also agrees with the usual meaning of the word “predicate.”
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that belongs to each of the two points. “Belonging to” is here the abstract

expression of incidence.

According to this conception of axiomatics, the axioms as well as the the-

orems of an axiomatic theory are statements about one or several predicates,

which refer to the objects of an underlying system. And the knowledge pro-

vided to us by the proof of a theorem L, which is carried out by means of

the axioms A1 . . . Ak—for the sake of simplicity we will assume that we are

dealing here with only one predicate—consists in the realization that, if the

statements A1 . . . Ak hold of a predicate, then so does the statement L.

What we have before us is, however, a very general proposition about

predicates, that is, a proposition of pure logic. In this way, the results of

an axiomatic theory, according to the purely hypothetical and existential

understanding of axiomatics, present themselves as theorems of logic.

These theorems, though, are only significant if the conditions formulated

in the axioms can be satisfied at all by a system of objects together with

certain predicates concerning them. If such a satisfaction is inconceivable,

that is, logically impossible, then the axiom system does not lead to a theory

at all, and the only logically important statement about the system is then

the observation <Feststellung> that a contradiction results from the axioms.

For this reason every axiomatic theory requires a proof of the satisfiability,

that is, consistency, of its axioms.

Unless one can make do with direct finite model constructions, this proof

is accomplished in general by means of the method of reduction to arithmetic,

that is, by exhibiting objects and relations within the realm of arithmetic that

satisfy the axioms to be investigated. As a result, one is again faced with
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the question of the epistemic character of arithmetic.

Even before this question became acute in connection with ‖A22 axiomat-

ics, as just described, set theory and logistics had already taken a position on

it in a novel way. Cantor showed that the number concept, both in the sense

of cardinal number (Number <Anzahl>) and in the sense of ordinal number

(order number <Ordnungszahl>), can be extended to infinite sets. The the-

ory of natural numbers and the theory of positive real numbers <Maßzahlen>

(analysis) were subsumed as parts under general set theory. Even if natu-

ral numbers lost an essential aspect of their distinguished role, nonetheless,

from Cantor’s standpoint, the number sequence still constitutes something

immediately given, the examination of which was the starting point of set

theory.

This was not the end of the matter; rather, the logicians soon adopted the

stronger claim: sets are nothing but extensions of concepts <Begriffsumfänge>

and set theory is synonymous with the logic of extension <Umfangslogik>,

and,in particular, the theory of numbers is to be derived from pure logic.

With this thesis, that mathematics is to be obtained from pure logic, an

old and favorite idea of rational philosophy, which had been opposed by the

Kantian theory of pure intuition, was revived.

Now the development of mathematics and theoretical physics had already

shown that the Kantian theory of experience, in any case, was in need of

a fundamental revision. As to the radical opponents of Kant’s philosophy

the moment seemed to have arrived for refuting this philosophy in its very

starting point, namely the claim that mathematics is synthetic in character.

This [refutation], however, was not completely successful. A first symp-
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tom that the situation was more difficult and complicated than the leaders

of the logistic movement had thought became apparent in the discovery of

the famous set-theoretic paradoxes. Historically, this discovery was the signal

for the beginning of the critique. If today we want to discuss the situation

philosophically it is more satisfactory to consider the matter directly without

bringing in the dialectical argument involving the paradoxes.

§ 2. The mathematical element in logic—Frege’s definitions of Number

In fact in order to see what is essential we need only to consider the new

discipline of theoretical logic itself, the intellectual achievement<Gedankenwerk>

of the great logicians Frege, Schröder, Peano, and Russell, ‖A23 and see what

it teaches us about the relationship between mathematics and logic <des

Mathematischen zum Logischen>.

One sees immediately a peculiar twosidedness in this relation which shows

itself in a varying conception of the task of theoretical logic: Frege strives

to subordinate mathematical concepts under the concept formations of logic,

but Schröder, on the other hand, tries to bring to prominence the mathe-

matical character of logical relations and develops his theory as an “algebra

of logic.”

But the difference here is only a matter of emphasis. In the different sys-

tems of logistic one never finds the specifically logical point of view dominat-

ing by itself, but rather mixed with a mathematical perspective everywhere

from the start. Just as in the area of theoretical physics, the mathemat-

ical formalism and mathematical concept formation here prove to be the

appropriate means to represent interconnections and to gain a systematic

overview.
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To be sure what is applied here is not the usual formalism of algebra and

analysis, but a newly created calculus developed by theoretical logic on the

basis of the formula language used to represent the logical connectives. No

one familiar with this calculus and its theory will doubt its explicit mathe-

matical character.

The first requirement that arises in connection with this situation is the

delimitation of the concept of the mathematical independently of the actual

situation in the mathematical disciplines by means of a principled characteri-

zation of the nature of mathematical knowledge [Erkenntnisart]. If we examine

what is meant by the mathematical character of a consideration, it becomes

apparent that the distinctive feature is a certain kind of abstraction that

is involved. This abstraction, which may be called formal or mathematical

abstraction, consists in emphasizing and taking exclusively into account the

structural aspects of an object, that is, the manner of its composition from

parts; “object” is understood here in its widest sense. One can, accordingly,

define mathematical knowledge as resting on the structural consideration of

objects.

The study of theoretical logic teaches us, furthermore, that in the rela-

tionship between mathematics and logic the mathematical point of view, in

contrast to the contentual logical one, is ‖A24 under certain circumstances

the more abstract one. The aforementioned analogy between theoretical

logic and theoretical physics extends as follows: just as the mathematical

laws of theoretical physics are contentually specialized by their physical in-

terpretation, so the mathematical relationships of theoretical logic are also

specialized through their contentual logical interpretation. The laws of the
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logical relations appear here as a special model for a mathematical formalism.

This peculiar relation between logic and mathematics—not only can math-

ematical judgments and inferences be subjected to logical abstraction, but

also logical relationships can be subjected to mathematical abstraction—is

based on the special role of the formal realm with respect to logic. Namely,

whereas in logic one can usually abstract from the specifics of a given sub-

ject, this is not possible in the formal realm, because formal elements enter

essentially into logic itself.

This holds in particular for logical inference. Theoretical logic teaches

that logical proofs can be “formalized.” The method of formalization consists

first of all in representing the premises of the proof by specific formulas in the

logical formula language, and furthermore in the replacement of the principles

of logical inference by rules that specify determinate procedures, according

to which one proceeds from given formulas to other formulas. The result

of the proof is represented by an end formula, which, on the basis of the

interpretation of the logical formula language, presents the proposition to be

proved.

Here we use that all logical inference, considered as a process, is reducible

to a limited number of logical elementary processes that can be exactly and

completely enumerated. In this way it becomes possible to pursue questions

of provability systematically. The result is a field of theoretical inquiry within

which the theory of the different possible forms of categorical inference put

forward in traditional logic deals with only a very specific special problem.

The typically mathematical character of the theory of provability reveals

itself especially clearly, through the role of the logical symbolism. The sym-
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bolism is here the means for carrying out the formal abstraction. The tran-

sition from the point of view of logical content to the ‖A25 formal one takes

place when one ignores the original meaning of the logical symbols and makes

the symbols themselves representatives of formal objects and connections.

For example, if the hypothetical relation

“if A then B”

is represented symbolically by

A→ B,

then the transition to the formal standpoint consists in abstracting from

all meaning of the symbol → and taking the connection by means of the

“sign” → itself as the object to be considered. To be sure one has here a

specialization in terms of figures instead of the original specialization of the

connection in terms of content; this, however, is harmless insofar as it is

easily recognized as an accidental ‖334 feature. Mathematical thought uses

the symbolic figure to carry out the formal abstraction.

The method of formal consideration is not introduced here at all artifi-

cially; rather it is almost forced upon us when we inquire more closely into

the effects of logical inference.

If we now consider why the investigation of logical inference is so much in

need of the mathematical method, we discover the following fact. In proofs

there are two essential features which work together: the elucidation of con-

cepts, the feature of reflection and the mathematical feature of combination.

Insofar as inference rests only on elucidation of meanings, it is analytic

in the narrowest sense; progress to something new comes about only through
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mathematical combination.

This combinatorial element can easily appear to be so obvious that it is

not viewed as a separate factor at all. With regard to deductively obtained

knowledge, philosophers especially were in the habit of considering only what

is the precondition of proof as epistemologically problematic and in need of

discussion, namely fundamental assumptions and rules of inference. This

standpoint is, however, insufficient for the philosophical understanding of

mathematics: for the typical effect of a mathematical proof is achieved only

after the fundamental assumptions and rules of inference have been fixed.

The remarkable character of mathematical results is not diminished when

we modify the provable statements contentually by introducing the ultimate

assumptions of the theory as premises and in addition explicitly state the

rules of inference (in the sense of the formal standpoint).

To clarify the situation we can make-use of Weyl’s comparison of a proof

conducted in a purely formal way with a game of chess; the fundamental

assumptions correspond to the initial position in the game, the rules of infer-

ence to the rules of the game. Let us assume that a bright chess master has

for a certain initial position A discovered the possibility of checkmating his

opponent in 10 moves. From the usual point of view we must then say that

this possibility is logically determined by the initial position and the rules of

the game. On the other hand, one can not maintain that the assertion of the

possibility of a checkmate in 10 moves is implied by the specification of the

initial position A and the rules of the game. The appearance of a contradic-

tion between these claims disappears ‖335 if we see clearly that the “logical”

effect of the rules of the game depends upon combination and therefore does
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not come about just through analysis of meaning but only through genuine

presentation.

