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Abstract

We introduce a new sheaf-theoretic construction called the ideal comple-
tion of a category and investigate its logical properties. We show that
it satisfies the axioms for a category of classes in the sense of Joyal and
Moerdijk [17], so that the tools of algebraic set theory can be applied
to produce models of various elementary set theories. These results are
then used to prove the conservativity of different set theories over various
classical and constructive type theories.

1 Introduction

It is well known that various type theories may be modelled in certain kinds of
categories (cf. [15]). For instance, cartesian closed categories are models of the
typed lambda calculus and toposes are models of intuitionistic higher order logic
(IHOL). Similarly, Joyal and Moerdijk [17] showed that one can axiomatize a
notion of small map in a category in such a way that the resulting category will
contain an algebraic model of elementary set theory. In this paper we employ
a new sheaf theoretic construction called the ideal completion in order to relate
algebraic models of type theories with category theoretic models of set theories
for several type theories and set theories. We also investigate such sheaf models
of class theories. Using these sheaf theoretic methods we obtain conservativity
results for set theories over type theories and class theories over set theories.

The ideal completion is a category theoretic analogue of the familiar ideal
completion of a partially ordered set and has its roots in the related Ind-
completion studied by the Grothendieck school of algebraic geometry [6]. In
particular, the ideal completion Idl(C) of a category C is obtained as the sub-
category of sheaves Sh(C) on C consisting of certain colimits of representable
functors. Here the representables are generalizing principal ideals in a partially
ordered set and these colimits, directed joins. Now, if C is a category with
sufficient structure to model the type theory in question, the category Idl(C)
will then model an untyped set theory. The three specific type theories under
consideration are (typed) first-order intuitionistic logic, a form of extensional
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Type Theory Category Set Theory Category
FOL Heyting pretopos BCST Basic category of classes

DTT Π-pretopos CST Category of classes

IHOL Topos BIST Powered category of classes

Table 1: Types, sets and categories.

Martin-Löf style dependent type theory (DTT) and the theory IHOL mentioned
above. More specifically, we consider the ideal completion of categories of the
following three kinds: Heyting pretoposes (suitable models of first-order intu-
itionistic logic), Π-pretoposes (models of DTT), and toposes. Here a Π-pretopos
is a locally cartesian closed pretopos and is not assumed to possess a universe
or arbitrary W -types (cf. [27]).

In summary, in Section 2 we introduce the set theories BCST (basic con-
structive set theory), CST (constructive set theory) and BIST (basic intuition-
istic set theory) and prove that the categories of sets obtained from these theories
are, respectively, a Heyting pretopos, a Π-pretopos, and a topos. Note though
that the theory CST studied in this paper is different from Myhill’s CST [21].
Much of this section either reviews results from [8] or generalizes them. We
then introduce the class theories BICT (basic intuitionistic class theory) and
BIMK (basic intuitionistic Morse-Kelley) and compare them with the familiar
class theories of von Neumann-Gödel-Bernays NGB and Morse-Kelley. In Sec-
tion 3 the axiomatic theory of categories of classes is developed and soundness
and completeness results for the set theories with respect to these categories
are obtained. In Section 4 the ideal completion of a category is defined and its
fundamental properties are developed. It is also shown that if C is a Heyting
pretopos (respectively, a Π-pretopos or a topos), then Idl(C) contains a category
of classes (of the corresponding form). In particular, by the results in Section
3 it then has suitable structure to model BCST (respectively, CST or BIST).
Table 1 summarizes the relationships between the type theories, their category
theoretic models, the corresponding set theories and the category theoretic mod-
els of the set theory. This table is included here as a point of reference for the
reader to return to throughout the paper. Finally, in Section 5 we indicate
how the inclusion of the ideal completion Idl(C) in sheaves Sh(C) on C may be
used to model theories of sets and classes. As an example, it is shown that the
theory BIMK (in which the sets are classical and the classes are intuitionistic)
is conservative over ordinary Zermelo Fraenkel set theory ZF.

Related research

We mention some of the research which is most closely related to this paper.
The work of Joyal and Moerdijk [17] served to provide, via the notion of small
map and category of classes, a general template from which a variety of different
problems and set theories could be investigated. One initial application of this
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approach was the study of predicative set theories by Moerdijk and Palmgren
[19, 20] who considered the set theory CZF (Constructive Zermelo-Fraenkel
set theory) and related axioms. The set theory CZF was introduced by Aczel
(cf. [2, 3, 4]) who showed that it can be interpreted in the dependent type
theory ML1V. The theory ML1V is obtained by augmenting basic extensional
DTT with a universe V which is also W -type. ML1V is, accordingly, stronger
than the predicative type theories considered in the present paper. The work of
Moerdijk and Palmgren may be understood as extending Aczel’s type theoretic
interpretation using the tools of category theory. This undertaking yielded,
among other things, both a category theoretic account of W -types (cf. [19]) and
an algebraic model of CZF (cf. [20]).

Subsequent research by Simpson [26] and Butz [11] helped, among other
things, to develop both a modified collection of axioms for small maps and a
syntactic category approach to proving completeness theorems for set theories.
This paper, however, is most closely related to the joint work of Awodey, Butz,
Simpson and Streicher [8]. In [8] the set theory BIST is introduced and it is
shown that BIST may be modelled in what we have called powered categories
of classes.1 Additionally, it is there shown that any topos E occurs as the ‘sets’
in a powered category of classes. Following an idea of Simpson, this is proved by
means of a construction which is also called the ideal completion and proceeds
in two steps. First, a topos E is endowed with a system I of inclusions. These
inclusions then permit the definition of (order) ideals. The resulting category
IdlI(E) consisting of ideals depends essentially on the system of inclusions I.
Finally, it is shown that BIST is sound and complete with respect to models
in categories of the form IdlI(E). Although this original version of the ideal
completion from [8] had some advantages, a more canonical construction is
clearly desired. The Ind-completion and the ideal completion studied in this
paper represent such an improvement. It was developed jointly by Rummelhoff
[22], Awodey, Forssell and Warren.

The present paper is a summary of the results obtained in the two theses
[12] and [27]. Conference versions of these theses appeared in the proceedings
of the CT2004 conference as [9] and [10]. Additional attributions of particular
results or ideas are provided in the text.

We also mention recent work by Gambino [14] studying presheaf models of
constructive set theories. One interesting aspect of this work is that it serves
to relate the approach of Joyal and Moerdijk with that of Scott [24]. Finally,
the interested reader is referred to [12] or [27] for a more thorough accounting
of related research. The reader should also consult [25] or [7] for an accessible
overview of the field. The resource [1] provides access to current developments
in the field.

1The terminology in this area is not yet standardized and we here prefer ‘powered categories
of classes’ to ‘categories of classes with powersets’ so as to avoid the unpleasant locution
‘categories with class structure and powerobjects’ when dealing with weaker forms of such
categories.
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2 Theories of sets and classes

The theories of sets and classes which we consider are formulated in two lan-
guages. First, by a set theory we mean a single sorted first-order theory in the
language of set theory Ls := {S,∈} where S (‘sethood’) and ∈ (‘membership’)
are, respectively, unary and binary predicates. By a class theory we mean a
two-sorted theory in the language of class theory Lc := {S,∈, η}. To say that
class theory is two-sorted means that there are two sorts of variable: set vari-
ables which are written as lowercase Roman letters, and class variables which
are written as uppercase Roman letters. There are quantifiers for each sort of
variable. The atomic formulae are then stipulated to be those of the form:

S(x), x ∈ y, and xηY,

where x and y are any set variables and Y is any class variable. In both cases
S is included in the language because we intend to allow urelements or non-
sets. The background logic of all theories is taken to be intuitionistic first-order
logic unless otherwise mentioned. Where ϕ is a formula, FV(ϕ) denotes the
set of free variables of ϕ. We will freely employ the class notation {x|ϕ} as
in common set theoretical practice. Frequently it will be efficacious to employ
bounded quantification which is defined as usual; namely, ∀x ∈ a.ϕ means:

S(a) ∧ ∀x.x ∈ a⇒ ϕ

and ∃x ∈ a.ϕ means:

S(a) ∧ ∃x.x ∈ a ∧ ϕ.

A formula ϕ is called ∆0 if all of its quantifiers are bounded.
Another notational convenience is the introduction of the set-many quantifier

Sdefined as:

Sx.ϕ := ∃y.(S(y) ∧ ∀x.(x ∈ y ⇔ ϕ)), (1)

where y /∈ FV(ϕ). We also write:

x ⊆ y := S(x) ∧ S(y) ∧ ∀z ∈ x.z ∈ y.

We employ the abbreviation func(f, a, b) to indicate that f is a functional rela-
tion on a× b:

func(f, a, b) := f ⊆ a× b ∧ ∀x ∈ a.∃!y ∈ b.(x, y) ∈ f
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Membership x ∈ a⇒ S(a).

Extensionality (a ⊆ b ∧ b ⊆ a)⇒ a = b.

Emptyset Sz.⊥.

Pairing Sz.z = x ∨ z = y.

Binary Intersection S(a) ∧ S(b)⇒ Sz.z ∈ a ∧ z ∈ b.

Union (∀x ∈ a.S(x))⇒ Sz.∃x ∈ a.z ∈ x.

Replacement ∀x ∈ a.∃!y.ϕ⇒ Sy.∃x ∈ a.ϕ, for any formula ϕ.

