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1 Introduction

We begin with some facts about some free algebras.

• The free group on one generator {1} is, of course, the integers Z, and
the free monoid on {1} is the natural numbers N. The latter can also
be described as the free successor algebra one generator {0}, where
by a successor algebra we just mean an object X with an (arbitrary)
endomorphism s : X → X.

• The free sup-lattice (join semi-lattice) on a set X is the set Pfin(X)
of all finite subsets of X, with unions as joins, and the free complete
sup-lattice is the full powerset P(X). In each case, the “insertion of
generators” is the singleton mapping x 7→ {x}.

• Now let us combine the foregoing kinds of algebras, and define a ZF-
algebra to be a complete sup-lattice A with a successor operation
s : A → A. A simple example is a powerset equipped with an en-
domorphism s : P(X) → P(X).

Fact 1. There is no free ZF-algebra.

For suppose that s : A→ A is the ZF-algebra (i.e. free on ∅), and consider
the diagram:

PA
@

@
@

@
@

s̄

R

A

{−}

6

s
- A

(1)

where s̄ is the unique extension of s to PA, determined by the fact that A is
a complete sup-lattice and PA is the free one on (the underlying set of) A. If
A were now also a free ZF-algebra, then one could use that fact to construct
an inverse to s̄.

On the other hand, if we allow “large ZF-algebras”—in the expected
sense—then there is indeed a free one, and it is quite familiar:

Fact 2. The class V of all sets is the free ZF-algebra, when equipped with
the singleton operation a 7→ {a}, and taking unions as joins.
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Moreover, one can recover the membership relation among sets just from
the ZF-algebra structure of V by setting,

a ε b iff s(a) ≤ b

The following then results from the fact that V is the free ZF-algebra:

Fact 3. Let (V, s) be the free ZF-algebra. With membership defined as above,
it then models intuitionistic Zermelo-Fraenkel set theory,

(V, ε) |= IZF

As we have presented things, this last fact is hardly surprising: we started
with V as the class of all sets, so of course it satisfies the axioms of set
theory! The real point is that the description of (V, s) as a “free ZF-algebra”
is already enough to ensure that it is a model of set theory, and our task now
is to develop a framework in which this can be exhibited.

To that end, in the following we will develop the notion of a “category
with class structure” (briefly: “class category”), permitting us both to define
ZF-algebras and related structures, on the one hand, and to interpret the
first-order logic of elementary set theory, on the other. As will be specified
precisely below, such a class category involves four interrelated ingredients:

(C) A heyting category C of classes.

(S) A subcategory S ↪→ C of sets.

(P) A powerclass functor P : C → C.

(U) A universe U , with PU � U .

The classes in C allow us to interpret first-order logic; the sets capture a
notion of “smallness” of some classes; the powerclass PC of a class C is the
class of all subsets A � C; and this restriction on P(−) is what makes
it possible to have a universe U with a monomorphism i : PU � U . We
can then model set theory by collapsing the hierarchy U ,PU ,PPU , . . . of
elements, subsets of elements, sets of subsets, etc., back down into U itself.
Specifically, we can let a ε b if and only if there is some (necessarily unique)
β ↪→ U with b = iβ and a ∈ β. This is much like “Scott’s trick” for modeling
the untyped λ-calculus in the typed calculus using an object D with an
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embedding DD � D, except that we are forced to cut back on the “sets” in
PU .

This approach separates two distinct aspects of set theory in a novel way:
the limitative aspect is captured by an abstract notion of “smallness”, while
the elementary membership relation is then determined algebraically. The
second aspect depends on the first in a uniform way, so that by changing the
underlying, abstract notion of smallness, different set theories can result by
the same algebraic method. Of course, different algebraic conditions will also
result in different set theoretic properties. Of special interest, then, is the
question, which conventional set theoretic conditions result from algebraic
properties (like freeness) and which from the abstract notion of smallness
that is used.

When smallness is determined by (categorical versions of) familiar logical
operations, like type-theoretic or first-order definability, those logical oper-
ations are thereby related to certain of the set theoretic principles holding
in the resulting algebraic set theory. Understanding this correspondence has
been one goal of some more recent research, resulting in the identification of
systems of set theory corresponding to the following logical systems, in a sense
to be made precise below: higher-order logic (elementary topos); Martin-Löf
dependent type theory (LCC pretopos); first-order logic (Heyting pretopos).
From this point of view, the original work of Joyal and Moerdijk also relates
full IZF to infinitary higher-order logic (cocomplete topos).

For clarity in most of this survey, we will formulate our results for the
specific case of higher-order logic, as captured by the notion of an elementary
topos, but analogous results also hold for the other systems just mentioned,
by altering the notion of smallness as already indicated. The main results
regarding this notion of a class category and elementary set theory are the
following:

1. In every class category, the universe U is a model of the intuitionistic,
elementary set theory BIST.

2. The elementary set theory BIST is logically complete with respect to
such class category models.

3. The category of sets in any such model is an elementary topos.

4. Every topos occurs as the sets in a class category.

5. Every class category embeds into the ideal completion of a topos.
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From (1)–(4) it follows, in particular, that BIST is sound and complete with
respect to topoi as they can occur in categories of classes. Statement (5)
strengthens that completeness to topoi occurring in a special way. Thus,
in a very precise sense, BIST represents exactly the elementary set theory
whose models are the elementary topoi. This is the precise nature of the
correspondence mentioned above between a logical system (here higher-order
logic) and a set theory (here BIST).

