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Abstract: In this paper, we discuss the stability of predicative toposes
under taking sheaves for an internal site. What is the most useful no-
tion of a predicative topos has not been established yet, but we discuss
sheafification for some candidates for that title. The results obtained
here sharpen the results published by Moerdijk and Palmgren in [10]
and [11]. We also propose a new axiom and show its usefulness for the
issue at hand.

1 Introduction

The usefulness of toposes for the study of metamathematical properties of intu-
itionistic formal systems is well established. The crucial properties of toposes for
deriving various metamathematical results, like consistency and independence re-
sults and derived rules, are closure under certain 2-categorical limits, sheaves and
realizability.

When it comes to the metamathematics over predicative intuitionistic systems,
however, this approach has clear limitations. Due to the presence of a subobject
classifier, the internal logic of toposes is impredicative.

To overcome this obstacle, a notion of predicative topos ought to be developed
and its closure under the mentioned contructions to be demonstrated. As yet, the
most useful notion of predicative topos has not been established.

Here we discuss various categories that could serve as a notion of a predicative
topos and their stability under taking sheaves for an internal site. This may remind
one of the work by Moerdijk and Palmgren, viz. articles [10] and [11], and, in fact,
we frequently refer to those texts. The main purpose of this paper is to improve
their results. More precisely, we show:

1. When E is a IW-pretopos and C is an internal category, then PShg(C) is
also a IIW-pretopos. In [10], they assume an additional principle of transfinite
induction for W-types, something we show is superfluous.

2. When E is a [IW-pretopos with a class of small maps satisfying the collection
axiom and C is an internal site with small covers, then Shg(C) is a IIW-
pretopos. In [11], they assume that the small maps satisfy an additional
axiom, the axiom of multiple choice (AMC). We show that this is unnecessary.

3. We propose an alternative notion of predicative topos, weaker than Moerdijk
and Palmgren’s notion of a stratified pseudotopos with AMC: a ITW -pretopos
satisfying the universe operator axiom UO. We show that for a ITW-pretopos
E satisfying UO and containing an internal site C, Shg(C) is a ITW-pretopos
again satisfying UO. A similar stability result holds for the stratified pseudo-
toposes, as shown in [11], but the proof for our alternative is much simpler.



Besides Moerdijk and Palmgren, other people have worked on sheaves for pred-
icative formal systems. An older source is the work by Grayson [6]. More recent
work has been done by Gambino [4] and Awodey and Warren [1]. This work is
done in the context of predicative set theory, while some (unpublished) work in
connection with type theory has been done by Martin-Lof.

I would like to thank several people for discussing with me the research reported
here. First of all, my supervisor Ieke Moerdijk, but also Martin Hyland, Nicola
Gambino, Thierry Coquand, Per Martin Lof and Erik Palmgren, who also invited
me to speak on these matters in the Stockholm-Uppsala Logic Seminar. I also spoke
on this topic during the Summer School on Topos Theory in Haute-Bodeux, and
I would also like to thank the organizers of that summer school for giving me this
opportunity.

2 A predicative notion of topos

2.1 Categorical preliminaries

We use this section to introduce some terminology and recall some useful facts from
category theory.

Definition 2.1 A subobject X of A in a category E is called the image of f : B —
A, if X is the least subobject through which it factors. A map f: B — A in E is
called a cover, when its image is the mazimal subobject A of A.

| |

c——A

Definition 2.2 A square
—_—

in a category E with pullbacks is called a quasi-pullback, if the induced map
D——Bxu,C
18 a cover.

Definition 2.3 A category E is called regular, when it has finite limits and all
maps factor, in a stable fashion, as a cover followed by a mono. A regular category
E s called exact, when every equivalence relation

R—3X

has a quotient X/R, i.e., an object that fits into a diagram
R—IX—X/R

that is both a pullback and a coequalizer. In an exact category, such quotients are
moreover required to be stable under pullback.

Definition 2.4 A category E is called a pretopos, when it is exact and has finite
disjoint and stable sums.

In a pretopos, epis and covers coincide.

When E is a pretopos in which for any map f : B — A the induced pullback
functor f* : E/A — E/B has a right adjoints Il;, E is called a II-pretopos. A II-
pretopos has enough structure to interpret first-order intuitionistic predicate logic.



