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Abstract

This survey article is intended to introduce the reader to the field of
Algebraic Set Theory, in which models of set theory of a new and
fascinating kind are determined algebraically. The method is quite
robust, admitting adjustment in several respects to model different
theories including classical, intuitionistic, bounded, and predicative
ones. Under this scheme some familiar set theoretic properties are
related to algebraic ones, like freeness, while others result from logical
constraints, like definability. The overall theory is complete in two
important respects: conventional elementary set theory axiomatizes
the class of algebraic models, and the axioms provided for the abstract
algebraic framework itself are also complete with respect to a range of
natural models consisting of “ideals” of sets, suitably defined. Some
previous results involving realizability, forcing, and sheaf models are
subsumed, and the prospects for further such unification seem bright.
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1 Introduction

Algebraic set theory (AST) is a new approach to the construction of models
of set theory, invented by André Joyal and Ieke Moerdijk and first presented
in [16]. It promises to be a flexible and powerful tool for the investigation of
classical and intuitionistic systems of elementary set theory, bringing to bear
a new insight into the models of such systems. Indeed, it has already proven
to be a quite robust framework, applying to the study of several different
systems, and subsuming some previously unrelated techniques. The new
insight taken as a starting point in AST is that models of set theory are in fact
algebras for a suitably presented algebraic theory, and that many familiar set
theoretic conditions (such as well-foundedness) are thereby related to familiar
algebraic ones (such as freeness). In recent research by various authors, new
methods tailored to this idea have been developed for the construction and
organization of models of several different systems, as well as for the proofs
of results relating this approach with other, more familiar ones.

A variety of such recent results are presented here; however, the primary
aim is not to provide a comprehensive survey of the present state of research
in AST, as much as to introduce the reader to its basic concepts, methods,
and results. The list of references includes also works not cited, and should
serve as a guide to the literature, which the reader will hopefully find more
accessible in virtue of this outline. Like the original presentation by Joyal &
Moerdijk, much of this research in AST involves a fairly heavy use of category
theory. Whether this is really essential to the algebraic approach to set
theory could be debated; but just as in other “algebraic” fields like algebraic
geometry and algebraic topology, the convenience of functorial methods is
irresistible and has strongly influenced the development of the subject.

By way of introduction, we begin by considering some free algebras, before
sketching the basic concepts of AST and indicating their position in this
outline.

• The free group on one generator {1} is, of course, the additive group
of integers Z, and the free monoid (semi-group with unit) on {1} is the
natural numbers N. The structure (N, s : N → N), where s(n) = n+ 1,
can also be described as the free “successor algebra” on one generator
{0}, where a successor algebra is defined to be an object X equipped
with an (arbitrary) endomorphism e : X → X. Explicitly, this means
that given any such structure (X, e) and element x0 ∈ X there is a
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unique “successor algebra homomorphism” f : N → X, i.e. a function
with f ◦ s = e ◦ f , such that f(0) = x0, as indicated in the following
commutative diagram.

1
0 - N

s - N

X

f

?

.................

e
-

x0
-

X

f

?

.................

This is an “algebraic” way of expressing the familiar recursion property
of the natural numbers, due to F.W. Lawvere.

• The free sup-lattice (join semi-lattice) on a set X is the set Pfin(X)
of all finite subsets of X, with unions as joins, and the free complete
sup-lattice is the full powerset PX. In each case, the “insertion of
generators” is the singleton mapping x 7→ {x}. This means that given
any complete sup-lattice L and any function f : X → L, there is a
unique join-preserving function f̄ : PX → L with f̄{x} = f(x), as in:

X
{−}- PX

L

f̄

?

.................

f
-

Namely, one can set f̄(U) =
∨

x∈U f(x).

• Now let us combine the foregoing kinds of algebras, and define a ZF-
algebra (cf. [16]) to be a complete sup-lattice A equipped with a suc-
cessor operation s : A → A, i.e. an arbitrary endomorphism. A sim-
ple example is a powerset PX equipped with the identity function
1PX : PX → PX. Of course, this example is not free.

Fact 1. There are no free ZF-algebras.
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For suppose that s : A → A were the free ZF-algebra on e.g. the empty set
∅, and consider the diagram:

A
{−}- PA

A

s̄

?

.................

s
-

(1)

where s̄ is the unique extension of s to PA, determined by the fact that A is
a complete sup-lattice and PA is the free one on (the underlying set of) A. If
A were now also a free ZF-algebra, then one could use that fact to construct
an inverse to s̄ (which the reader can do as an exercise; see [16, II.1.2] for
the solution).

On the other hand, if we allow also “large ZF-algebras” — ones with a
proper class of elements — then there is indeed a free one, and it is quite
familiar:

Fact 2. The class V of all sets is the free ZF-algebra (on ∅), when equipped
with the singleton operation a 7→ {a} as successor s : V → V , and taking
unions as joins.

Note that, as before, joins are required only for set-sized collections of
elements, so that such unions do indeed exist. This distinction of size plays
an essential role in the theory.

Given the free ZF-algebra V , one can recover the membership relation
among sets just from the ZF-algebra structure by setting,

a ε b iff s(a) ≤ b. (2)

The following then results solely from the fact that V is the free ZF-algebra:

Fact 3 ([16]). Let (V, s) be the free ZF-algebra. With membership defined
as in (2) above, (V, ε) then models Zermelo-Fraenkel set theory,

(V, ε) |= ZF.

As things have been presented, this last fact is hardly surprising: we
began with V as the class of all sets, so of course it satisfies the axioms
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of set theory! The real point, first proved by Joyal & Moerdijk, is that the
characterization of a structure (V, s) as a “free ZF-algebra” already suffices to
ensure that it is a model of set theory — just as the description of N as a free
successor algebra already implies the recursion property (as well as the Peano
postulates). The first task of AST, then, is to develop a framework in which
to exhibit this fact without trivializing it. Providing such a framework is
one of the main achievements of [16], which includes a penetrating axiomatic
analysis of the requisite notion of “smallness”. For the purposes of this
outline, a simplified version due to [25] will be employed; it has the advantage
of being somewhat more easily accessible, if less flexible and general, than
the original formulation.

Thus we shall introduce the notion of a “class category,” permitting both
the definition of ZF-algebras and related structures, on the one hand, and the
interpretation of the first-order logic of elementary set theory, on the other.
As will be specified precisely below, such a category involves four interrelated
ingredients:

(C) A category C of “classes”.

(S) A subcategory S ↪→ C of “sets”.

(P) A “powerclass” functor P : C → C.

(U) A “universe” U , with a monomorphism PU � U .