Before turning to the development of these concepts and results, let us say
a few words about the relation between our (C, S, P, U) framework and the
notion of a ZF-algebra as originally given by Joyal and Moerdijk, with which
we began this introduction. Apart from changes in the underlying notion
of smallness, intended to capture different notions of “set”, our approach
replaces the concept of ZF-algebra given above by the simpler one of an
algebra for the endofunctor P : C → C, that is, an object C equipped with a
map PC → C. There are two reasons for this change: first, we find the P-
algebras slightly easier to work with, especially for certain logical purposes;
and secondly, the free algebras for these different structures coincide, as
stated in the following result of Bénabou and Jidbladze, cited in [7]:

Theorem. The assignment s 7→ s̄ indicated in diagram (1) above establishes
an isomorphism between free ZF-algebras and free P-algebras.

In the case of the respective free algebras on ∅, the inverse operation is given
by taking the free P-algebra u : P(U) → U to the ZF-algebra (U, u ◦ {−}),
where, note, U is a complete sup-lattice, because u : P(U) ∼= U by Lambek’s
lemma.

Finally, we give a brief outline of the contents of the following 4 sections,
which develop the results stated above:

The notion of a category with class structure is defined in section 2.
Roughly speaking, this notion is to the Gödel-Bernays-von Neumann theory
of classes, what topos theory is to elementary set theory: the objects of the
respective categories are the (first-order) objects of the respective elementary
theories. We show how to interpret set theory in such a category, using the
universe U .

In section 3 we show that the elementary set theory of such universes
can be completely axiomatized. The resulting theory, called BIST for Basic
Intuitionistic Set Theory, is noteworthy for including the unrestricted Axiom
of Replacement in the absence of the full Axiom of Separation.
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Whether a topos of sets satisfies an elementary logical condition depends
in general on the ambient class category; thus some care is required in for-
mulating the notions of soundness and completeness with respect to the sub-
category of sets in a class category. Indeed, not only is it the case that every
topos of sets in a class category satisfies BIST; but in fact, every topos what-
soever satisfies BIST, with respect to some class category. This strong form
of soundness follows from the fact that, as we show in section 4, every topos
occurs as the category of sets in some class category. The proof of this fact
is of independent interest, for it also shows that, in a sense, every topos has
its own class structure, consisting of “ideals” of objects, which are certain
directed colimits with neat logical properties.

The category Idl(E) of all ideals on a topos E is the completion of E under
certain colimits, and such categories have many interesting properties in their
own right. They are also typical class categories, in the sense that every class
category has a (structure preserving) embedding into one consisting of ideals
on a topos, as is briefly discussed in section 5. It follows from this that BIST
is logically complete with respect to toposes, equipped with their ideal class
structure. This latter interpretation can be reformulated in a direct “forcing”
semantics that makes no mention of classes, but only BIST and toposes. The
corresponding completeness theorem provides a precise comparison between
the logical or type-theoretic and the elementary approaches to set theory.

We conclude with some remarks about other set theories, such as ones
with separation like IZF, classical systems such as ZF, and constructive sys-
tems like CZF.

Acknowledgments. This survey is not intended to be comprehensive, or
even representative of the current state of research in the field, which is still
under development. Instead, it emphasizes just one perspective on certain
of these developments. Much of the material covered here is drawn from the
joint work with Alex Simpson, Carsten Butz, and Thomas Streicher, detailed
in [3]. This line has been further pursued by Ivar Rummelhoff in [11], Henrik
Forssell in [4] and Michael Warren in [14]. The origin of this approach to
AST is to be found in Alex Simpson’s [12]. Another approach to AST, closer
to the original one of Joyal and Moerdijk, is represented by the recent papers
[5, 8, 13]. These and many pointers to other relevant literature can be found
at [2].
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2 Categories of classes

Definition 1. By a category of classes is meant a (locally small) category C
satisfying the following conditions:

(C1) C has finite limits, i.e. terminal object 1, binary products C × D, as
well as equalizers, pullbacks, etc.

(C2) C has finite coproducts, i.e. initial object 0 and binary coproducts C+D.
Moreover, these coproducts are required to be disjoint and stable under
pullbacks.

(C3) C has kernel quotients, i.e. for every arrow f : C → D, the kernel pair
k1, k2 (the pullback of f against itself) has a coequalizer q : C → Q.

K
k1 -

k2

- C
q

-- Q

D

f

?

Moreover, regular epimorphisms are required to be stable under pull-
backs.

(C4) C has dual images, i.e. for every arrow f : C → D, the pullback functor,

f ∗ : Sub(D) → Sub(C) ,

has a right adjoint,

f∗ : Sub(C) → Sub(D) .

Conditions (C1) and (C3) imply that C has (stable) images, i.e. for every
arrow f : C → D, the pullback functor,

f ∗ : Sub(D) → Sub(C) ,

also has a left adjoint,

f! : Sub(C) → Sub(D) .

Moreover, it follows that such categories have the following logical property.
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Proposition 2. Every category of classes C is a heyting category, a regular
category in which each subobject poset Sub(C) is a heyting algebra, and the
pullback functor f ∗ : Sub(D) → Sub(C) for every arrow f : C → D has
both right and left adjoints satisfying the Beck-Chevally condition of stability
under pullbacks. In particular, C models intuitionistic, first-order logic with
equality.

2.1 Small maps

Let C be a category of classes. We axiomatize a notion of “smallness” by
saying which maps f : B → A are “small”, with the intention that these are
the maps that have “sets” in all the fibers f−1(a) ⊆ B. This allows us to
think of such a small map as a parameterized family of sets (Ba)a∈A where
Ba = f−1(a).

Definition 3. By a system of small maps on C we mean a collection of arrows
S of C satisfying the following conditions:

(S1) S ↪→ C is a subcategory with the same objects as C. Thus every identity
map 1C : C → C is small, and the composite g ◦ f : A→ C of any two
small maps f : A→ B and g : B → C is again small.