In a Il-pretopos, any map f : B — A gives rise to its associated polynomial
functor:

Pf(X) = EaGAXBa

If an initial algebra for this endofunctor exists, it is called the W-type for f. We
think of f as specifying a signature: a term constructor for every element a € A
of arity B,. W} is, whenever it exists, the object of all terms over the signature
specified by f. Since W; is a Py-algebra, it naturally comes equipped with a map
Py(Wy) — Wy, usually denoted by sup. Intuitively, for any pair (a € A,t: B, —
Wy), supq(t) is the term constructed by taking a and substituting ¢(b) in the b-th
component of the term a.
In the sequel, we need the following characterization theorem (see [3]):

Theorem 2.5 In aIl-pretopos E with a natural number object, a Py-algebra (V, m :
Pi(V) — V) is the W-type for a morphism f iff it has no proper Pj-subalgebras
and m s iso.

We will also need the notion of a subterm and the fact that this notion can
be formalized in the internal logic of II-pretoposes with a natural number object.
Briefly, when the W-type Wy of a map f exists, one calls a sequence of the form

<w03607w17b17 oo 7wn>

a path, if w; € Wy and b; € B are such that they satisfy the following compatibility
condition: if for an ¢ < m, w; is of the form sup,,t;, then f(b;) = a; and w;+1 = ;b;.
Then v is a subterm of w, when there is a path starting with w and ending with
v. (For more details on the formalization in the internal logic of II-pretoposes with
natural number object, see [3].)

A TlI-pretopos E in which all W-types exist is a IIW -pretopos. A TIW -pretopos
always has a natural number object, because it is the W-type associated to one of
the sum inclusions 1 — 1+ 1.

2.2 Small maps

Among the various notions of predicative topos that we will discuss in this paper,
the concept of a IIW-pretopos is the most basic. Its main problem is that we
will not able to show that it is stable under taking sheaves for an internal site. A
natural solution is strenghtening the notion of a predicative topos by formulating
a categorical analogue of a type theoretic universe. To this end, we introduce ideas
from algebraic set theory. The basic context is that of a category E equipped with
a class of maps S. The maps in S are referred to as small and the intuition is that
their fibres are small in some sense. One should think of: a set as opposed to a
proper class, finite as opposed to infinite, countable as opposed to uncountable, a
small type as opposed to a type outside the universe of small types, etcetera. The
idea is not to fix a set of axioms for this class S once and for all, but algebraic set
theory is supposed to be a flexible framework for the categorical study of notions
from set theory. Still, we will have to make a choice in order to get started. We
will follow [11]*.
So let E be ITW-pretopos and let S be a class of maps.

Definition 2.6 S is called stable if it satisfies the following azioms:

IFor different axiom systems, see [8], [2] and other references at the “Algebraic Set Theory”
website: http://www.phil.cmu.edu/projects/ast/. The main reason for axiomatizing the notion
of a class of small maps as we do, is to include the category of setoids as a natural example. Still,
the results presented here should be largely independent of such choices.



S1 (Pullback stability) In a pullback square

D——C

T
B——A

g belongs to S, whenever f does.

S2 (Descent) If in a pullback diagram as in (1), p is epi, then f belongs to S,
whenever g does.

S3 (Sum) If two maps f: B — A and ' : B® — A’ belong to S, then so does
f+fA+A —-B+B.

These axioms express that maps belong to .S in virtue of the properties of their
fibres.

Definition 2.7 A stable class S is called a locally full subcategory, if it also sat-
isfies the following axiom:

S4 In a commuting triangle

where f belongs to S, g belongs to S if and only if h does.

Remark 2.8 If S1 holds and all identities belong to S, S4 is equivalent to the
conjunction of the following two statements:

S4a Maps in S are closed under composition.

S4b If f: X — Y belongs to S, the diagonal X — X Xy X in E/Y also belongs
to S.

Thinking in terms of type constructors, this expresses that smallness is closed under
dependent sums and (extensional) equality types. We will actually require the class
of small maps to be closed under all type constructors, hence the next definition.

For any object X in E, we write Sx for the full subcategory of E/X whose
objects belong to S. An object X is called small, when the unique map X — 1 is
small.

Definition 2.9 A locally full subcategory S in a TIW -pretopos E is called a class
of small maps, if for any object X of E, Sx is a IIW -pretopos, and the inclusion
functor Sx — E/X preserves this structure.