The classes in C permit the interpretation of first-order logic; the sets S
capture a notion of “smallness” of some classes; the powerclass PC of a class
C is the class of all subsets A � C; and this restriction on P to subsets (as
opposed to subclasses) is what allows us to consistently assume a universe
U with a monomorphism i : PU � U (as observed in [25]). We can then
model set theory simply by “telescoping” the entire sequence U,PU,PPU, . . .
of elements, sets of elements, sets of sets, etc., back into U itself via the
successive monos · · · � PPU � PU � U . Specifically, for elements a, b of
U , we can let a ε b if and only if there is some set β � U with b = iβ and
a ∈ β, where the relation ∈ on U × PU is given. This is much like Dana
Scott’s idea of modeling the untyped λ-calculus in the typed calculus using
a reflexive object D, with an embedding DD

� D.
This approach thus separates two distinct aspects of set theory in a novel

way: the limitative aspect is captured by an abstract notion of “smallness”,
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while the elementary membership relation is determined algebraically. The
second aspect depends on the first in a uniform way, so that by changing the
underlying, abstract notion of smallness, different set theories can result by
the same algebraic method. Of course, various algebraic conditions will also
result in corresponding set theoretic properties. Of special interest, then,
is the question of which conventional set theoretic conditions result from
algebraic properties and which from the abstract notion of smallness that is
used.

When smallness is determined by familiar logical constraints, like type-
theoretic or first-order definability, those constraints are thereby related to
set theoretic principles holding in the resulting algebraic set theory. Un-
derstanding this correspondence has been the focus of some recent research,
and systems of set theory corresponding to various logical systems have been
identified. This correspondence is indicated schematically in table 1, where
the intuitionistic set theory IST is a variant of intuitionistic Zermelo-Frankel
(IZF),1 BIST is a fragment thereof lacking full separation,2 and CST and
BCST are “constructive” fragments of these, lacking the powerset axiom.3

The corresponding logical systems determining the respective notion of small-
ness are intuitionistic higher-order logic IHOL, as well as an infinitary version
thereof indicated here by IHOL∞, Martin-Löf style dependent type theory
(DTT), and intuitionistic first-order logic (IFOL). Finally, the indicated types
of categories are abstract descriptions of these systems of logic, and thus de-
scribe the respective categories of sets. Specifically, IHOL∞ is the logic of
cocomplete, realizability, and other toposes having suitable infinite colimits,
IHOL is described abstractly by elementary toposes, etc.4

For clarity this outline will focus on the specific case of BIST and intu-
itionistic higher-order logic, as represented by the notion of an elementary
topos; but analogous results also hold for the other systems listed, by alter-
ing the notion of smallness as indicated. Moreover, models of more familiar
systems such as (I)ZF and CZF also result as special cases of this basic,
common approach, by selecting specific algebraic models with respect to the
different notions of smallness (more details are given in section 6 below).

1IST was introduced in [25]; IZF was introduced in [9] and is studied in [16].
2BIST was introduced in [4].
3These are studied in [7] and (under different names) in [27]. The related system CZF

was introduced in [1] and is studied in [22, 23, 11].
4In the two “constructive” cases the categories also involve a completion of the logical

systems under sums A + B and quotients of definable equivalence relations.
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Set Theory Logic Category

IST IHOL∞ Cocomplete Topos
BIST IHOL Elementary Topos
CST DTT LCC Pretopos

BCST IFOL Heyting Pretopos

Table 1: Set theories and logics

The main results to be discussed here regarding this notion of a class
category, its elementary set theory, and the associated notion of smallness
can be summarized as follows (cf. [4]):

1. In every class category, the universe U is a model of the elementary set
theory BIST.

2. The set theory BIST is logically complete with respect to such algebraic
models in class categories.

3. The category of sets in such a model is always an elementary topos.

4. Every topos occurs as the sets in some class category, and thus as a
model of BIST.

5. Every class category embeds into one that is generated by its sets.

From (1)–(4) it follows, in particular, that BIST is sound and complete with
respect to algebraic models, the sets in which are toposes; conservativity
over IHOL follows. Statement (5) strengthens the completeness to a special
class of models consisting of “ideals” of sets. Thus, in a very precise sense,
BIST represents exactly the elementary set theory whose possible categories
of sets are toposes, and thus also models of IHOL. This is one instance of the
correspondence mentioned above between a system of elementary set theory
(here BIST) and a logical system (here IHOL).

Before turning to the development of these concepts and results, let us
say a few words about the relation between our (C, S, P, U) framework
and the notion of a ZF-algebra as originally given by Joyal and Moerdijk.
The present approach, introduced by A. Simpson in [25], replaces the con-
cept of a ZF-algebra by the technical one of an algebra for the endofunctor
P : C → C, which is simply an object C equipped with a map PC → C.
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Algebras for endofunctors are used extensively in programming semantics,
and have been found to have some convenient properties, which motivate
this change. In particular, P-algebras are in general easier to come by, while
still giving logically natural models of set theory. At the same time, however,
the free algebras for these different kinds of structures coincide, as stated in
the following result of Bénabou and Jidbladze, cited in [16].

Theorem. The assignment s 7→ s̄ indicated in diagram (1) above establishes
an isomorphism between the free ZF-algebras and the free P-algebras.

For the respective free algebras on ∅, the inverse operation takes the free
P-algebra u : PU → U to the ZF-algebra given by the composite

U
{−}- PU

u - U

where, note, U is a complete sup-lattice, because u : P(U) ∼= U by “Lam-
bek’s lemma” (in a free algebra for an endofunctor the structure map is an
iso).

Finally, we give a sketch of the contents of the following 4 sections, which
develop the results stated above.5

The notion of a class category is defined in section 2. Roughly speaking,
this notion is to the Gödel-Bernays-von Neumann theory of classes, what
topos theory is to elementary set theory: the objects of the respective cate-
gories are the (first-order) objects of the respective elementary theories. We
show how to interpret set theory in such a category, using the universe U .

In section 3 we show that the elementary set theory of such universes
can be completely axiomatized. The resulting theory BIST is noteworthy for
including the unrestricted Axiom of Replacement in the absence of the full
Axiom of Separation.

Whether a category of sets satisfies an elementary logical condition de-
pends in general also on the ambient class category; thus some care is required
in formulating the notions of soundness and completeness with respect to the
subcategory of sets in a class category. Indeed, not only is it the case that ev-
ery topos S of sets in a class category C is the category of sets of an algebraic
model of BIST in C; but in fact, every topos whatsoever models BIST, in this
sense, with respect to some class category. This strong form of soundness

5Further references for these and other results are provided at corresponding points in
the text.
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follows from the fact that every topos occurs as the category of sets in a class
category, as is shown in section 4. The proof is of independent interest, for it
also shows how every topos generates a class category consisting of “ideals”
of objects, which are certain directed colimits with neat logical properties.

The category Idl(E) of all ideals on a topos E is the completion of E under
certain colimits, and such categories provide an important example of a class
category. Indeed, they are typical in the sense that every class category
has a (structure preserving) embedding into one consisting of ideals, as is
briefly discussed in section 5. It follows from this that BIST is logically
complete with respect to algebraic models in toposes equipped with their
ideal class category structure. This closes the circle, so to speak, in relating
the particular elementary set theory BIST and the logical type-theory IHOL.