Every mathematical proof is in this sense a presentation. We will show

here by a simple special case how the combinatorial element comes into play

in a proof.

We have the rule of inference: “if A and if A implies B, then B.” In a

formal translation of a proof this inference principle corresponds to the rule

that the formula B can be obtained from the two formulas A and A → B.

Now let us apply this rule in a formal derivation, and we furthermore assume

that A and A→ B do not belong to the initial assumptions. Then we have

a sequence of inferences S leading to A and a sequence T leading to A→ B

and according to the rule described the formulas A and A → B yield the

formula B.

If we want to analyze what happens here, we must not prejudge the

decisive point by the choice of notation. The endformula of the sequence of

inferences T is initially only given as such, and it is epistemologically a new

step to recognize that this formula coincides with the one which arises by

connecting with a “→” the formula A obtained in some other way and the

formula B to be derived.

The determination of an identity is by no means always an identical or

tautological determination. The coincidence to be noted in the present case

can not be read off directly from the content of the formal rules of inference

and the structure of the initial formulas; rather, it can be ‖A27 read off only

from the structure that is obtained by application of the rules of inference,

that is to say by the carrying out of the inferences. Thus, a combinatorial
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element is here present in fact.2

If we become in this way clear about the role of the mathematical in

logic, then it will not seem astonishing that arithmetic can be subsumed

within the system of theoretical logic. But also from the standpoint we have

now reached this subsumption loses its epistemological significance.For we

know in advance that the formal element is not eliminated by the inclusion of

arithmetic in the logical system. ‖336 But with respect to the formal we have

found that the mathematical considerations represent a standpoint of higher

abstraction than the conceptual logical ones. We therefore achieve no greater

generality at all for mathematical knowledge as a result of its subsumption

under logic; rather we achieve just the opposite; a specialization by logical

interpretation, a kind of logical clothing.

A typical example of such logical clothing is the method by which Frege

and, following him but with a certain modification, Russell defined the nat-

ural numbers.

Let us briefly recall the idea underlying Frege’s theory. Frege introduces

the numbers as cardinal numbers. His premises are as follows:

A cardinal number applies to a predicate. The concept of cardinal num-

ber arises from the concept of equinumerosity. Two predicates are called

equinumerous if the things of which the one predicate holds can be corre-

lated one-one with the things of which the other predicate holds.

If the predicates are divided into classes by reference to equinumerosity

2P. Hertz defended the claim that logical inference contains “synthetic elements” in his

essay “Über das Denken” (1923). His grounds for this claim will be explained in an essay

on the nature of logic, to appear shortly; they include the point developed here but rest

in addition on still other considerations.
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in such a way that all the predicates of a class are equinumerous with one

another and predicates of different classes are not equinumerous, then every

class represents the cardinal number which applies to the predicates belonging

to it.

In the sense of this general definition of cardinal number, the particular

finite numbers like 0, 1, 2, 3 are defined as follows: ‖A28

0 is the class of predicates which hold of no thing. 1 is the class of “one-

numbered” predicates; and a predicate P is called one-numbered if there is

a thing x of which P holds and no other thing different from x of which P

holds. Similarly, a predicate P is called two-numbered if there is a thing x

and a thing y different from it such that P holds of x and y and if there

is no thing different from x and y of which P holds. 2 is the class of two-

numbered predicates. The numbers 3, 4, 5 etc. are to be explained as classes

in an analogous way. After he has introduced the concept of a number

immediately following a number, Frege defines the general concept of finite

number in the following way: a number n is called finite if every predicate

holds of n, which holds of 0 and which, if it holds of a number a holds of the

immediately following number. or that? (cf. page 43)

‖337 The concept of a number belonging to the series of numbers from 0 to

n is explained in a similar way. The formulation of these concepts is followed

by the derivation of the principles of number theory from the concept of finite

number.

We now want to consider in particular Frege’s definition of the individual

finite numbers. Let us take the definition of the number 2, which is explained

as the class of two-numbered predicates. It may be objected to this explana-
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tion that the belonging of a predicate to the class of two-numbered predicates

depends upon extralogical conditions and the class therefore constitutes no

logical object whatsoever.

This objection is, however, eliminated if we adopt the standpoint of Rus-

sell’s theory with respect to the understanding of classes (sets or extensions

of concepts). According to it classes (extensions of concepts) are not actual

objects at all; rather they function only as dependent terms within a reformu-

lated sentence. If, for example, K is the class of things with the property E,

i.e. the extension of the concept E, then, according to Russell, the assertion

that an thing a belongs to the class K is to be viewed only as a reformulation

of the assertion that the thing a has the property E.

If we combine this conception with Frege’s definition of cardinal number,

we arrive at the idea that the number 2 is to be defined not in terms of the

class of two-numbered predicates but in terms of the concept the extension

of which constitutes this class. The number 2 is then identified with the

property of two-numberedness for predicates, i.e. with the ‖A29 property of

a predicate of holding of an thing x and of an thing y different3 from x but

of no thing different fromx and y.

For the evaluation of this definition it is essential to know how the process

of defining is understood here and what claims are involved in it. What will

be shown here is that this definition is not a correct reproduction of the

true meaning of the cardinal number concept “two” by means of which this

concept is revealed in its logical purity freed from all inessential features.

3For the sake of simplicity we shall skip the considerations regarding the concept of

difference, resp. its contradictory concept of identity.
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Rather it will be shown that it is exactly the specifically logical element in

the definition that is an inessential addition.

The two-numberedness of a predicate P means nothing else but that there

are two things of which the predicate P holds. Here three distinct conceptual

features are present: the concept “two things,” the existential feature, and

the fact that the predicate P holds. The content ‖338 of the concept “two

things” here does not depend on the meaning of either of the other two

concepts. “Two things” means something already without the assertion of

the existence of two things and also without reference to a predicate which

holds of two things; it means simply: “one thing and one more thing.”

In this simple definition the concept of cardinal number shows itself to

be an elementary structural concept. The appearance that this concept is

reached from the elements of logic results, in the case of the logical definition

of cardinal number under consideration, only from the fact that the concept is

conjoined with logical elements, namely the existential form and the subject-

predicate relation, which are in themselves inessential for the concept of

cardinal number. Therefore we [will] have here in fact a a formal concept in

logical clothing.4

The result of these considerations is that the claim of the logicists that

mathematics is a purely logical field of knowledge shows itself to be imprecise

and misleading when theoretical logic is examined more closely. That claim

is sound only if the concept of the mathematical is taken in the sense of its

historical demarcation and the concept of the logical is systematically broad-

ened. But such a determination of concepts hides what is epistemologically

4Editorial remark: Check with original article.
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essential and ignores the special nature of mathematics. ‖A30

§ 3. Formal abstraction

We have determined that formal abstraction, i.e. the focusing on the

structural side of objects, is the characteristic feature of mathematical rea-

soning and have thus demarcated the field of the mathematical in a funda-

mental way. If we want likewise to gain an epistemological understanding of

the concept of the logical, then we are led to separate from the entire domain

of the theory of concepts, judgments, and inferences, which is commonly

called logic, a narrower subdomain, that of reflective or philosophical logic.

This is the domain of knowledge which is analytic in the genuine sense and

which stems from a pure awareness of meaning. This philosophical logic is

the starting point of systematic logic, which takes its initial elements and

its principles from the results of philosophical logic and, using mathematical

methods, develops from them a theory.

In this way the extent of genuinely analytic knowledge is separated clearly

from that of mathematical knowledge, and it becomes apparent what is justi-

fied in Kant’s theory of pure intuition on the one hand and in the claim ‖339

of the logicists on the other. We can distinguish Kant’s fundamental idea

that mathematical knowledge and also the successful application of logical

inference rest on an intuitive evidence from the particular form that Kant

gave to this idea in his theory of space and time. By doing this we also arrive

at the possibility of doing justice to both the very elementary character of

mathematical evidence and to the high degree of abstraction of the mathe-

matical point of view, emphasized in the claim about the logical character of

mathematics.
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Our conception also gives a simple account of the role of number in math-

ematics: we have explained mathematics as the knowledge which rests upon

the formal (structural) consideration of objects. However, the numbers con-

stitute as cardinal numbers the simplest formal determinates and as ordinal

numbers the simplest formal objects.

Cardinality concepts present a special difficulty for philosophical explica-

tion because of their special categorial position, which also makes itself felt in

language in the need for a unique species of number words. We do not have

to bother here with more detailed explication, but we do have to observe

that the determination of cardinal number involves the putting together of

a complex given or imagined totality out of components, which is just what

constitutes the structural side of an object. And indeed it is the most el-

ementary structural characteristics that are conveyed by cardinal numbers.

