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1 Introduction

This is the third in a series of papers on algebraic set theory, the aim of which is
to develop a categorical semantics for constructive set theories, including pred-
icative ones, based on the notion of a “predicative category with small maps”.1

In the first paper in this series [8] we discussed how these predicative categories
with small maps provide a sound and complete semantics for constructive set
theory. In the second one [10], we explained how realizability extensions of such
predicative categories with small maps can be constructed. The purpose of the
present paper is to do the same for sheaf-theoretic extensions. This program
was summarised in [11], where we announced the results that we will present
and prove here.

For the convenience of the reader, and also to allow a comparison with the
work by other researchers, we outline the main features of our approach. As
said, the central concept in our theory is that of a predicative category with
small maps. It axiomatises the idea of a category whose objects are classes and
whose morphisms are functions between classes, and which is moreover equipped
with a designated class of maps. The maps in the designated class are called
small, and the intuitive idea is that the fibres of these maps are sets (in a certain
axiomatic set theory). Such categories are in many ways like toposes, and to a
large extent the purpose of our series of papers is to develop a topos theory for
these categories. Indeed, like toposes, predicative categories with small maps
turn out to be closed under realizability and sheaves. Moreover, they provide
models of (constructive) set theories, this being in contrast to toposes which are
most naturally seen as models of a typed version of (constructive) higher-order
arithmetic. Furthermore, the notion of a predicative category with small maps
is proof-theoretically rather weak: this allows us to model set theories which
are proof-theoretically weaker than higher-order arithmetic, such as Aczel’s set
theory CZF (see [1]). But at the same time, the notion of a predicative category

1Accessible and well-written introductions to algebraic set theory are [4, 5, 28].
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with small maps can also be strengthened, so that it leads to models of set
theories proof-theoretically stronger than higher-order arithmetic, like IZF. The
reason for this is that one can impose additional axioms on the class of small
maps. This added flexibility is an important feature of algebraic set theory.

A central result in algebraic set theory says that the semantics provided by
predicative categories with small maps is complete. More precisely, every pred-
icative category with small maps contains an object (“the initial ZF-algebra” in
the terminology of [21], or “the initial Ps-algebra” in the terminology of [8]2)
which carries the structure of a model of set theory. Which set-theoretic ax-
ioms hold in this model depends on the properties of the class of small maps
and on the logic of the underlying category: in different situations, this initial
ZF-algebra can be a model of CZF, of IZF, or of ordinary ZF. (The axioms
of the constructive set theores CZF and IZF are recalled in Section 2 below.)
The completeness referred to above results from the fact that from the syntax of
CZF (or (I)ZF ), we can build a predicative category with small maps with the
property that in the initial ZF-algebra in this category, precisely those sentences
are valid which are derivable from the axiom of CZF (see [8]). (Completeness
theorems of this kind go back to [27, 5]. One should also mention that one
can obtain a predicative category with small maps from the syntax of Martin-
Löf type theory: Aczel’s interpretation of CZF in Martin-Löf type theory goes
precisely via the initial ZF-algebra in this category. In fact, our proof of the
existence of the initial ZF-algebra in any predicative category with small maps
in [8] was modelled on Aczel’s interpretation, as it was in [25].)

In algebraic set theory we approach the construction of realizability cate-
gories and of categories of sheaves in a topos-theoretic spirit; that is, we regard
these realizability and sheaf constructions as closure properties of predicative
categories with small maps. For realizability this means that starting from any
predicative category with small maps (E ,S) one can build a predicative real-
izability category with small maps (EffE , EffS) over it. Inside both of these
categories, we have models of constructive set theory (CZF say), as shown in
the following picture. Here, the vertical arrows are two instances of the same
construction of the initial ZF-algebra, applied to different predicative categories
with small maps:

(E ,S)

��

// (EffE , EffS)

��

model of CZF // realizability model of CZF

Traditional treatments of realizability either regard it as a model-theoretic
construction (which would correspond to the lower edge of the diagram), or as
a proof-theoretic interpretation (defining a realizability model of CZF inside

2Appendix A in [21] contains a proof of the fact that both these terms refer to the same
object. In the sequel we will use these terms interchangably.
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CZF, as in [26], for instance): the latter would correspond to the left-hand
vertical arrow in the special case where E is the syntactic category associated to
CZF. So in a way our treatment captures both constructions in a uniform way.

That realizability is indeed a closure of predicative categories with small
maps was the principal result of [8]. The main result of the present paper is
that the same is true for sheaves, leading to an analogous diagram:

(E ,S)

��

// (ShE ,ShS)

��

model of CZF // sheaf model of CZF

The main technical difficulty in showing that predicative categories with small
maps are closed under sheaves lies in showing that the axioms concerning induc-
tive types (W-types) and an axiom called fullness (needed to model the subset
collection axiom of CZF) are inherited by sheaf models. The proofs of these
facts are quite long and involved, and take up a large part of this paper (the
situation for realizability was very similar).

To summarise, in our approach there is one uniform construction of a model
out of a predicative category with small maps (E ,S), which one can apply to
different kinds of such categories, constructed using syntax, using realizability,
using sheaves, or any iteration or combination of these techniques.

We proceed to compare our results with those of other authors. Early work
on categorical semantics of set theory (for example, [13] and [12]) was concerned
with sheaf and realizability toposes defined over Sets. The same applies to the
book which introduced algebraic set theory [21]. In particular, to the best of
our knowledge, before our work a systematic account was lacking of iterations
and combinations of realizability and sheaf interpretations. In addition these
earlier papers were concerned exclusively with impredicative set theories, such
as ZF or IZF: the only exception seems to have been an early paper [18] by
Grayson, treating models of predicative set theory in the context of what would
now be called formal topology.

The first paper extending the methods of algebraic set theory to predicative
systems was [25]. The authors of this paper showed how categorical models of
Martin-Löf type theory (with universes) lead to models of CZF extended with
a choice principle, which they dubbed the Axiom of Multiple Choice (AMC).
They established how such categorical models of type theory are closed under
sheaves, hence leading to sheaf models of a strengthening of CZF. They did
not develop a semantics for CZF per se and relied on a technical notion of a
collection site, which we manage to avoid here (moreover, there was a mistake
in their treatment of W-types of sheaves; we correct this in Section 4.4 below,
see also [9]).

Two accounts of presheaf models in the context of algebraic set theory have
been written by Gambino [15] and Warren [30]. In [15] Gambino shows how
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an earlier (unpublished) construction of a model of constructive set theory by
Dana Scott can be regarded as an initial ZF-algebra in a category of presheaves,
and that one can perform the construction in a predicative metatheory as well.
Warren shows in [30] that many of the axioms that we will discuss are inherited
by categories of coalgebras for a Cartesian comonad, a construction which in-
cludes presheaf models as a special case. But note that neither of these authors
discusses the technically complicated axioms concerning W-types and Fullness,
as we will do in Sections 3 and 4 below.

In his PhD thesis [14], Gambino gave a systematic account of Heyting-valued
models for CZF (see also [16]). This work was in the context of formal topology
(essentially, sites whose underlying categories are posets). He has subsequently
worked on generalising this to arbitrary sites and on putting this in the context
of algebraic set theory (see [17], and [6] together with Awodey, Lumsdaine and
Warren). In these papers the authors work with a slightly different notion of a
predicative category with small maps (they assume full exactness, whereas we
work with bounded exactness). Again, we improve on this by proving stability
under the sheaf construction of the axioms for W-types and for fullness.

We conclude this introduction by outlining the organisation of our paper.
In Section 2 we recall the main definitions from [11, 8]. We will introduce the
axioms for a class of small maps needed to obtain models of CZF and IZF. We
will discuss the fullness axiom, the axioms concerning W-types and the axiom
of multiple choice in some detail, as these are the most complicated technically
and our main results, which we formulate precisely in Section 2.5, are concerned
with these axioms.

In Section 3 we show that predicative categories with small maps are closed
under presheaves and that all the axioms that we have listed in Section 2 are
inherited by such presheaf models. An important part of our treatment is that
we distinguish between two classes of small maps: the “pointwise” and “locally”
small ones. It turns out that for certain axioms it is easier to show that they
are inherited by pointwise small maps while for other axioms it is easier to show
that they are inherited by locally small maps, and therefore it is an important
result that these classes of maps coincide.

We follow a similar strategy in Section 4, where we discuss sheaves: we again
distinguish between two classes of maps, where for some axioms it is easier to use
one definition, while for other axioms it turns out to be easier to use the other.
To show that these two classes coincide we use the fullness axiom and assume
that the site has a basis.3 This section also contains our main technical results:
that sheaf models inherit the fullness axiom, as well as the axioms concerning
W-types.4 Strictly speaking our results for presheaves in Section 3 are special

3In [11] we claimed that (instead of fullness) the exponentiation axiom would suffice to
establish this result, but that might not be correct.

4One subtlety arises when we try to show that an axiom saying that certain inductives
types are small (axiom (WS) to be precise) is inherited by sheaf models: we show this using
the axiom of multiple choice. In fact, we suspect that something of this sort is unavoidable
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cases of our results in Section 4. We believe, however, that it is useful to give
direct proofs of the results for presheaves, and in many cases it is helpful to see
how the proof goes in the (easier) presheaf case before embarking on the more
involved proofs in the sheaf case.

Finally, in Section 5 we give explicit descriptions of the sheaf models of
constructive set theory our results lead to. We also point out the connection to
forcing for classical set theories.

This will complete our program for developing an abstract semantics of con-
structive set theory, in particular of Aczel’s CZF, as outlined [11]. As a result
topos-theoretic insights and categorical methods can be used in the study of
constructive set theories. For instance, one can obtain consistency and indepen-
dence results using sheaf and realizability models or by a combination of these
interpretations. In future work, we will concentrate on derived rules and show
how sheaf-theoretic methods can be used to show that the fan rule as well as
certain continuity rules are admissible in (extensions of) CZF.

The main results of this paper were presented by the second author in a
tutorial on categorical logic at the Logic Colloquium 2006 in Nijmegen. We are
grateful to the organisers of the Logic Colloquium for giving one of the authors
this opportunity. The final draft of this paper was completed during a stay of
the first author at the Mittag-Leffler Institute in Stockholm. We would like to
thank the Institute and the organisers of the program in Mathematical Logic in
Fall 2009 for awarding him a grant which enabled him to complete this paper
in such excellent working conditions. In addition, we would like to acknowledge
the helpful discussions we had with Steve Awodey, Nicola Gambino, Jaap van
Oosten, Erik Palmgren, Thomas Streicher, Michael Warren, and especially Peter
LeFanu Lumsdaine (see Remark 4.12 below).

2 Preliminaries

2.1 Review of Algebraic Set Theory

In this section we recall the main features of our approach to Algebraic Set
Theory from [11, 8].

We will always assume that our ambient category E is a positive Heyting
category. That means that E is

(i) Cartesian, i.e., it has finite limits.

(ii) regular, i.e., morphisms factor in a stable fashion as a cover followed by a
monomorphism.5

and one has to go beyond CZF proper to show that its validity is inherited by sheaf models.
5Recall that a map f : B → A is a cover, if the only subobject of A through which it factors,
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(iii) positive, i.e., it has finite sums, which are disjoint and stable.

(iv) Heyting, i.e., for any morphism f :Y //X the induced pullback functor
f∗: Sub(X) //Sub(Y ) has a right adjoint ∀f .

This means that E is rich enough to interpret first-order intuitionistic logic. Such
a category E will be called a category with small maps, if it comes equipped with
a class of maps S satisfying a list of axioms. To formulate these, we use the
notion of a covering square.

Definition 2.1 A diagram in E of the form

D

f

��

// C

g

��

B p
// A

is called a quasi-pullback, when the canonical map D //B ×A C is a cover. If
p is also a cover, the diagram will be called a covering square. When f and g
fit into a covering square as shown, we say that f covers g, or that g is covered
by f .

Definition 2.2 A class of maps in E satisfying the following axioms (A1-9)
will be called a class of small maps:

(A1) (Pullback stability) In any pullback square

D

g

��

// B

f

��

C p
// A

where f ∈ S, also g ∈ S.

(A2) (Descent) If in a pullback square as above p is a cover and g ∈ S, then
also f ∈ S.

(A3) (Sums) Whenever X //Y and X ′ //Y ′ belong to S, so does X +
X ′ //Y + Y ′.

(A4) (Finiteness) The maps 0 // 1, 1 // 1 and 1 + 1 // 1 belong to S.