Exponentiation S(a) ∧ S(b)⇒ Sz. func(z, a, b).

Powerset S(a)⇒ Sy.y ⊆ a.

∆0-Separation S(a)⇒ Sz.z ∈ a ∧ ϕ, if ϕ is a ∆0 formula.

Table 2: Axioms for Set Theories

2.1 Set theories

The particular set theories with which we will be primarily concerned are pre-
sented in Table 3. In Table 3 we employ a solid bullet • to indicate that the
axiom in question is one of the axioms of the theory and a hollow bullet ◦ to
indicate a consequence of the axioms. For the sake of brevity the obvious uni-
versal quantifiers in the axioms have been omitted. I.e., the axioms should be
understood as the universal closures of the formulae enumerated in Table 2.

There are several points worth mentioning in connection with the axiomati-
zations given in Table 3. First, the form of ∆0-Separation which holds in BCST,
CST and BIST is subject to the stipulation that ϕ is also well-typed in a sense
made precise below (cf. Corollary 2.6). The axiom scheme of Replacement oc-
curring in all three theories is unbounded, and involves no such restrictions (in
intuitionistic logic, Replacement does not imply Separation). We also note that
the addition of the axiom of infinity to any of these set theories corresponds
to the addition of a natural number object to the corresponding category. The
addition of the axiom of infinity to any of the theories therefore presents no
difficulty and the reader may refer to [8], [27] or [12] for further details. Fi-
nally, most of the results contained in this subsection are present, implicitly or
explicitly, in [5] or [8].

To begin with, notice that the following schema of Indexed Union holds in
BCST:

(∀x ∈ a. Sy.ϕ)⇒ Sy.∃x ∈ a.ϕ.

Lemma 2.1. BCST ` Indexed Union.

Proof. Straightforward using Union and Replacement.
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Axioms BCST CST BIST

Membership • • •
Extensionality, Pairing, Union • • •

Emptyset • • •
Binary Intersection • • •

Replacement • • •
∆0-Separation ◦ ◦ ◦
Exponentiation • ◦

Powerset •

Table 3: Set Theories

Although BCST lacks a separation axiom, it is possible to recover some
degree of separation. To this end we define:

ϕ[a, x]-Sep := S(a)⇒ Sx.(x ∈ a ∧ ϕ).

Here the free variables a and x need not occur in ϕ. Additionally we say that
a formula ϕ is simple when the following, written !ϕ, is provable:

Sz.(z = ∅ ∧ ϕ) (2)

and z /∈ FV(ϕ). The intuition behind simplicity is that certain formulas are
sufficiently lacking in logical complexity that their truth values are indeed sets.
In particular, we will write tϕ for the subsingleton {z|z = ∅ ∧ ϕ} which we call
the truth value of ϕ. Separation holds for such simple formulae:

Lemma 2.2 (Simple Separation). For any formula ϕ, BCST ` (∀x ∈ a.!ϕ(x))⇒
ϕ[a, x]-Sep.

Proof. By assumption S(a) and for every x ∈ a the truth value:

tϕ(x) := {z|z = ∅ ∧ ϕ(x)}

of ϕ(x) is a set. Suppose y ∈ tϕ(x), then y = ∅∧ϕ(x). But then ∃!z.z = x∧ y =
∅ ∧ ϕ(x). By Replacement:

q := {z|∃y ∈ tϕ(x).z = x ∧ y = ∅ ∧ ϕ(x)}

is a set. But ∃y ∈ tϕ(x).z = x ∧ y = ∅ ∧ ϕ(x) is equivalent to z = x ∧ ϕ(x) so
that {z|z = x∧ϕ(x)} is a set for each x ∈ a. The result now follows by Indexed
Union.

Lemma 2.3 (The Equality Axiom). BCST proves the Equality Axiom (cf.
[25]):

∀x, y.( Sz.z = x ∧ z = y).

Proof. Let x and y be given. Then {x} and {y} are sets and, by Binary In-
tersection, their intersection {x} ∩ {y} is also a set which has the required
property.
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Henceforth, given x and y, we write δxy for the set {z|z = x ∧ z = y}.

Proposition 2.4. In BCST:

1. !(a = b).

2. If S(a) and ∀x ∈ a.!ϕ(x), then !(∃x ∈ a.ϕ(x)) and !(∀x ∈ a.ϕ(x)).

3. !(x ∈ a), when S(a).

4. If !ϕ and !ψ, then !(ϕ ∧ ψ), !(ϕ ∨ ψ), !(ϕ⇒ ψ), and !(¬ϕ).

5. If ϕ ∨ ¬ϕ, then !ϕ.

Proof. See [8] or [27].

Corollary 2.5. Given the other axioms of BCST the following are equivalent:

1. Binary Intersection,

2. Equality, and

3. Intersection.

Proof. See [8] or [27].

We will now show to what extent ∆0-separation holds in the set theories
under consideration. In a set theory without urelements ∆0-Separation is the
following schema:

Sz.z ∈ y.ϕ,

where ϕ is a ∆0-formula. The presence of the sethood predicate S(−) in the
language Ls makes the statement of this separation principle more complicated
since every variable in ϕ which occurs on the right hand side of the member-
ship relation ∈ must be a set. This complication is reconciled by the following
definitions and the form which ∆0-Separation takes in Ls is stated in Corollary
2.6.

Definition 2.1. Let a ∆0 formula ϕ and a variable x occurring in ϕ be fixed.
We say that x is an orphan if x ∈ FV(ϕ). If x /∈ FV(ϕ), then we define the
parent of x in ϕ to be the variable y such that x occurs as a bound variable
of one of the following forms in ϕ: ∀x ∈ y or ∃x ∈ y (note that, possibly after
α-renaming, every x which is not an orphan has a unique parent in ϕ). The
family tree of x in ϕ, denoted by Φ(ϕ, x), is the singleton {x} if x is an orphan
and otherwise it is the tuple 〈x, y1, y2, . . . , yn〉 such that the following conditions
are satisfied: (i) y1 is the parent of x in ϕ, (ii) each ym+1 is the parent of ym
for 1 ≤ m ≤ n− 1, and (iii) yn is an orphan. The reader may easily verify that,
for each variable x occurring in ϕ, Φ(ϕ, x) is unique.
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Definition 2.2. Given a ∆0 formula ϕ and a variable x occurring in ϕ we adopt
the following abbreviation:

S(Φ(ϕ, x)) := S(yn) ∧ ∀yn−1 ∈ yn.
S(yn−1) ∧ ∀yn−2 ∈ yn−1.S(yn−2) ∧ . . . .∀x ∈ y1.S(x),

where Φ(ϕ, x) = 〈x, y1, . . . , yn−1, yn〉.

Definition 2.3. If ϕ is a ∆0 formula of BCST such that there are no occur-
rences of the S predicate in ϕ and x1, . . . , xn are all of those variables of ϕ either
bound or free which occur on the right hand side of the ∈ predicate in ϕ, then
we define a formula τ(ϕ,m) for each 1 ≤ m ≤ n inductively by:

τ(ϕ, 0) := >.
τ(ϕ,m+ 1) := τ(ϕ,m) ∧ S(Φ(ϕ, xm+1)).

Then τ(ϕ) := τ(ϕ, n).

Corollary 2.6 (∆0-Separation). If ϕ is a ∆0 formula in which there are no
occurrences of S and x1, . . . , xn are all of those free variables of ϕ that occur on
the right hand side of occurrences of ∈, then:

BCST ` τ(ϕ) ∧ S(y)⇒ Sz ∈ y.ϕ.

Remark. In a theory of Ls satisfying the Simple Sethood axiom, !S(x), which
states that the sethood predicate S is simple the conventional unrestricted ver-
sion of ∆0-separation holds.

We will now show that the category of sets of BCST form a Heyting pre-
topos and that the sets of CST form a Π-pretopos (what we mean by ‘the
category of sets’ will be made precise shortly). First, we consider quotients of
equivalence relations.

Lemma 2.7. If S(a) and r ⊆ a × a is an equivalence relation, then for each
x ∈ a the equivalence class:

[x]r := {z|z ∈ a ∧ (x, z) ∈ r}

is a set.

Proof. By Simple Separation and Lemma 2.4.

Lemma 2.8. If S(a) and r ⊆ a×a is an equivalence relation, then the quotient

a/r := {[x]r|x ∈ a}

of the set a modulo r is a set.

Proof. This is an easy application of Replacement.
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Let “Sets” be the category consisting of sets and functions between them
in BCST. More precisely, working in the set theory BCST, the objects are
those x of BCST such that S(x) and arrows f : x // y are those f of BCST
such that func(f, x, y). By the foregoing lemmas and some obvious facts that
we omit, we have the following:

Theorem 2.9. BCST proves that “Sets” is a Heyting pretopos.

Now consider the category “Sets” in CST:

Lemma 2.10. For any object I of “ Sets”, the category “Sets”/I is equivalent
to “Sets”I where I is regarded as a discrete category.

Proof. The proof is the same as the usual proof for Sets (cf. [18]).

Given f : X //Y the pullback functor ∆f : “Sets”/Y // “Sets”/X serves
to reindex a family of sets (Cy)y∈Y as (Cf(x))x∈X . Note also that given a set
I and a family of sets Xi for each i ∈ I, the class {Xi|i ∈ I} is a set by
Replacement.