Thus cardinal numbers play a role in all domains to which formal consid-

eration are applicable; in particular we encounter cardinal number within

theoretical logic in a wide variety of ways: for example, as cardinal number

of the subjects of a predicate (or as one says, as cardinal number of the ar-

guments of a logical function); as cardinal number of the variable predicates

involved in a logical sentence; as cardinal number of the applications of a

logical operation involved an a concept-formation or sentence; as cardinal

number of the sentences involved in a mode of inference; as the type-number

of a logical expression, i.e. the highest number of successive subject-predicate

relations involved in the expression (in the sense of the ascent from the ob-

jects of a theory to the predicates, from the predicates to the predicates of

the predicates, from these latter to their predicates, and so on).
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Cardinal numbers, however, provide us only with formal determinations

and not yet with formal objects. For example, in the conception of the car-

dinality three there ‖340 is still no unification of three things into one object.

The bringing together of several things into one object requires some kind of

ordering. The simplest kind of order is that of mere succession, which leads

to the concept of ordinal number. An ordinal number in itself is also not

determined as an object; it is merely a place marker. We can, however, stan-

dardize it as an object, by choosing as place markers the simplest structures

deriving from the form of succession. Corresponding to the two possibilities

of beginning the sequence of numbers with 1 or with 0, two kinds of stan-

dardization can be considered. The first is based on a sort of things and a

form of adjoining a thing; the objects are figures which begin and end with

a thing of the sort under consideration, and each thing, which is not yet the

end of the figure, is followed by an adjoined thing of that sort. In the second

kind of standardization we have an initial thing and a process; the objects

are then the initial thing itself and in addition the figures that are obtained

by beginning with the initial thing and applying the process one or more

times.

If we want to have the ordinal numbers, according to either standard-

ization, as unique objects free from all inessential features, then we must

take in each case as object the bare schema of the respective figure of rep-

etition [Wiederholungsfigur] which are obtained by repetition; this requires a

very high degree of abstraction. ‖A32 However, we are free to represent

these purely formal objects by concrete objects (“number signs” or “numer-

als”); these then possess inessential arbitrarily added characteristics, which,

21



however, can be immediately recognized as such. This procedure is based

on a certain agreement, which must be kept throughout one and the same

consideration.5 Such an agreement, according to the first standardization, is

the representation of the first ordinal numbers by the figures 1, 11, 111, 1111.

According to an agreement corresponding to the second standardization, the

first ordinal numbers are represented by the figures 0, 0′, 0′′, 0′′′, 0′′′′.

Having found a simple access to the numbers in this way by regarding

them structurally, our conception of the ‖341 character of mathematical

knowledge receives a new confirmation. For, the dominant role of number in

mathematics becomes clear on the basis of this conception; and our character-

ization of mathematics as a theory of structures seems to be an appropriate

extension of the view mentioned at the beginning of this essay that numbers

constitute the real object of mathematics.

The satisfactory features of the standpoint we have reached must not

mislead us into thinking that we have already obtained all the fundamental

insights required for the problem of the grounding of mathematics. In fact,

until now we have only dealt with the preliminary question that we wanted

to clarify first, namely, what is the specific character of mathematical knowl-

edge? Now, however, we must turn to the problem that raises the main

difficulties in grounding mathematics, the problem of the infinite.

5Philosophers are inclined to treat this relation of representation as a connection of

meaning. One must notice, however, that there is an essential difference here from the usual

relation of word and meaning; namely the representing thing contains in its constitution the

essential properties of the object represented, so that the relationships to be investigated

among the represented objects can also be found among the representatives and can be

determined by consideration of the latter.
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Part II: The problem of the infinite and the formation of mathematical

concepts.

§ 1. The postulates of the theory of the infinite. The impossibility of its

grounding by intuition.—The finitist standpoint

The mathematical theory of the infinite is analysis (infinitesimal calculus)

and its extension by general set theory. We can restrict ourselves here to

consideration of the infinitesimal calculus because the step from it to general

set theory requires only additional assumptions, but no fundamental change

of philosophical conception.

The foundation given to the infinitesimal calculus by Cantor, Dedekind,

and Weierstraß shows that a rigorous development of this theory succeeds if

two things are added to the elementary inferences of mathematics:

1. the application of the method of existential inference to the integers,

i.e. the assumption of the system of integers in the manner of a domain of

objects of an axiomatic theory, as is explicitly done in Peano’s axioms for

number theory.

2. the conception of the totality of all sets of integers as a combinatorially

surveyable manifold. A set of integers is determined by a distribution of the

values 0 and 1 to ‖342 the positions in the number series. The number n

belongs to the set or not depending on whether the nth position in the dis-

tribution is 1 or 0. Just as the totality of possible distributions of the values

0, 1 over a finite number of positions, e.g. over five positions, is completely

surveyable, by analogy the same is assumed also for the entire number series.

From this analogy follows in particular also the validity of Zermelo’s

principle of choice for collections of sets of numbers. However, for the time
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being we will put aside the discussion of this principle, it will fit in naturally

at a later point.

If we now consider these requirements from the standpoint of our general

characterization of mathematical knowledge, it seems at first that there is

no fundamental difficulty in justifying them on that basis. For both in the

case of the number series and in that of the sets derived from it, one deals

with structures, which differ from those treated in elementary mathemat-

ics only in being structures of infinite manifolds [Mannigfaltigkeiten]. The

existential inference applied to numbers also seems to be justified by their

objective character as formal objects the existence of which can not depend

on accidental facts about people’s conceptions of numbers.

Against this argumentation it is to be remarked, however, that it is pre-

mature to conclude from the character of formal objects, i.e. from their being

free of accidental empirical features, that formal entities must be related to

a domain of existing formal things. As an argument against this conception

we could put forward the set-theoretic paradoxes; but it is simpler to point

out directly that primitive mathematical evidence does not assume such a

domain of existing formal entities and that, in contrast, the connection with

to what is actually imagined [das Vorgestellte] is essential as a starting point

for formal abstraction. In this sense the Kantian assertion that pure intuition

is the form of empirical intuition is valid.

Correspondingly, existence assertions in disciplines that rest on elemen-

tary mathematical evidence do not have a proper meaning. In particular, in

elementary number theory we only deal with existence assertions that refer

to an explicit totality of numbers that can be exhibited, or to an explicit

24



process that can be executed intuitively, or to both together, i.e. to a totality

of numbers that can be obtained by such a process.

‖343 Examples of such existence claims are: “There is a prime number

between 5 and 10,” namely 7 is a prime number.

“For every number there is a greater one,” namely if n is a number, then

construct n+ 1. This number is greater than n.

“For every prime number there is a greater one,” namely if a prime num-

ber p is given, then construct the product of this number and all smaller

prime numbers and add 1. If k is the number obtained in this way, then

there must be a prime number among the numbers between p+ 1 and k.

In each of these cases the existence assertion is made more precise by a

further specification; the existence claim is restricted to explicit processes

that can be carried out in intuition and makes no reference to a totality of

all numbers. Following Hilbert, we will call this elementary point of view, re-

stricted by the requirements imposed by intuitability in principle, the finitist

standpoint; and in the same sense we will speak of finitist methods, finitist

considerations, and finitist inferences.

It is now easy to see that existential reasoning goes beyond the finitist

standpoint. This transcending of the finitist standpoint takes place already

when any existence assertion is made without a more exact determination of

the existence claim, as for example when asserting that there is at least one

prime number in every infinite arithmetic sequence

a · n+ b (n = 0, 1, 2, 3, ...)

if a, b are relatively prime numbers.
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An especially common and important case of transcending the finitist

standpoint is the inference from the failure of an assertion to hold univer-

sally (for all numbers) to the existence of a counterexample or, in other

words, the principle according to which the following alternative holds for

every number predicate P (n): either the universal assertion that P (n) holds

of all numbers is valid, or there is a number n of which P (n) does not hold.

From the standpoint of existential reasoning this principle results as a di-

rect application of the law of the excluded middle, i.e. from the meaning of

negation. This logical consequence fails to hold for the finitist standpoint,

because the assertion that P (n) holds for all numbers has here the purely

hypothetical sense that the predicate holds for any given number, and thus

the negation of this claim does not have the positive meaning of an existence

assertion.—

But, this does not yet close the discussion of the possibilities of an in-

telligible mathematical foundation for the assumptions of analysis. It has

to be admitted that the assumption of a totality of formal objects does not

correspond to the standpoint of primitive mathematical evidence, but the

‖344 demands of the infinitesimal calculus can be motivated by the obser-

vation that the totalities of numbers and number sets one deals with are

structures of infinite sets. In particular, the application of existential rea-

soning on number would thus not be inferred from the idea of the concept

of numbers in the realm of formal objects, but rather from considering the

structure of the number sequence in which the individual numbers occur as

elements. Indeed we have not yet considered the argument already men-

tioned that mathematical knowledge can also concern structures of infinite
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manifolds.6

Herewith we come to the question of the actual infinite. For the infinite

insofar as infinite manifolds are concerned, is the true actual infinite in con-

trast to the “potential infinite;” by the latter is meant not an infinite object

but merely the unboundedness of the progression from something finite ‖A36

to something that is again finite. The unboundedness holds, for example, also

from the finitist standpoint for numbers, since for every number a greater one

can be constructed.

The question about the actual infinite which we have to ask first is

whether it is given to us as an object of intuitive mathematical knowledge.

In harmony with what we have determined so far, one could be of the

opinion that we really are capable of an intuitive knowledge of the actual

infinite. For even if it is certain that we have a concrete conception only of

finite objects, nevertheless an effect of formal abstraction could be exactly the

following: that it frees itself from the restriction to the finite and passes to the

limit, as it were, in the case of certain indefinitely continuable processes. In

particular one may be tempted to invoke geometric intuition and to point to

examples of intuitively given infinite manifolds from the domain of geometric

objects.