(S2) The pullback of a small map along any map is small. Thus in an
arbitrary pullback diagram,

C ′ - C

D′

f ′

?
- D

f

?

f ′ is small if f is small.

(S3) Every diagonal ∆ : C → C × C is small.

(S4) If f ◦ e is small and e is regular epic, then f is small, as indicated in
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the diagram:

A
e

-- B

@
@

@
@

@
f ◦ e

R

C

f

?

(S5) Copairs of small maps are small. Thus if f : A → C and g : B → C
are small, then so is (f, g) : A+B → C.

Proposition 4. 1. Given (S1) and (S2), condition (S3) is equivalent to
each of the following:

(a) Every regular monomorphism is small.

(b) if g ◦ f is small, then so is f , as indicated in the diagram:

A
f

- B

@
@

@
@

@
g ◦ f

R

C

g

?

2. Given (S1)–(S5), the following also hold:

(a) The canonical maps 0 → C are all small.

(b) If f : C → D and f ′ : C ′ → D′ are small, then so is f + f ′ :
C + C ′ → D +D′.

2.2 Powerclasses

We use the following terminology:

• an object A is called small if A→ 1 is a small map,

• a relation R � C ×D is called small if its second projection

R � C ×D → D

is a small map,
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• a subobject A � C is called small if the relation A � C × 1 is small
(equivalently, if A is small).

(P1) Every object C has a (small) powerobject, or powerclass : an object PC
with a small relation ∈C � C × PC such that, for any object X and
any small relation R � C ×X, there is a unique arrow ρ : X → PC
such that the following is a pullback diagram:

R - ∈C

C ×X
?

?

1C × ρ
- C × PC

?

?

(P2) The internal subset relation ⊆C � PC × PC is small.

Intuitively, axiom (P1) requires every class to have a powerclass of all
small subobjects or “subsets”, and axiom (P2) requires the powerclass of a
small object to be small, i.e. the powerclass of a set to be a set. (P1) is
of course much like the universal mapping property of powerobjects familiar
from topos theory, only adjusted for small relations. The subset relation
⊆C � PC × PC mentioned in (P2) can be constructed logically as:

⊆C = [[(y, z) : PC × PC| ∀x : C. x ∈ y ⇒ x ∈ z]]

Here we use the canonical interpretation [[ − ]] of first-order logic in the in-
ternal logic of C, interpreting the atomic formula x ∈ y as the universal small
relation on C:

[[x ε y]] = ∈C � C × PC

Finally, as a warning, we emphasize that not all monomorphisms are
small; so it is not the case that every subobject of a small object is small.
The reason for this choice is that we intend to capture a conception of “set”
that is not only motivated by limitation of size, but also by definability. The
following proposition indicates some of the consequences of this choice:

Proposition 5. The following conditions are equivalent:

1. Every mono in C is small.
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2. Every mono in C is regular.

3. C has a subobject classifier.

Adding any of these assumptions to our system of axioms for small maps
gives a system equivalent to that in [12], which we call a full class structure.
The resulting system can be stated more simply by requiring only the axioms
(C1), (C3), (S1), (S2), and the condition that all monos are small. Axioms
(C2), (C4), (S3), (S4), and (S5) then follow. This system captures the notion
of “set” formalized by (I)ZF, and motivated by “limitation of size” alone.

2.3 Universes

(U) There is a universal object U , i.e. one such that every object C has a
monomorphism C � U .

Such a universal object U is in particular a universe, in the following
sense:

Definition 6. A universe is an object V together with a monomorphism,

PV � V .

It will often suffice just to have a universe. However, if C is a category of
classes satisfying axioms (C, S, P) and having a universe V , then one shows
easily that the full subcategory CV ↪→ C of objects C having a mono C � V
also satisfies axioms (C, S, P) as well as (U). Thus we may as well require
U, which is sometimes more convenient.

Observe that in the presence of a universal object there is a single (weakly)
universal small map, namely πU : ∈U → PU . Every small map f : A→ B is
a pullback of πU along a (not necessarily unique) arrow ϕ : B → PU . One
may think of πU as the indexed family of all sets.

2.4 Class categories

Summarizing, we shall call a category of classes with a system of small maps,
powerclasses, and a universal object a category with class structure or, more
briefly, a class category. Specifically, this therefore consists of a (locally small)
category C satisfying the following conditions:
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(C) C is a regular category with coproducts and dual images.

(S) There is a subcategory S ↪→ C of small maps.

(P) Every class C has a powerclass P(C) with small subset relation.

(U) There is a universal object U .

The proof of the following important fact is essentially elementary.

Theorem 7. If C is a category with class structure, then so is the slice
category C/X for every object X. Moreover, the class structure S,P ,U is
preserved by pullback functors.

2.5 The topos of sets

Let C be a category of classes with subcategory S ↪→ C of small maps. For
any object X, the slice category S/X is the (full) subcategory of C/X with
objects all small maps into X. We will show that this category is always a
topos. Let us write:

SX ↪→ C/X

for the larger collection of all arrows in C/X that are small as maps in C.
These are the small maps for the class structure on C/X.

Proposition 8. For every small map f : A→ B, the reindexing functor,

f ∗ : C/B → C/A

preserves class structure.
Moreover, f ∗ always has a right adjoint,

Πf : C/A→ C/B .

Thus in particular, every small class A is exponentiable.
Furthermore, Πf preserves small maps.

