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Abstract

In this small note we give a concrete description of W-types in categories
of sheaves.

It can be shown that any topos with a natural numbers object has all W-
types. Although there is this general result, it can be useful to have a concrete
description of W-types in various toposes. For example, a concrete description of
W-types in the effective topos can be found in [2, 3], and a concrete description
of W-types in categories of presheaves was given in [5]. It was claimed in [5] that
W-types in categories of sheaves are computed as in presheaves (Proposition 5.7
in loc.cit.) and can therefore be described in the same way. Unfortunately, this
claim is incorrect, as the following (easy) counterexample shows. Let f : 1 → 1
be the identity map on the terminal object. The W-type associated to f is
the initial object, which, in general, is different in categories of presheaves and
sheaves. This means that we still lack a concrete description of W-types in
categories of sheaves. This note aims to fill this gap.

We would like to warn readers who are sensitive to such issues that our
metatheory is ZFC. In particular, we freely use the axiom of choice. We leave
the issue of how to describe W-types in categories of sheaves when the metathe-
ory is more demanding (i.e. weaker) to another occasion.

Categories of sheaves are described using (Grothendieck) sites. There are
different formulations of the notion of a site, all essentially equivalent ([4] pro-
vides an excellent discussion of this point), but for our purposes we find the
following (“sifted”) formulation the most useful.

Definition 0.1 Let C be a category. A sieve S on an object a ∈ C consists of a
set of arrows in C all having codomain a and closed under precomposition (i.e.,
if f : b → a and g: c → b are arrows in C and f belongs to S, then so does fg).
We call the set Ma of all arrows into a the maximal sieve on a. If S is a sieve on
a and f : b → a is any map in C, we write f∗S for the sieve {g: c → b : fg ∈ S}
on b. In case f belongs to S, we have f∗S = Mb.

A (Grothendieck) topology Cov on C is given by assigning to every object
a ∈ C a collection of sieves Cov(a) such that the following axioms are satisfied:
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(Maximal sieve) The maximal sieve Ma belongs to Cov(a);

(Stability) If f : b → a is any map and S belongs to Cov(a), then f∗S belongs
to Cov(b);

(Local character) If S is a sieve on a for which there can be found a sieve
R ∈ Cov(a) such that for all f : b → a ∈ R the sieve f∗S belongs to Cov(b),
then S belongs to Cov(a).

A pair (C, Cov) consisting of a category C and a topology Cov on it is called
a site. If a site (C, Cov) has been fixed, we call the sieves belonging to some
Cov(a) covering sieves. If S belongs to Cov(a) we say that S is a sieve covering
a, or that a is covered by S.

With our notion of site in place, we are ready to describe W-types in sheaves.
First, we fix a map F :Y → X of sheaves. Let V be the set of all well-founded
trees, in which

• nodes are labelled with triples (a, x, S) with a an object in C, x an element
of X(a) and S a sieve covering a,

• edges are labelled with pairs (f, y) with f : b → a a map in C and y an
element of Y (b),

in such a way that

• if a node is labelled with (a, x, S) and an edge into this node is labelled
with (f, y), then f belongs to S and F (y) = x · f ,

• and if a node is labelled with (a, x, S) there is, for every f ∈ S and y such
that F (y) = x · f , a unique edge into this node labelled with (f, y).

In fact, V is the W-type (in the category of sets) associated to the projection

∑
(a,x,S){(f, y) : f : b → a ∈ S, y ∈ F (b), F (y) = x · f}

²²

{(a, x, S) : a ∈ C, x ∈ X(a), S ∈ Cov(a)}.

If v denotes a well-founded tree in V, we will also use the letter v for the function
that assigns to labels of edges into the root of v the tree attached to this edge.
So if (f, y) is a label of one of the edges into the root of v, we will write v(f, y)
for the tree that is attached to this edge; this is again an element of V. Note
that an element of V is uniquely determined by the label of its root and the
function we just described.
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We say that a tree v ∈ V is rooted at an object a in C, if its root has a label
whose first component is a. We will denote the collection of trees rooted at a
by V(a). This gives the set V the structure of a presheaf, as one can define the
following restriction operation. Let v ∈ V(a) and f : b → a be a map in C. If v
has root (a, x, S) the tree v · f has root (b, x · f, f∗S) and

(v · f)(g, y) = v(fg, y).

One easily verifies that this is well-defined, and gives V the structure of a
presheaf.