(A5) (Composition) S is closed under composition.

is the maximal one; and that f is a regular epimorphism if it is the coequalizer of its kernel
pair. These two classes coincide in regular categories (see [19, Proposition A1.3.4]).
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(A6) (Quotients) In a commuting triangle

Z

h
  

@@
@@

@@
@

f
// // Y

g
~~~~

~~
~~

~~

X,

if f is a cover and h belongs to S, then so does g.

(A7) (Collection) Any two arrows p:Y //X and f :X //A where p is a cover
and f belongs to S fit into a covering square

Z

g

��

// Y
p
// // X

f

��

B
h

// // A,

where g belongs to S.

(A8) (Heyting) For any morphism f :Y //X belonging to S, the right adjoint
to pullback

∀f : Sub(Y ) //Sub(X)

sends small monos to small monos.

(A9) (Diagonals) All diagonals ∆X :X //X ×X belong to S.

For further discussion of these axioms we refer to [8].

A pair (E ,S) in which S is a class of small maps in E will be called a category
with small maps. In such categories with small maps, objects A will be called
small, if the unique map from A to the terminal object is small. A subobject
A ⊆ X will be called a small subobject if A is a small object. If any of its
representing monomorphisms m:A → X is small, they all are and in this case
the subobject will be called bounded.

Remark 2.3 In the sequel we will often implicitly use that categories with
small maps are stable under slicing. By this we mean that for any category
with small maps (E ,S) and object X in E , the pair (E/X,S/X), with S/X
being defined by

f ∈ S/X ⇔ ΣXf ∈ S,

is again a category with small maps (here ΣX is the forgetful functor E/X →
E sending an object p:A → X in E/X to A and morphisms to themselves).
Moreover, any of the further axioms for classes of small maps to be introduced
below are stable under slicing, in the sense that their validity in the slice over 1
implies their validity in every slice.
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Remark 2.4 A very useful feature of categories of small maps, and one we will
frequently exploit, is that they satisfy an internal form of bounded separation.
A precise statement is the following: if φ(x) is a formula in the internal logic
of E with free variable x ∈ X, all whose basic predicates are interpreted as
bounded subobjects (note that this includes all equalities, by (A9)), and which
contains existential and universal quantifications ∃f and ∀f along small maps f
only, then

A = {x ∈ X : φ(x)} ⊆ X

defines a bounded subobject of X. In particular, smallness of X implies small-
ness of A.

Definition 2.5 A category with small maps (E ,S) will be called a predicative
category with small maps, if the following axioms hold:

(ΠE) All morphisms f ∈ S are exponentiable.

(WE) For all f :X //Y ∈ S, the W-type Wf associated to f exists.

(NE) E has a natural numbers object N.

(NS) Moreover, N // 1 ∈ S.

(Representability) There is a small map π:E //U (the “universal small
map”) such that any f :Y //X ∈ S fits into a diagram of the form

Y

f

��

B

��

//oooo E

π

��

X A //oooo U,

where the left hand square is covering and the right hand square is a
pullback.

(Bounded exactness) For any equivalence relation

R // // X ×X

given by a small mono, a stable quotient X/R exists in E .

(For a detailed discussion of these axioms we refer again to [8]; W-types and
the axiom (WE) will also be discussed in Section 2.3 below.)

In predicative categories with small maps one can derive the existence of a
power class functor, classifying small subobjects:
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Definition 2.6 By a D-indexed family of subobjects of C, we mean a subobject
R ⊆ C × D. A D-indexed family of subobjects R ⊆ C × D will be called S-
displayed (or simply displayed), whenever the composite

R ⊆ C ×D //D

belongs to S. If it exists, the power class object PsX is the classifying object for
the displayed families of subobjects of X. This means that it comes equipped
with a displayed PsX-indexed family of subobjects of X, denoted by ∈X⊆
X ×PsX (or simply ∈, whenever X is understood), with the property that for
any displayed Y -indexed family of subobjects of X, R ⊆ X×Y say, there exists
a unique map ρ:Y //PsX such that the square

R
��

��

// ∈X
��

��

X × Y
id×ρ
// X × PsX

is a pullback.

Proposition 2.7 [8, Corollary 6.11] In a predicative category with small maps
all power class objects exist.

Moreover, one can show that the assignment X 7→ PsX is functorial and that
this functor has an initial algebra.

Theorem 2.8 [8, Theorem 7.4] In a predicative category with small maps the
Ps-functor has an initial algebra.

The importance of this result resides in the fact that this initial algebra can be
used to model a weak intuitionistic set theory: if V is the initial algebra and
E:V → PsV is the inverse of the Ps-algebra map on V (which is an isomorphism,
since V is an initial algebra), then one can define a binary predicate ε on V by
setting

xεy ⇔ x ∈V E(y),

where ∈V⊆ V × PsV derives from the power class structure on PsV . The
resulting structure (V, ε) models a weak intuitionistic set theory, which we have
called RST (for rudimentary set theory), consisting of the following axioms:

Extensionality: ∀x (xεa↔ xεb )→ a = b.

Empty set: ∃x∀y ¬yεx.

Pairing: ∃x∀y ( yεx↔ y = a ∨ y = b ).

Union: ∃x∀y ( yεx↔ ∃zεa yεz ).
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Set induction: ∀x (∀yεx φ(y)→ φ(x))→ ∀xφ(x).

Bounded separation: ∃x∀y ( yεx↔ yεa ∧ φ(y) ), for any bounded formula φ
in which a does not occur.

Strong collection: ∀xεa∃y φ(x, y)→ ∃bB(xεa, yεb)φ, where B(xεa, yεb)φ ab-
breviates

∀xεa∃yεb φ ∧ ∀yεb ∃xεa φ.

Infinity: ∃a (∃xxεa ) ∧ (∀xεa∃yεa xεy ).

In fact, as shown in [8], the initial Ps-algebras in predicative categories of small
maps form a complete semantics for the set theory RST. To obtain complete
semantics for better known intuitionistic set theories, like IZF and CZF, one
needs further requirements on the class of small maps S. For example, the set
theory IZF is obtained from RST by adding the axioms

Full separation: ∃x∀y ( yεx↔ yεa∧φ(y) ), for any formula φ in which a does
not occur.

Power set: ∃x∀y ( yεx↔ y ⊆ a ), where y ⊆ a abbreviates ∀z (zεy → zεa).

And to obtain a sound and complete semantics for IZF one requires of ones
predicative category of small maps that it satisfies:

(M) All monomorphisms belong to S.

(PS) For any map f :Y //X ∈ S, the power class object PXs (f) //X in E/X
belongs to S.

The set theory CZF, introduced by Aczel in [1], is obtained by adding to RST
a weakening of the power set axiom called subset collection:

Subset collection: ∃c∀z (∀xεa∃yεb φ(x, y, z)→ ∃dεcB(xεa, yεd)φ(x, y, z)).

For a suitable categorical analogue, see Section 2.3 below.

For the sake of completeness we also list the following two axioms, saying
that certain Π-types and W-types are small. (The first therefore corresponds to
the exponentiation axiom in set theory; we will say more about the second in
Section 2.2 below.)

(ΠS) For any map f :Y //X ∈ S, a functor

Πf : E/Y // E/X

right adjoint to pullback exists and preserves morphisms in S.

(WS) For all f :X //Y ∈ S with Y small, the W-type Wf associated to f is
small.
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2.2 W-types

In a predicative category with small maps (E ,S) the axiom (ΠE) holds and
therefore any small map f :B //A is exponentiable. It therefore induces an
endofunctor on E , which will be called the polynomial functor Pf associated to
f . The quickest way to define it is as the following composition:

C ∼= C/1 B∗
// C/B

Πf
// C/A ΣA // C/1 ∼= C.

In more set-theoretic terms it could be defined as:

Pf (X) =
∑
a∈A

XBa .

Whenever it exists, the initial algebra for the polynomial functor Pf will be
called the W-type associated to f .

Intuitively, elements of a W-type are well-founded trees. In the category of
sets, all W-types exist, and the W-types have as elements well-founded trees,
with an appropriate labelling of its edges and nodes. What is an appropriate
labelling is determined by the branching type f :B //A: nodes should be la-
belled by elements a ∈ A, edges by elements b ∈ B, in such a way that the edges
into a node labelled by a are enumerated by f−1(a). The following picture
hopefully conveys the idea:

. . . . . . . . . . . .

•

u
��

44
44

44
a

v
��



•

x
��

77
77

77
7 •

y

��

•

z
����

��
��

�
f−1(a) = ∅
f−1(b) = {u, v}
f−1(c) = {x, y, z}

. . .

a

x
##G

GGGGGGGG b

y

��

c

z

wwoooooooooooooo

c

This set has the structure of a Pf -algebra: when an element a ∈ A is given,
together with a map t:Ba //Wf , one can build a new element supat ∈Wf , as
follows. First take a fresh node, label it by a and draw edges into this node,
one for every b ∈ Ba, labelling them accordingly. Then on the edge labelled
by b ∈ Ba, stick the tree tb. Clearly, this sup operation is a bijective map.
Moreover, since every tree in the W-type is well-founded, it can be thought of
as having been generated by a possibly transfinite number of iterations of this
sup operation. That is precisely what makes this algebra initial. The trees that
can be thought of as having been used in the generation of a certain element
w ∈Wf are called its subtrees. One could call the trees tb ∈Wf the immediate
subtrees of supat, and w′ ∈Wf a subtree of w ∈Wf if it is an immediate subtree,
or an immediate subtree of an immediate subtree, or. . . , etc. Note that with
this use of the word subtree, a tree is never a subtree of itself (so proper subtree
might have been a better terminology).
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We recall that there are two axioms concerning W-types:

(WE) For all f :X //Y ∈ S, the W-type Wf associated to f exists.

(WS) Moreover, if Y is small, also Wf is small.

Maybe it is not too late to point out the following fact, which explains why
these axioms play no essential role in the impredicative setting:

Theorem 2.9 Let (E ,S) be a category with small maps satisfying (NS) and
(M).

1. If S satisfies (PE), then it also satisfies (WE).

2. If S satisfies (PS), then it also satisfies (WS).

Proof. Note that in a category with small maps satisfying (M) and (PE) the
object Ps(1) is a subobject classifier. Therefore the first result can be shown
along the lines of Chapter 3 in [21]. For showing the second result, one simply
copies the argument why toposes with nno have all W-types from [25]. �

In the sequel we will need the following result. We will write P+
s X for the

object of small inhabited subobjects of X:

P+
s X = {A ∈ PsX : ∃x ∈ X (x ∈ A)}.

Theorem 2.10 For any small map f :B → A in a predicative category with
small maps (E ,S), the endofunctors on E defined by

Φ = Pf ◦ Ps and Ψ = Pf ◦ P+
s

have initial algebras.

Remark 2.11 Before we sketch the proof of Theorem 2.10, it might be good to
explain the intuitive meaning of these initial algebras. In fact, they are variations
on the W-types explained above: they are also classes of well-founded trees, but
the conditions on the labellings of the nodes and edges are slightly different.
It is still the case that nodes are labelled by elements a ∈ A and edges with
elements b ∈ B, in such a way that if b ∈ B decorates a certain edge, then
f(b) decorates the node it points to. But whereas in a W-type, every node in
a well-founded tree labelled with a ∈ A has for every b ∈ f−1(a) precisely one
edge into it labelled with b, in the initial algebras for Φ there are set-many, and
possibly none, and in the initial algebra for Ψ there are set-many, but at least
one.
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Proof. The proof of Theorem 2.10 is a variation on that of Theorem 7.4 in [8]
and therefore we will only sketch the argument.

Fix a universal small map π:E → U , and write

S = {(a ∈ A, u ∈ U, φ:Eu → Ba)}.

Let K be the W-type in E associated to the map g fitting into the pullback
square

R

g

��

// E

π

��

S
proj
// U.

An element k ∈ K is therefore of the form sup(a,u,φ)t, where (a, u, φ) ∈ S
is the label of the root of k and t:Eu → K is the function that assigns to
every element e ∈ Eu the tree that is attached to the root of k with the edge
labelled with e. Define the following equivalence relation on K by recursion:
sup(a,u,φ)t ∼ sup(a′,u′,φ′)t

′, if a = a′ and

for all e ∈ Eu there is an e′ ∈ Eu′ such that φ(e) = φ′(e′) and t(e) ∼
t′(e′), and for all e′ ∈ Eu′ there is an e ∈ Eu such that φ(e) =
φ′(e′) and t(e) ∼ t′(e′).

(The existence of this relation ∼ can be justified using the methods of [7] or [8].
See Theorem 7.4 in [8], for instance.) The equivalence relation is bounded (one
proves this by induction) and its quotient is the initial algebra for Φ.

The initial algebra for Ψ is constructed in the same way, but with S defined as

S = {(a ∈ A, u ∈ U, φ:Eu → Ba) : φ is a cover}.

�

2.3 Fullness

In order to express the subset collection axiom, introduced by Peter Aczel in [1],
in diagrammatic terms, it is helpful to consider an axiom which is equivalent to it
called fullness (see [3]). For our purposes we formulate fullness using the notion
of a multi-valued section: a multi-valued section (or mvs) of a function φ: b // a
is a multi-valued function s from a to b such that φs = ida (as relations).
Identifying s with its image, this is the same as a subset p of b such that
p ⊆ b // a is surjective. For us, fullness states that for any such φ there is a