Proof. The first statement follows from theorem 7 since C/B is a class cate-
gory. For the right adjoint, it suffices to show that every small object A is ex-
ponentiable, since the same will then hold in every slice category C/X. Given
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objects C and small A, we can construct CA as a subobject of P(A× C) as
in a topos:

CA = [[R ⊆ A× C | ∀a∃!c.R(a, c)]] � P(A× C) ,

which will exist because the domain R of such a functional relation is small
if A is small. Preservation of small maps follows from (P2).

Since P1 is clearly a subobject classifier for small objects, we now have:

Theorem 9. In any class category C, the full subcategory S/1 ↪→ C of small
objects and small maps between them is an elementary topos.

We will henceforth write SC = S/1 for the full subcategory of small
objects, referring to these as “sets”.

3 The set theory BIST

The elementary set theory BIST (Basic Intuitionistic Set Theory) has, in
addition to the usual binary membership relation x ε y, a predicate S(x) of
sethood, which is required because we admit the possibility of atoms. It has
the following axioms:

(sethood) a ε b→ S(b)

(extensionality) S(a) ∧ S(b) ∧ ∀x(x ε a↔ x ε b) → a = b

Moreover, the following are all asserted to be sets:

(empty set) ∅ = {x | ⊥}
(pairing) {a, b} = {x | x = a ∨ x = b}
(powerset) P (a) = {x | S(x) ∧ ∀y. y ε x→ y ε a} if S(a)

(intersection) a ∩ b = {x | x ε a ∧ x ε b} if S(a) and S(b)

(union)
⋃

a = {x | ∃y ε a. x ε y} if S(a), and y ε a→ S(y)

(replacement) {F (x) | x ε a} if S(a) and F is any functional relation.

Here “{x | ϕ} is a set” is of course a circumlocution for the formula:

∃y. S(y) ∧ ∀x. x ε y ↔ ϕ
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which we also sometimes abbreviate to:

Sx. ϕ

We can also add to the theory BIST an axiom of infinity stating formally:

(infinity) there is a set I with an injection I + 1 � I.

Some other conditions of interest include ε-induction, “no atoms”, and
excluded middle, the combination of all of which is equivalent to conventional
ZF set theory.

3.1 Class soundness of BIST

We next show that the universal object U in any category of classes C is
an internal model of BIST (this actually holds for any universe). The basic
relations x ε y and S(x) are interpreted as follows:

[[x | S(x)]] = PU � U

[[x, y | x ε y]] = ∈U � U × PU � U × U

where the indicated monos are the evident canonical ones. The proof of the
following result is a direct verification:

Proposition 10. Under this interpretation, all of the axioms of BIST are
valid in any category C with class structure.

It can be shown that a bounded (“∆0”) separation scheme also holds—in
fact this follows formally from the axioms of BIST. If all monomorphisms
in the class category C are small, then the full axiom scheme of separation is
also satisfied.

3.2 Class completeness of BIST

One of the virtues of our approach is that it is fairly easily show that the set
theory BIST is also complete with respect to algebraic models:

Theorem 11. If an elementary formula ϕ (in the language {S, ε}) is valid in
every class category C, then it is provable in the elementary set theory BIST.
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In fact, we have the stronger statement that there exists a single category
of classes C0 such that, for any formula ϕ:

C0 |= ϕ implies BIST ` ϕ

Specifically, the class category C0 can be regarded as formally consisting
of the definable classes over the theory BIST, together with the definable
functional relations between them as morphisms. Category theorists are
well-acquainted with C0 as the syntactic category of the first-order theory
BIST, a standard construction, for details of which in general cf. [6], D1.4.

The category C0 consists of the following data:

The objects {x1, . . . , xn|ϕ} are formulas in context x1, . . . , xn|ϕ, identified
up to α-equivalence.

The arrows [f ] : {x|ϕ} → {y|ψ} are equivalence classes of formulas in con-
text x, y|f(x, y) that are “provably functional relations”, i.e. in BIST:

f(x, y) ` ϕ(x) ∧ ψ(y)

ψ(y) ` ∃x.f(x, y)

f(x, y) ∧ f(x, y′) ` y = y′

with two such f and g identified if ` f ↔ g.

We define a map [f ] : {x|ϕ} → {y|ψ} in C0 to be small if in BIST,

ψ(y) ` Sx.f(x, y)

The powerclasses in C0 are defined in the expected way by,

P{x|ϕ} = {y|S(y) ∧ ∀x.x ε y → ϕ}

with the membership relation given by the evident arrow,

{x, y|ϕ(x) ∧ x ε y ∧ y εP{x|ϕ}} � {x|ϕ} × P{x|ϕ} .

Finally, C0 has the universal object, namely:

U = {u|u = u}
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Proposition 12. With this structure, C0 satisfies the axioms C, S, P, and
U for a class category.

Now the canonical interpretation of BIST in C0 with respect to U yields,
for each formula in context x1, . . . , xn|ϕ, a subobject,

[[x1, . . . , xn | ϕ]] � Un

On the other hand, there is the object determined by ϕ, with its canonical
mono,

{x1, . . . , xn|ϕ} � Un

An easy induction on ϕ shows that these are the same subobject of Un:

[[x1, . . . , xn | ϕ]] = {x1, . . . , xn|ϕ} � Un

Theorem 11 now follows. We note that this construction makes C0 the
free class category, from which it follows (by a method due to Freyd) that
BIST has the disjunction and existence properties.

4 Ideal completion of a topos

From the results of foregoing section, it follows that BIST is also sound and
complete with respect to toposes occurring as the sets in class categories. We
next want to show that in fac every topos occurs in this way:

Theorem. For any topos E there is a category of classes C and an equiva-
lence,

E ' SC ↪→ C

between E and the subcategory of sets.