Finally, some special set theoretic properties of specific models are con-
sidered, such as hold in free models and models in ideals. These include set
induction, separation and collection, as occur in such systems as IZF and its
classical counterpart ZF, and constructive systems like CZF. We conclude
by indicating some of the other directions that are being pursued in research
into AST.

Acknowledgments. A number of people are to be thanked for advising
me on the writing of this outline and in matters related to AST. These
include Carsten Butz, Andre Joyal, Bill Lawvere, Ieke Moerdijk, Dana Scott,
Alex Simpson, Thomas Streicher, and Michael Warren. I would especially
like to thank Francis Borceaux, Akihiro Kanamori, and Peter Johnstone
for facilitating this paper. Some of the impetus for AST (and for my own
interest in it) came from Saunders Mac Lane, who for many years urged
a reconciliation between conventional logical approaches to set theory and
abstract ones using categories, such as topos theory (see e.g. [20]).

2 The category of classes

There is some flexibility in the specific character of the presumed background
category, the objects of which are regarded as classes: for instance, whether
it is assumed to have function classes DC , quotients of equivalence relations,
etc. The formulation chosen here is sufficient for interpreting first-order logic.
Some justification for this particular choice is provided, however, by the ideal
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embedding theorem 19 in section 5.3 below.6

Definition 1. A Heyting category is a category C satisfying the following
conditions:

(C1) C has all finite limits, including in particular a terminal class 1, binary
products C ×D, and equalizers for all parallel pairs f, g : C ⇒ D (and
thus all pullbacks, etc.)

(C2) C has all finite coproducts, including specifically an initial class 0 and
binary coproducts C +D. Moreover, these coproducts are required to
be disjoint and stable under pullbacks.

(C3) C has kernel quotients, i.e. for every arrow f : C → D, the kernel pair
k1, k2 : K ⇒ C (the pullback of f against itself) has a coequalizer
q : C → Q.

K
k1 -

k2

- C
q -- Q

D

f

?

Moreover, such coequalizers (regular epimorphisms) are required to be
stable under pullbacks.

(C4) C has dual images, i.e. for every arrow f : C → D, the pullback functor
on subobjects,

f ∗ : Sub(D) → Sub(C),

has a right adjoint,

f∗ : Sub(C) → Sub(D).

Thus for U ≤ C and V ≤ D, we have:

f ∗V ≤ U iff V ≤ f∗U.

6This formulation is also used in [25, 4], other choices are made in [16] and elsewhere.

11



Conditions (C1) and (C3) imply that C has (stable) images, and so for
every arrow f : C → D, the pullback functor,

f ∗ : Sub(D) → Sub(C),

also has a left adjoint,

f! : Sub(C) → Sub(D),

for which:
f!U ≤ V iff U ≤ f ∗V.

Moreover, it follows that such categories have the following logical char-
acter.

Proposition 2. In a Heyting category C, each subobject poset Sub(C) is
a Heyting algebra, and for every arrow f : C → D the pullback functor
f ∗ : Sub(D) → Sub(C) has both right and left adjoints satisfying the Beck-
Chevally condition of stability under pullbacks. In particular, C therefore
models intuitionistic, first-order logic with equality.

2.1 Small maps

Let C be a Heyting category. Regarding the objects of C as classes, we next
axiomatize a notion of “smallness” by specifying which arrows f : B → A
in C are “small”, with the intention that these are the maps such that all
the fibers f−1(a) ⊆ B are sets. This allows us to think of a small map as an
indexed family of sets (Ba)a∈A where Ba = f−1(a).

Definition 3. A system of small maps on C is a collection S of arrows of C
satisfying the following conditions:

(S1) S ↪→ C is a subcategory with the same objects as C. Thus every identity
map 1C : C → C is small, and the composite g ◦ f : A→ C of any two
small maps f : A→ B and g : B → C is again small.

(S2) The pullback of a small map along any map is small. Thus in an
arbitrary pullback diagram,

C ′ - C

D′

f ′

?
- D

f

?
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f ′ is small if f is small.

(S3) Every diagonal ∆ = 〈1C, 1C〉 : C → C × C is small.

(S4) If f ◦ e is small and e is a regular epimorphism, then f is small.

A
e -- B

C

f

?
f ◦ e

-

(S5) Copairs of small maps are small. Thus if f : A → C and g : B → C
are small, then so is [f, g] : A+B → C.

Given (S1) and (S2), condition (S3) is equivalent to each of the following
conditions:

1. Every regular monomorphism is small.

2. If g ◦ f is small, then so is f , as indicated in the diagram:

A
f - B

C

g

?
g ◦ f

-

Moreover, given (S1)–(S5), the following also hold:

1. The canonical maps 0 → C are all small.

2. If f : C → D and f ′ : C ′ → D′ are small, then so is f + f ′ : C + C ′ →
D +D′.

Formally, small maps thus behave somewhat like monomorphisms. More
suggestively, if one thinks of a mono f : A � B as a map with fibers f−1(b)
lying in 2 = {0, 1}, then the small maps are those that result from replacing 2
by Sets (more precisely, P(1) by P(U) for structures P and U to be specified
below).
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2.2 Powerclasses

Let C be a Heyting category, the objects of which we call classes, and suppose
we have specified a system S of small maps on C. We will use the following
terminology:

• a class A is called small if A→ 1 is a small map,

• a relation R � C ×D is called small if its second projection

R � C ×D → D

is a small map,

• a subclass A � C is called small if the class A is small.

We also refer to the small classes as sets. Note that the small maps and
the small relations are mutually determined, via their graphs and projections.
The powerclass axiom is stated in terms of relations, but it essentially says
that every class C has a powerclass PC of small subclasses, which is small if
C is:

(P1) Every class C has a powerclass: an object PC with a small relation
∈C � C × PC such that, for any class X and any small relation
R � C × X, there is a unique arrow ρ : X → PC such that the
following is a pullback diagram:

R - ∈C

C ×X
?

?

1C × ρ
- C × PC

?

?

(P2) The internal subset relation ⊆C � PC × PC is a small relation.

Condition (P1) is of course much like the universal mapping property of
powerobjects familiar from topos theory, only adjusted for small relations.
The subset relation ⊆C � PC ×PC mentioned in (P2) can be constructed
logically as:

⊆C = [[(y, z) : PC × PC | ∀x : C. x ∈ y ⇒ x ∈ z]]
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Here we use the canonical interpretation [[ − ]] of first-order logic in the in-
ternal logic of C, interpreting the atomic formula x ∈ y as the universal small
relation on C,

[[(x, y) : C × PC | x ∈ y]] = ∈C � C ×PC,

and then interpreting arbitrary first-order formulas inductively, using the
Heyting structure of C. See [13] or [21] for details.