Lemma 2.11. For any map f : X // Y in “Sets”, the pullback functor ∆f :
“Sets”/Y // “Sets”/X has both a left adjoint Σf and a right adjoint Πf .

Proof. We may employ the usual definitions of the adjoints:

“Sets”X
Σf // “Sets”Y

(Cx)x∈X
� // (Sy)y∈Y ,

where Sy :=
∐
f(x)=y Cx, and Πf :

(Cx)x∈X
� // (Py)y∈Y ,

where Py :=
∏
f(x)=y Cx. Here the arbitrary product:∏

i∈I
Xi := {f : I //

⋃
i∈I

Xi|∀i ∈ I.f(i) ∈ Xi}

is a set. In particular,
⋃
Xi is a set by Union and (

⋃
Xi)I is a set by Exponen-

tiation. The result follows directly from Lemma 2.4 and Simple Separation.

By the foregoing lemmas we have proved:

Theorem 2.12. CST proves that “Sets” is a Π-pretopos.

Finally, we consider the case where the set theory is the impredicative set
theory BIST. Notice though that the following theorem is the only result of
this subsection which involves the Powerset axiom.

Theorem 2.13. BIST proves that “Sets” is a topos.
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Proof. Since CST is a subtheory of BIST it follows that “Sets” is a Π-pretopos.
As such, it remains only to show that there exists a subobject classifier in
“Sets”. It consists of the powerset ℘(1) of the terminal object 1, together with
the element {∅}. The classifying map χA : B // ℘(1) of a subobject A ⊆ B is,
then, given by the assignment:

χA(b) := tb∈A,

for b ∈ B.

2.2 Class theories

The class theories with which we are concerned are called basic intuitionistic
class theory BICT and basic intuitionistic Morse-Kelley BIMK. In Section 5
we will see that these theories are conservative extensions of the set theories
BIST and ZF, respectively. The axioms of BICT and BIMK are enumerated
in Table 4. See below, definition 2.4, for the symbol †(X). Table 5 indicates, in
the same manner employed in Table 3 above, which axioms and axiom schemata
define the theories in question and which axioms are derivable therein. More-
over, the familiar theories of von Neumann-Gödel-Bernays class theory NGB
and Morse-Kelley class theory MK are included alongside for the sake of com-
parison. Recall that NGB is a conservative extension of ZF; whereas MK is
not.

Several remarks about the axiomatizations presented in Table 5 are now in
order. First, since the Law of Excluded Middle (LEM) is considered an axiom
scheme of ZF, LEM is an axiom scheme in BIMK ranging over all formulae of
the language Ls. That is to say, for each formula ϕ ∈ Ls, ϕ ∨ ¬ϕ is an axiom
of BIMK. On the other hand, LEM does not hold in BIMK for arbitrary
formulae of Lc. As will be seen later, this leads to the interesting situation in
which the ‘sets’ of a category are classical whereas the ‘classes’ in that category
are intuitionistic. On the other hand, NGB and MK are strictly classical in the
sense that LEM holds for all formulae of Lc and BICT is strictly intuitionistic.
Secondly, note that the addition of the Universal Sethood axiom to BIMK,
NGB and MK serves to eliminate urelements. As such, these three theories
could instead be formulated in the language {∈, η}, thereby yielding the familiar
formulations of NGB and MK. Thirdly, in all four class theories, the axiom
scheme of Class Replacement, whether weak or strong, can be replaced by a
single axiom stating that for any class of ordered pairs that forms a functional
relation, if the domain is a set, then so is the image. Finally, the axiomatization
of NGB presented here is not the usual one. In particular, the reader should
observe that, using classical logic, NGB is finitely axiomatizable (cf. [13]).

Definition 2.4. The Simple Class Comprehension axiom of BIMK makes use
of the notation †(X) where X is a class variable. This is pronounced X is simple
and holds whenever membership in X is simple, in the sense of (2), that is to
say, †(X) is defined by:

†(X)⇔ ∀x.!(xηX),
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Axioms of BIST0 Let BIST0 be BIST without the axiom schema of Re-
placement.

Axioms of ZF0 Let ZF0 be ZF (regarded as a theory of Ls) without the axiom
schema of Replacement.

Law of Excluded Middle (LEM) For all formulae ϕ of Lc, ϕ ∨ ¬ϕ.

Universal Sethood S(x).

Class Extensionality (∀z.zηX ⇔ zηY )⇒ X = Y.

Weak Class Comprehension ∃X.∀z.zηX ⇔ ϕ, for any formula ϕ such that
all class variables of ϕ are free and X /∈ FV(ϕ).

Strong Class Comprehension ∃X.∀z.zηX ⇔ ϕ, for any formula ϕ such that
X /∈ FV(ϕ).

Weak Class Replacement S(a) ∧ ∀x ∈ a.∃!y.ϕ ⇒ Sy.∃x ∈ a.ϕ, for any for-
mula ϕ of Lc such that all class variables of ϕ are free.

Strong Class Replacement S(a) ∧ ∀x ∈ a.∃!y.ϕ ⇒ Sy.∃x ∈ a.ϕ, for any
formula ϕ of Lc.

Class Separation ∃y.∀z.z ∈ y ⇔ z ∈ x ∧ zηX.

Simple Class Comprehension For any formula ϕ with no bound class vari-
ables and with all (free) class variables in the list X1, . . . , Xn:

( n∧
i=1

†(Xi)
)
⇒ (∃X. † (X) ∧ ∀x.xηX ⇔ ϕ).

Table 4: Axioms of class theories.

i.e.,

†(X)⇔ ∀x. Sz.(z = ∅ ∧ xηX).

Lemma 2.14. In all four class theories the simple classes are exactly those
classes X such that for any set x, the intersection x ∩X is again a set:

BICT ` †(X)⇔
(
∀x.S(x)⇒ (∃z.S(z) ∧ ∀y.y ∈ z ⇔ y ∈ x ∧ yηX)

)
and similarly for BIMK, NGB and MK.

Proof. We reason in BICT. Assume the right hand side. Let x be given. Form
the singleton s = {x}. Then there is a set t = s ∩ X. Now, we have that
∀y ∈ t. ∃!u. u = ∅. So by Weak Class Replacement the required set z exists.
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Axioms BICT BIMK NGB MK

BIST0 • ◦ ◦ ◦
ZF0 • • •
LEM • •

Universal Sethood • • •
Class Extensionality • • • •

Weak Class Replacement ◦ ◦ • ◦
Strong Class Replacement • • •

Weak Class Comprehension ◦ ◦ • ◦
Strong Class Comprehension • • •

Class Separation • •
Simple Class Comprehension • ◦ ◦

Table 5: Class Theories

Now suppose X is a simple class. Let v be a set. For any x in v, there
exists a set wx such that ∀y.y ∈ wx ⇔ y = ∅ ∧ xηX, and so by Weak Class
Replacement there exists a set vx such that ∀y.y ∈ vx ⇔ y = x ∧ xηX. But
then v ∩X =

⋃
x∈v vx.

Finally, simple classes in BIMK are easily recognizable as just the decidable
classes:

Lemma 2.15. BIMK ` †(X)⇔ ∀x.xηX ∨ ¬xηX.

Proof. By Lemma 2.14, if †(X) then for given x, {x} ∩ X is a set. Therefore
either {x}∩X = {x}, in which case xηX, or {x}∩X = ∅, in which case ¬xηX.
In the other direction, since the intersection of X with a singleton is a set (either
the empty set or the singleton itself), for given x, x ∩X =

⋃
y∈x(X ∩ {y}).

Note that, therefore, if we add the Law of Excluded Middle to BIMK we
obtain MK. That is, BIMK + LEM = MK. We will return to the discussion
of these theories in Section 5 once the appropriate semantic material has been
developed.

3 Models in categories of classes

In this section we introduce the axiomatic theory of categories of classes (as
well as several variants of this notion) and establish soundness and completeness
results for BCST, CST and BIST. Our approach is that of algebraic set theory,
as developed in [17], [26], [11], [8], and [22].

3.1 Axioms for categories with basic class structure

A category C is a positive Heyting category if it is a regular category with disjoint
and stable coproducts such that, for any map f : A //B, the pullback functor
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f∗ : SubC(B) // SubC(A) has a right adjoint f∗ : SubC(A) // SubC(B). A
system of small maps in a positive Heyting category C is a collection S of maps
of C satisfying the following axioms:

(S1) S is closed under composition and all identity arrows are in S.

(S2) If the following is a pullback diagram:

D′ D//

C ′

D′

f ′

��

C ′ C// C

D

f

��

and f is in S, then f ′ is in S.

(S3) All diagonals ∆ : C // C × C are in S.

(S4) If e is a cover (i.e., a regular epimorphism) and g = f ◦ e is in S,

C

A
g ��??????C D

e // // D

A
f��������

then f is in S.

(S5) If f : C // A and g : D // A are in S, then so is the copair [f, g] :
C +D //A.

A map f is called small if it is a member of S, and an object C is called small
if the canonical map !C : C // 1 is small. Similarly, a relation R // // C ×D is
said to be a small relation if the composite:

R // // C ×D //D

with the second projection is a small map. Finally, a subobject A // // C is a
small subobject if A // //C × 1 is a small relation; i.e., exactly when A is a small
object.