small family of mvss such that any mvs contains one in this family. Written out
formally:
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Fullness: ∃z (z ⊆ mvs(f) ∧ ∀xεmvs(f)∃cεz (c ⊆ x)).

Here, mvs(f) is an abbreviation for the class of all multi-valued sections of a
function f : b // a, i.e., subsets p of b such that ∀xεa∃yεp f(y) = x.

In order to reformulate this diagrammatically, we say that a multi-valued
section (mvs) for a small map φ:B //A, over some object X, is a subobject
P ⊆ B such that the composite P //A is a small cover. (Smallness of this
map is equivalent to P being a bounded subobject of B.) We write

mvsX(φ)

for the set of all mvss of a map φ. This set obviously inherits the structure of
a partial order from Sub(B). Note that any morphism f :Y //X induces an
order-preserving map

f∗:mvsX(φ) //mvsY (f∗φ),

obtained by pulling back along f . To avoid overburdening the notation, we will
frequently talk about the map φ over Y , when we actually mean the map f∗φ
over Y , the map f always being understood.

The categorical fullness axiom now reads:

(F) For any φ:B //A ∈ S over some X with A //X ∈ S, there is a cover
q:X ′ //X and a map y:Y //X ′ belonging to S, together with an mvs
P of φ over Y , with the following “generic” property: if z:Z //X ′ is any
map and Q any mvs of φ over Z, then there is a map k:U //Y and a
cover l:U //Z with yk = zl such that k∗P ≤ l∗Q as mvss of φ over U .

It is easy to see that in a set-theoretic context fullness is a consequence of
the powerset axiom (because then the collection of all multi-valued sections of a
map φ: b→ a forms a set) and implies the exponentiation axiom (because if z is
a set of mvss of the projection p: a× b→ a such that any mvs is refined by one
is this set, then the set of functions from a to b can be constructed from z by
selecting the univalued elements, i.e., those elements that are really functions).
Showing that in a categorical context (F) follows from (PS) and implies (ΠS)
is not much harder and we will therefore not write out a formal proof.

In the sequel we will use the following two lemmas concerning the fullness
axiom:
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Lemma 2.12 Suppose we have the following diagram

Y2

f2

��

β
// Y1

f1

��

X2
//

!! !!B
BB

BB
BB

B X1

����

X,

in which the square is a quasi-pullback and f1 and f2 are small. When P is a
“generic” mvs for a map φ:B //A over X living over Y1 (“generic” as in the
statement of the fullness axiom), then β∗P is also a generic mvs for φ, living
over Y2.

Proof. A simple diagram chase. �

Lemma 2.13 Suppose we are given a diagram of the form

B0
// //

ψ

��

B

φ

��

A0
// //

i

��

A

j

��

X0 p
// // X,

in which both squares are covering and all the vertical arrows are small. If a
generic mvs for ψ exists over X0, then also a generic mvs for φ exists over X.

Proof. This was Lemma 6.23 in [8]. �

2.4 Axiom of multiple choice

The axiom of multiple choice was introduced by Moerdijk and Palmgren in [25].
Their motivation was to have a choice principle which is implied by the existence
of enough projectives (“the presentation axiom” in Aczel’s terminology) and is
stable under taking sheaves (unlike the existence of enough projectives). We
will use it in Section 4.4 to show that the axiom (WS) is stable under taking
sheaves.

One can give a succinct formulation of the axiom of multiple choice using
the notion of a collection square.
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Definition 2.14 A square

D
σ //

��

B

��

C ρ
// A

will be called a collection square, if it is a covering square and, moreover, the
following statement holds in the internal logic: for all a ∈ A and covers q:E →
Ba there is a c ∈ ρ−1(a) and a map p:Dc → E such that the triangle

E
q

  
AA

AA
AA

AA

Dc

p
>>}}}}}}}}

σc

// Ba

commutes. Diagrammatically, one can express the second condition by asking
that any map X → A and any cover E → X ×A B fit into a cube

Y ×C D //

��

����
�

E // // X ×A B

��

����
�

D // //

��

B

��

Y // //

�����
�

X,

����
�

C // // A

such that the face on the left is a pullback and the face at the back is covering.

(AMC) (Axiom of multiple choice) For any small map f :Y //X, there is a
cover q:A //X such that q∗f fits into a collection square in which all
maps are small:

D

��

// // A×X Y

q∗f

��

// // Y

f

��

C // // A q
// // X.

In the internal logic (AMC) is often applied in the following form:

Lemma 2.15 In a predicative category with small maps in which (AMC)
holds, the following principle holds in the internal logic: any small map f :B //A
between small objects fits into a collection square

D
q
//

g

��

B

f

��

C p
// A
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in which all maps and objects are small.

Proof. See Proposition 4.6 in [25]. �

The following result was proved in [25] as well. Recall from [2, 3] that the
existence of many inductively defined sets within CZF can be guaranteed, in a
predicatively acceptable way, by extending CZF with Aczel’s Regular Extension
Axiom.

Proposition 2.16 If (E ,S) is a predicative category with small maps satisfying
the axioms (AMC), (ΠS) and (WS), then Aczel’s Regular Extension Axiom
holds in the initial Ps-algebra in this category.

In addition, we will need:

Proposition 2.17 Let (E ,S) be a predicative category with small maps. If S
satisfies the axioms (AMC) and (ΠS), then it satisfies the axiom (F) as well.

Proof. We argue internally and use Lemma 2.15. So suppose that AMC holds
and f :B → A is a small map between small objects. We need to find a small
collection of mvss {Py : y ∈ Y } such that any mvs of f is refined by one in this
family.

We apply Lemma 2.15 to A→ 1 to obtain a covering square of the form

D
q
//

��

A

��

C // 1,

such that for any cover p:E → A we find a c ∈ C and a map t:Dc → E with
pt = qc. Now let Y be the collection of all pairs (c, s) with c in C and s a map
Dc → B such that fs = qc, and let Py be the image of the map s:Dc → B.
Then Py is an mvs, because the square above is covering, and Y is small, because
(ΠS) holds.

So if n:Q → B is any mono such that fn:Q → B → A is a cover, then there
exists an element c ∈ C and a map g:Dc → Q such that fng = qc. Set s = ng
and y = (c, s). Then Py = Im(g) is contained in Q. �

2.5 Main results

After all these definitions, we can formulate our main result. Let A be either
{(F)}, or {(AMC), (ΠS), (WS)}, or {(M), (PS)}.
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Theorem 2.18 Let (E ,S) be a predicative category with small maps for which
all the axioms in A hold and let (C,Cov) be an internal Grothendieck site in E,
such that the codomain map C1 → C0 is small and a basis for the topology exists.
Then in the category of internal sheaves ShE(C) one can identify a class of maps
making it into a predicative category with small maps for which the axioms in
A holds as well.

In combination with Theorem 2.8 this result can be used to prove the exis-
tence of sheaf models of various constructive set theories:

Corollary 2.19 Suppose that (E ,S) is a predicative category with small maps
satisfying the axiom (F) and suppose that (C,Cov) is an internal Grothendieck
site in E, such that the codomain map C1 → C0 is small and a basis for the
topology exists. Then the initial Ps-algebra in ShE(C) exists and is a model of
CZF. If, moreover,

1. the axioms (AMC) and (WS) hold in E, then the initial Ps-algebra in
ShE(C) also models Aczel’s Regular Extension Axiom.

2. the axioms (M) and (PS) hold in E, then the initial Ps-algebra in ShE(C)
is a model of IZF.

3 Presheaves

In this section we show that predicative categories with small maps are closed
under presheaves. More precisely, we show that if (E ,S) is a predicative category
with small maps and C is an internal category in E , then inside the category
PshE(C) of internal presheaves one can identify a class of maps such that PshE(C)
becomes a predicative category with small maps. Our argument proceeds in two
steps. First, we need to identify a suitable class of maps in a category of internal
presheaves. We take what we will call the pointwise small maps of presheaves.
To prove that these pointwise small maps satisfy axioms (A1-9), we need to
assume that the codomain map of C is small (note that the same assumption
was made in [30]). Subsequently, we show that the validity in the category with
small maps (E ,S) of any of the axioms introduced in the previous section implies
its validity in any category of internal presheaves over (E ,S). To avoid repeating
the convoluted expression “the validity of axiom (X) in a predicative category
with small maps implies its validity in any category of internal presheaves over
it”, we will write “(X) is inherited by presheaf models” or “(X) is stable under
presheaf extensions” to express this.
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3.1 Pointwise small maps in presheaves

Throughout this section, we work in a predicative category with small maps
(E ,S) in which we are given an internal category C, whose codomain map

cod: C1 // C0

is small. Here we have written C0 for the object of objects of C and C1 for its
object of arrows. In addition, we will write PshE(C) for the category of internal
presheaves, and π∗ for the forgetful functor:

π∗: PshE(C) // E/C0.

In the sequel, we will use capital letters for presheaves and morphisms of
presheaves, and lower case letters for objects and morphisms in C.

We will also employ the following piece of notation. For any map of presheaves
F :Y → X and element x ∈ X(a), we set

YMx : = { (f : b→ a ∈ C1, y ∈ Y (b)) : Fb(y) = x · f }.

(The capital letter M stands for the maximal sieve on b: for this reason, this
piece of notation is consistent with the one to be introduced in Section 4.4.)
Occasionally, we will regard YMx as a presheaf: in that case, its fibre at b ∈ C0
is

YMx (b) = { (f : b→ a ∈ C1, y ∈ Y (b)) : Fb(y) = x · f },

and the restriction of an element (f, y) ∈ YMx (b) along g: c→ b is given by

(f, y) · g = (fg, y · g).

A map of presheaves F :Y → X will be called pointwise small, if π∗F belongs
to S/C0 in E/C0. Note that for any such pointwise small map of presheaves and
for any x ∈ X(a) with a ∈ C0 the object YMx will be small. This is an immediate
consequence of the fact that the codomain map is assumed to be small.

Theorem 3.1 The pointwise small maps make PshE(C) into a category with
small maps.

Proof. Observe that finite limits, images and sums of presheaves are computed
“pointwise”, that is, as in E/C0. The universal quantification of A ⊆ Y along
F :Y //X is given by the following formula: for any a ∈ C0,

∀F (A)(a) = {x ∈ X(a) : ∀(f, y) ∈ YMx (y ∈ A) } (1)

This shows that PshE(C) is a positive Heyting category. To complete the proof,
we need to check that the pointwise small maps in presheaves satisfy axioms
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(A1-9). We postpone the proof of the collection axiom (A7) (it will be Proposi-
tion 3.9). The remaining axioms follow easily, as all we need to do is verify them
pointwise. For verifying axiom (A8), one observes that the universal quantifier
in (1) ranges over a small object. �

For most of the axioms that we introduced in Section 2, it is relatively
straightforward to check that they are inherited by presheaf models. The ex-
ceptions are the representability, collection and fullness axioms: verifying these
requires an alternative characterisation of the small maps in presheaves and
they will therefore be discussed in a separate section.

Proposition 3.2 The following axioms are inherited by presheaf models: (M),
bounded exactness, (NE) and (NS), as well as (ΠE), (ΠS) and (PS).

Proof. The monomorphisms in presheaves are precisely those maps which
are pointwise monic and therefore the axiom (M) will be inherited by presheaf
models. Similarly, presheaf models inherit bounded exactness, because quotients
of equivalence relations are computed pointwise. Since the natural numbers
objects in presheaves has that of the base category E in every fibre, both (NE)
and (NS) are inherited by presheaf models.

Finally, consider the following diagram in presheaves, in which F is small:

B

G

��

Y
F
// X.

The object P = ΠF (G) over an element x ∈ X(a) is given by the formula:

Px: = { s ∈ Π(f,y)∈YM
x
G−1(y) : s is natural }.

This shows that (ΠE) is inherited by presheaf extensions. It also shows that
(ΠS) is inherited, because the formula

∀(f, y) ∈ YMx (b)∀g: c→ b (s(f, y) · g = s(fg, y · g))

expressing the naturality of s is bounded.

To see that (PS) is inherited, we first need a description of the Ps-functor in
the category of internal presheaves. This was first given by Gambino in [15]
and works as follows. If X is a presheaf and yc is the representable presheaf on
c ∈ C0, then

Ps(X)(c) = {A ⊆ yc×X : A is a small subpresheaf },

with restriction along f : d→ c on an element A ∈ Ps(X)(c) defined by

(A · f)(e) = {(g: e→ d, x ∈ X(e)) : (fg, x) ∈ A}.
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The membership relation ∈X⊆ X × PsX is defined on an object c ∈ C by: for
all x ∈ X(c) and A ∈ Ps(X)(c),

x ∈X A⇐⇒ (idc, x) ∈ A.

This shows that the axiom (PS) is inherited, because the formula

∀(f : b→ c, x) ∈ A∀g: a→ b [ (fg, x · g) ∈ A ]

expressing that A is a subpresheaf is bounded. �

Theorem 3.3 The axioms (WE) and (WS) are inherited by presheaf exten-
sions.