To prove this, we construct the required category of classes out of a given
topos E as the category of ideals on E ,

Idl(E)

which is a completion of E under certain colimts. The construction is of
independent interest, and so it will be described in some detail. Thus this
section outlines the proof of the following fact:
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Theorem 13. The category Idl(E) of ideals is a class category with E equiv-
alent to the full subcategory of sets, under the principal ideal embedding,

↓ : E ' SIdl(E) ↪→ Idl(E)

Thus, in particular, the small objects in Idl(E) are the principal ideals.

4.1 Small maps in sheaves

Let E be a small (pre)topos. We consider the category Sh(E) of sheaves
on E for the “coherent covering” consisting of finite epimorphic families [6,
A2.1.11(b)]. The category of ideals will be a certain subcategory of Sh(E)
that is a class category, and the representables will be the small objects.
First, we define a system S of small maps on Sh(E), by including in S the
morphisms of Sh(E) with “representable fibers” in the following sense:

Definition 14 (Small Map). A morphism f : A→ B in Sh(E) is small if for
any D ∈ E and g : yD → B, there is a C ∈ E , and morphisms making a
pullback as follows in Sh(E):

yC - A

yD
?

g
- B

f

?

We may also call such an f : A→ B a representable morphism.

One easily shows that S so defined satisfies axioms S1, S2, and S5 for
small maps. For the small diagonal condition S3, we will cut down to the
full subcategory of those sheaves that satisfy it. These form a subcategory
with a remarkably simple description.

Let us define an ideal diagram in a category E to be a functor A : I → E
where I is a directed preorder, and such that the image of every morphism
i ≤ j is a monomorphism Ai � Aj in E . Note that such an diagram is
filtered, since there are no non-trivial parallel arrows.

Definition 15 (Ideal on E). An object Ã in SetsE
op

is an ideal on E if it can
be written as a colimit of an ideal diagram A : I → E of representables,

Ã ∼= lim−→
i∈I

yAi
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Let Idl(E) be the full subcategory of presheaves consisting of the ideals on E .

Note that ideals are sheaves, because they are filtered colimits of rep-
resentables. Moreover, the yoneda embedding for sheaves factors through
ideals:

E
↓

- Idl(E)

@
@

@
@

@
y

R

Sh(E)
?

?

We of course call the first factor, indicated ↓: E → Idl(E), the principal ideal
embedding.

Proposition 16. For any sheaf F , the following are equivalent:

1. F is an ideal.

2. The diagonal F � F × F is a small map.

3. For any arrow from a representable yC → F , the image in sheaves is
representable, i.e. yC � yD � F , for some D in E.

The equivalence of 1 and 2 was suggested by André Joyal. Many im-
portant properties of Idl(E) follow from this useful characterization. For
instance, one can now easily verify that Idl(E) is a positive Heyting subcat-
egory of sheaves. Thus:

Proposition 17. Idl(E) satisfies the axioms C1–4 for a category of classes.
Moreover, the positive heyting structure can be calculated in Sh(E), and is
preserved by the principal ideal embedding ↓: E → Idl(E).

The small map axioms S1–5 are now also satisfied by the representable
maps. Moreover, since an ideal A is a small object just in case A → 1 is
small, we see that A is small just if it is representable, A ∼= yE for some
E ∈ E . Thus, summarizing:

Proposition 18. For any pretopos E, the category Idl(E) of ideals satisfies
axioms C and S for class categories, with the representable morphisms as the
small maps. The principal ideal embedding is an equivalence between E and
the small objects ↓: E ' SIdl(E) ↪→ Idl(E).
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4.2 Powerclasses and universes in ideals

First, note that ↓: E → Idl(E) has the following universal property, which we
refer to as the ideal completion of E :

Lemma 19. The category Idl(E) has colimits of ideal diagrams (“ ideal col-
imits”). Moreover, if C is a category with ideal colimits, and F : E → C is a
functor that preserves monos, then there is a unique (up to natural isomor-
phism) extension F̃ : Idl(E) → C that preserves ideal colimits ( “F is ideal
continuous”), as indicated in the following:

Idl(E) .................
F̃

- C

�
�

�
�

�

F

�

E

↓

6

We use this fact to define the powerclass functor P : Idl(E) −→ Idl(E) as
indicated in:

Idl(E) ............
P

- Idl(E)

E

↓
6

P
- E

↓
6

where P : E → E is the covariant powerobject functor on the topos E (note
that both it and ↓ do indeed preserve monos). Explicitly, if A = lim−→I

yAi is
an ideal then its powerclass is simply:

P(A) = P(lim−→
I

yAi) ∼= lim−→
I

yPAi

The epsilon subobject ∈A� A× PA is constructed analogously.

Proposition 20. These powerclasses satisfy P1 and P2.
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The main point of the proof is that every small subobject,

S � A ∼= lim−→
I

yAi

of an ideal is already a (small) subobject S ∼= yB � yAi of some yAi in
the ideal diagram, and thus a subobject B � Ai in E , with a classifying
morphism, 1 → PAi. From this we get a unique map,

1 → yPAi � lim−→
I

yPAi
∼= PA

classifying S � A.
Next, since by construction the powerclass functor P is ideal continuous,

we can find fixed points for it by “Newton’s method”, i.e. by iteration. We
use this fact to construct a universe U , into which every representable has a
monomorphism. We take as our starting point the ideal:

A =
∐
E∈E

yE

Note that this is indeed an ideal when the coproduct is taken in sheaves,
since the finite coproducts of representables are all representable yA+ yB ∼=
y(A+B).