Now in the first place geometric examples are not conclusive. One is

easily deceived here by interpreting the spatially intuitive in the sense of an

existential conception. For example, a line segment is not intuitively given as

an ordered manifold of points but as a uniform whole, although, to be sure,

an extended whole within which positions are distinguishable. The idea of

6Editorial remark about “manifolds.”
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one position on the line segment is intuitive, but the totality of all positions

on the line segment is merely a concept of thought. By means of intuition

we here reach only the potential ‖345 infinite since every position on the line

segment corresponds to a division into two shorter segments each of which is

in turn divisible into shorter segment yet.

Furthermore, one cannot point to infinitely extended things like infinite

lines, infinite planes, or infinite space as objects of intuition. In particular,

space as a whole is not given to us in intuition. We do indeed represent

every spatial figure as situated in space. But this relationship of individual

spatial figures to the whole of space is given as an object of intuition only

to the extent that a spatial neighborhood is represented along with every

spatial object. Beyond this representation, the position in the whole of space

is conceivable only in thought. (Contrary to Kant we must maintain this

view.)7

The main argument that Kant gave in favor of the intuitive ‖A37 char-

acter of our representation of space as a whole, in fact proves only that one

cannot attain the concept of a single inclusive space through mere general-

izing abstraction. But that is not what is claimed by the assertion that our

representation of the whole of space is only accessible in thought, i.e. that

we are here dealing with a mere general concept.8

Rather, we have in mind a more complicated situation: the representation

of the whole of space involves two different kinds of thoughts both of which

go beyond the standpoint of intuition and of reflective logic. One rests upon

7This sentence should be checked again!
8 This sentence should be checked again!
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the thought that connecting things yields the world as a whole and therefore

stems from our belief about what is real. The other is a mathematical idea

which, to be sure, begins with intuition but does not remain in the domain of

the intuitively representable; it is the representation of space as a manifold

of points subject to the laws of geometry.9

In both of these ways of representing space as a whole this totality is

not recognized as existent, but rather it is only posited tentatively. The

representation of the whole of physical space ‖346 is fundamentally problem-

atic; nevertheless, it is exactly from the standpoint of contemporary physics

that there is the possibility of formulating this thought, which is at first

very vague, more narrowly and precisely; hereby it can become accessible to

research and systematically significant. The geometric ideas of spatial mani-

folds are indeed precise from the very beginning, but require a proof of their

consistency.

Thus we have no reason for the assumption that we have an intuitive

representation of space as a whole. We can not point directly to such a

representation, nor is there any necessity to introduce that assumption as

an explanation. If we deny the intuitiveness of the whole of space, then

we do not claim either that infinitely extended spatial configurations can be

represented intuitively.

9Both of these representations of space are united in the view of nature found in New-

tonian physics and are not clearly distinguished from one another. In Newtonian physics

Euclidean geometry constitutes the law governing the spatial relation of things in the

universe. Only the subsequent development of geometry and physics showed the neces-

sity of distinguishing between space as a physical entity and space as an ideal manifold

determined by geometric laws. Footnote has to be checked!
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It should also be noted that the original intuitive conception of elemen-

tary Euclidean geometry does not in the least require a representation of

infinite figures. After all, we are dealing here only with finitely extended

figures. Infinite manifolds of points are also never involved, since there are

no underlying general existential assumptions; every existential claim rather

asserts a possible geometric construction.10 For example, that every line

segment has a midpoint says from this standpoint only that for every line

segment a midpoint can be constructed.11

Thus the apparent possibility of displaying an actual infinity in the do-

main of objects of geometrical intuition is misleading. We can, however, also

show in a more general way that there is no question of eliminating the con-

dition of finitude via formal abstraction as would be required for an intuition

of the actual infinite. Indeed, the requirement of finitude is no accidental

empirical limitation but an essential characteristic of a formal object.

The empirical limitation still lies within the domain of the finite, where

formal abstraction must help us to go beyond the boundaries of our actual

power of representation. A clear example of this is the unlimited divisibility

of a line segment. Our actual power of representation already fails when the

division exceeds a certain degree of fineness. This boundary is physically

accidental ‖347 and it can be overcome with the help of optical equipment.

But after a certain smallness all optical equipment becomes useless, and

finally our spatial and metrical representations lose all physical meaning.

10German text of Abh. has erroneously “Konjunktion.”
11In Euclid’s axiomatization this standpoint is of course not completely adhered to, since

one finds here the notion of an arbitrarily great extension of a line segment. This notion

can in fact be avoided; one needs only formulate the axiom of parallels differently.
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Thus, in representing unlimited divisibility we already abstract from the

requirements of actual representation as well as from the requirements of

physical reality.

The situation is analogous in the case of the representation of unlimited

addition in number theory. Here, too, there are limits to the execution

of repetitions both with respect to actual representability and to physical

realization. Let us consider as an example the number 10(101000). We can

‖A39 arrive at it in a finitist way as follows: we start from the number 10,

which, according to the standardization given earlier, we represent by the

figure

1111111111.

Let z be an arbitrary number, represented by an analogous figure. If in

the representation of 10 we replace each 1 with the figure z, there results, as

we can see intuitively, another number-figure, which for purposes of commu-

nication is called “10 × z.”12 In this way we get the process of multiplying

a number by 10. From this we obtain the process of transforming a number

a into 10a by letting the first 1 in a correspond to the number 10 and every

subsequent 1 to the process of multiplication by 10 until the end of the figure

a is reached. The number obtained by the last process of multiplying by 10

is called 10a.

From an intuitive viewpoint this procedure offers no difficulty whatsoever.

But, if we want to consider the process in detail our representation already

fails in the case of rather small numbers. We can again get some further

help from instruments or by making use of external objects, which involve

12Here we use a symbol “with meaning.”
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the determination of very large numbers. But even with all of these we soon

reach a limit: it is easy for us to represent the number 20; 1020 far extends

our actual power of representation, but is definitely within the domain of

physical realizability; it is ultimately very questionable, however,whether the

number 10(1020) occurs in any way in physical reality either as a relation

between magnitudes or as a cardinal number.

But intuitive abstraction is not constrained by such limits on the possibil-

ity of realization. For limits are ‖348 accidental from the formal standpoint.

Formal abstraction finds no earlier place, so to speak, to make a principled

distinction than at the difference between finite and infinite.

This difference is indeed a fundamental one. If we consider more pre-

cisely how an infinite manifold as such can be characterized at all, then we

find that such a characterization is not possible by means of any intuitive

presentation; rather it is possible only by means of the assertion (or assump-

tion or determination) of a lawlike connection. Thus, infinite manifolds are

accessible to us only in thinking. Such thinking ‖A40 is indeed also a kind

of representation, by which a manifold is, however, not represented as an

object; rather conditions are represented which a manifold satisfies (or has

to satisfy).

The fact that formal abstraction is essentially tied to the aspect of fini-

tude becomes especially apparent, in that the property of finitude is not a

special limiting characteristic from the standpoint of intuitive evidence when

considering totalities and figures. From this standpoint the limitation to the

finite is observed immediately and, so to speak, tacitly. We do not need a spe-

cial definition of finitude in this case, because the finitude of objects is taken
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for granted for formal abstraction. So, for example, the intuitive structural

introduction of the numbers is suitable only for the finite numbers. From

the intuitive formal standpoint, “repetition” is eo ipso finite repetition.

This representation of the finite, which is implicit in the formal point of

view, contains the epistemological justification for the principle of complete

induction and for the admissibility of recursive definition, both procedures

here construed in their elementary form, as “finitist induction” and “finitist

recursion.”

Drawing on this representation of the finite of course goes beyond the

intuitive evidence that is necessarily involved in logical reasoning. It cor-

responds rather to the standpoint from which one reflects already on the

general characteristics of intuitive objects. Furthermore, the use of the intu-

itive representation of the finite can be avoided in number theory if one does

not insist on treating this theory in an elementary way. But the intuitive

representation of the finite forces itself upon us as soon as a formalism itself

is made the object of examination, thus in particular in the systematic ‖349

theory of logical inferences. This brings to the fore the fact that finiteness is

an essential feature of the figures of any formalism whatsoever. The limits

of any formalism, however, are none other than those of representability of

intuitive complexes in general.

Thus our answer to the question whether the actual infinite is intuitively

knowable turns out to be negative. A further consequence is that the method

of finitist examination is the appropriate one for the standpoint of intuitive

mathematical knowledge.

‖A41 In this way, however, we can not verify the already mentioned as-
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sumption for the infinitesimal calculus.

§ 2. Intuitionism—Arithmetic as a theoretical framework

How should we proceed now in the light of these facts? Concerning this

question the opinions are divided. We find here a conflict of views similar

to that over the question of characterizing mathematical knowledge. The

proponents of the standpoint of primitive intuitiveness conclude directly from

the fact that the postulates of analysis and set theory transcend the finitist

standpoint the result that these mathematical theories must be abandoned

in their present form and revised from the ground up. The proponents of

the standpoint of theoretical logic, on the other hand, either try to logically

justify the postulates of the theory of the infinite, or they deny that these

postulates are problematic at all by disputing the fundamental significance

of the difference between finite and infinite.