Proof. For this proof we need to recall the construction of polynomial functors
and W-types in presheaves from [24]. For a morphism of presheaves F :Y → X
and a presheaf Z, the value of

PF (Z) =
∑
x∈X

ZYx

on an object a of C0 is given by

PF (Z)(a) = { (x ∈ X(a), t:YMx → Z)},

where t is supposed to be a morphism of presheaves. The restriction of an
element (x, t) along a map f : b→ a is given by (x · f, f∗t), where

(f∗t)(g, y) = t(fg, y).

The presheaf morphism F induces a map

φ:
∑
a∈C0

∑
x∈X(a)

YMx //
∑
a∈C0

X(a)

in E whose fibre over x ∈ X(a) is YMx and which is therefore small. The W-type
in presheaves will be constructed from the W-type V associated to φ in E .

A typical element v ∈ V is a tree of the form

v = supxt

where x is an element of some X(a) and t is a function YMx → V . For any such
v, one defines its root ρ(v) to be a. If one writes V (a) for the set of trees v
such that ρ(v) = a, the object V will carry the structure of a presheaf, with the
restriction of an element v ∈ V (a) along a map f : b // a given by

v · f = supx·ff
∗t.
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The W-type associated to F in presheaves is obtained by selecting the right trees
from V , the right trees being those all whose subtrees are (in the terminology
of [24]) composable and natural. A tree v = supx(t) is called composable if for
all (f, y) ∈ YMx ,

ρ(t(f, y)) = dom(f).

A tree v = supx(t) is natural, if it is composable and for any (f, y) ∈ YMx (a)
and any g: b→ a, we have

t(f, y) · g = t(fg, y · g)

(so t is actually a natural transformation). A tree will be called hereditarily
natural, if all its subtrees (including the tree itself) are natural.

In [24, Lemma 5.5] it was shown that for any hereditarily natural tree v rooted
in a and map f : b→ a in C, the tree v · f is also hereditarily natural. So when
W (a) ⊆ V (a) is the collection of hereditarily natural trees rooted in a, W is a
subpresheaf of V .

A proof that W is the W-type for F can be found in the sources mentioned
above. Presently, the crucial point is that the construction can be imitated
in our setting, so that (WE) is stable under presheaves. The same applies to
(WS), essentially because W was obtained from V using bounded separation
(in this connection it is essential that the object of all subtrees of a particular
tree v is small, see [8, Theorem 6.13]). �

3.2 Locally small maps in presheaves

For showing that the representability, collection and fullness axioms are inher-
ited by presheaf models, we use a different characterisation of the small maps in
presheaves: we introduce the locally small maps and show that these coincide
with the pointwise small maps. To define these locally small maps, we have to
set up some notation.

Remark 3.4 The functor π∗: PshE(C) // E/C0 has a left adjoint, which is com-
puted as follows: to any object (X,σX :X → C0) and a ∈ C0 one associates

π!(X)(a) = {(x ∈ X, f : a→ b) : σX(x) = b},

which is a presheaf with restriction given by

(x, f) · g = (x, fg).

This means that π∗π!X fits into the pullback square

π∗π!X

��

// C1

cod

��

X σX

// C0.
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From this one immediately sees that π! preserves smallness. Furthermore, the
component maps of the counit π!π

∗ → 1 are small covers (they are covers,
because under π∗ they become split epis in E/C0; that they are also small is
another consequence of the fact that the codomain map is assumed to be small).

In what follows, natural transformations of the form

π!B → π!A

will play a crucial rôle and therefore it will be worthwhile to analyse them more
closely. First, due to the adjunction, they correspond to maps in E/C0 of the
form

B → π∗π!A.

Such a map is determined by two pieces of data: a map r:B → A in E , and, for
any b ∈ B, a morphism sb:σB(b) → σA(rb) in C, as depicted in the following
diagram:

B

r

��

s
//

σB

''
C1

cod

��

dom
// C0

A σA

// C0.

(2)

(Note that we do not have σAr = σB in general, so that it is best to consider r
as a map in E .) We will use the expression (r, s) for the map B → π∗π!A and
(r, s)! for the natural transformation π!B → π!A determined by a diagram as in
(2).

In the following lemma, we collect the important properties of the operation
(−,−)!.

Lemma 3.5 1. Assume r and s are as in diagram (2). Then (r, s)!:π!B →
π!A is a pointwise small map of presheaves iff r:B → A is small in E.

2. Assume r:B → A is a cover and σA:A → C0 is an arbitrary map. If we
set σB = σAr and sb = idσBb for every b ∈ B, then (r, s)!:π!B → π!A is a
cover.

3. If (r, s):B → π∗π!A is a cover and σB(b) = dom(sb) for all b ∈ B, then
also (r, s)!:π!B → π!A is a cover.

4. If (r, s)!:π!B → π!A is a natural transformation determined by a diagram
as in (2) and we are given a commuting diagram

V

h

��

p
// B

r

��

W q
// A
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in E, then these data induce a commuting square of presheaves

π!V
π!p //

(h,sp)!

��

π!B

(r,s)!

��

π!W π!q
// π!A,

with σV = σBp and σW = σAq. Moreover, if the original diagram is
a pullback (resp. a quasi-pullback or a covering square), then so is the
induced diagram.

5. If (r, s)!:π!A → π!X and (u, v)!:π!B → π!X are natural transformations
with the same codomain and for every x ∈ X and every pair (a, b) ∈
A×X B with x = ra = ub there is a pullback square

k(a,b)

p(a,b)

��

q(a,b)
// σB(b)

vb

��

σA(a)
sa

// σX(x)

in C, then π! applied to the object σA×XB :A×X B → C0 in E/C0 obtained
by sending (a, b) ∈ A ×X B to k(a,b) is the pullback of (r, s)! along (u, v)!
in PshE(C):

π!(A×X B)
(π2,q)!

//

(π1,p)!

��

π!B

(u,v)!

��

π!A
(r,s)!

// π!X.

Proof. By direct inspection. �

Using the notation we have set up, we can list the two notions of a small
map of presheaves.

1. The pointwise definition (as in the previous section): a map F :B //A of
presheaves is pointwise small, when π∗F is a small map in E/C0.

2. The local definition (as in [21]): a map F :B //A of presheaves is locally
small, when F is covered by a map of the form (r, s)! in which r is small
in E .

We show that these two classes of maps coincide, so that henceforth we can
use the phrase “small map” without any danger of ambiguity.

Proposition 3.6 A map is pointwise small iff it is locally small.
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Proof. We have already observed that maps of the form (r, s)! with r small are
pointwise small, so all maps covered by one of this form are pointwise small as
well. This shows that locally small maps are pointwise small. That all pointwise
small maps are also locally small follows from the next lemma and the fact that
the counit maps π!π

∗Y → Y are covers. �

Lemma 3.7 For any pointwise small map F :Z //Y and any map L:π!B //Y
there is a quasi-pullback square of presheaves of the form

π!C

(k,l)!

��

// Z

F

��

π!B
L
// Y,

with k small in E.

Proof. Let S be the pullback of F along L and cover S using the counit as in:

π!π
∗S // // S //

��

π!B

L

��

Z
F
// Y.

We know the composite along the top is of the form (k, l)!. Because k is the
composite along the middle of the following diagram and both squares in this
diagram are pullbacks, k is the composite of two small maps and hence small.

C1
cod // C0

π∗S //

��

π∗π!B

OO

π∗L

��

// B

OO

π∗Z
π∗F

// π∗Y

�

Corollary 3.8 Every pointwise small map is covered by one of the form (r, s)!
in which r is small. In fact, every composable pair (G,F ) of pointwise small
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maps of presheaves fits into a double covering square of the form

π!C

(k,l)!

��

// // Z

G

��

π!B

(r,s)!

��

// // Y

F

��

π!A // // X,

in which k and r are small in E.

Proof. We have just shown that every pointwise small map is covered by one
of the form (r, s)! in which r is small, which is the first statement. The second
statement follows immediately from this and the previous lemma. �

Using this alternative characterisation, we can quickly show that the collec-
tion axiom is inherited by presheaf models, as promised.

Proposition 3.9 The collection axiom (A7) is inherited by presheaf models.

Proof. Let F :M //N be a small map and Q:E //M be a cover. Without
loss of generality, we may assume that F is of the form (k, l)! for some small
map k:X //Y in E .

Let n be the map obtained by pullback in E/C0:

T
n // //

��

X

��

π∗E
π∗Q
// // π∗π!X.

Then use collection in E to obtain a covering square as follows:

B
m //

d

��

T
n // // X

k

��

A p
// // Y.

Using Lemma 3.5.4 this leads to a covering square in the category of presheaves

π!B
π!m //

(d,lnm)!

��

π!T //

π!n

((

E
Q
// // π!X

(k,l)!

��

π!A π!p
// // π!Y,
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thus completing the proof. �

Proposition 3.10 The representability axiom is inherited by presheaf models.

Proof. Let π:E //U be a universal small map in E , and define the following
two objects in E/C0:

U ′ = {(u ∈ U, c ∈ C0, p:Eu → C1) : ∀e ∈ Eu (cod(pe) = c)},
σU ′(u, c, p) = c,

E′ = {(u, c, p, e) : (u, c, p) ∈ U ′, e ∈ Eu},
σE′(u, c, p, e) = dom(pe).

If r:E′ → U ′ is the obvious projection and s:E′ → C1 is the map sending
(u, c, p, e) to pe, then r and s fit into a commuting square as shown:

E′

r

��

s
//

σE′

((C1

cod

��

dom
// C0

U ′
σU′
// C0.

We claim that the induced map (r, s)! in the category of presheaves is a universal
small map. To show this, we need to prove that any small map F can be
covered by a pullback of (r, s)!. Without loss of generality, we may assume that
F = (k, l)! for some small map k:X //Y in E .

Since π is a universal small map, there exists a diagram of the form

E

π

��

V
moo

h

��

i // X

k

��

l // C1

cod

��

U Wn
oo

j
// Y σY

// C0,

in which the left square is a pullback and the middle one a covering square.
From this, we obtain a commuting diagram of the form

C0

V

h

��

m′
//

li

''

σV

>>}}}}}}}}
E′

r

��

s
// C1

cod

��

dom

``AAAAAAA

W
n′ //

σW

77U ′ σU // C0
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by putting

σW = σY j,

n′w = (nw, σWw, λe ∈ Enw.lim−1e),
σV = σX i,

m′v = (n′hv,mv).

Together these two commuting diagrams determine a diagram in the category
of internal presheaves

π!E
′

(r,s)!

��

π!V
π!m

′
oo

(h,li)!

��

π!i // π!X

(k,l)!

��

π!U
′ π!W
π!n

′
oo

π!j
// π!Y,

in which the left square is a pullback and the right one a covering square (by
Lemma 3.5.4). �

Theorem 3.11 (Assuming C has chosen pullbacks.) The fullness axiom (F) is
inherited by presheaf models.

Proof. In view of Lemma 2.13 and Corollary 3.8, we only need to build generic
mvss for maps of the form (k, l)!:π!B → π!A in which k is small, where π!A is
sliced over some object of the form π!X via a map of the form (r, s)! in which r
is small. To construct this generic mvs, we have to apply fullness in E . For this
purpose, consider the objects

X ′ = π∗π!X = {(x ∈ X, f ∈ C1) : σX(x) = cod(f)},
A′ = {(a ∈ A, f ∈ C1) : σX(ra) = cod(f)},
B′ = {(b ∈ B, f ∈ C1, h ∈ C1) : σX(rkb) = cod(f), (f∗lb)h = id}.

Note that A′ = X ′×X A. In the definition of B′, the map f∗lb is understood to
be the map fitting, for any b ∈ B and f : d→ c with c = σX(rkb), in the double
pullback diagram

f∗σB(b) //

f∗lb

��

σB(b)

lb

��

f∗σA(kb) //

f∗skb

��

σA(kb)

skb

��

d
f

// c

in C.
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Note that if k′ and r′ are the obvious projections

B′ k′ // A′
r′ // X ′,

then they are both small. Therefore, using fullness in E , we find a cover n:W →
X ′ and a small map m:Z //W , together with a generic mvs P ′ for k′ over Z,
as depicted in the following diagram.

P ′ // //

'' ''

Z ×X′ B′

��

// B′

k′

��

Z ×X′ A′ //

��

A′

r′

��

Z m
// W n

// X ′

Since X ′ = π∗π!X, the map n:W → X ′ is of the form (τ, t), with τ and t fitting
into the square

W

τ

��

t // C1

cod

��

X σX

// C0.

If we use the abbreviations γ = τm and c = tm, and put σW (w) = dom(tw)
and σZ(z) = dom(cz), we may construct a map π!m:π!Z → π!W , which is small
(since π! preserves smallness) and a map (τ, t)!:π!W → π!X which is a cover (by
Lemma 3.5.2). The map (γ, c)! is composite of π!m with (τ, t)! and the results
of pulling back (r, s)! and (k, l)! along this map, can be computed using Lemma
3.5.5. The first is Z×XA with σZ×XA(z, a) = c∗zσA(a) as in the pullback square

c∗zσA(a)

c∗zsa

��

// σA(a)

sa

��

dom(cz) cz

// σX(ra)

in C, and the second is Z ×X B with σZ×XB(z, b) = c∗zσB(b) as in the pullback
square

c∗zσB(b) //

c∗zlb

��

σB(b)

lb

��

c∗zσA(kb)

c∗zskb

��

// σA(kb)

skb

��

dom(cz) cz

// σX(rkb),
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also in C. As a result, we obtain the following diagram of presheaves, in which
both rectangles are pullbacks

π!(Z ×X B)

��

// π!B

(k,l)!

��

π!(Z ×X A)

��

// π!A

(r,s)!

��

π!Z
π!m //

(γ,c)!

22
π!W

(τ,t)!
// π!X.

We wish to define a subpresheaf of π!(Z ×X B) and prove that it is the generic
mvs of (k, l)!. Before we do this, observe that Z ×X′ A′ = Z ×X A and

Z ×X′ B′ = {(z ∈ Z, b ∈ B, h ∈ C1 : γ(z) = rk(b) and (c∗zlb)h = id}.

The crux of the proof is that one can therefore define a subpresheaf P of π!(Z×X
B) by saying for any (z ∈ Z, b ∈ B, f : c→ d) ∈ π!(Z ×X B)(c),

(z, b, f : c → d) ∈ P (c) iff f factors through a map h such that
(z, b, h) ∈ P ′.

In the remainder of this proof, we show that P is a generic mvs of (k, l)! in
presheaves. The inclusion of P in π!(Z ×X B) is bounded, because P is defined