Definition 3.1. A category with basic class structure is a positive Heyting
category C with a system of small maps satisfying:

(P1) For each object C of C there exists a power object Ps (C) and a small
membership relation εC // // C × Ps (C) such that, for any D and small
relation R // // C ×D, there exists a unique map ρ : D // Ps C such that
the square:

C ×D C × Ps C
1C×ρ

//

R

C ×D

��

��

R εC// εC

C × Ps C

��

��

is a pullback.

13



As in topos theory we call the unique map ρ in (P1) the classifying map of
R and R the relation classified by ρ.

Categories with basic class structure model a typed version of BCST, de-
veloped in the next subsection. The additional structure required to model
typed versions of the Exponentiation and Powerset axioms will be discussed
below once some properties of categories with basic class structure have been
established.

3.2 The internal language of categories with basic class
structure

The approach contained herein is influenced by the work of Rummelhoff [22] and
is presented in [27] with more detail than in the present exposition. Developing
the internal language in this fashion will expedite the soundness proofs below, as
well as aiding in the discussion of categories of ideals in Section 4. Furthermore,
we will make some use of the internal language to show that the subcategories of
small things have certain category theoretic properties. E.g., if C is a category
with basic class structure, then the subcategory SC of small objects is a Heyting
pretopos.

More generally, the development of the theory via the internal language
allows us to emphasize the contribution of the categorical structure already
present in categories with basic class structure and to compare it with the
additional structure provided by adding a universal object (cf. subsection 3.6
below). Those readers unfamiliar with the use of the internal language of a
category should consult [18] and [15].

Henceforth we will assume that the ambient category C is a category with
basic class structure. The canonical interpretation of a formula ϕ of the internal
language is denoted using Scott brackets [[ϕ]]. We denote by πA the composite

πA : εA // //A× Ps // Ps A.

which can be considered as the indexed family of all small subobjects of A.
Throughout we employ infix notation for certain distinguished relations and
maps as in the use of x εC y for the more cumbersome εC (x, y). We ab-
breviate ∀x1 : X1.∀x2 : X2.∀ . . . .∀xn.Xn.ϕ by ∀x1 : X1, x2 : X2, . . . , xn : Xn. ϕ
and similarly for existential quantifiers. Finally, we write ∀x εC y in place of
∀x : C.x εC y.

Lemma 3.1. 1. A relation R // // C ×D is small iff, for some
ρ : D // Ps C:

C � ∀x : C, y : D.R(x, y)⇔ x εC ρ(y).

2. A map f : C //D is small iff, for some f−1 : D // Ps C:

C � ∀x : C, y : D.f(x) = y ⇔ x εC f−1(y).

14



The following proposition will be one of the most useful tools at our disposal
in the study of categories with basic class structure. Indeed, this proposition
serves to establish the importance of axiom (S3) (which will become all the
more obvious with the introduction of the category of ideals below.

Proposition 3.2. The following are equivalent given (S1), (S2), (S4) and
(P1) (cf. [8] and [22]):

1. (S3), i.e. all diagonals ∆ : C // C × C are in S.

2. Regular monomorphisms are small.

3. If g ◦ f is small then f is small.

4. ∈C : εC // // C × Ps C is a small map.

5. [[x : C, u : Ps C, v : Ps C|x εC u ∧ x εC v]] // // C × (Ps C × Ps C) is a small
relation

6. Sections are small.

Proof. For (1)⇒(2) notice that ∆ is a regular mono and suppose thatm : A // //B
is the equalizer of h, k : B //// C. Then:

B C × C
〈h,k〉

//

A

B

��
m

��

A C
h◦m=k◦m// C

C × C

��
∆

��

is a pullback and m is small by (S2).
To show that (2)⇒(3) suppose regular monos are small and g ◦ f is small

where:

A
f //B

g // C,

and consider the pullback:

A C.
g◦f

//

P

A

p1
��

P B
p2 // B

C.

g
��

There is a canonical map ζ : A // P such that p1 ◦ ζ = 1A. By (S1) f is a
small map.

(3)⇒(1) is trivial. Also (3)⇒(4) is trivial. (4)⇒(1) is by (S2). Both (3)⇒(6)
and (6)⇒(1) are trivial.

For (4)⇒(5) notice that if R // // C × D is a small relation and the map
S // // C × D is small, then R ∧ S is a small relation. (5)⇒(1) is by (S4) and
the fact that:

C � ∀x : C, y : C.x = y ⇔ ∃z : C.z εC {x}C ∧ z εC {y}C ,

where {−}C : C // Ps C exists by (S1).
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Corollary 3.3. All of the canonical maps !A : 0 //A are small and if f : A //B
and g : C //D are small, then f + g : A+ C //B +D is also small.

The reader should be alerted at this point that use of proposition 3.2 and
its corollary will often be made without explicit mention.

Proposition 3.4 (Typed Axioms). The following are true in any category C
with basic class structure:

Extensionality For each object C:

C � ∀a, b : Ps C.(∀x : C.x εC a⇔ x εC b)⇒ a = b.

Emptyset For each object C there exists a map ∅C : 1 // Ps C such that:

C � ∀x : C.x εC ∅C ⇔ ⊥.

Singleton For each object C the singleton map {−}C : C //PsC, which is the
classifying map for the diagonal ∆ : C // //C×C, is a small monomorphism.

Binary Union For each C there exists a map ∪C : Ps C ×Ps C // Ps C such
that:

C � ∀x : C, a, b : Ps C.x εC (a ∪C b)⇔ x εC a ∨ x εC b.

Product For each C and D there exists a map ×C,D : PsC×PsD //Ps (C×D)
such that:

C � ∀x : C, y : D, a : PsC, b : PsD.(x, y) εC×D (a×C,D b)⇔ x εC a∧y εD b.

Pairing For each C there exists a map {−,−}C : C × C // Ps C such that:

C � ∀x, y, z : C.x εC {y, z}C ⇔ x = y ∨ x = z.

Proof. For Extensionality, let the subobject r be given by the following:

[[a, b : Ps C|(∀x : C)(x εC a⇔ x εC b)]] //r // Ps C × Ps C.

By (P1) there exist subobjects S, S′ of C × R classified by π1 ◦ r and π2 ◦ r,
respectively. But by assumption S = S′. Notice that r factors through the
diagonal ∆ iff π1 ◦ r = π2 ◦ r (recall that ∆ is the equalizer of π2 and π2). Thus,
by (P1), R factors through ∆, as required.

For Emptyset it suffices to notice that [[x : C|⊥]] is small.
For Singleton note that by Lemma 3.1 we have that:

[[x, y : C|x εC {y}]] = ∆,
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so that if C � {x}C = {y}C , then C � x = y. To see that {−}C is small notice
that where:

C × C C × Ps C
1C×{−}C

//

C

C × C

∆

��

C εC
p // εC

C × Ps C

∈C

��

we have {−}C = πC ◦ p. But p is small since it has a retraction.
Binary Union follows from the fact that, by (S4) and (S5), the join of two

small subobjects is a small subobject. Product is by (S2). Finally, for Pairing,
the map {−,−}C : C × C // Ps C is the composite ∪C ◦ ({−}C × {−}C).

The foregoing is a good start, but before we can verify the more sophisticated
principles (e.g., Replacement) we must first develop several additional properties
of the categories in question.

Proposition 3.5. Ps (−) is the object part of a covariant endofunctor Ps :
C // C.

Proof. As in [17] or [8].

Henceforth we write f! : Ps C // Ps D instead of Ps (f), where f : C //D.

Corollary 3.6. Where f : C //D:

C � ∀x : D, a : Ps C.x εD f!(a)⇔ ∃y εC a.f(y) = x.

Proof. Easy.

Corollary 3.7. If m : C // //D is monic, then so is m! : Ps C // Ps D. I.e.,

C � ∀x, x′ : Ps C.m!(x) = m!(x′)⇒ x = x′.

Proof. By Typed Extensionality and the internal language.

Corollary 3.8. If m : C // //D is monic, then:

C × Ps C D × Ps D//
m×m!

//

εC

C × Ps C

��
��

εC εD// // εD

D × Ps D

��
��

is a pullback.

Proof. Easy.

Lemma 3.9. Every small map f : C // D gives rise to an (internal) inverse
image map f∗ : Ps D // Ps C.

Proof. As in [17] or [8].

17



Lemma 3.10. If f : C //D is a small map, then:

C � ∀x : C, a : Ps D.x εC f∗(a)⇔ f(x) εD a,

where f∗ is inverse image.

Proof. Easy.

In the following we write ⊆C for the subobject of Ps C × Ps C given by:

⊆C := [[x : Ps C, y : Ps C|∀z εC x.z εC y]].

From this description of ⊆C it easily follows that ⊆C // // Ps C × Ps C is the
equalizer of π1,∩C : Ps C × Ps C // // Ps C and that:

C � ∀x, y : Ps C.x ⊆C y ⇔ x ∩C y = x.

Lemma 3.11. If f : C //D is a small map, then f! a f∗ internally. That is:

C � ∀x : Ps C, y : Ps D.f!(x) ⊆D y ⇔ x ⊆C f∗(y).

Proof. Easy using the internal language.

Lemma 3.12 (Internal Beck-Chevalley Condition). If f : C // D is a small
map and the following diagram is a pullback:

D′ D
g

//

C ′

D′

f ′

��

C ′ C
g′ // C

D

f
��

then f∗ ◦ g! = g′! ◦ (f ′)∗.

Proof. By the external Beck-Chevalley condition.

3.3 Slicing

In this subsection we first show that the structure of categories with basic class
structure is preserved under slicing and prove that small objects are exponen-
tiable.