Finally, as a warning, we emphasize that not all monomorphisms are
small; so it is not the case that every subclass of a set is a set. The reason
for this choice is to allow for conceptions of “set” motivated not only by
limitation of size, but also by e.g. definability or (lack of) complexity. Adding
to our axioms the condition that all monos are small results in a system
equivalent to that stated more simply in [25], by requiring only the axioms
(C1), (C3), (S1), (S2), and the condition that all monos are small. Conditions
(C2), (C4), (S3), (S4), and (S5) then all follow. As shown in loc. cit., this
system captures a notion of “set” motivated by limitation of size alone, as
formalized in (I)ZF (as does the formulation used in [16]).

2.3 Universes and Infinity

The conditions (C, S, P) considered thus far are compatible with circum-
stance that all maps are small, in which case C is a topos. The following
notions are not compatible with this assumption:

Definition 4 ([25]). A universe is a class V together with a monomorphism,

i : PV � V.

A universal class is an object U such that every object C has a monomor-
phism,

iC : C � U.

A universal class U is clearly a universe, the small subobjects A � U of
which are exactly the sets in C. More generally, a universe PV � V may
be called a universe of sets if every small object A has a monomorphism
A � V . Every universe PV � V will be seen to give rise to a model of set
theory. Since we sometimes want to consider different universes in the same
background category C of classes, it is useful to regard a particular universe
as an additional structure within the basic (C, S, P) framework.
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On the other hand, for any universe V , the full subcategory C≤V of objects
C having a mono C � V then also satisfies axioms (C, S, P) and has
a universal class.7 For present purposes, it will be convenient to take the
existence of a universal class as an axiom.

(U) There is a universal class U .

Observe that in the presence of a universal class U there is a “generic”
small map, namely the second projection

πU : ∈U � U ×PU → PU

of the universal small relation on U . Every small map f : A → B is a
pullback of πU along a (not necessarily unique) arrow ϕ : B → PU . One can
therefore regard πU as the indexed family of all sets (as observed in [25]). In
[16] the related, but more general, condition of the existence of a universal
small map is posited in place of the axiom (U).

A category of classes C is said to have an infinite set if there is a small ob-
ject I that is “Dedekind infinite” in the sense that there is a monomorphism
I +1 � I. This condition is equivalent to requiring that the subcategory SC

of sets has a natural numbers object (NNO). If the sets have an NNO, it does
not follow that C itself has one, since there may be more classes than sets.
Class categories will not in general be required to have an infinite set, nor
will the corresponding elementary set theories considered in the next section
always have an axiom of infinity. But the treatment would be roughly the
same if we added both of these corresponding conditions as axioms.8

2.4 Class categories

Summarizing, a Heyting category with a system of small maps, small pow-
erclasses, and a universal class will be called a category of classes, or more
briefly, a class category.9 More specifically, this consists of the following data:

(C) A regular category C with coproducts and dual images.

7This was first observed in [25].
8See [4] for more discussion.
9This terminology is local to this outline; see section 6 for some variations. The par-

ticular choice of axioms is essentially that used in [4].
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(S) A distinguished subcategory S ↪→ C of small maps.

(P) For every class C, a powerclass PC with small subset relation.

(U) A universal class U .

A motivating example of a class category takes the category of all sets
and functions as the classes and finiteness as the notion of smallness, so that
a function f : B → A is a small map just if all of the fibers f−1(a) are finite
sets. In place of finiteness, one can also take sets of cardinality less than some
inaccessible cardinal number for another example (cf. [16]). An example of
a different sort is provided by the categories of ideals of sets considered in
section 4 below.

The following important fact allows us to handle indexed families of
classes; logically, it is the basis for working with free parameters.

Theorem 5 ([4]). If C is a class category, then so is the slice category C/X
for every object X. Moreover, for any arrow f : Y → X, the class category
structure S,P, U is preserved by the pullback functor f ∗ : C/X → C/Y .

2.5 The topos of sets

Let C be a class category with subcategory S ↪→ C of small maps. For
any object X, the slice category S/X is the (full) subcategory of C/X with
objects all small maps into X. This category is always a topos, as we now
briefly indicate.

First, for every small map f : B → A, the reindexing functor,

f ∗ : C/A→ C/B

has a right adjoint,
Πf : C/B → C/A,

which essentially means that one can form the product
∏

b∈B Cb of any family
of classes (Cb)b∈B indexed by a set B. Thus in particular, every set B is
exponentiable, i.e. the class CB exists for every class C. Indeed, the general
statement follows from this, since if small objects are always exponentiable,
then the same will hold for the small object f in the slice category C/A.

One can construct CB logically as a subclass of P(B × C) as usual,

CB = [[R ⊆ B × C | ∀b∃!c.R(b, c)]] � P(B × C) ,
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which exists because the domain R of a functional relation R ⊆ B × C is
small if B is small. Finally, (P2) implies that Πf preserves small maps, so
that if A,B are both small, then BA exists and is again small.

Since P1 is clearly a subobject classifier for small objects, we have the
desired result:

Proposition 6 ([4]). In any class category C, the full subcategory S/1 ↪→ C
of small objects and small maps between them is an elementary topos.

We will henceforth write SC = S/1 for the full subcategory of small
objects or “sets”.

3 Algebraic models of set theory

The elementary set theory of a universe in a class category can be completely
axiomatized in a surprisingly conventional form. Specifying the appropriate
set theory and establishing its soundness and completeness is the goal of this
section; in subsequent sections, special set-theoretic conditions and corre-
sponding algebraic models can then be considered.

3.1 The set theory BIST

The elementary set theory BIST (Basic Intuitionistic Set Theory) provides
a convenient formulation in connection with AST (it was introduced in [4]).
In addition to the usual binary membership relation x ε y, it has a predicate
S(x) of sethood, which is required because we admit the possibility of atoms.
BIST has the following axioms:

(sethood) a ε b→ S(b)

(extensionality) S(a) ∧ S(b) ∧ ∀x(x ε a↔ x ε b) → a = b

18



Moreover, the following are all asserted to be sets:

(empty set) ∅ = {x | ⊥}

(pairing) {a, b} = {x | x = a ∨ x = b}

(intersection) a ∩ b = {x | x ε a ∧ x ε b}

if S(a) and S(b)

(powerset) P (a) = {x | S(x) ∧ ∀y. y ε x → y ε a}

if S(a)

(union)
⋃

a = {x | ∃y ε a. x ε y}

if S(a) and y ε a→ S(y)

(replacement) {y | ∃x ε a. ϕ(x, y)}

if S(a) and x ε a→ ∃!y. ϕ(x, y)

Here “{x | ϕ} is a set” is of course a circumlocution for the formula,

∃y. S(y) ∧ ∀x. x ε y ↔ ϕ.