by a bounded formula (note that h must have codomain d and the codomain
map is small). Furthermore, the induced map from P to π!(Z ×X A) is a cover,
because P ′ → Z ×X′ A′ is a cover. Thus it remains to verify genericity.

To verify this, let E → π!W be any map and Q be an mvs of (k, l)! over E.
Without loss of generality, we may assume that E is of the form π!Y (since E
can always be covered using the counit). This leads to the following diagram of
presheaves in which the rectangles are pullbacks:

Q // //

(( ((

•

��

// π!B

(k,l)!

��

•

��

// π!A

(r,s)!

��

π!Y //

(δ,d)!

22
π!W

(τ,t)!
// π!X.

Of course, we may assume that the pullbacks are computed using Lemma 3.5.5,
so that they are π!(Y ×X B) and π!(Y ×X A), respectively, with

σY×XA(y, a) = d∗yσA(a),
σY×XB(y, b) = d∗yσB(b).
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This means that in E we have the following diagram, in which the rectangles
are pullbacks:

Y ×X′ B′

��

// B′

k′

��

Y ×X A //

��

A′

r′

��

Y //

(δ,d)

22W
n // X ′.

Observe that an element of Y ×X′ B′ is a triple (y ∈ Y, b ∈ B, h: c → d) with
δy = rkx and (d∗ylb)h = id. Therefore such a triple can also be regarded as
an element of π!(Y ×X B)(c) and one can define a subobject of Y ×X′ B′ by
putting:

(y, b, h) ∈ Q′ iff (y, b, h) ∈ Q(c).

Indeed, this turns Q′ into an mvs of k′ over Y . Therefore, by the genericity
of P ′, there is a cover β:U //Y and a map α:U //Z, with (γ, c)α = (δ, d)β
such that α∗P ′ ≤ β∗Q′ as mvss of k′ over U . Write (ε, e) = (γ, c)α = (δ, d)β
and set σU (u) = dom(eu). Since cαu = dβu = eu for every u ∈ U , we have

σU (u) = dom(cαu) = σZ(αu) = dom(dβu) = σY (βu).

Therefore we obtain maps (β, id)!:π!U → π!Y and (α, id)!:π!U → π!Z such that
(γ, c)!(α, id)! = (δ, d)!(β, id)!. Lemma 3.5.2 implies that (β, id)! is a cover and
therefore the proof will be finished, once we show that (α, id)∗! P ≤ (β, id)∗! Q.

To show this, consider an element (u, b, f : c → d) ∈ π!(U ×X B)(c) for which
we have (u, b, f) ∈ (α, id)∗! P (c). This means that (αu, b, f) ∈ P (c) and f fac-
tors through some h: e → d with (αu, b, h) ∈ P ′. But then (u, b, h) ∈ α∗P ′

and hence (u, b, h) ∈ β∗Q′ and (βu, b, h) ∈ Q′. By definition of Q′ this means
that (βu, b, h) ∈ Q(e), and hence also (βu, b, f) ∈ Q(c), since Q is a presheaf.
Therefore (u, b, f) ∈ (β, id)∗! Q(c) and the proof is finished. �

4 Sheaves

In this section we continue to work in the setting of a predicative category with
small maps (E ,S) together with an internal category C in E whose codomain
map is small. To define a category of internal sheaves, we have to assume that
the category C comes equipped with a Grothendieck topology, so as to become
a Grothendieck site. There are different formulations of the notion of a site, all
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essentially equivalent ([20] provides an excellent discussion of this point), but
for our purposes we find the following (“sifted”) formulation the most useful.

Definition 4.1 Let C be an internal category whose codomain map in small.
A sieve S on an object a ∈ C0 consists of a small collection of arrows in C
all having codomain a and closed under precomposition (i.e., if f : b → a and
g: c → b are arrows in C and f belongs to S, then so does fg). Since we insist
that sieves are small, there is an object of sieves (a subobject of PsC1).

We call the set Ma of all arrows into a the maximal sieve on a (it is a sieve,
since we are assuming that the codomain map is small). If S is a sieve on a and
f : b → a is any map in C, we write f∗S for the sieve {g: c → b : fg ∈ S} on b.
In case f belongs to S, we have f∗S = Mb.

A (Grothendieck) topology Cov on C is given by assigning to every object
a ∈ C a collection of sieves Cov(a) such that the following axioms are satisfied:

(Maximality) The maximal sieve Ma belongs to Cov(a);

(Stability) If f : b→ a is any map and S belongs to Cov(a), then f∗S belongs
to Cov(b);

(Local character) If S is a sieve on a for which there can be found a sieve
R ∈ Cov(a) such that for all f : b→ a ∈ R the sieve f∗S belongs to Cov(b),
then S belongs to Cov(a).

A pair (C,Cov) consisting of a category C and a topology Cov on it is called
a site. If a site (C,Cov) has been fixed, we call the sieves belonging to some
Cov(a) covering sieves. If S belongs to Cov(a) we say that S is a sieve covering
a, or that a is covered by S.

Finally, a basis for a site (C,Cov) is a function BCov which yields, for every
a ∈ C0, a small collection of sieves BCov(a) such that:

S ∈ Cov(a)⇔ ∃R ∈ BCov(a):R ⊆ S.

Our first goal in this section is prove that any category of internal sheaves
over a predicative category with small maps (E ,S) is a positive Heyting category.
The proof of this relies on the existence of a sheafification functor (a left adjoint
to the inclusion of sheaves in presheaves), and since this functor is built by
taking a quotient, we use the bounded exactness of (E ,S). To ensure that the
equivalence relation by which we quotient is bounded, we will have to assume
that the site has a basis. Next, we have to identify a class of small maps in
any category of internal sheaves over (E ,S). We will define pointwise small and
locally small maps of sheaves and we will insist that these should again coincide
(as happened in presheaves). For this to work out, we again seem to need the
assumption that the site has a basis; moreover, we will assume that the fullness

32



axiom holds in E (note that similar assumptions were made in [18]). So, in
effect, we will work in a predicative category with small maps (E ,S) equipped
with a Grothendieck site (C,Cov) such that:

1. The fullness axiom (F) holds in E .

2. The codomain map cod: C1 → C0 is small.

3. The site has a basis.

The first author plans to investigate how the theory will look if these assump-
tions are not made. (Anticipating a bit, in such a setting the pointwise and
locally small maps will no longer coincide and it is the local definition which is
the right one.)

After we have shown that a category of sheaves can be given the structure
of a category with small maps, we prove that the validity of any of the axioms
introduced in Section 2 in (E ,S) implies its validity in any category of internal
sheaves over it (Theorems 4.8–4.11 and Theorem 4.17): we will say that the
axiom is “inherited by sheaf models”. There is one exception to this, however:
we will not be able to show that the axiom (WS) is inherited by sheaf models.
We will discuss the problem and provide a solution based on the axiom of
multiple choice in Section 4.4 below (see Theorem 4.18 and Theorem 4.19).

4.1 Sheafification

Our next theorem shows the existence of a sheafification functor, a Cartesian
left adjoint to the inclusion of sheaves in presheaves. The proof relies in an
essential way on the assumption of bounded exactness and on the fact that our
site has a basis.

Theorem 4.2 The inclusion

i∗: ShE(C) // // PshE(C)

has a Cartesian left adjoint i∗ (a “sheafification functor”).

Proof. We verify that it is possible to imitate the standard construction.

Let P be a presheaf. A pair (R, x) will be called a compatible family on a ∈
C0, if R is a covering sieve on a, and x specifies for every f : b // a ∈ R an
element xf ∈ P (b), such that for any g: c // b the equality (xf ) · g = xfg holds.
Because (ΠE) holds and sieves are small, by definition, there is an object of
compatible families. Actually, the compatible families form a presheaf Comp(P )
with restriction given by

(R, x) · f = (f∗R, x · f),
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where (x · f)g = xfg.

We define an equivalence relation on Comp(P ) by declaring two compatible
families (R, x) and (T, y) on a equivalent, when there is a covering sieve S ⊆
R ∩ T on a with xf = yf for all f ∈ S. Since the site is assumed to have a
basis, this quantification over the (large) collection of covering sieves S on a,
can be replaced with a quantification over the small collection of basic covering
sieves on a. Therefore the equivalence relation is bounded and has a quotient
P+. This object P+ is easily seen to carry a presheaf structure in such a way
that the quotient map Comp(P )→ P+ is a morphism of presheaves.

First claim: P+ is separated. Proof: Suppose two elements [R, x] and [S, y] of
P+(a) agree on a cover T . Pick representatives (R, x) and (S, y), and define:

Q = {f : b // a ∈ R ∩ S : xf = yf}.

Once we show that Q is covering, we are done. But this follows immediately
from the local character axiom for sites: for any f ∈ T , the sieve f∗Q is covering,
by assumption.

Second claim: when P is separated, P+ is a sheaf. Proof: Let R be a covering
sieve on a, and let compatible elements pf ∈ P+(b) be given for every f : b // a ∈
R. Using the collection axiom, we find for every f ∈ R a family of representatives
(R(f,i), x(f,i)) of pf , with the variable i running through some inhabited and
small index set If . Therefore

S = { f ◦ g : f ∈ R, i ∈ If , g ∈ R(f,i) }

is small; in fact, it is a covering sieve, by local character.

We now prove that for any two triples (f ∈ R, i ∈ If , g ∈ R(f,i)) and (f ′ ∈
R, i′ ∈ If ′ , g′ ∈ R(f ′,i′)) with fg = f ′g′, we must have x(f,i)

g = x
(f ′,i′)
g′ . Since the

elements pf are assumed to be compatible, the equality

[R(f,i), x(f,i)] · g = pfg = pf ′g′ = [R(f ′,i′), x(f ′,i′)] · g′

holds. Hence the elements x(f,i)
g and x

(f ′,i′)
g′ agree on a covering sieve. Since P

is assumed to be separated, this implies that the elements x(f,i)
g and x(f ′,i′)

g′ are
in fact identical.

This argument shows that the definition zfg = x
(f,i)
g is unambiguous for fg ∈ S,

and also that (S, z) is a compatible family. As its equivalence class [S, z] is the
glueing of the family pf we started with, the second claim is proved.

From the construction it is clear that for any presheaf P the sheaf P++ has to be
its sheafification. So we have shown that the construction of the sheafification
functor carries through in the setting we are working in; that this assignment is
moreover functorial as well as Cartesian is proved in the usual manner. �
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Theorem 4.3 ShE(C) is a positive Heyting category.

Proof. The category of sheaves has finite limits, because these are computed
pointwise, as in presheaves. Using the following description of images and covers
in categories of sheaves, one can easily show these categories have to be regular:
the image of a map F :Y //X of sheaves consists of those x ∈ X(a) that are
“locally” hit by F , i.e., for which there is a sieve S covering a such that for any
f : b // a ∈ S there is an element y ∈ Y (b) with F (y) = x · f . Therefore a map
F :Y //X is a cover, if for every x ∈ X(a) there is a sieve S covering a and for
any f : b → a ∈ S an element y ∈ Y (b) such that F (y) = x · f (such maps are
also called locally surjective).

The Heyting structure in sheaves is the same as in presheaves, so the universal
quantification of A ⊆ Y along F :Y //X is given by the formula (1). In-
deed, from this description it is readily seen that belonging to ∀F (A) is a local
property.

The sums in sheaves are obtained by sheafifying the sums in presheaves. They
are still disjoint and stable, because the sheafification functor is Cartesian. �

4.2 Small maps in sheaves

We will now define two classes of maps in the categories of sheaves, those which
are pointwise small and those which are locally small. Using that (F) holds in
E and the fact that the site has a basis, we will then show that they coincide.
But before we define these two classes of maps, note that we have the following
diagram of functors:

E/C0
π! //

ρ!

$$I
IIIIIIII PshE(C)

π∗
oo

i∗

yyssssssssss

ShE(C),
ρ∗

ddIIIIIIIII i∗

99ssssssssss

where the maps ρ∗ and ρ! are defined as the composites of π and i via the
diagram. So ρ∗ is the forgetful functor, ρ! is defined as

ρ!X = i∗π!X,

and they are adjoint. It follows immediately from the maximality axiom for
sites that the components of the counit ρ!ρ

∗ // 1 are covers.

One final remark before we give the definitions. We have seen that any pair
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of maps (r, s) in E making

B

r

��

s
//

σB

''
C1

cod

��

dom
// C0

A σA

// C0.

commute determines a map (r, s)!:π!B → π!B of presheaves. Therefore it also
determines a map i∗(r, s)!: ρ!B → ρ!A of sheaves, but note that now not all maps
ρ!B → ρ!A will be of this form, in contrast to what happened in the presheaf
case.

Finally, the two classes of maps are defined as:

1. The pointwise definition: a morphism F :B //A of sheaves is pointwise
small, when ρ∗F is a small map in E/C0.

2. The local definition (as in [21]): a morphism F :B //A of sheaves is
locally small in case it is covered by a map of the form i∗(r, s)! where r is
a small map in E .

That these two classes of maps coincide will follow from the next two proposi-
tions, both whose proofs use the fullness axiom.

Proposition 4.4 The sheafification functor i∗ preserves pointwise smallness:
if F is a (pointwise) small map of presheaves, then i∗F is a pointwise small
map of sheaves.

Proof. To prove the proposition, it suffices to show that the (−)+-construction
preserves smallness. So let F :P //Q be a (pointwise) small morphism of
presheaves and q be an element of Q+(a), i.e. q = [R, x] where R is a sieve
and (xf )f∈R is a family of compatible elements. The fibre of F+ over q con-