Theorem 3.13. If C is a category with basic class structure and D is an object
of C, then C/D is also a category with basic class structure.

Proof. The Heyting category structure of C is easily seen to be preserved under
slicing. Also, the collection SD of all maps in C/D that are small in C is plainly
a system of small maps in C/D.
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Where f : C // D is an object in C/D we define the powerobject Ps (f :
C // D) as the composite pf : Vf // // Ps C × D // D where Vf is defined as
follows:

Vf := [[x : Ps C, y : D|f!(x) ⊆D {y}D]].

Notice that by previous results Vf = [[x, y|∀z εC x.f(z) = y]]. Similarly, we
define the membership relation εf as the composite Mf

// //D×C ×Ps C //D
where:

Mf := [[x : D, y : C, z : Ps C|y εC z ∧ ∀x′ εC z.f(x′) = x]].

For further details see [8] or [27].

Lemma 3.14. Given f : B // A in C the pullback functor ∆f : C/A // C/B
preserves all basic class structure.

Proof. See [8] or [27].

We will now show that exponentials DC exist when C is a small object. We
define the exponential in question as a subobject of Ps (C ×D) as follows:

DC := [[R : Ps (C ×D)|∀x : C.∃!y : D.(x, y) εC×D R]].

Lemma 3.15. If C is small, then the following special case of the adjunction
−× C a −C holds:

Hom(C,D) ∼= Hom(1, DC)

That is to say, there exists a natural isomorphism Hom(C,D) ∼= Hom(1, DC).

Proof. By the internal language (cf. [27]).

Now, using the fact that C/E has basic class structure and the pullback
functor ∆!E : C // C/E preserves this structure we arrive at the more general
lemma:

Lemma 3.16. Where C is a small object we have the following natural isomor-
phism:

Hom(E × C,D) ∼= Hom(E,DC)

Corollary 3.17. Small objects are exponentiable.

Proposition 3.18. If f : C // D is a small map, then the pullback functor
∆f : C/D // C/C has a right adjoint Πf .

Proof. Clearly (f : C //D) is a small object in C/D and, hence, exponentiable
there. The existence of the adjoint Πf then follows as usual (cf. [8]).

19



3.4 Additional axioms and the subcategory of small ob-
jects

We can now discuss the categorical forms of the Exponentiation and Powerset
axioms, which will allow us to validate typed forms of the corresponding set
theoretical axioms. We will then discuss the category theoretic structure of the
subcategory SC consisting of small objects for categories C with various forms
of class structure.

Definition 3.2. A category with (predicative) class structure is a category C
with basic class structure which also satisfies the following exponentiation axiom:

(E) If f : C // D is a small map, then the functor Πf : C/C // C/D (which
exists by Proposition 3.18) preserves small maps.

Proposition 3.19. In a category with class structure if C and D are both small,
then so is DC .

Proof. Notice that DC is ΠC ◦∆C(D). Moreover, since D is small so is ∆C(D).
By (E) it follows that DC // 1 is also small.

Proposition 3.20. If C is a category with class structure and D is an object
of C, then C/D also has class structure.

Proof. Use the fact that (C/D)/f ∼= C/ dom(f).

Up to this point all of the categories considered in this section will allow
us only to model predicative set theories. The following axiom will ultimately
allow us to model the impredicative set theory BIST.

Definition 3.3. A category with powered class structure is a category C with
basic class structure which also satisfies the following powerset axiom:

(P2) The subset relation ⊆C // // Ps C × Ps C is a small relation.

Proposition 3.21. If C is a category with powered class structure and D is an
object of C, then C/D also has powered class structure.

Proof. (P2) is equivalent to the claim that, for any object D of C, if C is small
in C/D, then Ps C is small in C/D. But this condition is clearly preserved by
slicing.

In the following proposition and theorem we will be concerned with the
properties of the full subcategory SC := S/1 of C consisting of small objects and
small maps between them.

Proposition 3.22. Let C be a category with basic class structure. If ∂0, ∂1 :
R // // C × C is an equivalence relation in SC, then the coequalizer of ∂0 and ∂1

exists in SC and ∂0, ∂1 is its kernel pair.
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Proof. We define the quotient C/R by:

C/R := [[z : Ps C|∃x : C.∀y : C.y εC z ⇔ R(x, y)]].

Notice that since ∂0 and ∂1 are small maps so is 〈∂0, ∂1〉 : R // //C×C. As such,
〈∂0, ∂1〉 is also a small relation and there exists a unique α : C // Ps C such
that:

C × C C × Ps C
1×α

//

R

C × C

��
��

R εC
p // εC

C × Ps C

��
��

is a pullback. That is:

C � ∀x, y : C.R(x, y)⇔ x εC α(y).

By Typed Extensionality it follows that C/R is the image of α:

im(α) = [[z : Ps C|∃x : C.α(x) = z]],

and, as such, that α factors through i : C/R // // Ps C via a cover ᾱ. Moreover,
by (P1), ᾱ ◦ ∂0 = ᾱ ◦ ∂1 since 〈∂0, ∂1〉 is an equivalence relation. Notice that
since C is small it follows that ᾱ is a small map and, by (S4), that C/R is a
small object.

Finally, we will show that ∂0, ∂1 is the kernel pair of ᾱ; i.e., that:

C C/R
ᾱ

//

R

C

∂0
��

R C
∂1 // C

C/R

ᾱ
��

is a pullback. Let an object Z and maps z0, z1 : Z //// C be given such that
ᾱ◦z0 = ᾱ◦z1. Then we also have that α◦z0 = α◦z1. Define a map η : Z // εC
by η := p ◦ r ◦ z0, where r is the ‘reflexivity’ map. Then we have:

∈ ◦η = 〈∂0, α ◦ ∂1〉 ◦ r ◦ z0

= 〈z0, α ◦ z0〉
= (1C × α) ◦ 〈∂0, ∂1〉.

By the universal property of pullbacks there exists a unique map η̄ : Z // R
with p ◦ η̄ = η and 〈∂0, ∂1〉 ◦ η̄ = 〈z0, z1〉. Moreover η̄ is the unique map from Z
to R such that ∂0 ◦ η̄ = z0 and ∂1 ◦ η̄ = z1. It follows from the fact that covers
coequalize their kernel pairs that ᾱ is a coequalizer of ∂0 and ∂1. It is easily
seen that if Z together with z0 and z1 are in SC , then so is η̂.

Theorem 3.23. If C has basic class structure, then SC is a Heyting pretopos.
If C has class structure, then SC is a Π-pretopos. If C has full class structure,
then SC is a topos.
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Proof. By Proposition 3.22 SC has coequalizers of equivalence relations. It suf-
fices to show that SC is a positive Heyting category. But, this structure is easily
seen exist since C is a positive Heyting category. For instance, to show that SC
has disjoint finite coproducts note that if C and D are small objects then so is
C + D together with the maps C // C + D and D // C + D by (S5). Dis-
jointness and stability are consequences of (S3). Similarly, by the description
of C ×D as the pullback of !C along !D, it follows that C ×D is a small object
when C and D are. SC is seen to be regular by (S3). Finally, for dual images,
let a map f : C //D and a subobject m : S // //C be given in SC . Consider the
subobject i : ∀f (m) // //D. Notice that, in general, if a monomorphism C // //D
in a category C with basic class structure is small, then it is also regular since it
is a pullback of the section > : 1 // Ps 1. Moreover since, by Proposition 3.18,
Πf exists and is a right adjoint, it follows that i is a small map.

Proposition 3.19 implies that SC is a Π-pretopos when C has class structure.
Finally, the fact that 1 is a small object in C implies that SC is a topos when C
has full class structure.

3.5 Typed union and replacement

We now show that typed versions of Union and Replacement are valid in cate-
gories with basic class structure. To this end, we introduce a typed version of
the ‘ Sz.ϕ’ notation from (1) above as follows:

Sx : C.ϕ := ∃y : Ps C.∀x : C.(x εC y ⇔ ϕ),

where y /∈ FV(ϕ).

Lemma 3.24. A relation R // // C ×D is small if and only if C � ∀y : D. Sx :
C.R(x, y).

Proof. Suppose R // //C×D is a small relation and ρ : D //PsC is the classifying
map. Then by Lemma 3.1 we have C � ∀y : D.∀x : C.R(x, y)⇔ x εC ρ(y). The
conclusion may be seen to follow from this (use ρ to witness the existential).

For the other direction suppose C � ∀y : D. Sx : C.R(x, y). Then, by Typed
Extensionality:

C � ∀y : D.∃!z : Ps C.∀x : C(x εC z ⇔ R(x, y)),

and there is a map ρ : D // Ps C with the requisite property.

Proposition 3.25 (Typed Union). For all C:

C � ∀a : Ps (Ps C). Sz : C.∃x εPs C a.z εC x.

Proof. Let H be defined as:

H := [[x : C, y : Ps C, z : Ps (Ps C)|y εPs C z ∧ x εC y]],
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and note that the projection:

H // // C × Ps C × Ps (Ps C) // Ps (Ps C)

is small. By (S4) it follows that [[x : C, z : Ps (Ps C)|∃y εPs C z ∧ x εC y]] is a
small relation. We write

⋃
C : Ps (Ps C) // Ps C for the classifying map.

Proposition 3.26 (Typed Replacement). For all C and D:

C � ∀a : Ps C.(∀x εC a.∃!y : D.ϕ)⇒ ( Sy : D.∃x εC a.ϕ).