We may abbreviate this formula to a “set-many quantifier”,

Sx. ϕ

which can be read “there are set-many x such that ϕ”. If we also abbreviate
S(a)∧S(b)∧∀x(x ε a→ x ε b) to a ⊆ b, then with some further simplifications,
the axioms can take the neater form displayed in Table 2.

(sethood) a ε b→ S(b)
(extensionality) a ⊆ b ∧ b ⊆ a→ a = b
(empty set) Sx. ⊥
(pairing) Sx. x = a ∨ x = b
(equality) Sx. x = a ∧ x = b
(powerset) S(a) → Sx. x ⊆ a
(indexed union) S(a) ∧ (∀x ε a. Sy. ϕ) → Sy.∃x ε a. ϕ

Table 2: BIST

Note that there is no axiom scheme of separation. A restricted form
of ∆0-separation taking account of the S predicate is derivable, but despite
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the presence of the full replacement scheme (and the related indexed-union
scheme) full separation is not derivable in intuitionistic logic. Some other
conditions of interest include ε-induction, “no atoms” ∀x.S(x), and a suit-
able form of infinity.10 The addition of these three to BIST is equivalent to
conventional ZF set theory in classical logic. See section 5.1 below for further
discussion of these and other additional axioms.

3.2 Algebraic soundness of BIST

Now let C be a category of classes as defined in subsection 2.4 above. It can
be shown that any universe PU � U in C is then a model of BIST in the
logic of C. The basic relations x ε y and S(x) are interpreted with respect to
U as follows:

[[x | S(x)]] = PU � U

[[x, y | x ε y]] = ∈U � U × PU � U × U

where the indicated monos are the canonical ones. Then, using the Heyt-
ing structure of C, we inductively determine an interpretation for any set-
theoretic formula ϕ with free variables x1, . . . , xn = x̄,

[[x̄ |ϕ]] � Un.

Finally we define validity in C by:

U |=C ϕ iff [[x̄ |ϕ]] = Un.

This standard specification of categorical validity generalizes conventional
semantics from the category of sets, where both notions apply and agree, to
categories where conventional semantics do not apply.

The proof of the following result is a direct verification.11

10In this context, the axiom of infinity is best formulated as stating that there is a
Dedekind infinite set (the elements of which need not be sets), rather than in the style of
von Neumann. Thus, with the obvious abbreviations:

(Infinity) ∃(I, a ε I, f ε II)∀(x, y ε I). fx 6= a ∧ (fx = fy → x = y)

See [4] for further discussion.
11This was shown first (for a different theory) in [16]; the present formulation is from

[4].
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Proposition 7. Under this interpretation, all of the axioms of BIST are
valid in any universe PU � U in a class category C. Such an interpretation
will be called an algebraic model.

Since (restricted) ∆0-separation is a formal consequence of the axioms
of BIST, it also holds in all algebraic models, and the full axiom scheme of
separation is satisfied if all monomorphisms in the class category are small.
The Infinity axiom (in appropriate form) is satisfied if the class category has
an infinite set. These and several other additional axioms are considered
further in sections 5.1 and 6 below.

3.3 Algebraic completeness of BIST

The particulars of the approach taken here are justified in part by the re-
markable ease with which one shows that BIST is also complete with respect
to algebraic models.12

Theorem 8. If an elementary formula ϕ (in the language {S, ε}) holds in
every algebraic model U in a class category C, then it is provable in the
elementary set theory BIST.

In fact there is even a “free” class category C0 with the property that, for
any formula ϕ,

U |=C0
ϕ implies BIST ` ϕ.

The class category C0 can be regarded as consisting formally of the definable
classes over the theory BIST, together with the provably functional, definable
relations between them as morphisms. Category theorists are acquainted
with C0 as the syntactic category of the first-order theory BIST, a standard
construction due to Joyal, the details of which can be found e.g. in [13, D1.4].

More specifically, the category C0 consists of the following data:13

The objects {x1, . . . , xn|ϕ} are formulas ϕ in a context of variables x1, . . . , xn,
identified under renaming of variables (“α-equivalence”).

12This was first shown (for a different theory) in [25], where this method of proof also
originated; the present formulation is from [4].

13Some liberties are taken here with the notation, see [4] for a correct treatment.

21



The arrows [x, y|ρ] : {x|ϕ} → {y|ψ} are equivalence classes of formulas in
context {x, y|ρ} that are provably functional relations in BIST:

ρ(x, y) ` ϕ(x) ∧ ψ(y)

ψ(y) ` ∃x.ρ(x, y)

ρ(x, y) ∧ ρ(x, y′) ` y = y′

Two such relations ρ and ρ′ are identified if ` ρ↔ ρ′.

The identity arrow on {x|ϕ} is:

[x, x′|x = x′ ∧ ϕ(x)] : {x|ϕ(x)} → {x′|ϕ(x′)}.

The composite of [x, y|ρ] : {x|ϕ(x)} → {y|ψ(y)} and [y, z|σ] : {y|ψ(y)} →
{z|ϑ(z)} is:

[x, z|∃y. ρ(x, y) ∧ σ(y, z)] : {x|ϕ(y)} → {z|ϑ(z)}.

The small maps are those arrows [x, y|ρ] : {x|ϕ} → {y|ψ} such that,

ψ(y) ` Sx.ρ(x, y).

The powerclasses in are defined in the expected way:

P{x|ϕ} = {y|S(y) ∧ ∀x.x ε y → ϕ}.

The universal object is simply:

U = {x|x = x}.

One now shows by induction that the canonical interpretation [[x |ϕ]] in
C0 with respect to U essentially agrees with the object {x |ϕ}, from which
Theorem 8 then follows.

This construction in fact makes C0 the “free class category”, in the ex-
pected sense. That circumstance permits the use of a slick algebraic method
involving “Artin glueing” to show that BIST has the proof theoretic disjunc-
tion and existence properties.14

14See [32]; the method is originally due to Freyd in another setting, see [18].
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4 Classes as ideals of sets

In this section, as a technical simplification all toposes are assumed small,
and all class categories are locally small.15 In the foregoing section it was
seen that BIST is sound and complete with respect to algebraic models in
class categories. The category of sets in such a model is always a topos by
proposition 6, so in this sense BIST is complete with respect to models that
have a topos of sets. In this section it is shown that in fact every topos
occurs in this way, as the category of sets in a model of BIST. Thus in a
certain sense, BIST is also sound with respect to all toposes. Conservativity
of BIST over the natural interpretation of the type theory IHOL into set
theory follows.

The main result can be stated abstractly as follows.

Theorem 9 ([4]). For any topos E there is a class category C and an equiv-
alence,

E ' SC ↪→ C

between E and the subcategory of sets.