sists of equivalence classes of all those compatible families (S, y) on a such that
(S, F (y)) and (R, q) are equivalent (by F (y) we of course mean the family given
by F (y)f = F (yf )). Because every such equivalence class is represented by a
compatible family (S, y) where S is a basic covering sieve contained in R and
F (yf ) = xf for all f ∈ S, the fibre of F over q is covered by the object:∑

S∈BCov(a),S⊆R

∏
f∈S

F−1(xf ).

It follows from the fullness axiom in E that this object is small (actually, the
exponentiation axiom (ΠS) would suffice for this purpose) and then it follows
from the quotient axiom (A6) that the fibre of F over q is small as well. �
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Proposition 4.5 The pointwise small maps in sheaves are closed under covered
maps: if

X

F

��

// A

G

��

Y
P
// // B

is a covering square of sheaves (i.e., P and the induced map X → Y ×B A are
locally surjective) and F is pointwise small, then also G is pointwise small.

Proof. To make the proof more perspicuous, we will split the argument in two:
first we show closure of pointwise small maps under quotients and then under
descent.

So suppose first that we have a commuting triangle of sheaves

Y
G // //

F
  

@@
@@

@@
@ X

H
~~}}

}}
}}

}

B,

with F pointwise small and G locally surjective. Fix an element b ∈ B(c). The
fullness axiom in E implies that for any basic covering sieve S ∈ BCov(c) there
is a small generic family PSb of mvss of the obvious (small) projection map

pSb :Y Sb = {(f : d→ c ∈ S, y ∈ Y (d)) : Fd(y) = b · f} // S,

such that any mvs of this map is refined by one in PSb (recall that an mvs of pSb
would be a subobject L ⊆ Y Sb such that the composite L ⊆ Y Sb → S is a small
cover). Strictly speaking, the fullness axiom says that for every S ∈ BCov(c)
such a generic mvs exists, not necessarily as a function of S. This does follow,
however, using the collection axiom: for this axiom tells us that there is a small
family {Pi : i ∈ ISb } of such mvss for every S. So we can set PSb =

⋃
i∈IS

b
Pi to

get a generic mvs of pSb as a function of S.

Call an element L ∈ PSb compatible after G, if for any pair of elements (f : d→
c, y) and (f ′: d′ → c, y′) in L we have

∀g: e→ d, g′: e→ d′ ( fg = f ′g′ ⇒ Gd(y) · g = Gd′(y′) · g′ ).

Note that there is a map

q:
∑

S∈BCov(c)

{L ∈ PSb : L compatible after G } → H−1
c (b),

which one obtains by sending (S,L) to the glueing of the elements {Gd(y) : (f : d→
c, y) ∈ L} in X. The domain of this map q is small, so the desired result will fol-
low, once we show that this map is a cover. For this we use the local surjectivity
of G.
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Local surjectivity of G means that for every x ∈ X(c) in the fibre over b ∈ B(c),
there is a basic covering sieve S ∈ BCov(c) such that

∀f : d→ c ∈ S ∃y ∈ Y (d) : Gd(y) = x · f.

But Gd(y) = x · f implies that Fd(y) = b · f , so

{(f : d→ c, y ∈ Y (d)) : Gd(y) = x · f}

is an mvs of pSb and therefore it is refined by an element of PSb . Since this
element must be compatible after G, we have shown that q is a cover.

Second, suppose we have a pullback square of sheaves

X

F

��

Q
// A

G

��

Y
P
// // B,

where F is pointwise small and P and Q are locally surjective. Again, for any
b ∈ B(c) and basic covering sieve S of c, let pSb be the map

pSb :Y Sb = {(f : d→ c ∈ S, y ∈ Y (d)) : Pd(y) = b · f} // S,

as above. Furthermore, let mvs(pSb ) be the object of mvss of pSb and set

Y ′(c) =
∑

b∈B(c)

∑
S∈BCov(c)

mvs(pSb ),

X ′(c) =
∑

(b,S,L)∈Y ′(c)

{ k ∈
∏

(f :d→c,y)∈L

F−1
d (y) : k compatible after Q },

where we call k ∈
∏

(f :d→c,y)∈L F
−1
d (y) compatible after Q, if for any (f : d →

c, y) and (f ′: d′ → c, y′) in L we have

∀g: e→ d, g′: e→ d′ ∈ C (fg = f ′g′ ⇒ Qd(k(f,y)) · g = Qd′(k(f ′,y′)) · g′).

This leads to a commuting square in E/C0

X ′(c)
Q′

c // //

F ′
c

��

A(c)

Gc

��

Y ′(c)
P ′

c

// // B(c),

in which P ′ and F ′ are the obvious projections and Q′ sends (b, S, L, k) to the
glueing of {Qd(k(f,y)) : (f, y) ∈ L}. The square is a pullback in which the map
P ′ is a cover (this uses the collection axiom) and F ′ is small, so that Gc is a
small map by descent (A2) in E/C0. This completes the proof. �
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Theorem 4.6 The pointwise small maps and locally small maps of sheaves
coincide.

Proof. That all locally small maps of sheaves are also pointwise small follows
from the previous two propositions. To prove that all pointwise small maps are
also locally small we use that the pointwise and locally small maps coincide in
presheaves.

So consider a pointwise small map F :B //A of sheaves. Since i∗F is a point-
wise small map of presheaves, there is a small map of presheaves (k, l)! with k
small in E such that

π!X

(k,l)!

��

// i∗B

i∗F

��

π!Y // i∗A

is a covering square in presheaves. Applying sheafification i∗ and using that
i∗i∗ ∼= 1, we obtain a diagram of the desired form. �

Corollary 4.7 Any pointwise small map is covered by one of the form i∗(r, s)!
with r small in E. In fact, every composable pair (G,F ) of pointwise small maps
of sheaves fits into a double covering square of the form

ρ!C

i∗(k,l)!

��

// // Z

G

��

ρ!B

i∗(r,s)!

��

// // Y

F

��

ρ!A // // X,

in which k and r are small in E.

Proof. Immediate from the previous theorem and the corresponding fact for
presheaves (Corollary 3.8). �

Henceforth we can therefore use the term “small map” without danger of
ambiguity. The first thing to do now is to show that the small maps in sheaves
really satisfy the axioms for a class of small maps.

Theorem 4.8 The small maps in sheaves satisfy axioms (A1-9).

Proof. Again, we postpone the proof of the collection axiom (A7) (it will be
Theorem 4.10). Because limits in sheaves are computed as in presheaves, (A1)
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and (A9) are inherited from presheaves. Colimits in sheaves are computed
by sheafifying the result in presheaves, hence the axioms (A3) and (A4) follow
from Proposition 4.4. That pointwise small maps are closed under covered maps
was Proposition 4.5: this disposes of (A2) and (A6). Pointwise small maps
are closed under composition, so (A5) holds as well. Finally, since universal
quantification in sheaves is computed as in presheaves, the axiom (A8) holds
in sheaves, because it holds in presheaves. �

Theorem 4.9 The following axioms are inherited by sheaf models: bounded
exactness, representability, (NE), (NS), (ΠE), (ΠS), (M) and (PS).

Proof. Bounded exactness is inherited by sheaf models, since one can sheafify
the quotient in presheaves. Representability is inherited for the same reason:
one sheafifies the universal small maps in presheaves. Also the natural num-
bers object in sheaves is obtained by sheafifying the natural numbers object in
presheaves, so (NE) and (NS) are inherited by sheaf models. Since Π-types
in presheaves are computed as in sheaves and (ΠE) and (ΠS) are inherited
by presheaf models, they will also be inherited by sheaf models. Finally, since
monos in sheaves are pointwise, (M) is inherited as well.

The Ps-functor in sheaves is obtained by quotienting the Ps-functor in presheaves
(see Proposition 3.2) by the following equivalence relation (basically, bisimula-
tion understood as in sheaves): if A,A′ ⊆ yc × X, then A ∼ A′ if for all
(f : b→ c, x) ∈ A(c), the sieve

{ g: a→ b : (fg, x · g) ∈ A′ }

covers b, and for all (f ′: b′ → c, x′) ∈ A′(c) the sieve

{ g′: a′ → b′ : (f ′g′, x′ · g′) ∈ A }

covers b′.

One easily verifies that this defines an equivalence relation in presheaves; more-
over, it is bounded, since the site is assumed to have a basis. Its quotient P has
the structure of a sheaf (as we have seen several times, to construct the glueing
one uses the collection axiom to select small collections of representatives from
each equivalence class). One defines the relation ∈X⊆ X×P on an object c ∈ C
by putting for any x ∈ X(c) and A ∈ Ps(X)(c),

x ∈ [A]⇐⇒ the sieve {f : d→ c : (f, x · f) ∈ A} covers c.

A straightforward verification establishes that this is indeed the power class ob-
ject of X in sheaves. Hence the axiom (PS) is inherited by sheaf models. �

In the coming two subsections we will discuss the collection and fullness
axioms and W-types in sheaf categories.
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4.3 Collection and fullness in sheaves

Theorem 4.10 The collection axiom (A7) is inherited by sheaf models.

Proof. Let F :M //N be small map and E:Y //M be a cover in sheaves
(i.e. E is locally surjective). Without loss of generality we may assume that K
is of the form i∗(k, l)!: ρ!B → ρ!A.

If the map Q:X → π!B of presheaves is obtained by pulling back the map i∗E
along the component of the unit 1→ i∗i

∗ at π!B as in

X

Q

��

// i∗Y

i∗E

��

π!B // i∗ρ!B = i∗i
∗π!B,

then this map Q also has to be locally surjective. This means that for the
following object in E

C =
∑
b∈B

{S ∈ Cov(c) : σB(b) = c and ∀f : d→ c ∈ S ∃x ∈ X(d) (Q(x) = (b, f))},

the obvious projection s0:C → B is a cover. Therefore we can apply the collec-
tion axiom in E to obtain a covering square of the form:

V
s1 //

l

��

C
s0 // // B

k

��

U r0
// A,

(3)

with l small in E . We wish to apply the collection axiom again. For this purpose,
define the following two objects in E :

V ′ = { (v ∈ V, f ∈ C) : if s1(v) = (b, S), then f ∈ S },
W = { (v ∈ V, f : d→ c, x ∈ X(d)) : if s1(d) = (b, S),

then f ∈ S and Qd(x) = (b, f) },

and let s3:W → V ′ and s2:V ′ → V be the obvious projections. s3 is a cover
(essentially by definition of C), and the composite l′ = ls2 is small. So we can
apply collection to obtain a covering square in E

J
s4 //

m

��

W
s3 // // V ′

l′

��

I r1
// U,

(4)
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in which m is small. Writing r = r0r1 and s = s0s1s2s3s4, we obtain a com-
muting square

J
s //

m

��

B

k

��

I r
// A,

with every j ∈ J determining an element b ∈ B, a sieve S on σB(b), an arrow
f ∈ S and an element x ∈ X(dom f) such that Q(x) = (b, f) ∈ π!B. Putting
for such an element j ∈ J , ρJ(j) = dom(f), tj = f, nj = lb ◦ f , and putting
σI(i) = σA(ri) for every i ∈ I, we obtain a square of presheaves:

π!J
(s,t)!

//

(m,n)!

��

π!B

(k,l)!

��

π!I π!r
// π!A.

To see that it commutes, we chase an element around the two sides of the dia-
gram and it suffices to do that for an element of the form (j, id). So π!r(m,n)!(j, id) =
π!r(mj, lb ◦f) = (rmj, lb ◦f), and (k, l)!(s, t)!(j, id) = (k, l)!(sj, f) = (ksj, lb ◦f).

We claim that sheafifying the square gives a covering square. Since r is a cover
and ρ! preserves these, this means that we have to show that the map from
π!J to the pullback of the above square is locally surjective. Lemma 3.5.4
tells us that we may assume that the pullback is of the form π!(I ×A B) with
σI×AB(i, b) = σB(b). The induced map K:π!J //π!(I ×A B) sends (j, g) to
((mj, sj), f ◦ g), where f is the element in C1 determined by j ∈ J as above. To
show that this map is locally surjective, it suffices to prove that every element
((i, b), id) ∈ π!(I ×A B) is locally hit by K. The element i ∈ I determines an
element r1i ∈ U , and since (3) is a covering square, we find a v ∈ V with
lv = r1i and s0s1v = b, hence a covering sieve S on ρB(b). Moreover, since
(4) is a covering square, we find for every f ∈ S an element j ∈ J such that
m(j) = i and s(j) = b. Then K(j, id) = ((i, b), f) = ((i, b), id) · f , which proves
that K is locally surjective.

To complete the proof, we need to show that (s, t)!:π!J //π!B factors through
Q:X //π!B. There is a map (p, q):J //π∗X which sends every j ∈ J to
the x ∈ X(dom f) that it determines. Its transpose (p, q)! sends (j, id) to
x ∈ X which in turn is sent by Q to Q(x) = (sj, f) = (s, t)!(j, id). Therefore
(s, t)! = Q(p, q)!. �

Theorem 4.11 (Assuming C has pullbacks.) The fullness axiom (F) is inher-
ited by sheaf models.

Proof. In view of Lemma 2.13 and Corollary 4.7, it will suffice to show that
there exists a generic mvs for any map of the form i∗(k, l)!: ρ!B // ρ!A, living
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over some object of the form ρ!X via some map i∗(r, s)!: ρ!A // ρ!X, with k
and r small.

We first construct the generic mvs P . To this end, define:

X0 = π∗π!X = {x ∈ X, f : d→ c ∈ C) : σX(x) = c}
A0 = {(a ∈ A, f : d→ c ∈ C) : σX(ra) = c}
S0 = {(a ∈ A, f : d→ c, S ∈ BCov(f∗σA(a))) : σX(ra) = c}
M0 = {(a ∈ A, f : d→ c, S ∈ BCov(f∗σA(a)), g ∈ S) : σX(ra) = c}
B0 = {(b ∈ B, f : d→ c, S ∈ BCov(f∗σA(kb)), g ∈ S, h ∈ C1 :

σX(rkb) = c, f∗lb ◦ h = g}

(In the definition of S0 and M0 we have used that any pair consisting of a map
f : d→ c ∈ C and element a ∈ A with σX(ra) = c determines a pullback diagram

f∗σA(a) //

f∗sa

��

σA(a)

sa

��

d
f

// c

in C; in the definition of B0 we have used that any pair consisting of a map
f : d→ c ∈ C and element b ∈ B with σX(rkb) = c determines a double pullback
diagram

f∗σB(b) //

f∗lb

��

σB(b)

lb

��

f∗σA(kb) //

f∗skb

��

σA(kb)

skb

��

d
f

// c

in C.) One easily checks that all the projections in the chain

B0
// M0

// S0
// A0

// X0

are small.

For the construction of P , we first build a generic mvs for S0
//A0 over X0.

This means we have a cover n:W //X0 and a small map m0:Z1
//W , to-
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gether with a generic mvs P1 for S0
//A0 over Z1, as in the diagram