Proof. Let a : 1 // Ps C be given with 1  ∀x εC a.∃!y : D.ϕ. Let α // // C
be the small subobject classified by a. Then the assumption yields a map
f : α // C //D such that:

Γ(f) = [[x : α, y : D|ϕ(x, y)]].

Moreover, the image of f is the subobject:

I := [[y : D|∃x εC a.ϕ(x, y)]].

Since α is a small subobject it follows by (S4) that I is also a small subobject.
We may now pull the general problem back as usual.

3.6 Universal objects and categories of classes

The set theories introduced in Section 2 are untyped (or, as we prefer to think
of things, mono-typed) theories; yet the internal languages of the categories
we have been considering are typed languages. As such, we will introduce a
technical device which will allow us to model untyped theories. The use of
universal objects for this purpose originated in [26] and has its roots in Scott’s
earlier work on modelling the untyped lambda calculus (cf. [23]) in the type
calculus.

Definition 3.4. A universal object in a category C is an object U of C such
that for any object C there exists a monomorphism m : C // // U . Similarly, in
a category C with basic class structure, a universe is an object U together with
a monomorphism ι : Ps (U) // // U .

Notice that the monomorphismsm and ι in the definition need not be unique.
Here we consider universal objects in categories with various forms of class
structure. Note that such an object is always a universe. In Section 4.5 we will
see how to turn a universe into a universal object.

Definition 3.5. A basic category of classes is a category C with basic class
structure satisfying the additional universal object axiom:

(U) There exists a universal object U .
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Similarly, a category of classes is a category with class structure satisfying (U)
and a powered category of classes is a category with powered class structure
satisfying (U).

We will now turn to proving that BCST is sound and complete with respect
to models in basic categories of classes, that CST is sound and complete with
respect to models in categories of classes, and that BIST is sound and complete
with respect to models in powered categories of classes.

3.7 Soundness and completeness

In order to interpret the theories in question in basic categories of classes (re-
spectively, categories of classes or powered categories of classes) we must choose
a monomorphism ι : Ps U // //U (this is because (U) is consistent with the exis-
tence of multiple monos Ps U // // U). This presents no difficulty constructively
since, in the examples considered below, the models are constructed with a dis-
tinguished ι already in mind. An interpretation of BCST in a basic category of
classes C is a conventional interpretation [[−]] of the first-order structure (∈,S)
with respect to the object U , determined by the following conditions:

• [[S(x)]] is defined to be:
Ps U // ι // U.

• [[x ∈ y]] is interpreted as the subobject:

εU //∈ // U × Ps U //1×ι // U × U.

Remark. We write (C, U) � ϕ to indicate that ϕ is satisfied by the interpretation.
As above C � ϕ indicates that ϕ is true in the internal language and Z  ϕ
means that Z forces ϕ.
Several technical lemmas are needed in order to transfer results about the typed
internal language to the untyped set theories in question.

Lemma 3.27. If a : 1 // U and 1  S(a) via some map ā : 1 // Ps U (i.e.,
ι ◦ ā = a), then:

[[x|S(x) ∧ (∀y)(y ∈ x⇒ y ∈ a)]] = Ps α,

where i : α // // U is the small subobject classified by ā and Ps α is regarded as a
subobject of U via ι ◦ i!.

Proof. See [27].

Theorem 3.28 (Soundness of BCST). BCST is sound with respect to models
in basic categories of classes.

Proof. The Membership axiom is trivial, and all of the other axioms follow
from the fact that their typed analogues are valid in the internal languages of
categories with basic class structure (see Propositions 3.4, 3.25 and 3.26).
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In order to prove the soundness of CST one needs the following lemma:

Lemma 3.29. If a, b : 1 //// U factor through ι via ā and b̄, respectively, and
i : α // // U and j : β // // U are the subobjects classified by ā and b̄, respectively,
then:

βα = [[z|z ⊆ a× b ∧ ∀x ∈ a.∃!y ∈ b.〈x, y〉 ∈ z]],

where the exponential βα is regarded as a subobject of U .

Proof. Straightforward, see [27].

Theorem 3.30 (Soundness of CST). CST is sound with respect to models in
predicative categories of classes.

Proof. All that remains to be checked is that (C, U) � Exponentiation where C
is a predicative category of classes.

First, observe that for any a, b : 1 //U factoring through ι : Ps U // //U via
maps ā and b̄, respectively, the subobject [[z| func(z, a, b)]] is small. For there
exist small subobjects α and β of U corresponding to ā and b̄. And since these
subobjects are small, so is the exponential βα by Proposition 3.19. By the
foregoing lemma and Proposition 3.27, it follows that:

βα = [[z|z ⊆ a× b ∧ ∀x ∈ a.∃!y ∈ b.〈x, y〉 ∈ z]] (3)
= [[z| func(z, a, b)]].

The result now follows from the fact that, given a, b : Z //// U such that
Z  S(a) ∧ S(b), we may pull the problem back to C/Z along ∆!Z .

Theorem 3.31 (Soundness of BIST). BIST is sound with respect to models
in powered categories of classes.

Proof. By (P2), the relation ⊆U // //Ps U ×Ps U is small and has a classifying
map ρ : Ps U // Ps Ps U . Therefore:

(C, U) |= ∀x : Ps U.∃z : Ps Ps U.∀y : Ps U.y εPs U z ⇔ y ⊆U x.

whence

(C, U) |= ∀x : U.S(x)⇒ ∃z : U.S(z) ∧ ∀y : U.y ∈ z ⇔ y ⊆ x,

as required.

In order to prove completeness theorems for BCST, CST and BIST we
employ the familiar syntactic category construction discussed e.g. in [15]. It
provides an illuminating perspective on the theory of small maps and its relation
to logical definability. This approach to completeness theorems for algebraic set
theory is to be found in [8] and was originally used in [26]. For proofs of the
relevant facts the reader is referred therefore to [8], [12] and [27].
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Theorem 3.32 (Completeness). For any formula ϕ of L, if (C, U) � ϕ for
all models (C, U) with C a category of classes, then BCST ` ϕ. Similarly, if
(C, U) � ϕ for all models with C a predicative category of classes, then CST ` ϕ.
Finally, if (C, U) � ϕ for all models with C a full category of classes, then
BIST ` ϕ.

Proof. As indicated above the proof proceeds by defining, for the theory T
(whichever of the set theories of which we are proving the completeness), the
syntactic category CT of T and showing that it is a category of classes of the
appropriate kind. Specifically, the objects of CT are α-equivalence classes of
formulae in context, which are written {~x|ϕ}. An arrow {~x|ϕ} // {~y|ψ} is
then a provable equivalence class of formulae θ in context with FV(θ) ⊆ {~x, ~y}
which are provably functional. Maps are written as [θ]. As in [8] small maps
are defined to be those maps [θ] : {~x|ϕ} // {~y|ψ} such that:

ψ `~y S~x.θ(~x, ~y)

is provable in T . Given an object {~x|ϕ} of BCST the powerobject is given by
the following definition:

Ps ({ϕ}) := {~y|S(~y) ∧ ∀~x ∈ ~y.ϕ}.

Finally, the universal object U is defined as follows:

U := {u|u = u}.

Completeness then follows from the completeness of logic with respect to the
universal model in the syntactic category (cf. [15]).

We obtain analogous theorems for the theories BCST+, CST+ and BIST+,
obtained by augmenting the theories in question with the Axiom of Infinity,
if we restrict attention only to those basic categories of classes (respectively,
categories of classes or powered categories of classes) C such that there exists a
natural number object in the subcategory SC of small objects and maps.

4 The category of ideals

In this section we introduce and study the category of ideals Idl(C) over a
category C. The category of ideals arises, as it turns out, as the full subcategory
of sheaves Sh(C) on C consisting of exactly those sheaves with small diagonals,
for a suitable notion of small map in the category of sheaves. Basic properties
of Idl(C) are developed in Section 4.1. In Section 4.2 we prove that if C is a
topos, then Idl(C) is a category with powered class structure. The predicative
analogue of this result is proved in Section 4.3 where it is shown that Idl(C)
has basic class structure when C is a Heyting pretopos. In Section 4.4 we show
that Idl(C) has class structure when C is a Π-pretopos. Finally, in Section 4.5
we show how to add a universal object, and we state our main new results. We
conclude the section by considering a special property of ideals related to the
set-theoretic axiom scheme of Collection.
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4.1 Small maps in sheaves

Let a small pretopos E be given. Consider the category Sh(E) of sheaves on
E , for the coherent covering [16, A2.1.11(b)], consisting of finite epimorphic
families. Recall that the Yoneda embedding y : E ↪→ Sh(E) is a full and faithful
Heyting functor [15, D3.1.17].

We intend to build a class category in Sh(E) in which the representables
are the small objects. First, we define a system S of small maps on Sh(E) by
including in S just the morphisms of Sh(E) with ‘representable fibers’ in the
following sense:

Definition 4.1 (Small Map). A morphism f : A //B in Sh(E) is small if for
any morphism with representable domain g : yD // B, there exists an object
C in E , and morphisms f ′, g′ in Sh(E) fitting into a pullback as follows:

A B.
f

//

yC

A

g′ ��

yC yD
f ′ // yD

B.

g
��

Thus, in this sense, small maps pull representables back to representables.

Proposition 4.1. S satisfies axioms (S1), (S2), and (S5).