Definition 2.10 A stable class (locally full subcategory, class of small maps) S is
called representable, if there is a map m : E — U in S such that any map f : B — A
in S fits into a double pullback diagram of the form

B<——B —FE

R,

A4—— A ——E

where p is epi, as indicated.



Representability formulates the existence of a weak version of a universe. In
this paper, classes of small maps will always be assumed to be representable. The
map 7 in the definition of representability is often called the universal small map,
even though it is not unique (not even up to isomorphism). Representability has
the consequence that, in the internal logic of E, a map f : B — A belongs to S iff
it holds that

Va€ AdueU: B, 2 E,

The axioms for a class of small maps that we have given so far form the basic
definition. The definition can be extended by adding various choice or collection
principles. As a matter of fact, we will frequently assume that a class of small maps
satisfies the collection axiom in the sense of Joyal and Moerdijk in [8]:

(CA) For any small map f: A — X and epi C — A, there exists a quasi-pullback
of the form
B——(C—»A

i - )J(f

where Y — X isepi and g : B — Y is small.

In [11], Moerdijk and Palmgren work with a much stronger axiom: what they call
the axiom of multiple choice AMC (for a precise formulation, see loc.cit.). One of
the purposes of this paper is to eliminate the need for this axiom.

As discussed in [11], the collection axiom can be reformulated using the notion
of a collection map. Informally, a map g : D — C'in E is a collection map, whenever
it is true (in the internal logic of E), that for any map f: F —» D, covering some

fibre of g, there is another fibre D, covering D, via a map p: Do —» D, in such
a way that p factors through f. Diagrammatically, one can express this by asking
that for any map ¢: T — C and any epi F — T xX¢ D there is a diagram of the
form

D+—DxcT'——E—»T xcD——D

| |

c T T C

where the middle square is a quasi-pullback with an epi on the bottom, while the
two outer squares are pullbacks. A map g: D — C over A is a collection map over
A, if it is a collection map in E/A.

The collection axiom is now equivalent to stating that the universal small map
m: E — U is a collection map. (This is imprecise, but in a harmless way: if one
universal small map is a collection map, they all are.)

We will need the following variation on this notion. A span (g, h)

DB

!

is called a collection span, when, in the internal logic, it holds that for any map
f+ F—» D, covering some fibre of g, there is another fibre D, of g covering D,

via a map p: Dy —» D, over B in such a way that p factors through f.

We return to the issue of the various possible notions of a predicative topos. In
[11], Moerdijk and Palmgren take what they call “stratified pseudotoposes” as their
notion of predicative topos.



Definition 2.11 A IIW -pretopos E is called a stratified pseudotopos, if it is equip-
ped with a collection (“hierarchy”) of classes of small maps (Sp)nen such that S, C
Snt1 for every n, every map in E is contained in some S, and a specified universal
small map m, : E, — U, for S, has Sy1-small codomain.

Again, it is possible to strengthen this by assuming that every S, satisfies some
additional choice or collection principles. In [11], it is assumed that every S, satisfies
AMC. Here, we will show how to work with CA instead.

My preferred notion of a predicative topos is even weaker. A IIW-pretopos E
satisfies the universe operator axiom, whenever

(UO) Every map f : B — A is contained in a class of small maps satisfying the
collection axiom.

This axiom is inspired by Palmgren’s notion of a universe operator (see [12] and
[13]). His idea was to add to type theory for every dependent type

B(a) Set [a : A]

a universe closed under all the type theoretic operations and containing the types
B(a) for every a € A (but not necessarily A itself). Actually, when intensional
Martin-Lof type theory is extended with such a universe operator, the category of
setoids will satisfy UQO.

This means we have (at least) five notions of a predicative topos. We list them
for future reference:

1. A ITW-pretopos.
2. A stratified pseudotopos without any choice or collection.
A stratified pseudotopos in which the classes of small maps satisfy CA.

A stratified pseudotopos in which the classes of small maps satisfy AMC.