P1
// //

'' ''

S1

��

// S0

��

A1

��

// A0

��

Z1 m0
// W n

// // X0,

where the rectangles are understood to be pullbacks. Next, we pull B0 →M0 →
S0 back along P1 → S0 and obtain the diagram

B1
//

��

B0

��

M1

��

// M0

��

P1
// S0.

Then we build a generic mvs for B1 → M1 over Z1. This we obtain over an
object Z via a small map Z //W ′ and a cover W ′ //Z1. Without loss of
generality, we may assume that the latter map W ′ → Z1 is the identity. (Proof:
apply the collection axiom to the small map Z1

//W and the cover W ′ //Z1

to obtain a small map S //R covering the morphism Z1
//W . Lemma 2.12

tells us that there lives a generic mvs for S0
//A0 over S as well. By another

application of Lemma 2.12, there lives a generic mvs for B1 → M1 over T , if
T → S is the pullback of Z //W ′ along the map S //W ′.) So we may assume
there is a small map m1:Z //Z1, such that over Z there is a generic mvs P2

for B1 →M1, as in the following diagram

P2
// //

'' ''

B2

��

// B1
//

��

B0

��

M2

��

// M1
//

��

M0

��

Z
m1 //

m

33
Z1

m0 // W
n // // X0,

where all the rectangles are supposed to be pullbacks. Note that elements of P2

are 5-tuples of the form (z ∈ Z, b ∈ B,S ∈ BCov(σA(kb)), g ∈ S, h ∈ C1).

Since X0 = π∗π!X, the map n:W → X0 is of the form (τ, t), with τ and t fitting
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into a square

W
t //

τ

��

C1

cod

��

X σX

// C0.

Writing γ = τm and c = tm and setting σW (w) = dom(tw) and σZ(z) =
σW (mz), we may construct a map π!m:π!Z → π!W , which is small (since π!

preserves smallness) and a map (τ, t)!:π!W → π!X which is a cover (by Lemma
3.5.2). The map (γ, c)! is composite of π!m with (τ, t)! and the results of pulling
back (r, s)! and (k, l)! along this map, can be computed using Lemma 3.5.5. The
first is Z ×X A with σZ×XA(z, a) = c∗zσA(a) as in the pullback square

c∗zσA(a)

c∗zsa

��

// σA(a)

sa

��

dom(cz) cz

// σX(ra)

in C, and the second is Z ×X B with σZ×XB(z, b) = c∗zσB(b) as in the double
pullback diagram

c∗zσB(b) //

c∗zlb

��

σB(b)

lb

��

c∗zσA(kb)

c∗zskb

��

// σA(kb)

skb

��

dom(cz) cz

// σX(rkb),

also in C. We define a (bounded) subpresheaf P of π!(Z ×X B) by saying that
an element (z ∈ Z, b ∈ B, f : c→ d) ∈ π!(Z ×X B)(c) belongs to P (c) if

there is a sieve S ∈ BCov(c∗zσA(kb)), a map g ∈ S and a map h ∈ C1
such that (z, b, S, g, h) belongs to P2 and f factors through h.

So we have the following commuting diagram of presheaves:

P // //

''

π!(Z ×X B)

��

// π!B

(k,l)!

��

π!(Z ×X A)

��

// π!A

(r,s)!

��

π!Z
π!m //

(γ,c)!

22
π!W

(τ,t)!
// π!X.
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By construction, the map P //π!(Z×X A) is locally surjective. By sheafifying
the whole diagram, we therefore obtain an mvs i∗P for i∗(k, l)! over ρ!Z in the
category of sheaves. The remainder of the proof will show it is generic.

To that purpose, let V // ρ!W be a map of sheaves and Q be an mvs for i∗(k, l)!
over V . Let Y be the pullback in presheaves of V along the map π!X → ρ!X
and cover Y using the counit π!π

∗Y → Y . Writing Y = π∗Y , this means we
have a commuting square of presheaves

π!Y
(δ,d)!

//

��

π!X

��

V // ρ!W // ρ!X,

in which the vertical arrows are locally surjective and the top arrow is of the
form (δ, d)!. Finally, let Q be the pullback of Q along π!Y → V . This means we
have the following diagram of presheaves:

Q // //

''

π!(Y ×X B)

��

// π!B

(k,l)!

��

π!(Y ×X A)

��

// π!A

(r,s)!

��

π!Y //

(δ,d)!

22
π!W

(τ,t)!
// π!X, ,

where the rectangles are pullbacks, computed, as usual, using Lemma 3.5.5
(so σY×XA(y, a) = d∗yσA(a) and σY×XB(y, b) = d∗yσB(b)). The map Q →
π!(Y ×X A) is locally surjective, and therefore

Q1 = { (y, a, S ∈ BCov(d∗yσA(a))) :

∀g ∈ S ∃b ∈ k−1(a)∃h ∈ C1 [ (y, b, h) ∈ Q and d∗ylb ◦ h = g ] }
= { (y, a, S ∈ BCov(d∗yσA(a))) :

∀g ∈ S ∃b ∈ k−1(a)∃h ∈ C1 [ (y, b, h) ∈ Q and (b, dy, S, g, h) ∈ B0 ] }

is an mvs of S0 → A0 over Y . By the genericity of P1 this implies the existence
of a map α1:U1 → Z1 and a cover β1:U1 → Y such that nm0α1 = (δ, d)β1

and α∗1P1 ≤ β∗1Q1 as mvss of S0 → A0 over U1. Next, define the subobject
Q2 ⊆ α∗1B1 by saying for any element (u1 ∈ U1, b ∈ B,S ∈ BCov(σA(kb)), g ∈
S, h ∈ C1) ∈ α∗1B1:

(u1, b, S, g, h) ∈ Q2 ⇔ (β1u1, b, h) ∈ Q(dom(h)).

It follows from α∗1P1 ≤ β∗1Q1 and the definition of Q1 that Q2 is a small mvs of
B1 →M1 over U1. Therefore there is a map α:U //Z and a cover β2:U //U1

such that α1β2 = m1α and α∗P2 ≤ β∗2Q2.
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If we put β = β1β2, then (γ, c)α = nm0m1α = nm0α1β2 = (δ, d)β1β2 = (δ, d)β.
Therefore we may write (ε, e) = (γ, c)α = (δ, d)β and set σU (u) = dom(eu).
Since cαu = dβu = eu for every u ∈ U , we have

σU (u) = dom(cαu) = σZ(αu) = dom(dβu) = σY (βu).

Therefore we obtain maps (β, id)!:π!U → π!Y and (α, id)!:π!U → π!Z such that
(γ, c)!(α, id)! = (δ, d)!(β, id)!. Lemma 3.5.2 implies that (β, id)! is a cover and
therefore the proof will be finished, once we show that (α, id)∗! P ≤ (β, id)∗! Q.

To show this, consider an element (u ∈ U, b ∈ B, f : c→ d ∈ C) ∈ π!(U ×X B)(c)
for which we have (u, b, f) ∈ (α, id)∗! P (c). This means that (αu, b, f) ∈ P (c)
and hence that there is a sieve S ∈ BCov(c∗αuσA(kb)), a map g ∈ S and a map
h: e → d ∈ C1 such that (αu, b, S, g, h) ∈ P2 and f factors through h. Since
α∗P2 ≤ β∗2Q2, it follows that (β2u, b, S, g, h) ∈ Q2. By definition this means
that (βu, b, h) ∈ Q(e). Since Q is a presheaf, also (βu, b, f) ∈ Q(c) and hence
(u, b, f) ∈ (β, id)∗! Q(c). This completes the proof. �

4.4 W-types in sheaves

In this final subsection, we show that the axiom (WE) is inherited by sheaf
models. It turns out that the construction of W-types in categories of sheaves
is considerably more involved than in the presheaf case (in [9] we showed that
some of the complications can be avoided if the metatheory includes the axiom
of choice). We then go on to show that the axiom (WS) is inherited as well, if
we assume the axiom of multiple choice.

Remark 4.12 In [24] the authors claimed that W-types in categories of sheaves
are computed as in presheaves (Proposition 5.7 in loc.cit.) and can therefore be
described in the same (relatively easy) way. But, unfortunately, this claim is
incorrect, as the following counterexample shows. Let F : 1→ 1 be the identity
map on the terminal object. The W-type associated to F is the initial object,
which, in general, is different in categories of presheaves and sheaves. (This was
noticed by Peter Lumsdaine together with the first author.)

We fix a small map F :Y → X of sheaves. If x ∈ X(a) and S is a covering
sieve on a, then we put

Y Sx : = {(f : b→ a ∈ S, y ∈ Y (b)) : F (y) = x · f}.

Observe that Y Sx is small and write ψ for the obvious projection

ψ:
∑
(S,x)

Y Sx → X ×C0 Cov.
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Let Ψ = Pψ ◦ P+
s and let V be its initial algebra (see Theorem 2.10). Elements

v of V are therefore of the form sup(a,x,S)t with (a, x, S) ∈ X ×C0 Cov and
t:Y Sx → P+

s V. We will think of such an element v as a labelled well-founded
tree, with a root labelled with (a, x, S). To this root is attached, for every
(f, y) ∈ Y Sx and w ∈ t(f, y), the tree w with an edge labelled with (f, y). To
simplify the notation, we will denote by v(f, y) the small collection of all trees
that are attached to the root of v with an edge that has the label (f, y).

We now wish to define a presheaf structure on V. We say that a tree v ∈ V
is rooted at an object a in C, if its root has a label whose first component is a.
If v = sup(a,x,S)t is rooted at a and f : b→ a is a map in C, then we can define
a tree v · f rooted at b, as follows:

v · f = sup(b,x·f,f∗S)f
∗t,

with
(f∗t)(g, y) = t(fg, y).

This clearly gives V the structure of a presheaf. Note that

(v · f)(g, y) = v(fg, y).

Next, we define by transfinite recursion a relation on V:

v ∼ v′ ⇔ if the root of v is labelled with (a, x, S) and the root
of v′ with (a′, x′, S′), then a = a′, x = x′ and there
is a covering sieve R ⊆ S ∩ S′ such that for every
(f, y) ∈ Y Rx we have v(f, y) ∼ v′(f, y).

Here, the formula v(f, y) ∼ v′(f, y) is supposed to mean

∀m ∈ v(f, y), n ∈ v′(f, y) : m ∼ n.

In general, we will write M ∼ N for small subobjects M and N of V to mean

∀m ∈M,n ∈ N : m ∼ n.

In a similar vein, we will write for such a subobject M ,

M · f = {m · f : m ∈M}.

That the relation ∼ is indeed definable can be shown by the methods of [7] or
[8]. By transfinite induction one can show that ∼ is symmetric and transitive,
and compatible with the presheaf structure (v ∼ w ⇒ v · f ∼ w · f).

Next, we define composability and naturality of trees (as we did in the
presheaf case, see Theorem 3.3).

• A tree v ∈ V whose root is labelled with (a, x, S) is composable, if for any
(f : b→ a, y) ∈ Y Sx and w ∈ v(f, y), the tree w is rooted at b.
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• A tree v ∈ V whose root is labelled with (a, x, S) is natural, if it is com-
posable and for any (f : b→ a, y) ∈ Y Sx and g: c→ b,

v(f, y) · g ∼ v(fg, y · g).

One can show that if v is natural, and v ∼ w, then also w is natural; moreover,
natural trees are stable under restriction. The same applies to the trees that
are hereditarily natural (i.e. not only are they themselves natural, but the same
is true for all their subtrees).

We shall writeW for the object consisting of those trees that are hereditarily
natural. The relation ∼ defines an equivalence onW, for if a tree v = sup(a,x,S)t

is natural, then for all (f, y) ∈ Y Sx one has v(f, y) · id ∼ v(f · id, y · id), that
is, v(f, y) ∼ v(f, y), and therefore v ∼ v. By induction one proves that the
equivalence relation ∼ onW is bounded and hence a quotient exists. We denote
it by W. It follows from what we have said that the quotient W is a presheaf,
but more is true: one can actually show that W is a sheaf and, indeed, the
W-type associated to F in sheaves.

Lemma 4.13 Let w,w′ ∈ W be rooted at a ∈ C. If T is a sieve covering a and
w · f ∼ w′ · f for all f ∈ T , then w ∼ w′. In other words, W is separated.

Proof. If the label of the root of w is of the form (a, x, S) and that of w′ is of
the form (a, x′, S′), then w · f ∼ w′ · f implies that x · f = x′ · f for all f ∈ T .
As X is separated, it follows that x = x′.

Consider

R = { g: b→ a ∈ (S ∩ S′) : ∀(h, y) ∈ YMb
x·g [w(gh, y) ∼ w′(gh, y) ] }.

R is a sieve, and the statement of the lemma will follow once we have shown
that it is covering.

Fix an element f ∈ T . That w · f ∼ w′ · f holds means that there is a
covering sieve Rf ⊆ f∗S ∩ f∗S′ such that for every (k, y) ∈ Y

Rf

x·f we have
w(fk, y) = (w · f)(k, y) ∼ (w′ · f)(k, y) = w′(fk, y). In other words, Rf ⊆ f∗R.
So R is a covering sieve by local character. �

Lemma 4.14 W is a sheaf.

Proof. Let S be a covering sieve on a and suppose we have a compatible family
of elements (wf ∈ W)f∈S . Using the collection axiom, we know that there must
be a span

S ← J → W
fj ← [ j 7→ wj
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with J small and [wj ] = wfj for all j ∈ J . Every wj is of form sup(aj ,xj ,Rj)tj .
If fj = fj′ , then wj ∼ wj′ , so xj = xj′ . Thus the xj form a compatible family
and, since X is a sheaf, can be glued together to obtain an element x ∈ X(a).
We claim that the desired glueing is [w], where w = sup(a,x,R)t ∈ V is defined
by:

R = {fjg : j ∈ J, g ∈ Rj},

t(h, y) =
⋃
j∈J
{tj(g, y) : fjg = h}

For this to make sense, we first need to show that w ∈ W, i.e., that w is
hereditarily natural. In order to do this, we prove the following claim.

Claim. Assume we are given (h, y) ∈ Y Rx , with h = fjg for some j ∈ J . Then

w(h, y) ∼ wj(g, y).

Proof. Since
w(h, y) =

⋃
j′∈J
{wj′(g′, y) : fj′g′ = h},

it suffices to show that wj(g, y) ∼ wj′(g′, y) if h = fj′g
′.

By compatibility of the family (wf ∈ W)f∈S we know that wj · g ∼ wj′ · g′ ∈
W(c). This means that there is a covering sieve T ⊆ g∗Rj ∩ (g′)∗Rj′ such that
for all (k, z) ∈ Y Tx·h, we have (wj · g)(k, z) ∼ (wj′ · g′)(k, z). So if k: d → c ∈ T ,
then

wj(g, y) · k ∼ wj(gk, y · k)
= (wj · g)(k, y · k)
∼ (wj′ · g′)(k, y · k)
= wj′(g′k, y · k)
∼ wj′(g′, y) · k.

BecauseW is separated (as was shown in Lemma 4.13), it follows that wj(g, y) ∼
wj′(g′, y). This proves the claim. �

Any subtree of w is a subtree of some wj and therefore natural. Hence we only
need to prove of w itself that it is composable and natural. Direct inspection
shows that the tree that we have constructed is composable. For verifying that
w is also natural, let (h: c → a, y) ∈ Y Rx and k: d → c. Since h ∈ R, there are
j ∈ J and g ∈ Rj such that h = fjg. Then

w(h, y) · k ∼ wj(g, y) · k ∼ wj(gk, y · k) ∼ w(hk, y · k),

by using naturality of wj and the claim (twice).

It remains to show that [w] is a glueing of all the wf , i.e., that w · fj ∼ wj for
all j ∈ J . So let j ∈ J . First of all, x · fj = xj , by construction. Secondly, for
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every g: c → b ∈ Rj = (Rj ∩ f∗j R) and y ∈ Y (c) such that F (y) = x · fjg, we
have

(w · fj)(g, y) = w(fjg, y) ∼ wj(g, y).

This completes the proof. �

Lemma 4.15 W is a PF -algebra.

Proof. We have to describe a natural transformation S:PFW → W. An
element of PFW(a) is a pair (x, t) consisting of an element x ∈ X(a) together
with a natural transformation G:YMa

x →W. Using collection, there is a map

YMa
x

t // P+
s W (5)

such that [w] = G(y, f), for all (f, y) ∈ YMa