Now we solve the “fixed-point equation”,

X = A+ PX

by iterating the functor,
F (X) = A+ PX

Since F is ideal continuous, we find a fixed point by taking the colimit of the
following ideal diagram:

A-
iA
- A+ PA-

1A + P(iA)
- A+ P(A+ PA)- - . . .

Call the colimit U . Then since U ∼= A + PU , we indeed have a universe,
consisting of the subclasses A � U of “atoms” and PU � U of “sets”.
Moreover, since every representable has a mono yE � A � U , we have:

Proposition 21. Idl(E) has a universe U containing all the principal ideals,

↓E � U
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Finally, we can restrict to the class category ↓ U in order to obtain a
universal object. This concludes our sketch of the proof of theorem 13.

We close this section by noting that the universe U constructed in the
proof is the free P-algebra on the object A. The corresponding free ZF-
algebra on A is the pair (PU , s) indicated in the following diagram.

A - A+ PU � PU
A
A
A
A
A
A
A
A
A
A
A
A

η

U ��
�
�
�
�
�
�
�
�
�
�
�

sU

∼=

?

PU

{·}

?

?

4.3 Topos models of BIST

It follows from the foregoing “ideal completion theorem” 13 that the set
theory BIST can be modeled in any topos E . This fact is more surprising
and subtle than it may at first seem, for a similar statement holds in a
very straightforward sense for weaker elementary set theories like bounded
Zermelo. Such theories, in which all quantifiers can be bounded, can be
interpreted quite directly using the internal logic of E , with the objects of
E as the sets. By contrast, the theory BIST involves unbounded variables,
which range over all sets, particularly in the axiom of replacement. In order
to interpret such formulas, we need to have a structure with an “object of
sets” U (respectively PU) over which unbounded variables are interpreted.
This role is played by the universe U in the category Idl(E).

Proposition 22. The category Idl(E) of ideals in E has a model of BIST,
namely the universe U :

U |=Idl(E) BIST

The particular universe U that we constructed was in fact the free P-
algebra on the object A =

∐
yE, and the sets S � U were then essentially

the objects of E . There are of course other universes in Idl(E), even other ones
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with E as the sets. In addition to modeling BIST, this particular universe U
also satisfies some further set-theoretic conditions, such as ε-induction.

By contrast, moreover, all universes in Idl(E) also satisfy the further con-
dition known as (strong) Collection. Formally, the axiom scheme of collection
is:

(Coll) S(a)∧ (∀xεa. ∃y. φ) → ∃b. (S(b)∧ (∀xεa. ∃yεb. φ)∧ (∀yεb. ∃xεa. φ))

It says that for any total relation R from a set A to the universe, there is a set
B contained in the range of R such that the restriction of R to A×B is still
total on A. This condition results from the fact that the powerclass functor on
ideals P : Idl(E) → Idl(E) preserves regular epimorphisms. Indeed, consider
the following diagram in Idl(E):

A ��
p′

R′ q′
-- B

R
?

?

		�
�

�
�

�
p

@
@

@
@

@

q

R

A

wwwwwwwwwwwwwwwwwwwwwwww
� A× U

?

?

- U
?

?

in which A = ↓A is small. Given R with first projection p (regular) epic,
we seek small B so that the restriction R′ of R has both projections p′, q′

epic. But for any regular epimorphism of ideals e : X � ↓A, there is a small
subobject E � X with epic restriction e′ : E � X � ↓A. Applying this fact
to p, we take small R′ � R, and then let B be the image of q restricted to
R′, as indicated in the above diagram.

Proposition 23. The model in ideals satisfies the axiom scheme of collec-
tion,

U |=Idl(E) Coll

This makes it plain that the question of which elementary formulas are
satisfied by a topos E depends not only on E , but also on the ambient category
of classes used to interpret the formulas. It is thus reasonable to ask whether
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the completeness theorem 11 for BIST with respect to class categories C really
requires the full range of such categories. Could consideration be restricted
to just the “standard” models of the form Idl(E) for toposes E? In the next
section, we shall show that simply adding Collection to the theory BIST
indeed suffices to make it complete with respect to models in ideals.

5 Ideal representation of class categories

By a class functor L : C → D between class categories C and D we mean a
functor that preserves all the class structure (C,S,P ,U). Specifically, such a
functor L preserves finite limits and coproducts, regular epimorphisms and
dual images, small maps and powerclasses, and the universe U . A functor F :
C → D is called conservative if it is both faithful and reflects isomorphisms
(we do not know whether every faithful class functor between class categories
is conservative). We shall consider arbitrary (elementary) toposes in relation
to the set theory BIST (without the axiom of infinity), but everything we
say applies as well to topoi with NNO and BIST with infinity.

Let us write,
BISTC = BIST + Coll

for Basic Intuitionistic Set Theory with the axiom scheme of collection. We
have already seen that every topos E gives rise to a class category Idl(E) in
which BISTC has a model. We aim to show now that such “ideal models”
also suffice for provability in BISTC, in the following sense.

Theorem 24. For any formula ϕ, if U |=Idl(E) ϕ for all toposes E, then:

BISTC ` ϕ

Moreover, there is a direct forcing semantics E  ϕ over a topos E , defined
in [3], which can be shown to agree with the internal semantics U |=Idl(E) ϕ
in Idl(E). We can therefore conclude:

Corollary 25. The set theory BISTC is complete for forcing semantics over
topoi. Specifically, for any formula ϕ, if E  ϕ for all toposes E, then:

BISTC ` ϕ

The proof of the theorem proceeds by the following three steps:
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Step 1: By theorem 11, BIST is known to be complete for models in class
categories. The same holds for BISTC with respect to models in class
categories C with collection.

Step 2: Any class category C with collection has a conservative class functor,

C � C∗

into another one C∗ that is “saturated” with small objects.