The former view was already held by Kronecker when the method of exis-

tential inference first emerged; he was probably the first person to pay close

attention to the methodical standpoint that we call finitist and to empha-

size most strongly its importance. His attempts to satisfy this methodical

requirement in analysis remained fragmentary, however; a more precise philo-

sophical presentation of this standpoint was also lacking. Thus in particular

Kronecker’s oft quoted dictum that God has created the whole numbers but

everything else is the work of man is not at all suited for motivating Kro-

necker’s requirement:13 if the whole numbers are created by God, one ‖350

13The methodical standpoint appropriate to this dictum is the one adopted by Weyl in

his book Das Kontinuum (1918).
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would think that it is permissible to apply existential inference to them,

whereas it is just the existential point of view that Kronecker excludes al-

ready in the case of the whole numbers.

Brouwer has extended Kronecker’s standpoint in two directions: on the

one hand with respect to philosophical motivation ‖A42 by putting forward

his theory of “intuitionism,”14 and on the other hand by showing how one

can apply the finitist standpoint in analysis and set theory, and found at

least a considerable portion of these theories finitistically by fundamentally

revising the formation of concepts and the methods of inference.

The result of this investigation does have its negative side, however; for it

turns out that in the process of treating analysis and set theory finitistically

one must accept with not only great complications, but also serious losses

with respect to systematization.

The complications appear already in connection with the first concepts

of the infinitesimal calculus such as boundedness, convergence of a number

sequence, the difference between rational and irrational. Let us take for

example the concept of boundedness of a sequence of integers. According to

the usual view one of the following alternatives holds: either the sequence

exceeds every bound, and then the sequence is unbounded, or all numbers in

the sequence are below some given bound, and then the sequence is bounded.

In order to determine here a finitist concept we must sharpen the definition

of boundedness and unboundedness as follows: a sequence is called bounded

14In the interest of clarifying the discussion it seems to me advisable to use the term

“intuitionism” to refer to a philosophical view in contrast to the term “finitist,” which

refers to a particular method of inference and concept formation.
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if we can indicate a bound for the numbers in the sequence, either directly or

by giving a procedure for producing it one; the sequence is called unbounded

if there is a law according to which every bound is necessarily exceeded by

the sequence, i.e., the assumption that the sequence has a bound leads to an

absurdity.

With this formulation of the concepts the definitions do indeed have a

finitist character, but we no longer have a complete disjunction between the

cases of boundedness and unboundedness. We therefore can not infer that a

sequence is bounded from a refutation of the assumption that the sequence is

unbounded. Likewise we can not consider ‖351 a claim as established, when

it is proved, on the one hand, under the assumption that a certain sequence

of numbers is bounded and, on the other hand, under the assumption that

it is unbounded.

‖A43 In addition to such complications, which permeate the entire theory,

there is a yet more essential disadvantage, namely that many of the general

theorems, through which mathematics obtains its systematic clarity, become

unacceptable. So, for example, in Brouwer’s analysis even the theorem that

every continuous function has a maximum value on a finite closed interval is

not valid.

Philosophy puts an apparently unjustified and unreasonable demand on

mathematics, to give up its simpler and more fruitful method in favor of a

cumbersome method, which is also inferior from a systematic point of view,

without being forced to do so by an inner necessity. This constraint makes

us suspicious of the standpoint of intuitionism.

Let us see what are the main points of this philosophical view, which
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was developed by Brouwer. It includes, first of all, a characterization of

mathematical evidence. Our earlier discussion of formal abstraction agrees

in essential points with this characterization, in particular with regard to

their connection with Kant’s theory of pure intuition.

Admittedly there is a divergence insofar as according to Brouwer’s view

the temporal aspect is an essential feature of the objects of mathematics.

But here it is not necessary to go into a discussion of this point, as a de-

cision concerning it is of no consequence for the question of mathematical

methodology: it is exactly the methodical restriction of the finitist way of

proceeding that is obtained by Brouwer as a consequence of the connection

between time and the objects of mathematics, and is obtained by us from the

connection of formal abstraction with its concrete, intuitive starting point.

The decisive consequences of intuitionism result first from the further as-

sertion that all mathematical thought with a claim to scientific validity must

be carried out on the basis of mathematical evidence, so that the limits of

mathematical evidence are at the same time limits for mathematical thought

in general.

This demand that mathematical thought be limited to the intuitively

evident appears at first to be completely justified. Indeed it corresponds to

our familiar conception of mathematical certainty. We must, however, keep

in mind that this customary conception of ‖352 mathematics originally went

together with a philosophical view, according to which the intuitive evidence

of the ‖A44 foundations of the infinitesimal calculus was not in question.

However, we have departed from such a view since we found that intuition can

not verify the postulates of analysis; the representation of infinite totalities,
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which is made fundamental in analysis, cannot be grasped in intuition but

only through the formation of ideas.

Now we can not expect this new view of the limits of intuitive evidence

to fit directly with the former conception of the epistemological character

of mathematics. Rather, on the basis of what we have determined it seems

likely that the everyday conception of mathematics represents the situation

too simply and that we can not do justice to what goes on in mathematics

from the standpoint of evidence alone; we must acknowledge that thinking

has its own distinctive role.

Thus we arrive at a distinction between the standpoint of elementary

mathematics and a systematic standpoint that goes beyond it. This distinc-

tion is by no means artificial or merely ad hoc; rather it corresponds to the

two different starting points from which one is led to arithmetic: on the one

hand, the combinatorial consideration of relations between discrete entities,

and on the other, the theoretical demand placed on mathematics by geome-

try and physics.15 The system of arithmetic by no means arises only from an

activity of construction and intuitive consideration, but also, in large part,

from the task of precisely conceptualizing and theoretically mastering the

15It is remarkable that Jakob Friedrich Fries, who still ascribed mathematical evidence

to a domain going far beyond the finite (in particular, according to his view “the contin-

uous sequence of larger and smaller” is given in pure intuition), yet made a methodical

distinction between, on the one hand, “arithmetic as a theory,” which conceptualizes and

scientifically develops the intuitive representation of magnitude, and, on the other, “com-

binatory theory or syntactic,” which rests only on the postulate of arbitrary ordering of

given elements and its arbitrary repeated applications, and which needs no axioms since

its operations are “immediately comprehensible in themselves.” (Cf. J.F. Fries, Mathema-

tische Naturphilosophie l822.)
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geometric and physical representations of quantity, area, impact, velocity,

Berührungand so on. The method of arithmetization is a means to ‖A45 this end.

But in order to serve this purpose, arithmetic must extended its methodical

standpoint from the original elementary ‖353 standpoint of number theory

to a systematic perspective in the sense of the postulates discussed.

Arithmetic, which comprises the greater framework in which the geomet-

ric and physical disciplines find their place, consists not only in the elemen-

tary, intuitive treatment of numbers; rather it has itself the character of a

theory in that it builds on the representation of the totality of numbers as a

system of things as well as the totality of sets of numbers. This systematic

arithmetic achieves its aim in the best possible way, nor does its method give

a reason for objections, so long as it is clear that we are here not taking the

standpoint of elementary intuitiveness, but that of a thought construction,

i.e., the standpoint that Hilbert calls the axiomatic one.

The charge of arbitrariness against this axiomatic approach is also un-

justified, for in the foundations of systematic arithmetic we are not dealing

with an arbitrary axiom system, put together as needed, but with a natu-

ral systematic extrapolation from elementary number theory. However, the

analysis and set theory which develop on this foundation constitute a theory,

which is already distinguished in pure intellect, and which is suited to be

taken as the theory κατ ’ ὲξoχὴν,16 into which we incorporate the doctrines

and theoretical approaches of geometry and physics.

Thus we cannot accept the veto that intuitionism directs against the

method of analysis. The observation, on which we agree with intuition-

16NOTE: Accent on epsilon is different than in the original text!
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ism, that the infinite is not given to us intuitively does indeed require us to

modify our philosophical conception of mathematics but not to transform

mathematics itself.

Of course, the problem of the infinite returns again. For in taking a

thought construction as the starting point for arithmetic we have introduced

something problematic. A thought construction, however plausible and nat-

ural from a systematic point of view, contains in and of itself no guarantee

that it can be carried out consistently. In apprehending the idea of the infi-

nite totality of numbers and of sets of numbers, the possibility is not excluded

that this idea could lead to a contradiction in its consequences. Thus it re-

mains it to investigate the question of ‖A46 the freedom from contradiction,

or “consistency,”17 of the system of arithmetic.

Intuitionism wants to spare us these tasks by restricting mathematics to

the domain of finitist considerations; but the price for this elimination of the

difficulties is too high: the problem goes away, but the systematic simplicity

and clarity of analysis is also lost.

§ 3. The problems with logicism—The value of the logicistic reduction of

arithmetic

The proponents of the standpoint of logicism believe that they can deal

with this problem in a completely different way. In discussing this standpoint

we take up our earlier considerations on logicism. There it was important

to recognize that intuitive evidence even plays a role in deductive logic, and

17It may be suggested here to use this expression, which was used by Cantor specifi-

cally with respect to construction of sets, more generally with respect to any theoretical

approach.
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that the logical definition of cardinal number does not establish the specifi-

cally logical nature of the concept of cardinal number (as a concept of pure

reflection) but rather is only a logical normalization of elementary structural

concepts.