Next, we define by transfinite recursion an equivalence relation ∼ on the
presheaf V:

v ∼ v′ ⇔ If the root of v is labelled with (a, x, S) and the root
of v′ with (a′, x′, S′), then a = a′, x = x′ and there
is a covering sieve R ⊆ S ∩ S′ such that for every
f : b → a ∈ R and y ∈ Y (b) such that F (y) = x · f we
have v(f, y) ∼ v′(f, y).

By transfinite induction one verifies that ∼ is an equivalence relation. Further-
more, one verifies directly that ∼ is a presheaf (i.e. v ∼ v′ implies that v and
v′ are rooted at the same object a and that v · f ∼ v′ · f for all f : b → a).

Next, we define composability and naturality of trees (the terminology is
taken from [5]):

• A tree v whose root is labelled with (a, x, S) is composable, if for any (f, y)
with f : b → a ∈ S and y ∈ Y (b) such that F (y) = x · f , the tree v(f, y) is
rooted at b.

• A tree v whose root is labelled with (a, x, S) is natural, if for any (f, y)
with f : b → a ∈ S, g: c → b and y ∈ Y (b) such that F (y) = x · f , we have

v(f, y) · g ∼ v(fg, y · g).

It is clear that natural and composable trees are stable under restriction, so that
also these form presheaves. The same applies to the presheaf W of trees that
are hereditarily composable and natural (i.e. not only are they themselves both
composable and natural, but the same is true for all their subtrees).

The relation ∼ is also an equivalence relation on W and we let W be its
quotient in presheaves (so the quotient is computed pointwise). We show that
W is a sheaf and, indeed, the W-type associated to F in sheaves.

Lemma 0.2 If T is a sieve covering a and w, w′ ∈ W(a) are such that w · f ∼
w′ · f for all f ∈ T , then w ∼ w′. In other words, W is separated.
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Proof. If the label of the root of w is of the form (a, x, S) and that of w′ is of
the form (a, x′, S′), then w · f ∼ w′ · f implies that x · f = x′ · f for all f ∈ T .
As X is separated, it follows that x = x′.

Consider

R = { g: b → a ∈ (S ∩ S′) : ∀h: c → b, y ∈ Y (c)
[ F (y) = x · gh ⇒ w(gh, y) ∼ w′(gh, y) ] }.

R is a sieve, and the statement of the lemma will follow once we show that it is
covering.

Fix an element f ∈ T . That w · f ∼ w′ · f holds means that there is a covering
sieve Rf ⊆ f∗S ∩ f∗S′ such that for every k: c → b ∈ Rf and y ∈ Y (c) such
that F (y) = x · fk we have w(fk, y) = (w · f)(k, y) ∼ (w′ · k)(g, y) = w′(fk, y).
In other words, Rf ⊆ f∗R. So R is a covering sieve by local character. ¤

Lemma 0.3 W is a sheaf.

Proof. Let S be a covering sieve on a and suppose we have a compatible family
of elements (wf ∈ W)f∈S . For every element f ∈ S choose a representative
(wf ∈ W)f∈S such that [wf ] = wf . For every f : b → a ∈ S a representative wf

has a root labelled by something of form (b, xf , Rf ). The xf form a compatible
family and, since X is a sheaf, can be glued together to obtain an element
x ∈ X(a). Furthermore, R: = {fg : f ∈ S, g ∈ Rf} ⊆ S is a covering sieve, by
local character.

Before we proceed, we prove the following claim:
Claim. Assume f : b → a ∈ S and g: c → b ∈ Rf and f ′: b′ → a ∈ S and
g′: c → b′ ∈ Rf ′ are such that fg = f ′g′. If y ∈ Y (c) is such that F (y) = x · fg,
then

wf (g, y) ∼ wf ′(g′, y).

Proof. By compatibility of the family (wf ∈ W)f∈S we know that wf · g ∼
wf ′ · g′ ∈ W(c). This means that there is a covering sieve T ⊆ g∗Rf ∩ (g′)∗Rf ′

such that for all h: d → c ∈ T and z ∈ Y (d) such that F (z) = x · fgh, we have
(wf · g)(h, z) ∼ (wf ′ · g′)(h, z). So if h: d → c ∈ T , then

wf (g, y) · h ∼ wf (gh, y · h)
= (wf · g)(h, y · h)
∼ (wf ′ · g′)(h, y · h)
= wf ′(g′h, y · h)
∼ wf ′(g′, y) · h.