DA o

A TIW-pretopos satisfying UO.2

3 Sites

3.1 Different notions of sites

Although the notion of a sheaf was originally formulated over a topological space,
the notion makes sense over a very general class of categorical structures called sites
(which was exploited by Grothendieck). The structure of a topological space that
makes the definition of a sheaf work is that in a topological space some families
of (basic) opens cover another (basic) open. The structure of a site is therefore a
category together with specified families of maps, so-called covering families. To
lead to a good category of sheaves, the covering families only need to satisfy one
axiom (C).3

Here we will give a precise definition of a site. Moreover, for our purposes the
definition has to be formulated internally in a IIW-pretopos.

2 As for implications between these various notions, the least obvious ones are (4) = (3) = (5).
(2) and (5) ought to be incomparable.

3For axiom (C), see below. For an insightful discussion of these issues, we refer to [7], chapter
C2.



The basic categorical structure of an (internal) site consists of an internal cate-
gory C together with a collection of covering families Cov(C) for every object C of
C. This is formalized by a commutative square of the form

Cov —"— Oy

J lcod (2)

Cov —— Co

(As usual, C is the object of arrows and Cy the object of objects of the internal
category C. And cod is of course the codomain map.) So any U € Cov(C) gives rise
to an indexing set Covy, indexing a family of arrows all with codomain C'. Such a
covering family U will therefore typically be denoted by («; : C; — C'|i € I), where
I is the indexing set.

For a site, the following axiom should hold in the internal logic:

(C) For any covering family («; : C; — C|i € I) of C and any arrow f: D — C,
there exists a covering family (8; : D; — D |j € J) such that every composite
fB; factors through some o;.

A Grothendieck site satisfies the following additional requirements:

(M) For any object C, there is a covering family U € Cov(C) such that (1¢ : C' —
C)eU.

(L) Whenever there is a covering family (a; : C; — C'|i € I) of C and families
(Bij = Cij —— C; |j € I;) covering C; for every i € I, there is a family
(v : Dy — C|l € L) such that for every 7, factors through some «;0;;.

A site will be called strong, if it satisfies condition (C) in the strong form that
the “pullback” (5;|j € J) is given (externally) as a function of f and (o | € I). A
Grothendieck site will be called strong, if it satisfies both (C) and (L) in the strong
form, i.e., both the “pullback” in (C) and the “composition” (v; : D; — C|l € L)
in (L) are given as a function of the initial data. (When the axiom of choice is not
externally valid, this is a considerable strengthening of the original definition.)

In this paper, a pivotal notion is that of a collection site?: a site is a collection
site, when the span (I, map) in 2 is a collection span over Cj.

In the presence of a class of small maps, a site is said to have small covers, when
all indexing sets are small. Diagrammatically this is expressed by requiring that I
in 2 is small. Finally, a site is called small, when every arrow or object in 2 is small.

3.2 Equivalent Grothendieck sites

As Johnstone explains in [7], in topos theory (M) and (L) are closure conditions that
“might just as well be there”, but are not essential to the notion of a site. This is
backed up by the result that in a topos there is for every internal site an equivalent
Grothendieck site (equivalent in the sense that it leads to an equivalent category of
internal sheaves). The Grothendieck site is inductively generated by closing off the
site under the conditions (M) and (L). IIW-pretoposes contain inductive definitions
in the shape of W-types, so one may expect versions of this result to hold in the
context of ITW-pretoposes as well. This section is devoted to the proof that this is
in fact the case.

Theorem 3.1 Let E be a IIW -pretopos and let C be a site in E.

4The following definition is what was intended in [11], but there it was mistakenly defined as
something else.




1. When C is a strong site, there exists an equivalent strong Grothendieck site
D in E with the same underlying category.

2. When C is a collection site, there exists an equivalent collection Grothendieck
site D in E with the same underlying category.

Proof: The construction of D uses the theory of dependent polynomial functors,
their initial algebras and its applications, as developed in the work by Gambino and
Hyland [5]. We outline the construction.

We take the same underlying category C. We wish to find a new object of
covering families COV over Cy and it should satisfy (C' € Cp):

cove=1+ > I COVaommay,
veCov(c) ieCov,,

As shown by Gambino and Hyland, such an object can be constructed by first
defining a functor F : E/Cy — E/Cj as follows (C € Cy):

FX)e=1+ > ]I Xdommay
veCov(c) icCov,,

This is what they call a dependent polynomial functor and, in the presence of W-
types, these have initial algebras. These algebras are fixed points for the functor
and because of their initialy, they allow definition by recursion on their elements.
This we use to define the new object COV over COV and the new arrow M, thereby
completing the definition of the site D.

cov "

[

Ccov——C)

Elements in COV (over C € Cy) are either * (the unique element of 1) or of the
form supy(t), where U € Cov(C') and ¢ : Covy; — COV.
cov, =

*

1
COViup, 1y = », COVy,

icCov,,

The definition of M runs as follows. The unique element of COV, is sent to 1¢ :
C — C. An element j in COVgup, (1)) is of the form (i,k), with i € Covy; and
k € COV, ;. This element (i, k) is sent to m(i) o M (k).