These reflections concern the demarcation of what is logical in the narrow

sense from what is formal. The recognition of the formal element in logic,

however, by no means resolves the methodological question of logicism. Logi-

cism is not only concerned with the theoretical development of the science

of inference; but, as already explained, it takes as its further task the re-

duction of all arithmetic to the formalism of logic. This reduction proceeds

first via the introduction of cardinal numbers as properties of predicates, as

already described, and then (as will not be described more precisely here)

by expressing the construction of sets of numbers in terms of the logical for-

malism, replacing each set with a defining predicate. Thus the totality of

predicates of numbers replaces the totality of sets of numbers.

In this way one in fact succeeds in assigning to every arithmetical sen-

tence a sentence from the domain of theoretical logic in which, ‖47 except

for variable, only “logical constants” occur, i.e. basic logical operations like

conjunction, negation, the form of generality, etc.

‖355 Now it is clear that the problem of the infinite can not be solved

just by this translation of arithmetic into the formalism of logic. If theoret-

ical logic deductively obtains the system of arithmetic, then its procedures

must include either explicit or hidden assumptions through which the actual

infinite is introduced.

The justification that is given for these assumptions, and the position
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adopted with respect to them, has been the weak point of logicism from

the start. Indeed, Frege and Dedekind, whose proofs and discussions dis-

played extreme precision and rigor everywhere else, were relatively uncon-

cerned about the supposed self-evident assumptions they took as the basis

for the standpoint of general logic, namely the idea of a closed totality of all

conceivable logical objects whatsoever.

If this idea were tenable, it would of course be more satisfactory from a

systematic point of view than the more specialized postulates of arithmetic.

But, as is well known, it had to be dropped, because of the contradictions

to which it lead. Since then logicism has forgone proving the existence of an

infinite totality, and has instead explicitly postulated an axiom of infinity.

This axiom of infinity, however, is not a sufficient assumption for ob-

taining arithmetic as logically construed. We could only obtain with it what

follows from our first postulate, the admissibility of existential inference with

respect to the integers. To conform with our second postulate we still re-

quire something further, namely, the application of existential inference with

respect to predicates. The justification of this way of proceeding might at

first seem to be logically self-evident, and in fact it is not questioned under

the conception of Frege and Dedekind. But once the idea of the totality of

all logical objects is given up, the idea of the totality of all predicates be-

comes problematic as well, and here closer inspection reveals a particular,

fundamental difficulty.

Indeed it corresponds to the genuine logicist standpoint that we con-

strue the totality of predicates as a totality which essentially first comes into

existence ‖A48 in the frame of the system of logic by applying logical con-
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structions to certain initial, prelogical predicates, e.g., predicates taken from

intuition. ‖356 Further predicates are now obtained by reference to the to-

tality of predicates. An example is the already mentioned Fregean definition

of finite number: “a number n is called finite if every predicate holds of n

that holds of the number 0 and that, if it holds of a number a also holds

of the succeeding number.” The predicate of finiteness is defined here by

reference to the totality of all predicates.

Definitions of this kind, called “impredicative,”18 occur everywhere in the

foundation of arithmetic and especially in crucial places.

Now there is really no objection to determining a thing from a totality

by means of a property that refers to this totality. So, for example, in the

totality of numbers a particular number is defined by the property of being

the greatest prime number, such that its product with 1000 is greater than

the product of the preceding prime number with 1001.19

But it is required here that the totality in question is determined in-

dependently of the definitions referring to it; otherwise we enter a vicious

18The term is due to Poincaré who—in contrast to the other critics of set theory who

almost all concerned themselves just with the axiom of choice—brought the aspect of

impredicative definition into the discussion and put the emphasis on it. However his

criticism was disputable, because he made the use of impredicative definitions appear to

be a novelty introduced by set theory. Zermelo could object to him that impredicative

definitions occur essentially already in the usual modes of inference in analysis, which

Poincaré in fact accepted.

Since then Russell and Weyl in particular have thoroughly discussed and completely

clarified the role of impredicative definition in analysis.
19The example is chosen in such a way that the reference to the totality of numbers can

not be eliminated directly as is the case in most of the simpler examples.
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circle.

This precondition, however, can not be taken as directly satisfied, in

particular, not in the case of the totality of predicates and the impredicative

definitions referring to it; the totality of predicates is determined according

to the conception discussed here by the ‖A49 laws for logical constructions,

and these include also impredicative definitions.

In order to avoid the vicious circle it would of course suffice to show that

every predicate introduced by an impredicative definition can also be defined

in a “predicative” way. Indeed, one could even get by with a weaker claim.

Since in the logical foundation of arithmetic a predicate is always considered

just with respect to its extension, i.e., with respect to the set of things of

which it holds, we would only need to know that every predicate introduced

by an impredicative definition is extensionally equal to a predicatively defined

predicate.

This postulate, called “axiom of reducibility,” was placed next to the

axiom of infinity by Russell, who recognized with total clarity the difficulty

involved in impredicative definitions.

But how is this axiom of reducibility to be understood? From its for-

mulation it is not clear whether it expresses a logical law or an extralogical

assumption.

If, in the first case, the axiom of reducibility were the expression of a log-

ical law, then its validity would have to be independent of the basic domain

of prelogical initial predicates—at least assuming that this domain satisfies

the axiom of infinity. But this would mean that the domain of predicates of

an axiomatic theory in which the forms of the universal and the existential
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judgment (the existential reasoning) are applied only to objects and not to

predicates can not be enlarged by the introduction of impredicative defini-

tions, provided only that the axiom system requires for its satisfaction an

infinite system of objects.

But the correctness of such a statement is out of the question. One can

easily construct examples which refute this claim.

Dedekind’s introduction of the concept of number constitutes

such an example. Dedekind starts with a system in which a

thing 0 is distinguished and which permits a one-one mapping

onto a subset not containing the thing 0. Suppose we represent

this mapping by a predicate with two subjects and formulate the

required properties of this predicate as axioms; we then get an

elementary axiom system that contains in its axioms no reference

‖A50 to the totality of predicates and that, moreover, can be sat-

isfied only by an infinite system of objects. Let us now consider

Dedekind’s concept of number; if we translate his definition from

the language of set theory into that of the theory of predicates,

it can be formulated in full analogy to Frege’s definition of finite

number: “a thing n of our system is a number if every predicate

holds of n which holds of 0 and which, if it holds of a thing a in

our system, holds also of the thing to which a is correlated by the

one-one mapping.” This definition is impredicative; and one can

see that it is not possible to obtain a predicate that is extension-

ally equal to the here defined concept of “being a number,” by a

45



predicative definition from the basic elements of the theory.20

‖358 Thus we need only to consider the second interpretation of the axiom

of reducibility, according to which it expresses a condition on the initial

domain of prelogical predicates.

By introducing such an assumption one abandons the conception that

the domain of predicates is generated by logical processes. The aim of a

genuinely logical theory of predicates is then given up.

If one decides to do this, then it seems more natural and more appro-

priate to return to the conception of a logical function that corresponds to

Schröder’s standpoint: one construes a logical function as an assignment of

the values “true” and “false” to the objects of the domain of individuals.

Each predicate defines such an assignment; but, the totality of assignments

of values is construed, in analogy with the finite, as a combinatorial manifold

which exists independently of conceptual definitions.

This conception removes the circularity of the impredicative definitions

of theoretical logic; we have only to replace any statement about the totality

of predicates by the corresponding statement about the totality of logical

functions. The axiom of reducibility is thus dispensable.

This step was actually taken by the logicist school at the suggestion of

Wittgenstein and Ramsey. These two maintained in particular that in or-

der to avoid the contradictions connected with the concept of the set of all

mathematical ‖A51 objects it is not necessary to distinguish predicates by

their definitions, as Whitehead and Russell had done in Principia Mathe-

20Another example was given by Waismann in a note on “Die Natur des Reduzibilitäts-

Axioms” (1928). This, however, requires some modification.
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matica. Rather, they maintained, it suffices to delimit clearly the domains

of definition of predicates, so that one distinguishes between the predicates

of individuals, the predicates of predicates, the predicates of predicates of

predicates, and so on.

In this way one has returned from the type theory of Principia Mathe-

matica to the simpler conceptions of Cantor and Schröder.

One should be clear, however, that with this change one has moved far

away from the standpoint of logical self-evidence. The assumptions on which

theoretical logic is then based ‖359 are in principle of exactly the same kind

as the basic postulates of analysis, and are also completely analogous to

them in content. The axiom of infinity in the logical theory corresponds

to the conception of the number sequence as an infinite totality; and in the

logical theory one postulates the concept of all logical functions instead of the

concept of all sets of numbers, whereby the functions refer to the “domain

of individuals” or to a determinate domain of predicates.

Thus, when arithmetic is incorporated into the system of theoretical logic,

nothing is saved in terms of assumptions. Contrary to what one might at

first think, this incorporation by no means has the significance of a reduction

of the postulates of arithmetic to lesser assumptions; its value is rather in

the fact that the mathematical theory is placed on a broader basis by joining

it with the logical formalism.