To prove this, the required class category C is constructed directly out of
the given topos E as the category of ideals Idl(E), which is the completion of
E under certain colimts.16 This very general construction provides another
example of a category of classes, which is in fact typical, in a sense made
precise in section 5.3 below. It is also of independent interest for illuminating
the relation between elementary set theory and type theory; indeed, it can
be seen as a general procedure for “summing the types” of a type theory
into a universe modeling an elementary set theory. Because ideals are special
sheaves, that universe then provides a natural sheaf model of the set theory.17

We thus turn next to the following theorem, from which the one just
stated follows immediately (cf. [4]).

Theorem 10 (Ideal completion). The category Idl(E) of ideals on a topos
E is a class category for which E is equivalent to the subcategory of sets under

15These terms can be taken relative to a Grothendieck universe, see [19].
16The approach to ideals given here is from [5], which improves on the original treatment

in [4] by the use of sheaves. A related approach using the Ind-completion of E is pursued
in [24].

17This model of AST is closely related to the one given as example IV.3 in [16].
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the principal ideal embedding,

↓(·) : E ' SIdl(E) ↪→ Idl(E).

In particular, the small objects in Idl(E) are the principal ideals.

4.1 Small maps and ideals

Our guiding idea is to construct classes as ideals of sets. But what is an
ideal in a topos E of abstract sets? There is no natural “ordering” A ⊆ B of
objects, with respect to which one could take order ideals.18 Naively, an ideal
should perhaps be a preorder subcategory A ⊆ E satisfying the conditions:

1. every arrow A � A′ in A is monic in E ,

2. A is directed : given any A and A′ there is some A′′ and a diagram in
A of the form,

A′′

A-

-

A′

�

�

This idea is better captured as follows: define an ideal diagram in a cat-
egory E to be a functor A : I → E where I is a directed preorder, and such
that the image of every morphism i ≤ j is a monomorphism Ai � Aj in E .
Then define an ideal to be a colimit of such a diagram A, taken in the free
colimit completion of E , namely the category SetsE

op

of all presheaves on E .

Definition 11 (Ideal on a category). An ideal on a category E is a presheaf
of the form:

A ∼= lim
−→
i∈I

yAi

for some ideal diagram A : I → E , where the colimit is taken in SetsE
op

, and
y : E → SetsE

op

is the yoneda embedding. Let, moreover,

Idl(E) ↪→ SetsE
op

be the full subcategory consisting of the ideals on E .

18This is the approach originally pursued in [4] by endowing E with just such an ordering.

24



It turns out that there is another characterization of the ideals which is
quite useful. Note first that because they are filtered colimits of representa-
bles, ideals are sheaves for the Grothendieck topology generated by finite
epimorphic families (called the “coherent covering” in [13, A2.1.11(b)]). And
since a representable yA is trivially an ideal, the yoneda embedding y for
sheaves factors through the ideals:

E
↓(·)- Idl(E)

Sh(E)
?

∩

y
-

We of course call the first factor, indicated ↓(·) : E → Idl(E), the principal
ideal embedding.

Let E be a small topos. Then the category of ideals on E is a class category
contained in sheaves and generated by taking the representables as the small
objects. To show this, first define a system S of small maps of sheaves by
taking those morphisms of Sh(E) with “representable fibers” in the following
sense.

Definition 12 (Small map of sheaves). A morphism f : C → D in Sh(E) is
small if for any B ∈ E and g : yB → D, there is a A ∈ E , and morphisms
making a pullback as follows in Sh(E):

yA ...................- C

yB
?

................

g
- D

f

?

Grothendieck refers to such maps f : C → D as representable morphisms.

So defined, S clearly satisfies axioms S1, S2, and S5 for small maps. For
the small diagonal condition S3, we will cut down to the full subcategory
consisting of those sheaves that satisfy it. Remarkably, it turns out that
these are exactly the ideals, and that they also satisfy S4.

Proposition 13 ([5]). For any sheaf F , the following are equivalent:
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1. F is an ideal.

2. The diagonal F � F × F is a small map.

3. For every arrow yA→ F from a representable, the image in sheaves is
also representable, i.e. yA � yB � F for some B.

The equivalence of 1 and 2 was suggested by Joyal. In addition to S3 and
S4, many other important properties of Idl(E) follow from this characteri-
zation. It implies in particular that ideals have the following manifold-like
property with respect to the small objects A =↓(A) coming from E : for every
ideal C there is a family (Ai � C)i of small subobjects with C =

⋃

i Ai and
for any Ai,Aj � C the intersection Ai ∩ Aj � C is also small. One can also
easily verify that Idl(E) is a Heyting subcategory of sheaves satisfying axioms
C1–C4. Moreover, since an ideal A is a small object just in case A → 1 is
small, we see that A is small just if it is representable, A ∼=↓(A) for some
A ∈ E . Thus, summarizing:

Proposition 14. For any topos E , the category Idl(E) of ideals satisfies
axioms (C) and (S) for class categories, with the representable morphisms as
the small maps. The principal ideal embedding is an equivalence between E
and the small objects ↓(·) : E ' SIdl(E) ↪→ Idl(E).

4.2 Powerclasses and universes

Theorem 10 still requires ideals to have powerclasses and a universal class.
First, note that the principal ideal embedding ↓ (·) : E → Idl(E) has the
following universal property, which we refer to as the ideal completion of E :

Lemma 15. The category Idl(E) has colimits of ideal diagrams (“ ideal col-
imits”). Moreover, if C is a category with ideal colimits, and F : E → C is a
functor that preserves monos, then there is a unique (up to natural isomor-
phism) extension F̃ : Idl(E) → C that preserves ideal colimits ( “F is ideal
continuous”), as indicated in the following diagram:

Idl(E) .................
F̃

- C

E

↓(·)

6

F

-
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We use this fact to define the powerclass functor P : Idl(E) −→ Idl(E) as
indicated in the following diagram,

Idl(E) ............
P

- Idl(E)

E

↓(·)

6

P
- E

↓(·)

6

where P : E → E is the covariant powerobject functor on the topos E (both
it and ↓(·) do indeed preserve monos). Explicitly, if A = lim−→ ↓Ai is an ideal
then its powerclass is simply:

P(A) = P(lim
−→

↓Ai) ∼= lim
−→

↓PAi

These powerclasses satisfy P1 and P2, essentially because every small
subobject S � A of an ideal A ∼= lim−→ ↓Ai is already a (small) subobject
S ∼= ↓B � ↓Ai of some ↓Ai in the ideal diagram, and thus comes from a
unique subobject B � Ai in E . From this we get a classifying morphism
1 → PAi, and hence a unique map,

1 ∼= ↓1 → ↓PAi → lim−→ ↓PAi
∼= P(lim−→ ↓Ai) = P(A)

classifying S � A. As this argument illustrates, the principal ideals are in a
certain sense “compact”.