Proof. (S1) and (S2) follow easily from the familiar two pullbacks lemma.

For (S5), the pullback of, say, yD h // C along (f, g) : A + B // C is the
coproduct of the pullback of h along f and of h along g. But this is representable,
since representables are closed under finite coproducts in Sh(E).

We move to consider (S3). A directed diagram (in any category C) is a
functor I // C where I is a directed preorder. A small directed diagram in
C in which (the image of) every morphism is a monomorphism in C we shall
call an ideal diagram. An ideal diagram has no non-trivial parallel pairs, and
is therefore also a filtered diagram (and every small filtered diagram in which
the image of every morphism is a monomorphism can be reindexed as an ideal
diagram).

Definition 4.2 (Ideal over E). An object A in the category Ê = SetsE
op

of
presheaves is an ideal over E if it can be written as a colimit of an ideal diagram
I // E of representables,

A ∼= lim−→
I

(yCi).

We denote the full subcategory of ideals in Ê by Idl(E).

Lemma 4.2. Every ideal is a sheaf.
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Proof. Since an ideal diagram is a filtered diagram, filtered colimits commute
with finite limits, being a sheaf is a finite limit condition, and all representables
are sheaves, all such presheaves are also sheaves.

In accordance with a conjecture by André Joyal, it now turns out that the
ideals over the pretopos E are exactly the sheaves for which (S3) holds, i.e. for
which the diagonal A // //A×A is a small map.

Lemma 4.3. Any sheaf F can be written as a colimit (in Ê) of representables
F ∼= lim−→I

(yCi) where I has the property that for any two objects i, j in I, there
is an object k in I and morphisms i // k and j // k.

Proof. We may write a sheaf F as the colimit of the composite functor:∫
F

π // E
y // Ê ,

where
∫
F is the category of elements of F , and π is the forgetful functor. The

objects in Sh(E) can be characterized as the functors Eop // Sets which pre-
serve monomorphisms and finite products. It follows that

∫
F has the required

property, since for any two objects (A, a), (B, b) in
∫
F (with a ∈ FA, b ∈ FB),

(A, a) (A+B, 〈a, b〉)// (A+B, 〈a, b〉) (B, b).oo

(By the coproduct A+B, we mean the coproduct in E , hence the product A×B
in Eop, which is sent to the product FA× FB in Sets.)

Theorem 4.4. For any sheaf F , the following are equivalent:

1. F is an ideal.

2. The diagonal F // // F × F is a small map.

3. For all arrows with representable domain f : yC // F , the image of f in
sheaves is representable, f : yC // // yD // // F , for some D in E.

Proof. (1)⇒(2):
We write F as an ideal diagram of representables, F = lim−→I

(yCi). Note that
the pullback of any arrow f : A //F ×F along ∆ : F //F ×F is the equalizer
of the pair π1f, π2f : A //// F . Thus let g, h : yD //// F be given, and we must
verify that their equalizer e : E // // yD is representable. Recall that, in Ê , if we
are given a colimit lim−→I

(yCi) and an arrow f : yX // lim−→I
(yCi), then f factors

through the base of the colimiting cocone, i.e.

yX

lim−→I
(yCi)

f !!DDDDDyX yCi
e // yCi

lim−→I
(yCi)

fi}}zzzzz
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for some e and some i (where fi is an arrow of the colimiting cocone). Hence
we may factor h as fi ◦ eh : yX // yCi // lim−→I

(yCi) and g as fj ◦ eg :
yX // Cj // lim−→I

(yCi). Since the diagram is directed, there is a Ck and
arrows u, v such that the two triangles in the following commute:

yCj yCk// v //

yD

yCj

eg

��

yD yCi
eh // yCi

yCk

��
u

��

yCi

F.

��

fi

��//////////////

yCk

F.

��
fk

??

��???

yCj

F.

''

fj

''OOOOOOOOOOOOO

Since fk is monic, the equalizer e : E // // yD of h = fkueh and g = fkveg
is precisely the equalizer of ueh and veg. But Yoneda preserves and reflects
equalizers, so we may conclude that the equalizer of h and g is representable,
E ∼= yC for some C.

(2)⇒(3):

Let yD
f // F be given. The kernel pair k′1, k

′
2 of f can be described as the

pullback:

yD × yD F × F.
f×f

//

K ′

yD × yD
(k′1,k

′
2)

��

K ′ F// F

F × F.
∆

��

Since yD×yD ∼= y(D×D) is representable and the diagonal of F is small, K ′ is
representable, K ′ ∼= yK. Hence, for suitable k1, k2 : K // // D, we may rewrite
the kernel pair as

yK
yk1 //
yk2

// yD
f // F.

The kernel pair is an equivalence relation in Ê . Since Yoneda is full and faithful
and cartesian, k1, k2 : K // //D is an equivalence relation in E . Since E is effective,
there is a coequalizer

K
k1 //
k2

//D
e // // E,

such that k1 and k2 is the kernel pair of e. Since the Yoneda embedding preserves
pullbacks and covers into Sh(E),

yK
yk1 //
yk2

// yD
ye // // yE
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is a coequalizer diagram in Sh(C). This gives us, then, the required epi-mono
factorization:

yD

yE.

ye �� ��??????yD F
f // F

yE.

??

??������
yK yD

yk1 //
yK yD

yk2

//

(3)⇒(1):
Step 1: To construct an ideal diagram of representables.
We write F as a colimit F = lim−→I

(yDi), in accordance with Lemma 4.3 (so
that I is the category of elements of F ). Now, for each i ∈ I, factor in sheaves
the cocone arrow fi : yDi

// F :

yDi

yEi.
yei !! !!DDDDDyDi F

f // F

yEi.

==

mi==zzzzz

For u : yDi
// yDj in the diagram I, consider the following:

yDj yEjyej

//

yDi

yDj

u

��

yDi yEi
yei // yEi

yEj

��
v

���
�
�

F.

yEj

77
mj

77oooo

yEi

F.

'' mi

''OOOOyEi

yEj

��

���
�
�

Since fi = fju, it follows that fi factors through yEj , which gives us the mono
v, making the triangle in the diagram commute (to see this, the diagram must
be considered in Sh(E), where ei is a cover). Since mj is monic, the square
commutes.

The new diagram I ′ of the yEi and v thus obtained is an ideal diagram,
since I has the directedness property described in Lemma 4.3, and any parallel
pair of arrows in I collapse in I ′ by the construction.

Step 2: To show F ∼= lim−→I′
(yEi)

Observe that the maps yei, for i in I, in the diagram above induce a mor-
phism e : lim−→I

yDi
// lim−→I′

yEi, and the maps mi induce a monomorphism
lim−→I′

yEi // // F , such that the following commutes:

lim−→I
yDi

F.

∼= ��?????
lim−→I

yDi lim−→I′
yEi

e // lim−→I′
yEi

F.

��
m�������

Thus m is also an isomorphism.
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In order to ensure that (S3) is satisfied, we therefore narrow our attention
from Sh(E) to the full subcategory of ideals, denoted Idl(E). We shall see that
no further restriction is needed. First, we verify that Idl(E) is a positive Heyting
category:

Lemma 4.5. Idl(E) is closed under subobjects and finite limits.

Proof. We use the description of ideals as sheaves with small diagonal. That
Idl(E) is closed under subobjects follows from (S2). Notice that, since it is an
isomorphism, ∆ : 1 // // 1× 1 is small. If A, B are ideals and C is any sheaf, we
consider the pullback:

A C
f

//

D

A

k1
��

D B
k2 // B

C

g
��

Now, if we pull the diagonals back:

D ×D A×A
k1×k1

//

A1

D ×D
α

��

A1 A// A

A×A
∆

��
D ×D B ×B

k2×k2
//

B1

D ×D
β

��

B1 B// B

B ×B
∆

��

By a diagram chase, the diagonal of D is A1∩B1, which is small since smallness
is preserved by pullback and composition. We draw the diagram in which to
chase:

A1 ∩B1

A1

��������
A1 ∩B1

B1

��??????

A1

D ×D
��?????? B1

D ×D
��������

A1

A
���������

B1

B
��??????

A

A×A
∆ ��??????? B

B ×B
∆���������

D ×D

B ×B

k2×k2

��???????D ×D

A×A

k1×k1

���������

A×A

A

πA1

��

A×A

A

πA2

��

B ×B

B

πB1

��

B ×B

B

πB2

��

D ×D

D

πD1

��

D ×D

D

πD2

��

A

C

f
???

��???

B

C

g���

�����

D

A

k1
��

����

D

B

k2

??

��??

Where all squares not involving projections are pullback squares.
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Lemma 4.6. Idl(E) is closed under finite coproducts, and inclusion maps are
small.