We will briefly indicate why the constructed objects have the desired properties.
It is easy to see that the covering families are now closed under (M). By induction
on the construction of the covering family (a; |7 € I), one can see that the covering
families are closed under (C) and (L) in their strong form, when they were true in
the strong form in the original site, or that they are true (in their normal form),
whenever C is a collection site. The proof that any sheaf for C also satisfies the
sheaf condition for this covering family relies on a similar proof by induction.

To see that any sheaf for this Grothendieck site is also a sheaf for C, take an
element U € Cov(C). Then for every i € Covy, consider D; = dom(map(i)).
The family consisting solely of the identity on D; is in COV(D;). This element in
COV(D;) is given as a function ¢ of i € Covy; and we can therefore construct the
element supy; () of COV(C). This covering family consists of the same maps as U,
therefore a presheaf satisfying the sheaf condition for supy; (¢) also satisfies the sheaf
condition for U. O




Remark 3.2 Although we will not need it, it is good to point out that in case E
is equipped with a class of small maps and the original site has small covers or is
small, the same will hold for the equivalent Grothendieck site constructed in the
proof.

3.3 Equivalent collection sites

Here we want to investigate conditions under which sites in a IIW-pretopos have
equivalent collection sites. Although the following argument is not very difficult, it
is a key step in this paper. We fix a ITW-pretopos E.

Lemma 3.3 Suppose E is equipped with a class of small maps satisfying collection.
Then any small f : B — A fits into quasi-pullback diagram

D—"%B
| b
C—»A

where (g, h) is a collection span over A and g is small.

Proof: We use that the universal small map 7 : E — U is a collection map.
Let C = X4caucv{p: Ew — By |pis a cover}. The fibre of g above an element
(a,u,p) is E,. We leave all the verifications to the reader. ([

Proposition 3.4 Suppose E is equipped with a class of small maps satisfying col-
lection. Then for every site C with small covers, there exists an equivalent collection
site with small covers and the same underlying category.

Proof: C is a site with small covers, so in the diagram

@LC&

[ e

Cov — ()

I is small. We now apply the previous lemma to I:

E—"% Cov "

|

D Cov Co

so the left square is a quasi-pullback, J is small and (J, k) is a collection span over
Cov. Now, the outer rectangle defines an equivalent site with small covers and the
same underlying category. It is also collection site, because (J, maph) is a collection
span over Cy. |

4 Categories of presheaves

This section is devoted to a proof of the fact that all the notions of a predicative
topos listed on page 6 are closed under taking presheaves. This is new, except for
predicative toposes of type 4.

We show this first for the predicative toposes of the simplest kind (i.e., of type
1 on the list).



Theorem 4.1 If E is a IIW -pretopos and C is an internal category in E, then
PShg(C) is a IIW -pretopos.

Proof: The fact that PShc(E) is a locally cartesian closed pretopos with natural
number object is well-known. It remains to show that it has W-types. Here we
follow [10], pp. 205-8, closely.
With any internal presheaf P in E; one can associate the “underlying set” |P]
given by:
|P|={(z,C)|CeC,xze P(C)}

For a morphism of presheaves f : B — A, and an element a € A(C), one sets
By(D)={(8:D— C,be B(D))|f(b)=a- 5}

B, has the structure of a presheaf, when restriction along a morphism ¢ : £ — D
is defined as:

(8,b) -6 =(B6,b-0)
Whenever X is a presheaf, Py(X) can be written on an object C of C as

Py(X)(C) ={(a,t) |a € A(C),t: B, — X}

where ¢ is a morphism of presheaves. Restriction along a morphism a : D — C is
then given by
(a,t)-a=(a-a,a*(t))

where o*(t)(8,b) = t(af,b).