Step 3: Any saturated class category C has a conservative class functor,

C � Idl(E)

into the category of ideals in a topos E .

The topos E in step 3 is simply the subcategory SC ↪→ C of small objects
in C. The “saturation” in Step 2 is required to ensure there are enough such
objects.

5.1 Class categories with collection

Recall the set theoretic axiom scheme of collection (called “strong collection”
in [1]):

(Coll) S(z)∧(∀xεz. ∃y. φ) → ∃w. (S(w)∧(∀xεz. ∃yεw. φ)∧(∀yεw. ∃xεz. φ))

which is to hold for arbitrary formulas φ. It is not hard to show that this
scheme is satisfied by the model U of BIST in a class category C if the
following condition holds.

Definition 26. A class category C is said to have collection if, in every slice
category C/I, given a relation R � A × Y with A small and regular epic
first projection,

R- - A× Y

@
@

@
@

@RR

A
?
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the “object of collection sets”,

S = {w ∈ PY | ∀x ∈ A.∃y ∈ w.R(x, y) ∧ ∀y ∈ w.∃x ∈ A.R(x, y)} � PY

has global support. That is, the unique map S → 1 is regular epic.

There are equivalent, more conceptual, conditions, but we only require
the above logical formulation here.

We first note that the class category completeness theorem 11 for BIST
also holds for BISTC with respect to class categories with collection:

Lemma 27. If an elementary formula ϕ (in the language {S, ε}) is valid in
every category of classes C with collection, then it is provable in the elemen-
tary set theory BISTC.

Proof. It is clear that the syntactic category of classes C0 constructed in the
proof of theorem 11 has collection if that scheme is added to the theory
BIST.

Thus we already have the required Step 1. The second step will involve
construction of suitable class categories. One of the virtues of the algebraic
approach to set theory (and logic generally) is that the models it produces
are closed under the typical algebraic constructions of all limits and filtered
colimits. We shall make use of this fact to construct models with special prop-
erties, but first we must verify that such constructions are indeed permitted.
In fact, we shall only require the special case of well-ordered, sequential col-
imits:

Lemma 28. 1. If C is a class category with collection, so is the slice cat-
egory C/X for any object X. If ! : X → 1 is regular epic, then the
canonical pullback functor X∗ : C → C/X is conservative.

2. If (Ci)i∈I is a sequence of class categories, indexed over a well-ordered
poset I, then the colimit category,

lim−→
i

Ci

is also a class category, and is a colimit in the category of class cate-
gories and class functors. If each Ci has collection, then so does lim−→i

Ci.
Moreover, if each functor Ci,j : Ci → Cj is conservative, then so is each
canonical inclusion Ci → lim−→i

Ci.

Proof. Inspection.
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5.2 Saturating a class category

Definition 29. A class category C is saturated if it satisfies the following
conditions:

Small covers: given any regular epi C � A with A small, there is a
small subobject B � C such that the restriction B � C � A is still
regular epic.

B-....................- C

@
@

@
@

@RR

A

??

Small generators: given any B � C, if every small subobject A � C
factors through B, then B = C.

A .....................- B
R

@
@

@
@

@R

C
?

?

Definition 30. The terminal object 1 in a class category C is said to be strongly
projective if for every object X with a regular epic X � 1 and every proper
subobject C � X, there is an arrow c : 1 → X that does not factor through
C. In other words, the global sections functor HomC(1,−) : C → Sets is
injective on subobjects of objects with global support.

Lemma 31. Every class category C has a conservative, class functor,

C � C∗

into a class category C∗ in which the terminal object 1 is strongly projective.
If C has collection, so does C∗.

Proof. Let (Xi)i∈I be a well-ordering of the objects of C that have global
support X � 1, and consider the sequence of canonical pullback functors:

C → C/X0 → C/X0 ×X1 → . . .
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Let:
Cω = lim−→

n<ω

C/X1 × ...×Xn

Every object C ∈ C has an image in Cω under the canonical functor C → Cω,
and so we can continue:

Cω → Cω/Xω → Cω/Xω ×Xω+1 → . . .

and so on for all limit ordinals below the order type κ of I.
Finally, we set:

C∗ = lim−→
λ<κ

Cλ

By lemma 28, the colimit category C∗ is a class category, the canonical functor
C → C∗ is a conservative class functor, and if C has collection, then so does
C∗. Moreover, if X � 1 and C � X is proper in C, then we claim there
is an arrow c : 1 → X in C∗ that does not factor through C there. Indeed,
one can take (the image in C∗ of) the generic point x : 1 → X of X in C/X,
which does not factor through C in C∗ because it can not do so in C/X, and
C/X → C∗ is conservative.

Now set:

C0 = C
Cn+1 = Cn

∗

C∗ = lim−→
n

Cn

Again by lemma 28, together with the foregoing, the colimit C∗ is a class
category, the functor C → C∗ is a conservative class functor, and if C has
collection, then so does C∗. Moreover, if X � 1 and C � X is proper in C∗,
then this is already the case in some Cn, whence by the foregoing argument
there is an arrow c : 1 → X in Cn+1 that does not factor through C, and so
this is also the case in C∗.

Lemma 32. If 1 is strongly projective in a class category C, then C has small
generators.

Proof. Suppose we have any proper subobject B � C in C, and consider its
image PB � PC under the powerclass functor. Since B � C is proper, so
is PB � PC. Since PC � 1 and 1 is strongly projective, there is a point
a : 1 → PC that does not factor through PB. The point a classifies a small
subobject A � C that therefore does not factor through B.
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Lemma 33. If 1 is strongly projective in a class category C with collection,
then C has small covers.