Because W is separated (as was shown in Lemma 0.2), it follows that wf (g, y) ∼
wf ′(g′, y). This completes the proof of the claim. ¤
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We construct a tree w ∈ V such that [w] is the desired glueing of all the wf . It
will have a root labelled with (a, x, R). For any h: c → a ∈ R and y ∈ Y (c) such
that F (y) = x · h, we choose f ∈ S and g ∈ Rf such that h = fg and set

w(h, y) = wf (g, y).

This does essentially depend on the choice of f and g, but any two choices yield
equivalent results: that is precisely the content of the claim we proved above.

It is easy to see that the tree that we have constructed is composable. It is also
natural, since if h: c → a ∈ R and y ∈ Y (c) are such that F (y) = x · h, and we
have chosen f ∈ S and g ∈ Rf such that h = fg and we have set

w(h, y) = wf (g, y),

and k: d → c is any other map, and we have chosen f ′ ∈ S and g′ ∈ Rf ′ such
that hk = f ′g′ and we have set

w(hk, y · k) = wf ′(g′, y · k),

then it follows that

w(h, y) · k = wf (g, y) · k
∼ wf (gk, y · k)
∼ wf ′(g′, y · k) (using the claim)
= w(hk, y · k),

as desired.

It remains to show that [w] is a glueing of all the wf , i.e. that w · f ∼ wf for all
f ∈ S. So let f : b → a ∈ S. First of all, x·f = xf , by construction. Furthermore,
for every g: c → b ∈ Rf = Rf ∩ f∗R and y ∈ Y (c) such that F (y) = x · fg, let
f ′ ∈ S and g′ ∈ Rf ′ be such that fg = f ′g′ and w(fg, y) = wf ′(g′, y). Then

(w · f)(g, y) = w(fg, y)
= wf ′(g′, y)
∼ wf (g, y) (using the claim).

This completes the proof. ¤

Lemma 0.4 W is a PF -algebra.

Proof. We have to describe a natural transformation sup: PFW → W. An
element of PFW(a) is a pair (x, t) consisting of an element x ∈ X(a) together
with a natural transformation t: Yx →W, where Yx is the presheaf defined by

Yx(b) = {(f : b → a, y) : F (y) = x · f}.
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We define supx(t) to be [w], where tree w is the tree whose root has label
(a, x, Ma) and for which, for every (f, y) ∈ Yx, the value of w(f, y) is chosen
such that [w(f, y)] = t(f, y) (this is another application of choice). One quickly
verifies that w is composable and natural.

The other verification (that of the naturality of the sup-operation) is easy and
also left to the reader. ¤

Lemma 0.5 W is the initial PF -algebra.

Proof. We follow the usual strategy: we show that sup: PFW → W is monic
and that W has no proper PF -subalgebras (i.e., we apply Theorem 26 of [1]).

We first show that sup is monic. So let (x, t), (x′, t′) ∈ PF X(a) be such that
supx(t) = supx′(t′). It follows that x = x′ and that there is a covering sieve S
on a such that for all h: b → a ∈ S and y ∈ Y (b) such that F (y) = x ·h, we have
t(h, y) = t′(h, y). We need to show that t = t′, so let (f, y) ∈ Yx be arbitrary.
For every g ∈ f∗S, we have:

t(f, y) · g = t(fg, y · g)
= t′(fg, y · g)
= t′(f, y) · g.

Since f∗S is covering, it follows that t(f, y) = t′(f, y), as desired.

The fact that W has no proper PF -subalgebras is a consequence of the inductive
properties of V (we recall that V is a W-type). Let I be a sheaf and PF -
subalgebra of W. We claim that

J = {v ∈ V : if v is both hereditarily composable and natural, then [v] ∈ I}
is a subalgebra of V. Proof: Suppose v is a tree that is both hereditarily
composable and natural. Assume moreover that (a, x, S) is the label of its root
and that for all (f, y) with f : b → a ∈ S and F (y) = x · f , we know that
[v(f, y)] ∈ I. Our aim is to show that [v] ∈ I.

For the moment fix an element f : b → a ∈ S. The tree v · f has (b, x · f, Mb)
as the label of its root and for any (g, y) with g: c → b ∈ Mb and F (y) = x · fg
the tree (v · f)(g, y) is given by v(fg, y). This means that [v] · f = supx·f (t),
where t(g, y) = [v(fg, y)] ∈ I. Since I is a PF -subalgebra of W this implies that
[v] · f ∈ I. From this it follows that [v] ∈ I, since I is also a sheaf and f was an
arbitrary element of the covering sieve S.

We conclude that J = V and I = W. This completes the proof. ¤

This completes the proof of the correctness of our description of W-types in
categories of sheaves.
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