The presheaf morphism f induces a map
9 X,0)elA||Bal — |A]

in E whose fibre over (a,C) is precisely |B,|. The W-type in presheaves will be
constructed from the W-type associated to g in E, which will be called V.
This means that every element in T € V is of the form

T=sup T
(a,0)

where (a,C) € |A] and ¢ is a function |B,| — V. For any such term, one defines its
root y(T') to be C. If one writes V(C) for the set of terms such that v(7T") = C, then
V has the structure of a presheaf. Restriction along a map « : C’ — C' is given by

T-a= sup o*(t)
(a-a,C")

In [10], composable and natural terms are defined using an additional axiom
allowing transfinite recursion, but our point here is that this is avoidable. These
properties of terms are definable in the internal logic, because the terms with these
properties are precisely those for which all the subterms have a certain definable
property. We call a term T composable if all subterms Sup (4, c) (t) of T have the
property that for all (5: D — C,b) € B,

Y(t(B,b)) = dom(5)

A term T'is natural, if it is composable and if all subterms sup(, ¢ (t) of T" have
the property that for any (8: D — C,b) € B, and any v: E — D

10



(So t is actually a natural transformation.) These properties are trivially inherited
by subterms.

Moerdijk and Palmgren prove that for a natural term 7" rooted in C' and map
a: C" — C, the term T - « is also natural (the proof of lemma 5.5 in [10] can be
copied verbatim). So when W(C) C V(C) is the collection of natural terms rooted
in C, W is a subpresheaf of V.

We now use the characterization theorem to show that W is a W-type. First of
all, there is morphism S : Py(W) — W, making W into a Pj-algebra, because for
any a € A(C) and natural transformation ¢ : B, — W, one can put

Sc(a,t) = sup(, oyt

S is well-defined and an isomorphism, because every natural term T' € W(C') can
uniquely be written as sup, ¢y ¢ for a natural transformation t : B, — W.

It remains to verify that W has no proper Pr-subalgebras. This is easy, because
when K is some Py-subalgebra of W, then

L={TeV|T e K(T))}

is a Pg-subalgebra of V. O
The following proposition takes care of the other types.

Proposition 4.2 Let E be a IIW -pretopos with a class of small maps S and C be
an internal category in which the codomain map cod : C; — Cy is small. Then
PShg(C) inherits a class of small maps, denoted by T, by declaring a morphism of
presheaves [ : B — A to be T-small, whenever

fo : B(C) — A(C)

is S-small for every C € Cy. More formally, if |...| is the forgetful functor
PShe(C) — E/Cy, a map f is T-small, when Xc¢,|f| is S-small. Moreover, if
S satisfies CA or AMC, so does T.

Proof: The argument is essentially contained in both [8] and [11] (for the more
general case of sheaves), therefore we give only a brief indication of why this result
holds.

It is straight forward to see that 7' is a locally full subcategory, because pullbacks
and sums are computed pointwise and the epis in presheaves are precisely those
morphisms that are pointwise epic.

Quotients of equivalence relations are also computed pointwise, while exponen-
tials of small objects are constructed using the Yoneda Lemma (see [9], prop. 3.6.1),
and are small, because cod is assumed to be small. We leave it to the reader to see
that small objects are closed under II and W.

Representability of the class T is proved both in [8] and [11]. Finally, stability
of CA can be found in [8], while that of AMC can be found in [11]. O

Theorem 4.3 All types of predicative toposes contained in the list are closed under
taking presheaves for an internal category.

Proof: For type 1, this statement is precisely theorem 4.1.

If E is a predicative topos of type 2 and C is an internal category in E, let
S, be a class of small maps in the hierarchy such that the codomain map of C is
Sp-small. Then let T}, be the class of maps in PShg(C) determined by Sy, 4, as in
proposition 4.2. Then PShg(C) is again of type 2. The same argument works for
types 3 and 4, because CA and AMC are stable under taking presheaves.

If E is a predicative topos of type 5 and C is an internal category in E and f is
an arbitrary map in PShg(C), let S be a class of small maps satisfying collection
such that both the codomain map of C and the underlying map ¢, |f| in E are
contained in it. Then the class of small maps T determined by S in PShg(C)
satisfies collection and contains f. O
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5 Categories of sheaves

Without too much effort, we can show that the results in the previous section imply
the following:

Corollary 5.1 If E is a IIW -pretopos and C is an internal site in C, then the
categories Sepr(C) of separated presheaves and Shg(C) of sheaves are both locally
cartesian closed reqular categories with W-types.