Proof. Given any epi e : C � A with A small, consider the graph E � A×C.
By collection, the “object of collection sets”,

S = {w ∈ PC | ∀x ∈ A.∃y ∈ w.R(x, y) ∧ ∀y ∈ w.∃x ∈ A.R(x, y)} � PC

has global support, S � 1. Since 1 is (strongly) projective, there is a global
section b : 1 → S, which therefore determines a small subobject B � C such
that the composite B � C � A is epic.

Combining the forgoing three lemmas yields the desired second step:

Proposition 34. Every class category C with collection has a conservative,
class functor,

C � C∗

into a saturated class category C∗.

5.3 The ideal embedding

Let C be a class category with subcategory SC ↪→ C of small objects. We can
extend the principal ideal embedding ↓: SC → Idl(SC) along the inclusion
i : SC ↪→ C by restricting the yoneda embedding of C, in the familiar way:

Definition 35. The derivative functor,

d : C → Idl(SC)

is defined by:
dC = HomC(i(−), C)

and similarly on arrows.

We leave to the reader the easy verification that dC so defined is an ideal,
so that we indeed have a commutative diagram:

C ................
d

- Idl(SC)

�
�

�
�

�

↓

�

SC

i

∪

6
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Lemma 36. For any class category C, the derivative functor d : C → Idl(SC)
preserves the following structure:

(i) finite limits and coproducts

(ii) small maps

(iii) powerclasses

In particular, d takes the universal object U to a universe PdU � dU .

Lemma 37. Let C be a class category and d : C → Idl(SC) the derivative
functor.

(i) If C has small covers, then d preserves regular epis.

(ii) If C has small generators, then d is conservative and preserves dual
images.

Combining the last two lemmas now yields the following, which was the
desired step 3.

Proposition 38. If C is saturated, then d : C → Idl(SC) is both class and
conservative.

Combining propositions 34 and 38, we now have proven the following
embedding theorem for class categories with collection.

Theorem 39. For any class category C with collection, there is a small topos
E and a conservative class functor C → Idl(E).

As a corollary, we also have the desired logical completeness of the set
theory BISTC with respect to topos models:

Theorem 40. For any elementary formula ϕ in the language {ε, S} of set
theory, if ϕ holds in ideals over every topos E:

U |=Idl(E) ϕ

then it is provable in BISTC:

BISTC ` ϕ
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6 Variations on this theme

A number of closely related set theories can now be treated in a way that is
analogous to our investigation of toposes and BIST:

1. As already mentioned, the fact that the particular models we con-
structed were free algebras already implies certain additional set theo-
retic conditions; for instance “decidable sethood” S(x) ∨ ¬S(x) follows
from U ∼= A + PU , and ε-induction from freeness. The system BIZFA
consists of BIST with these additional axioms, and BIZF is BIZFA
with “no atoms” S(x). BIZF holds in the initial P-algebra V , for which
V ∼= PV .

2. The stronger set theories IST, IZFA, and IZF are related to their “B”
counterparts by the addition of a scheme of (unbounded) separation
(bounded separation is derivable in the “B” theories). These systems
are modeled by changing the underlying notion of “smallness” in the
class category to include the condition that all monomorphisms are
small. Models can be achieved in cocomplete toposes, such as sheaves,
and in realizability toposes. See [7, 12, 3, 8].

3. Of course, classical versions of the foregoing set theories result sim-
ply by adding the axiom scheme EM of excluded middle for all for-
mulas. Note that the “B” theories are classically equivalent to their
unbounded counterparts, since (full) separation follows classically from
replacement. Thus, for instance, BIZF + EM = ZF.

Intermediate systems resulting from adding EM only for formulas that
define sets are modeled in a class category with a boolean topos of
sets. Such class categories occur naturally in the form Idl(B), the ideal
completion of a boolean topos B, which is analogous to a boolean space.

4. By a predicative set theory we simply mean one without the powerset
axiom. Many such systems have been studied by logicians, and alge-
braic models have recently been given for some of them. For instance,
in [9, 10] and more recently [5, 13] it is shown how to model Aczel’s con-
structive set theory CZF using an initial ZF-algebra in a setting with
suitable small maps. A predicative analogue of our study of toposes
and BIST has been conducted in [14], with the following analogous
results:
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Theorem 41. A predicative class category is a class category, except
that axiom P2 (small subsets) is not required. Let BCST = (BIST −
powersets).

(a) In every predicative class category the universe U models BCST.

(b) The set theory BCST is logically complete with respect to such
algebraic models.

(c) In every predicative class category the sets form a heyting pretopos.

(d) The category of ideals on any heyting pretopos is a predicative
class category.

(e) Every predicative class category (with collection) embeds into ide-
als on a heyting pretopos.

(f) In this sense, BCST is the set theory of heyting pretoposes.

Moreover, the same holds for locally cartesian closed pretoposes (called
“Π–pretoposes”) and the set theory CST = (BCST + function-sets).

The predicative case uses of the following basic fact, which was first
established by Alex Simpson:

Proposition 42. Let E be a heyting pretopos. For any ideal A =
lim−→I

yAi define the “power-ideal” by:

P(A) = P(lim−→
I

yAi) = lim−→
I

P(yAi)

where, for any representable yE, we set:

P(yE)(D) = SubE(D × E)

Then P(A) is an ideal.

5. Higher-order set theories like (intuitionistic) Morse-Kelly, IMK, were
briefly considered in [4], using the inclusion i : Idl(E) ↪→ Sh(E) of
ideals into sheaves, and the resulting comparison iPU � PU between
the powerclass PU and the powersheaf PU . Much more could be done
in this area.
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