Finally, to construct a universal object, note first that since the powerclass
functor P is ideal continuous, we can find fixed points for it by “Newton’s
method” of iteration. Take as a starting point the ideal:

A =
∐

E∈E

↓E

This is indeed an ideal when the coproduct is taken in sheaves, since finite
coproducts of representables are representable, ↓A +↓B ∼= ↓(A+B).

Now we solve the “fixed-point equation”

X ∼= A + PX
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by iterating the functor
F (X) = A + PX.

Since F is ideal continuous, we find a fixed point by taking the colimit of the
ideal diagram,

A-
iA
- A + PA-

1A + P(iA)
- A + P(A + PA)- - . . .

which is like the (start of a) cumulative hierarchy over A. Let U be the colimit
of this (ideal) diagram,

U ∼= lim−→
n

F nA. (3)

By its construction U then satisfies the condition

U ∼= A + PU.

Thus we indeed have a universe, partitioned into the disjoint subclasses A �

U of “atoms” and PU � U of “sets”. Moreover, since every principal ideal
has a mono ↓E � A � U, we have shown that U is a universe of sets. As
already indicated, a universal object can therefore be obtained by restricting
Idl(E) to the category Idl(E)≤U of objects C with a mono C � U, in order to
finally satisfy axiom (U) (see [5] for further details).

We close this subsection by noting that the universe U just constructed
is but one of many different universes in the category of ideals. It is distin-
guished, however, as the free P-algebra on the object A. The correspond-
ing free ZF-algebra on A is then the pair (PU, s) indicated in the following
diagram, in which the i’s are coproduct inclusions, the singleton mapping
{·} : U → PU classifies the small diagonal relation U � U×U, and s and the
insertion of generators η result as the evident composites.

A + PU

A

iA

-

U

∼=

?
PU

iPU

�

PU

{·}

?

?

s

�

η
-

28



4.3 Conservativity

It follows from the foregoing Ideal Completion Theorem (10) that (up to
equivalence) any topos E can occur as the sets in a model of the set theory
BIST. This is a bit subtle since BIST involves unbounded variables ranging
over all sets, particularly in the axiom scheme of Replacement. To even
interpret such formulas in the usual way requires a structure with a “type of
all sets” over which such variables are interpreted. This role is played by the
universe U in the category Idl(E) of ideals, which gathers up all the objects
of E into a single “type of all sets”. Since the principal ideal embedding
is an equivalence between E and the sets in Idl(E), it then follows that the
interpretation of BIST with respect to U is conservative over the internal logic
of E (in the expected sense of conservativity of the language of set theory
over that of higher-order logic). Moreover, since this holds for any topos E ,
we can conclude:

Theorem 16 ([4]). The set theory BIST is conservative over IHOL. More-
over, by the same reasoning, the theory BIST + infinity proves all the same
arithmetical theorems as higher-order Heyting arithmetic HHA.

5 Ideal models

Algebraic models of BIST in categories of ideals of the kind constructed in
the last section may be called ideal models. They extend to set theory the
logical interpretation of type theory and higher-order logic into a topos by,
in effect, “summing the types” in such an interpretation. The conservativity
stated in theorem 16 can be seen as applying to this extension.

Ideal models do, however, have some special properties among algebraic
models of set theory a few of which are considered next.

5.1 Free algebras

The fact that the particular universe U constructed in (3) above was the
free P-algebra on the ideal A =

∐

↓E implies that a number of additional
set-theoretic conditions are satisfied by it. These include in particular the

29



following.

(Decidable Sethood) ∀x. S(x) ∨ ¬S(x)

(∆0-Separation) ∀x. S(x) → Sy. y ε x ∧ ϕ(y)

(ε-Induction) (∀x.(∀y ε x. ϕ(y)) → ϕ(x)) → ∀x. ϕ(x)

The scheme of ∆0-separation is asserted only for ∆0-formulas ϕ (all quanti-
fiers are bounded by sets). It actually follows from decidable sethood in BIST,
which holds simply because U ∼= A + PU, which implies that [[x|S(x)]] = PU

is a compemented subobject. The initial P-algebra V is the free algebra on
0, which results from essentially the same colimit construction with A = 0.
In that case V ∼= PV implies that the “No Atoms” axiom ∀x.S(x) also holds
(as do some other simplifications to axioms involving the S predicate). The
scheme of ε-induction results from the fact that a free algebra can have
no proper subalgebras, while the condition ∀x.(∀y ε x.ϕ(y)) → ϕ(x) makes
[[x|ϕ(x)]] � U a sub-P-algebra of U, for it implies the following indicated
factorization:

P[[x|ϕ(x)]] ......- [[x|ϕ(x)]]

PU
?

?

- - U
?

?

See [16, 4] for details.

5.2 Collection

The above mentioned conditions are special properties of initial algebras,
not depending on the specific category C of classes; by contrast, all universes
in Idl(E) also enjoy the property known as (strong) Collection. This is a
strengthening of Replacement used in intuitionistic set theories such as IZF
and CZF (see [2, 16, 4]). Formally, the axiom scheme of Collection is stated,

(Coll) S(a)∧ (∀xεa. ∃y. ϕ) → ∃b. (S(b)∧ (∀xεa. ∃yεb. ϕ)∧ (∀yεb. ∃xεa. ϕ))

It says that for any total relation R from a set A to the universe, there is a set
B contained in the range of R such that the restriction of R to A×B is still
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total. This condition can be seen to result from the fact that the powerclass
functor on ideals P : Idl(E) → Idl(E) preserves regular epimorphisms ([16]).

Indeed, consider the following diagram in Idl(E):

A �� p′

R′ q′

-- B

R
?

?

A

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

�

p

��
A × U

?

?

- U
?

?

q

-

in which A = ↓A is small. Given R with first projection p (regular) epic,
we seek small B so that the restriction R′ of R has both projections p′, q′

epic. But for any regular epimorphism of ideals e : X � ↓A, there is a small
subobject E � X with epic restriction e′ : E � X � ↓A. Applying this fact
to p, we take small R′

� R, and then let B be the image of q restricted to
R′, as indicated in the above diagram. The full proof requires an “internal”
version of this argument.19

To summarize the foregoing discussion, let the following theory be called
bounded Intuitionistic Zermelo-Frankel with Atoms:

IZFA0 = BIST + Infinity + Decidable Sethood + ε-Induction + Coll

Moreover, let IZF0 be the same with No Atoms in place of Decidable Sethood
(which is then classically equivalent to ZF).

Proposition 17. If E is a topos with NNO, then the ideal model U con-
structed in (3) is a model of IZFA0,

U |=Idl(E) IZFA0

for which E is equivalent to the category of sets. Moreover, the free algebra
V in Idl(E) models IZF0,

V |=Idl(E) IZF0.