In this way the theory attains, first of all, a higher degree of method-

ological distinction, as follows. Not only do its assumptions result from a

natural extrapolation of intuitive numbers, but they are also obtained by

extrapolating the logic of extensions to infinite totalities.
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Moreover, by joining arithmetic with theoretical logic we gain an insight

into the connection of the processes of set formation with the fundamental

operations of logic; and the logical structure of concept formation and of

inferences becomes clearer.

Thus, in particular, the meaning of the Principle of Choice becomes fully

comprehensible only by means of the formalism of logic. We can express this

principle in the following form: if B(x, y) is a two-place predicate (defined in

a certain domain) and ‖A52 if for every thing x in the domain of definition

there is at least one thing y in this domain for which B(x, y) holds, then

there is (at least) one function y = f(x), such that for every thing x in the

domain of definition of B(x, y) the value f(x) is again in this domain, and is

such that B(x, f(x)) holds.

Let us consider what this assertion claims in the special case of a two

element domain, the things of which we can represent by the numbers 0,

1. In this case there are only four different courses of values of functions

y = f(x) to consider. Then the assertion is a simple application of one of the

distributive laws governing the relation between conjunction and disjunction,

i.e. the following theorem of elementary logic: “If A holds ‖360 and if, in

addition, B or C holds, then either A and B holds or A and C holds.”21

Also in the case of a subject domain consisting of any determinate finite

number of things, the assertion of the Principle of Choice follows from this

distributive law. The general assertion of the Principle of Choice is therefore

nothing but the extension of a law of elementary logic for conjunction and

21“Or” is in both cases meant not in the sense of the exclusive “or” but in the sense of

the Latin “vel.” But of course the theorem also holds for the exclusive “or.”
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disjunction to infinite totalities. And thus, the Principle of Choice supple-

ments the logical rules governing universal and existential judgments, i.e. the

rules of existential inference, for their application to infinite totalities signifies

in the same way that certain elementary laws for conjunction and disjunction

are being carried over to the infinite.

The Principle of Choice has a distinctive position with respect to these

rules of existential inference only insofar as its formulation requires the con-

cept of function. This concept, in turn, receives its sufficient implicit charac-

terization only by means of the Principle of Choice.

This concept of function corresponds to the concept of logical function;

the only difference is that the values of the former are not taken to be “true”

and “false” but the things of the subject domain. The totality of the functions

that are being considered here is therefore the totality of all possible “self-

assignments” of the subject domain.

‖A53 According to this concept of function the existence of a function with

the property E in no way means that one can form a concept that uniquely

determines a definite function with the property E. Consideration of this

circumstance invalidates the usual objections to the Principle of Choice, most

of which rest on the fact that one is misled by the name “Principle of Choice”

to the view that this principle asserts the possibility of a choice.

At the same time we recognize that the assumption expressed by the

Principle of Choice does not fundamentally go beyond the understanding

upon which we have to base, in any event, the procedure of theoretical logic

in order to interpret it in a circle-free manner without introducing an axiom

of reducibility.
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To be sure, we can also give contrary emphasis to this observation: the

controversial character of the Principle of Choice, the formulation of which

is in line with the systematic elaboration of the standpoint of theoretical

‖361 logic, brings most strongly to the fore what is problematic about this

standpoint.

When we considered the logicist foundation of arithmetic we were also led

to this result: the incorporation of arithmetic into theoretical logic provides

indeed a broader foundation for the arithmetic theory and contributes to

the contentual motivation of its assumptions; but it does not lead beyond

the methodological standpoint of the conceptual approach, i.e. beyond the

standpoint of axiomatics.

In this way the problem of the infinite is formulated, but it is not solved.

For there remains the open question whether the analogies between the finite

and the infinite, postulated as assumptions for the development of analysis

and set theory, constitute an admissible approach, i.e. one which can be

carried out consistently.

Intuitionism tries to avoid this question by excluding the problematic

assumptions, while most logicists dispute its legitimacy by denying a funda-

mental difference between the finite and the infinite; Hilbert’s proof theory

begins to address this question in a positive way.

§ 4. Hilbert’s proof theory

In order to grasp better the leading ideas of proof theory let us first bring

to mind once again the character of the problem ‖54 to be solved here. At

issue is to prove the consistency of the mathematical concept formation

on which the theory of arithmetic rests.
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Philosophers have frequently raised the question whether a proof of consis-

tency alone provides a justification of this concept formation [Ideenbildung]

. This way of putting the question is however misleading; it does not take into

account the fact that the scientific motivation for the theoretical approach

of arithmetic has been provided in essence already by science and that the

proof of consistency is the only desideratum that remains to be fulfilled.

The edifice of arithmetic is built on the foundation of conceptions which

are of greatest relevance for scientific systematization in general: namely the

principle of conservation (“permanence”) of laws, which occurs here as the

postulate of the unlimited applicability of the usual logical forms of judgment

and inference, and the demand for a purely objective formulation of the

theory, by which it is freed from all reference to our cognition. ‖362

The fundamental methodological significance of these requirements yields

the inner motivation and distinctive character of the approach of the arith-

metic theory.

In addition to this inner motivation we have the splendid corroboration

of the conceptual system of arithmetic in the sense of its deductive fruit-

fulness, its systematic success, and the coherence of its consequences. This

conceptual system clearly suited in a truly remarkable way for treating the

relations of numbers and of magnitudes. Nothing has the systematicity of

this magnificent theory which is obtained by joining function theory with

number theory and algebra. And as an inclusive conceptual apparatus for

the construction of scientific theories, arithmetic proves to be suited not only

for the formulation and development of laws, but it has also been used with

great success, and to an extent which had not been anticipated, in the search
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for laws.

Regarding the coherence of the consequences, it has been most strongly

corroborated by the intensive theoretical development of analysis and its

many numerical applications.

What is still lacking here is only this: that the merely empirical trust,

gained by many trials, in the ‖A55 consistency of the arithmetic theory,

i.e. in the general coherence of its results, is replaced by a real insight into

this consistency; to effect this is the purpose of the proof of consistency.

Thus, it is not the case that the conceptual system of arithmetic would

have to be established first of all by the proof of its consistency. Rather, the

sole purpose of this proof is to give us with regard to this conceptual sys-

tem (which is already motivated by internal reasons of systematicity and has

proved itself as an intellectual tool in its applications) the full intelligible cer-

tainty that it can not be undermined by the incoherence of its consequences.

If this succeeds, we know that the idea of the actual infinite can be de-

veloped systematically. And we can rely on the results of applying the basic

arithmetic postulates just as if we were in the position of verifying them

intuitively. Since, when we recognize the consistency of the application of

these postulates it follows immediately that their consequences, if they are

intuitively, i.e. finitistically, meaningful, can never contradict an intuitively

recognizable fact. In the case of finitist sentences, ‖363 the ascertainment of

their nonrefutability is equivalent to the ascertainment of their truth.

From this consideration of the need for and the purpose of a consistency

proof it follows in particular that for such a proof only one thing matters,

namely to recognize, in the literal sense of the word, the freedom from con-
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tradictions of the arithmetic theory, i.e., the impossibility its immanent refu-

tation.

The novel feature of Hilbert’s approach was that he limited himself to this

problem; previously one carried out consistency proofs for axiomatic theo-

ries always in the sense that one simultaneously demonstrated in a positive

way the satisfaction of the axioms by certain objects. There was no basis

for this method of exhibition in the case of arithmetic; in particular, Frege’s

idea of taking the objects to be exhibited from the domain of logic does not

succeed, because, as we have recognized, the application of ordinary logic to

the infinite is just as problematic as arithmetic, which is to be shown consis-

tent. Indeed, the basic postulates of the arithmetic theory concern exactly

the extended application of the usual forms of judgment and inference.

By focusing on this aspect, we are led ‖A56 directly to the first guiding

principle of Hilbert’s proof theory : it says that, when proving the consistency

of arithmetic we must consider the laws of logic as applied in arithmetic as

part of what is to be shown consistent; thus, the proof of consistency covers

both logic and arithmetic together.

The first essential step in carrying out this idea is already taken by in-

corporating arithmetic into the system of theoretical logic. Because of this

incorporation the task of proving the consistency of arithmetic reduces to

establishing the consistency of theoretical logic, or, in other words, deter-

mining the consistency of the axiom of infinity, of impredicative definitions,

and of the Principle of Choice.

In this connection it is advisable to replace Russell’s axiom of infinity

with Dedekind’s characterization of the infinite.
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Russell’s axiom of infinity requires the existence of an n-numbered

predicate for every finite number n (in the sense of Frege’s def-

inition of finite cardinal) and thus requires implicitly also that

the domain of individuals (the basic domain of things) is infinite.

Now it is an unnecessary and also from a principled standpoint

objectionable complication that here three infinities run ‖364 con-

currently in different layers: that of the infinitely many things in

the domain of individuals, furthermore that of the infinitely many

predicates, and then that of the resulting infinitely many cardinal,

which after all are defined as predicates of predicates.

We can avoid this multiplicity by determining the infinity of the

domain of individuals not by an infinite series of unary predicates,

but rather by a single binary predicate, namely a predicate that

provides a one-one mapping of the domain of individuals onto

a proper subdomain, i.e. a subdomain which excludes at least

one thing. This characterization of the infinite, due to Dedekind,

can be introduced in the most simple and elementary way if we

do not postulate the one-one mapping by means of an existence

axiom, but introduce it explicitly from the start by taking as basic

elements of the theory an initial object and a basic process.