x and w ∈ t(f, y). We define SxG to

be
[ sup(a,x,Ma)t ].

One now needs to check that w is hereditarily natural. And then another ver-
ification is needed to check that [w] does not depend on the choice of the map
in (5). Finally, one needs to check the naturality of S. These verifications are
all relatively straightforward and similar to some of the earlier calculations, and
therefore we leave all of them to the reader. �

Lemma 4.16 W is the initial PF -algebra.

Proof. We will show that S:PFW → W is monic and that W has no proper
PF -subalgebras; it will then follow from Theorem 26 of [7] (or Theorem 6.13 in
[8]) that W is the W-type of F .

We first show that S is monic. So let (x,G), (x′, G′) ∈ PFX(a) be such that
SxG = Sx′G

′ ∈ W. It follows that x = x′ and that there is a covering sieve S
on a such that for all (h, y) ∈ Y Sx , we have G(h, y) = G′(h, y). We need to show
that G = G′, so let (f, y) ∈ YMa

x be arbitrary. For every g ∈ f∗S, we have:

G(f, y) · g = G(fg, y · g) = G′(fg, y · g) = G′(f, y) · g.

Since f∗S is covering, it follows that G(f, y) = G′(f, y), as desired.

The fact thatW has no proper PF -subalgebras is a consequence of the inductive
properties of V (recall that V is an initial algebra). Let A be a sheaf and PF -
subalgebra of W. We claim that

B = {v ∈ V : if v is hereditarily natural, then [v] ∈ A}
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is a subalgebra of V. Proof: Suppose v is a tree that is hereditarily natural.
Assume moreover that v = sup(a,x,S)t and for all (f, y) ∈ Y Sx and w ∈ t(f, y),
we know that [w] ∈ A. Our aim is to show that [v] ∈ A.

For the moment fix an element f : b → a ∈ S. Since v · f has a root labelled
by (b, x · f,Mb) and (v · f)(g, y) = v(fg, y) for all (g, y) ∈ YMb

x·f , we have that
[v] · f = Sx·fG, where G(g, y) = [v(fg, y)] ∈ A. Because A is a PF -subalgebra
of W this implies that [v] · f ∈ A. Since this holds for every f ∈ S, while S is a
covering sieve and A is a subsheaf of W, we obtain that [v] ∈ A, as desired.

We conclude that B = V and hence A =W. This completes the proof. �

To wrap up:

Theorem 4.17 The axiom (WE) is inherited by sheaf models.

We believe that one has to make additional assumptions on ones predicative
category with small maps (E ,S) to show that the axiom (WS) is inherited by
sheaf models (the argument above does not establish this, the problem being
that the initial algebra V will be large, even when the codomain of the map
F :Y → X we have computed the W-type of is small). We will now show
that this problem can be circumvented if we assume that the axiom of multiple
choice (AMC) holds in E . It is quite likely that one can also solve this problem
by using Aczel’s Regular Extension Axiom: it implies the axiom (WS) and is
claimed to be stable under sheaf extensions (but, as far as we are aware, no
proof of that claim has been published).

Theorem 4.18 The axiom (AMC) is inherited by sheaf models.

Proof. This was proved in Section 10 of [25]. �

Theorem 4.19 (Assuming that (AMC) holds in E.) The axiom (WS) is
inherited by sheaf models.

Proof. We will continue to use the notation from the proof of the previous
theorem. So, again, we assume we have a small map F :Y → X of sheaves.
Moreover, we let ψ be the map in E and Ψ be the endofunctor on E defined
above, we let V be its initial algebra and ∼ be the symmetric and transitive
relation we defined on V, and W the W-type associated to F , obtained by
quotienting the hereditarily natural elements in V by ∼.
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Assume that X is a small sheaf. Since (AMC) holds in E , it is the case that,
internally in E/C0, the map ψ fits into a collection square as shown

D
q
//

g

��

∑
(S,x) Y

S
x

ψ

��

C p
// X ×C0 Cov,

in which all objects and maps are small in E/C0. The W-type U = Wg in E/C0
is small in E/C0, because we are assuming that (WS) holds in E (and hence
also in E/C0). The idea is to use this to show that W is small as well.

Every element u = supcs ∈ U determines an element in ϕ(u) ∈ V as follows:
first compute p(c) = (a, x, S). Then let for every (y, f) ∈ Y Sx the element t(y, f)
be defined by

t(y, f) = {(ϕ ◦ s)(d) : d ∈ q−1
c (y, f)}.

Then ϕ(u) = sup(a,x,S)t (so this is an inductive definition). We claim that for
every hereditarily natural tree v ∈ W there is an element u ∈ U such that
v ∼ ϕ(u). The desired result follows readily from this claim.

We prove the claim by induction: so let v = sup(a,x,S)t be a hereditarily natural
element of V and assume the claim holds for all subtrees of v. Since all subtrees
of v are hereditarily natural as well, this means that for every (y, f) ∈ Y Sx and
w ∈ t(y, f) there is an element u ∈ U such that ϕ(u) = w. From the fact that
the square above is a collection square, it follows that there is a c ∈ C with
p(c) = (a, x, S) together with two functions: first one picking for every d ∈ Dc

an element r(d) ∈ t(y, f) (because t(y, f) is non-empty) and a second one pick-
ing for every d ∈ D an element s(d) ∈ U such that ϕ(s(d)) ∼ r(d). It is not
hard to see that v ∼ ϕ(supcs), using that v is natural and therefore all elements
in t(y, f) are equivalent to each other. �

This completes the proof of our main result, Theorem 2.18.

5 Sheaf models of constructive set theory

Our main result Theorem 2.18 in combination with Theorem 2.8 yields the
existence of sheaf models for CZF and IZF (see Corollary 2.19). For the sake
of completeness and in order to allow a comparison with classical forcing, we
describe this model in concrete terms. We will not present verifications of the
correctness of our descriptions, because they could in principle be obtained by
unwinding the existence proofs, and other descriptions which differ only slightly
from what we present here can already be found in the literature.

To construct the initial Ps-algebra in a category of internal presheaves over
a predicative category with small maps (E ,S), let W be the initial algebra of
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the endofunctor Φ = Pcod ◦Ps on E (see Theorem 2.10). Elements of w ∈ W are
therefore of the form supct, with c ∈ C0 and t a function from {f ∈ C1 : cod(f) =
c} to PsW. We think of such an element w as a well-founded tree, where the
root is labelled with c and for every v ∈ t(f), the tree v is connected to the
root of w with an edge labelled with f . The object W carries the structure of a
presheaf, with W(c) consisting of trees whose root is labelled with c, and with
a restriction operation defined by putting for any w = supct and f : d→ c,

w · f = supd t(f ◦ −).

The initial Ps-algebra V in the category of presheaves is constructed from
W by selecting those trees that are hereditarily composable and natural:

• A tree w = supc(t) ∈ W is composable, if for any f : d → c and v ∈ t(f),
the tree v has a root labelled with d.

• A tree w = supc(t) ∈ W is natural, if it is composable and for any f : d→ c,
g: e→ d and v ∈ t(f), we have v · g ∈ t(fg).

The Ps-algebra structure, or, equivalently, the membership relation on V, is
given by the formula (x, supct ∈ V)

x ∈ supct⇐⇒ x ∈ t(idc).

The easiest way to prove the correctness of the description we gave is by appeal-
ing to Theorem 1.1 from [22] (or Theorem 7.3 from [8]). This model was first
presented in the paper [15] by Gambino, based on unpublished work by Dana
Scott.

The initial Ps-algebra in categories of internal sheaves is obtained as a quo-
tient of this object V. Roughly speaking, we quotient by bisimulation in a way
which reflects the semantics of a category of sheaves. More precisely, we take V
as defined above and we write: supct ∼ supct′ if for all f : d → c and v ∈ t(f),
the sieve

{ g: e→ d : ∃v′ ∈ t′(fg) ( v · g ∼ v′ ) }

covers d and for all f ′: d→ c and v′ ∈ t′(f ′), the sieve

{ g: e→ d : ∃v ∈ t(f ′g) ( v′ · g ∼ v ) }

covers d. On the quotient the membership relation is defined by:

[v] ∈ [supct]⇐⇒ the sieve {f : d→ c : ∃v′ ∈ t(f) ( v · g ∼ v′ )} covers c.

To see that this is correct, one should verify that ∼ defines a bounded equiva-
lence relation and the quotient is a sheaf. Then one proves that it is the initial
Ps-algebra by appealing to Theorem 1.1 from [22] (or Theorem 7.3 from [8]).
The reader who wishes to see more details, should consult [29].
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Remark 5.1 It should be clear that the above is a generalisation of classical
forcing (as in [23], for example). Any poset P determines a site, by declaring
that S covers p whenever S is dense below p. In this case, the elements of V
are a particular kind of names (as they are traditionally called). One could
regard composability and naturality as saturation properties of names (so that,
in effect, we only consider nice, saturated names). It is not too hard to show that
every name (in the usual sense) is equal in a forcing model to such a saturated
name, so that the models that we have constructed are not different from the
forcing models considered in (classical) set theory.

References

[1] P. Aczel. The type theoretic interpretation of constructive set theory. In
Logic Colloquium ’77 (Proc. Conf., Wroc law, 1977), volume 96 of Stud.
Logic Foundations Math., pages 55–66. North-Holland, Amsterdam, 1978.

[2] P. Aczel. The type theoretic interpretation of constructive set theory: in-
ductive definitions. In Logic, methodology and philosophy of science, VII
(Salzburg, 1983), volume 114 of Stud. Logic Found. Math., pages 17–49.
North-Holland Publishing Co., Amsterdam, 1986.

[3] P. Aczel and M. Rathjen. Notes on constructive set theory. Technical
Report No. 40, Institut Mittag-Leffler, 2000/2001.

[4] S. Awodey. A brief introduction to algebraic set theory. Bull. Symbolic
Logic, 14(3):281–298, 2008.

[5] S. Awodey, C. Butz, A.K. Simpson, and T. Streicher. Relating first-order
set theories and elementary toposes. Bull. Symbolic Logic, 13(3):340–358,
2007.

[6] S. Awodey, N. Gambino, P.L. Lumsdaine, and M.A. Warren. Lawvere-
Tierney sheaves in algebraic set theory. J. Symbolic Logic, 74(3):861–890,
2009.

[7] B. van den Berg. Inductive types and exact completion. Ann. Pure Appl.
Logic, 134:95–121, 2005.

[8] B. van den Berg and I. Moerdijk. Aspects of predicative algebraic set theory
I: Exact Completion. Ann. Pure Appl. Logic, 156(1), 2008.

[9] B. van den Berg and I. Moerdijk. W-types in sheaves. arXiv:0810.2398,
2008.

[10] B. van den Berg and I. Moerdijk. Aspects of predicative algebraic set theory
II: Realizability. Accepted for publication in Theoretical Computer Science.
arXiv:0801.2305, 2009.

55



[11] B. van den Berg and I. Moerdijk. A unified approach to algebraic set theory.
In Logic Colloquim 2006, Lecture Notes in Logic, pages 18–37. Cambridge
University Press, Cambridge, 2009.

[12] M.P. Fourman. Sheaf models for set theory. J. Pure Appl. Algebra, 19:91–
101, 1980.

[13] P.J. Freyd. The axiom of choice. J. Pure Appl. Algebra, 19:103–125, 1980.

[14] N. Gambino. Sheaf interpretations for generalised predicative intuitionistic
systems. PhD thesis, University of Manchester, 2002.

[15] N. Gambino. Presheaf models for constructive set theories. In From sets
and types to topology and analysis, volume 48 of Oxford Logic Guides, pages
62–77. Oxford University Press, Oxford, 2005.

[16] N. Gambino. Heyting-valued interpretations for constructive set theory.
Ann. Pure Appl. Logic, 137(1-3):164–188, 2006.

[17] N. Gambino. The associated sheaf functor theorem in algebraic set theory.
Ann. Pure Appl. Logic, 156(1):68–77, 2008.

[18] R.J. Grayson. Forcing in intuitionistic systems without power-set. J. Sym-
bolic Logic, 48(3):670–682, 1983.

[19] P.T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol-
ume 1, volume 43 of Oxf. Logic Guides. Oxford University Press, New
York, 2002.

[20] P.T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol-
ume 2, volume 44 of Oxf. Logic Guides. Oxford University Press, Oxford,
2002.

[21] A. Joyal and I. Moerdijk. Algebraic set theory, volume 220 of London
Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1995.

[22] C. Kouwenhoven-Gentil and J. van Oosten. Algebraic set theory and the
effective topos. J. Symbolic Logic, 70(3):879–890, 2005.

[23] K. Kunen. Set theory – An introduction to independence proofs, volume 102
of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 1980.

[24] I. Moerdijk and E. Palmgren. Wellfounded trees in categories. Ann. Pure
Appl. Logic, 104(1-3):189–218, 2000.

[25] I. Moerdijk and E. Palmgren. Type theories, toposes and constructive set
theory: predicative aspects of AST. Ann. Pure Appl. Logic, 114(1-3):155–
201, 2002.

56



[26] M. Rathjen. Realizability for constructive Zermelo-Fraenkel set theory. In
Logic Colloquium ’03, volume 24 of Lect. Notes Log., pages 282–314. Assoc.
Symbol. Logic, La Jolla, CA, 2006.

[27] A.K. Simpson. Elementary axioms for categories of classes (extended ab-
stract). In 14th Symposium on Logic in Computer Science (Trento, 1999),
pages 77–85. IEEE Computer Soc., Los Alamitos, CA, 1999.

[28] A.K. Simpson. Constructive set theories and their category-theoretic mod-
els. In From sets and types to topology and analysis, volume 48 of Oxford
Logic Guides, pages 41–61. Oxford University Press, Oxford, 2005.

[29] T. Streicher. Forcing for IZF in sheaf toposes. Georgian Mathematical
Journal, 16(1):203–209, 2009.

[30] M.A. Warren. Coalgebras in a category of classes. Ann. Pure Appl. Logic,
146(1):60–71, 2007.

57