19See [4] for details, using the formulation given in [16].
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It follows that IZFA0 is also conservative over HHA in the sense of propo-
sition 16.20

5.3 Ideal completeness

As the example of Collection makes plain, just which elementary formulas ϕ
are satisfied by the universal class U |=C ϕ in a class category C depends on
C as much as U , specifically in the interpretation of unbounded set variables.
Indeed, two class categories may even have equivalent subcategories SC ↪→ C
of sets and yet satisfy different elementary set theoretic conditions. In light
of this dependence of validity in the algebraic model on the ambient class
category, it is natural to focus on the distinguished case C = Idl(E) of ideals
over a topos E of sets, for which SC ' E . We therefore ask in particular
whether the completeness theorem 8 for BIST with respect to class categories
C can be strengthened to consideration of just algebraic models in categories
of ideals, the so-called ideal models.

However, as is clear from the example in the foregoing section of IZFA0

holding in the free algebra U in ideals, we must also allow for universes V

other than just the free ones, if we are to have completeness of BIST. It
turns out that this indeed suffices: adding Collection to BIST completes it
with respect to arbitrary ideal models.

Theorem 18 ([4]). If for every topos E , the formula ϕ holds in every ideal
model V over E ,

V |=Idl(E) ϕ,

then ϕ is provable in BIST with the axiom scheme of collection,

BIST + Coll ` ϕ.

This result follows from the Algebraic Completeness Theorem 8 (mod-
ified to include Collection), together with an embedding theorem for class
categories, stating that every class category satisfying the algebraic version
of Collection has a conservative embedding into a class category consisting of
ideals on a topos. More precisely, by a class functor L : C → D between class
categories C and D we mean a functor that preserves all the class category
structure (C,S,P, U); specifically, such a functor L preserves finite limits and

20See [4] for details and more discussion of closely related systems.
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coproducts, regular epimorphisms and dual images, small maps and power-
classes, and the universe U. A functor F : C → D is called conservative if
it is both faithful and reflects isomorphisms. Finally, a class category C is
said to have collection if the powerclass functor P : C → C preserves regular
epimorphisms.

Theorem 19 ([4]). For any class category C with collection, there is a topos
E and a conservative class functor C → Idl(E).

The proof of this employs a technique, originally due to Freyd in another
setting, of taking (iterated) “slice colimits”,

C∗ = lim
−→

i

C/Xi

over a suitable diagram of objects Xi in C. This construction is related
both to adding Henkin constants to a logical theory and inverting non-zero
elements in a commutative ring. What makes it work in this setting is the
fact that the (C, S, P, U) structure of class categories is essentially algebraic,
and thus admits all limits and certain colimits. Collection is required for the
preservation of regular epimorphisms.

6 Variations

A number of different set theories, type theories, and related structured cate-
gories can be treated by methods similar to those used in the foregoing study
of BIST, IHOL, and toposes. Some of the main directions and variaitons in
recent research are briefly indicated below.

1. Among the many significant differences between the development out-
lined here and that of [16], we mention just the most important ones.
In op. cit., the background category C of classes is assumed to be ex-
act, thus possessing quotients of all equivalence relations. Together
with the assumption of a (weakly) universal small map, this permits
the construction of the powerclasses PC. Moreover, it is assumed that
all monos are small, so that the full separation scheme is validated in
the algebraic models of set theory. As discussed in the introduction,
these are built as (initial) ZF-algebras, rather than as P-algebras, as
was done here. The existence of such algebras is shown to follow from
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the assumption of a subobject classifier by an elegant method involving
bisimulations.

2. As discussed in section 5.1, the fact that certain models are free alge-
bras implies additional set theoretic conditions like decidable sethood
and ε-induction, and the systems IZFA0 and IZF0 are defined to con-
sist of BIST, with and without atoms, together with these additional
axioms, plus Infinity and Collection. These theories all have a form of
“bounded” (∆0) separation. The stronger set theories IST, IZFA, and
IZF are related to their “bounded” counterparts by the addition of a
scheme of unbounded separation. These systems can be modeled alge-
braically by changing the underlying notion of “smallness” in the class
category to include the condition that all monomorphisms are small.
Such models can be built from cocomplete toposes, such as sheaves, as
well as realizability toposes. See [16, 25, 4, 17].

3. Of course, classical versions of the foregoing set theories result simply
by adding the axiom scheme EM of excluded middle for all formulas.
Note that the “bounded” theories are classically equivalent to their un-
bounded counterparts, since (full) separation follows classically from
replacement. Thus, for instance, IZF0 + EM = ZF. Interesting inter-
mediate systems result from adding EM only for formulas that define
sets. These are modeled in a class category with a boolean topos of
sets, such as occur naturally in the form Idl(B), the ideal completion
of a boolean topos B, which is somewhat analogous to a boolean space.

4. Since ideals are special sheaves, ideal models of the kind considered
in section 5 can be related to other constructions of sheaf models of
classical and intuitionistic set theory, such as those introduced and
studied in [10]. And using Kripke-Joyal semantics (for which see [21])
one can also formulate a “forcing” interpretation for ideal models that
is closely related to the interpretations of set theory introduced by [12]
and [10]. This is investigated in [4].

5. In [16] the theory of ordinals is derived as a variation of AST, in which
the successor map s : V → V of a ZF-algebra is required to be mono-
tone. Combining this approach with the method of varying the back-
ground notion of smallness provides a way of developing theories of
ordinals in the corresponding settings of classical, intuitionistic and
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bounded set theory, and higher-order logic. The same holds for pred-
icative set theory and constructive type theory as well, by the following.

6. By a predicative set theory is meant simply one without the powerset
axiom. Many such systems have been considered, and algebraic models
have recently been given for some of them. For instance, in [22, 23] and
more recently [11, 30] it is shown how to model Aczel’s constructive
set theory CZF (see [2]) using an initial ZF-algebra in a setting with
suitable small maps, motivated by type theoretic constructivity. An
analogue of the current approach to BIST, IHOL, and toposes was
conducted for “predicative AST” in [7], with analogous results relating
predicative set theory, constructive type theory, and locally cartesian
closed pretoposes.

7. A distinctive aspect of predicative AST as developed in [22, 23] is
the treatment of inductive definitions via sets of well-founded trees
or “W-types”, originating in the type theory of Martin-Löf. This ap-
proach develops a theory of (generalized) polynomial functors P (X) =
∑

a∈AX
Ba and their algebras, which can then also be used to construct

powerclasses and ZF-algebras. The recent work [30] has extended and
improved on these results, particularly in connection with predicative
algebraic set theory.

8. Higher-order set theories like (intuitionistic) von Neuman-Gödel-Bernays
and Morse-Kelly are briefly considered in [5], using the inclusion

i : Idl(E) ↪→ Sh(E)

of ideals into sheaves, and the resulting comparison iPU � PU be-
tween the powerclass PU and the powersheaf PU . Much more could
be done in this direction — as well as, for that matter, in many other
areas of this fascinating and lively field.
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