Proof: Both Sepg(C) and Shg(C) have finite limits, because these are computed
as in presheaves. Sepg(C) is regular, because subobjects of separated presheaves
are also separated. To see that Shg(C) is regular, one uses that covers in sheaves
are maps that are locally surjective (see [9], p. 143).

It is well-known that exponentials (and the II-functors generally) are computed
in sheaves as in presheaves. That the same is true for W-types is proposition 5.7 in
[10]. Similar statements hold for separated presheaves. O

Unfortunately, it appears that one cannot do better: it seems impossible to show
that Shg(C) is a pretopos (more specifically, that it has finite sums and is exact;
of course, Sepg(C) has finite disjoint sums). This means that we cannot show that
predicative toposes of type 1 are closed under taking sheaves for an internal site.
In fact, the same is true for predicative toposes of type 2.

In particular, we are unable to construct a sheafification functor (a left adjoint to
the inclusion of sheaves in presheaves) in general. We do however have the following
result by Moerdijk and Palmgren (lemma 8.1 in [11]), which seems to be the best
one can say:

Lemma 5.2 If a IW -pretopos E contains a Grothendieck collection site C, the
inclusion of sheaves into presheaves i has a left adjoint, the associated sheaf functor

This means that only when the internal site C is a collection site, will we know that
Shg(C) is a [TW-pretopos. The remainder of the section establishes stability under
sheaves of those types of predicative toposes in which every site is equivalent to a
collection site. But first we collect the results we have obtained so far in:

Theorem 5.3 If E is a IIW -pretopos equipped with a class of small maps S satis-
fying collection and containing an internal site C with small covers, then Shg(C)
18 a IIW -pretopos.

Proof: By 3.4 and 3.1, there exists in E an Grothendieck collection site equivalent
to C with the same underlying category. Using the left adjoint from 5.2, we show
that Shg(C) has finite sums and quotients of equivalence relations (for they can
now be calculated in presheaves and then be sheafified). So it is a IIW-pretopos by
5.1. O Observe that this is an improvement over [11], because there this result
depends on AMC.

To show that a class of predicative toposes is stable under sheafification, we
again need a proposition of the following type:

Proposition 5.4 Let E be a IIW -pretopos with a class of small maps S and a small
Grothendieck collection site C. Then Shg(C) inherits a class of small maps, denoted
by T, by declaring a morphism of sheaves f : B — A to be T-small, whenever

fe : B(C) — A(C)

is S-small for every C € Cy. More formally, when |...| is the forgetful functor
Shg(C) — E/Cy, a map f is T-small, whenever X, |f| is S-small. Moreover, if S
satisfies CA or AMC, so does T'.

12



Proof: The argument is similar to that in 4.2 and again the main points already
appeared in [8] and [11]. We therefore refrain from giving a proof. O

Theorem 5.5 Predicative toposes of type 5 are closed under taking sheaves for an
internal site.

Proof: Let E be a IIW-pretopos satisfying UO and C be an internal site. We can
find a class of small maps R satisfying collection such that C has R-small covers,
so 5.3 implies that Shg(C) is a IIW-pretopos.

Let f : B — A be an arbitrary map in Shg(C). Now find a class of small maps S
satisfying collection in E such that both the Grothendieck collection site equivalent
to C and the map X¢,|f| in E are S-small. Let T be the class of maps in Shg(C)
determined by S as in 5.4. Then T is a class of small maps satisfying collection and
fis T-small. O

Theorem 5.6 Predicative toposes of types 8 and 4 are closed under taking sheaves
for an internal site.

Proof: Let E be a stratified pseudotopos in which the classes of small maps satisfy
either CA or AMC and let C be an internal site in E. Then E satisfies UO, so, by
theorem 5.3, Shg(C) is a ITW-pretopos.

The Grothendieck collection site D equivalent to C will be S),-small for some
class of small maps S,, in the hierachy. So when T, is the class of small maps in
Shg(C) determined by Sy,+n as in 5.4, the category of sheaves will be equipped
with a hierarchy of small maps making it into a predicative topos of type 3 or 4. [J
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