In this way we achieve that the numbers occur already as things in

the domain of individuals, rather than as predicates of predicates

of things.

However, this consideration already refers to the particular form of the

systematic development, and there are several ways of pursuing it. But we
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must first ‖A57 orient ourselves in general how a proof of consistency in the

intended sense can be carried out at all. This possibility is not immediately

obvious. For how can one survey all possible consequences that follow from

the assumptions of arithmetic or of theoretical logic?

Here the investigation of mathematical proofs by means of the logical

calculus comes into play in a decisive way. This has shown that the methods

of forming concepts and making inferences which are used in analysis and

set theory are reducible to a limited number of processes and rules; thus,

one succeeds in formalizing these theories completely in the framework of an

exactly specified symbolism.

Hilbert inferred from the possibility of this formalization, which was done

originally only for the sake of a more precise logical analysis of proof, the

second guiding idea of his proof theory, namely that the task of proving the

consistency of arithmetic is a finitist problem.

An inconsistency in the contentual theory must indeed show itself by

means of the formalization in the following way: two formulas are derivable

according to the rules of the formalism, one of which results from the other

though that process which is the formal image of negation. The claim of

consistency is therefore equivalent to the claim that two formulas standing in

the above relation can not be derived by the rules of the formalism. ‖365 But

this claim has fundamentally the same character as any general statement

of finitist number theory, e.g., the statement that it is impossible to produce

three integers a, b, c (different from 0) such that a3 + b3 = c3.

Thus, the proof of consistency for arithmetic in fact amounts to a finitist

problem of the theory of inferences. The finitist investigations which have
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the formalized theories of mathematics as their object are called by Hilbert

metamathematics. The task falling to metamathematics vis-à-vis the system

of mathematics is analogous to the one which Kant ascribed to the critique

of reason vis-à-vis the system of philosophy.

In accord with this methodological program proof theory has already been

developed to a substantial degree;22 but there are still ‖A58 considerable

mathematical difficulties to be overcome. The proofs of Ackermann and von

Neumann secure the consistency of the first postulate of arithmetic, i.e., the

applicability of existential reasoning to the integers. Ackermann developed

in some detail an approach to the further problem of the consistency of the

general concept of a set (resp. numerical function) of numbers together with

a corresponding Principle of Choice.

If this problem were solved, then almost the entire domain of existing

mathematical theories would be proved to be consistent.23 This proof would

in particular be sufficient to recognize the consistency of the geometric and

physical theories.

One can also extend the problem still further and investigate the consis-

22Hilbert gave a first sketch of a theory of proofs already in his 1904 Heidelberg lecture

“On the foundations of logic and arithmetic.” The first guiding idea of a joint treatment

of logic and arithmetic is expressly formulated here; the methodological principle of the

finitist standpoint is also intended, but not yet explicitly stated.— The investigation of

Julius Koenig, “New foundations for logic, arithmetic, and set theory” (published in 1914)

falls between this lecture and Hilbert’s more recent publications on proof theory; it comes

very close to Hilbert’s standpoint and gives already a proof of consistency which is in

full accord with proof theory. This proof covers only a very narrow domain of formal

operations and is therefore only of methodological significance.
23Cantor’s theory of numbers of the second number class is also included here.
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tency of more inclusive systems, e.g., axiomatic set theory. Axiomatic set

theory, as first formulated by Zermelo and supplemented and ‖366 extended

by Fraenkel and von Neumann, goes through its construction processes al-

ready far beyond what is actually used in mathematics; and the proof of its

consistency would also establish the consistency of the system of theoretical

logic.

This does not achieve an absolute completion of the formation of this

concept, because formalized set theory motivates metamathematical consid-

erations which have the formal constructions of set theory as their object

and in this way go beyond these constructions.24

‖A59 In spite of this possibility of extending the concept formation a for-

malized theory can nevertheless be closed in the following sense: no new

results are obtained by extending the concept formation in the domain of

the laws that can be formulated in terms of the concepts of the theory.

This condition is satisfied whenever the theory is deductively closed, i.e.,

when it is impossible to add a new axiom, which is expressible in terms of

the concepts of the theory but not already derivable, without producing a

contradiction,—or, what amounts to the same thing: if every statement that

can be formulated within the framework of the theory is either provable or

refutable.25

24The more detailed discussion of this point is connected to the Richard paradox, of

which Skolem has recently given a more precise formulation. These considerations are

not conclusive since they are made in the framework of a non-finitist metamathematics.

A final answer to the question discussed here would be obtained only if one succeeded

in producing in a finitist way a set of numbers which could be shown not to occur in

axiomatic set theory.
25Notice that this requirement of being deductively closed does not go as far as the
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We believe that number theory as delimited through Peano’s axioms with

the addition of definition by recursion is deductively closed in this sense; but

the task of giving an actual proof of this is still entirely unresolved. The

question becomes even more difficult if we go beyond the domain of number

theory and ascend to analysis and the further set theoretic ways concept

formations.

In the realm of these and related questions there lies a considerable open

field of problems. But these problems are not of such a kind that they

represent an objection to the standpoint we have adopted. We ‖367 must

only keep in mind that the formalism of theorems and proofs which we use

to represent our ideas does not coincide with the formalism of that structure

which we intend in thought. The formalism suffices to formulate our ideas

of infinite manifolds and to draw the logical consequences from them; but in

general it is not able to produce combinatorially the manifold, so to speak,

out of itself.

‖A60 The position we have reached concerning the theory of the infinite

can be viewed as a form of the philosophy of the “as if.” However, it differs

fundamentally from the Vaihinger’s philosophy thus designated by placing

weight on the consistency and the permanence of ideas; in contrast, Vai-

hinger considers the demand for consistency to be a prejudice and indeed

claims that the contradictions in the infinitesimal calculus are “not only not

to be disavowed, but . . . [are] precisely the means by which progress was

requirement that every question of the theory be decidable. The latter says that there

should be a procedure for deciding for any arbitrarily given pair of contradictory claims

belonging to the theory which of the two is provable (“correct”).
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attained.”26

Vaihinger’s considerations are focused exclusively on scientific heuristic.

He knows just of “fictions” which occur as only temporary aids for thinking.

In introducing these fictions thought acts against its own nature. And finally,

their contradictory character (if we are dealing with “genuine fictions”) can

be rendered harmless only by a skillful compensation for the contradictions.

Ideas in our sense are a permanent possession of the mind. They are dis-

tinguished forms of systematic extrapolation and of idealizing approximation

to what is real. They are also by no means arbitrary nor forced upon thought;

on the contrary, they constitute a world in which our thinking feels at home

and from which the human mind, absorbed in this world, gains satisfaction

and joy.

Postscriptum

Because of various insights that have been gained since the publication

of the above essay, some considerations presented here have to be corrected.

First of all, as far as intuitionism is concerned, it was initially believed

that the methodology of intuitionistic proof agrees with that of Hilbert’s

“finitist standpoint.” It has become clear, however, that the methods of

intuitionism go beyond the finitist proof procedures intended by Hilbert. In

particular, Brouwer uses the general concept of contentual proof, to which

also the concept of “absurdity” is connected, but which is not employed in

finitist reasoning.

Then, as far as Hilbert’s proof theory is concerned, the view that the

consistency proof for arithmetic ‖A60 amounts to a finitist problem is jus-
26Vaihinger, Die Philosophie des Als ob, second edition, ch. XII.
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tified only in the sense that the statement of consistency can be formulated

finitistically. But this does not imply at all that the problem can be solved

with finitist methods.. By a theorem of Gödel, the possibility of a finitist

solution was made highly implausible, if not directly excluded, already for

number theory, and moreover it turned out that the mentioned consistency

proofs that were available at the time did not suffice for the full formalism

of number theory. The methodological standpoint of proof theory was con-

sequently extended, ad various consistency proofs were carried out, first for

formalized number theory and then also for formal systems of analysis; their

methods, although not restricted to finitist, i.e., elementary combinatorial

considerations, require neither the usual methods of existential reasoning,

nor the general concept of contentual proof.

In connection with the mentioned theorem of Gödel, the assumption that

number theory, when axiomatically delimited and formalized, is deductively

complete turned out to be incorrect. Even more generally, Gödel showed

that formalized theories, which satisfy certain very general conditions of ex-

pressiveness as well as rigor of formalization, cannot be deductively complete

as long as they are consistent.

On the whole the situation is as follows: Hilbert’s proof theory, together

with the uncovering of the possibilities of formalizing mathematical theories,

has opened a rich area of research, but the epistemological perspective which

motivated its formulation has become problematic.

This provides a reason to revise the epistemological remarks in the above

essay. And yet, the positive remarks, in particular those which exhibit the

mathematical element in logic and which point out the elementary arithmeti-
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cal evidence, are hardly in need of revision. However, the sharp distinction

between the intuitive and the non-intuitive, employed in the treatment of

the problem of the infinite, can apparently not be drawn so strictly, and the

reflection on the formation of mathematical ideas still needs a more detailed

elaboration in this respect. Various considerations for it are contained in the

following essays.27

27Editorial remark: This refers to the remaining essays in the collection Bernays 1976.
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