Proof. 0 // 0× 0 is iso, so small.
Now, the terminal object 1 in Sh(E) is representable, and so is 1 + 1, since

Yoneda preserves finite coproducts. The inclusion i1 : 1 // 1 + 1 is therefore
small. But coproducts in Sh(E) being disjoint, the following is a pullback:

A+B 1 + 1
!A+!B

//

A

A+B

iA
��

A 1// 1

1 + 1

i1
��

So by (S2), the inclusion map iA is small.
The diagonal of A+B can be regarded as the disjoint union of the diagonal

of A and of B:

A×A (A+B)× (A+B)//___

A

A×A

∆
��

A A+B
pA // A+B

(A+B)× (A+B)

∆
��

(A+B)× (A+B) B ×Boo ___

A+B

(A+B)× (A+B)
��

A+B Boo pB
B

B ×B

∆
��

A×A (A+B)× (A+B)//___A×A

(A×A) + (A×B) + (B ×A) + (B ×B)
pA×A ((RRRRRRRRRRR (A+B)× (A+B)

(A×A) + (A×B) + (B ×A) + (B ×B)

OO
∼=

(A+B)× (A+B) B ×Boo ___(A+B)× (A+B)

(A×A) + (A×B) + (B ×A) + (B ×B)

OO
∼=

B ×B

(A×A) + (A×B) + (B ×A) + (B ×B)
pB×Bvvlllllllllll

By smallness of coproduct inclusions and isos, and applying (S5), if A,B are
ideals then so is A+B.

Proposition 4.7. Idl(E) is positive Heyting, with the structure inherited from
Sh(E).

Proof. We have done finite limits and finite coproducts. For a morphism f :
A //B of ideals, im(f) is an ideal, since there is a monomorphism im(f) // //B.
The cover e : A // // im(f) is the coequalizer of its kernel pair in Sh(E), the
kernel pair is the same in Idl(E), so e is also a regular epimorphism in Idl(E).

For dual images, since Idl(E) is closed under subobjects and finite limits can
be taken in sheaves, dual images can also be taken in sheaves.

Lemma 4.8. (S4) is satisfied in Idl(E).

Proof. Let a : A // //B and b : B // C be given, and assume b ◦ a is small. Let
yG // C be given, and consider the following two pullbacks diagram:

A B
a

// //

yD

A
��

yD E// // E

B
��
B C

b
//

E

B
��

E yG// yG

C
��

By Theorem 4.4, the image of a representable is a representable in Idl(E). Hence
E in the diagram above is representable.
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We summarize the results of this subsection:

Theorem 4.9. For any pretopos E, the full subcategory Idl(E) ↪→ Sh(E) of
ideals is a positive Heyting category with a system of small maps satisfying
axioms (S1)-(S5).

We conclude by noting a characterizing feature of Idl(E) of which we make
extensive use in the following sections. Namely, Idl(E) is the ideal completion
of E , in the following sense:

Proposition 4.10. Idl(E) has colimits of ideal diagrams and if C is a category
with ideal colimits, and F : E //C is a functor which preserves monomorphisms,
then there is a unique (up to natural isomorphism) extension F̃ : Idl(E) // C
of F such that F̃ is ideal continuous, in the sense of preserving ideal colimits,
and such that the following commutes up to isomorphism:

Idl(E) CF̃ //Idl(E)

E

OO

y

C

E

::

F

uuuuuuuuuuuuu

Proof. Idl(E) has colimits of ideal diagrams since any such diagram is an ideal
diagram of representables (cf. [15, C2]). Given F , write E = lim−→I

(yCi) and set
F̃ (E) = lim−→I

(FCi).

4.2 Powerobjects in Idl(E) for a Topos E
In this section, we will show that when E is a topos Idl(E) is a category with
powered class structure. To this end all that remains is to verify is that axioms
(P1) and (P2) are satisfied in Idl(E). For this we will use the topos power-
objects from E to construct powerobjects in Idl(E). We rely heavily on the
characterization of Idl(E) as the colimits of ideal diagrams of representables.

In a topos E , the covariant powerobject functor P : E → E , which sends an
object A to its powerobject PA and a morphism f : A // B to the (topos)
direct image morphism Pf : PA //PB, preserves monomorphisms. Therefore,
if we have an ideal A = lim−→i∈I(yAi) in Sh(E), we may apply P (−) to obtain
another ideal Ps A = lim−→i∈I(yPAi).

Lemma 4.11. Let A = lim−→i∈I(yAi) where I is an ideal diagram. Then the ideal
PsA := lim−→i∈I(yPAi) together with the relation εA := lim−→i∈I(yεAi

) // //A×PsA
satisfies axiom (P1).

Proof. First, we should complete the definition of the subobject εA. In any
class category, and in any topos, any monomorphism u : A // // B leads to the
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following pullback:

A× PA B × PB
u×Pu

//

εA

A× PA

��
��

εA εB// εB

B × PB

��
��

Now, take A = lim−→I
(yAi). Let u : yAi // // yAj be an arrow of that diagram.

Since I is filtered, lim−→I
(yAi)×lim−→I

(yPAi) ∼= lim−→I
(y(Ai×PAi)), and the pullback

y(Ai × PAi) y(Aj × PAj)
u×Pu

//

yεAi

y(Ai × PAi)

��
��

yεAi yεAj

εu // yεAj

y(Aj × PAj)

��
��

serves to illustrate what the arrows are in the diagram εA := lim−→i∈I(yεAi), and
what the monomorphism εA // // A × Ps A is. It follows from the construction
that εA is a small relation.

Now let yC // // A be a small subobject of the ideal A = lim−→I
(yAi). The

inclusion arrow yC // // lim−→I
(yAi) factors through some colimiting cocone mor-

phism yAi // // A, and we get the following diagram, in which γ : 1 // PAi
classifies C // //Ai:

lim−→I
(yAi)× 1 lim−→I

(yAi × yPAi)//

yAi × 1

lim−→I
(yAi)× 1

��
��

yAi × 1 yAi × yPAi
Id×γ // yAi × yPAi

lim−→I
(yAi × yPAi)

��
��

yAi × 1 yAi × yPAi//

yC

yAi × 1

��
��

yC yεAi
// yεAi

yAi × yPAi

��
��

yAi × yPAi lim−→I
(yAi × yPAi)// //

yεAi

yAi × yPAi

��
��

yεAi
lim−→I

(εyAi
)// // lim−→I

(εyAi
)

lim−→I
(yAi × yPAi)

��
��

lim−→I
(yAi × yPAi)

lim−→I
(yAi × yPAi)

tt
= 44iiiiiiiii

from which we can conclude that the global point 1
γ // yPAi // // lim−→I

(yPAi)
classifies yC // // A. We now observe that nothing prevents this argument from
going through in the slightly more general case when yC is a small relation
yC // //A× yD, for some fixed D ∈ E , so that we instead get a classifying map
ρ : yD // Ps A such that:

A× yD A× Ps A
Id×ρ

//

yC

A× yD

��
��

yC εA// εA

A× Ps A

��
��

For the general situation with an ideal X ∼= lim−→J
(yCj), consider a small relation

R // //A×X. Since π2 : R //X pulls representables back to representables, and
since pullbacks commute with filtered colimits, we obtain a reindexing of R as
a colimit of a diagram over J of representables π∗2(yDj) =: yCj by considering
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the pullback:

R X
π2

//

lim−→J
(π∗2(yDj))

R

∼= ��

lim−→J
(π∗2(yDj)) lim−→J

(yDj)// lim−→J
(yDj)

X

∼=��

This allows us to consider each index j ∈ J separately. Applying the forego-
ing case to each yCj // // A × yDj gives a cocone of classifying arrows ρj :
yDj

// Ps A making pullbacks:

A× yDj A× Ps A//

yCj

A× yDj

��
��

yCj εA// εA

A× Ps A

��
��

We thus have the classifying map X //Ps A, as the unique one determined by
the cocone (ρj)j .

It follows from Lemma 4.11 and Theorem 4.9 that for ideal diagrams I and
J , if lim−→I

(yCi) ∼= lim−→J
(yDj), then lim−→I

(yPCi) ∼= lim−→J
(yPDj), as the system of

small maps determine the power objects up to isomorphism in a class category
((P2) not needed). Hence power objects for ideals may be defined in the manner
of Lemma 4.11.

Lemma 4.12. If E is a topos, then Idl(E) satisfies axiom (P2).

Proof. We need to construct an internal power set map P : Ps A // Ps Ps A,
that is, a classifying map for ⊆A // //PsA×PsA. If A = lim−→I

(yAi), then PsA =
lim−→I

(yPAi) and Ps Ps A = lim−→I
(yPPAi). In any category with powered class

structure, E in particular, the following square commutes for any f : A //B:

PB PPB
PB

//

PA

PB

P (f)

��

PA PPA
PA // PPA

PPB

PP (f)

��

and if f is a monomorphism, then the square is a pullback. This allows us
to construct the power set map P : Ps A // Ps Ps A directly out of the maps
PAi : PAi // PPAi for i ∈ I. Correspondingly, in a category with powered
class structure, E in particular, if f : Ai // //Aj is a monomorphism, then

PAi × PAi PAj × PAj//
Pf×Pf

//

⊆Ai

PAi × PAi

��

��

⊆Ai
⊆Aj

// // ⊆Aj

PAj × PAj

��

��
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is a pullback, and we can define the subobject lim−→I
(y ⊆Ai) // // lim−→I

(yAi) ×
lim−→I

(yAi) = Ps A× Ps A. It is now straightforward to verify that

lim−→I
(PAi)× lim−→I

(PAi) lim−→I
(PAi)× lim−→I

(PPAi)
Id×P

//

lim−→I
(⊆Ai

)

lim−→I
(PAi)× lim−→I

(PAi)
��

lim−→I
(⊆Ai

) lim−→I
(εPAi

)// lim−→I
(εPAi

)

lim−→I
(PAi)× lim−→I

(PPAi)
��

is a pullback, and the verification that lim−→I
(⊆Ai) ∼= ⊆A is a similar diagram

chase.

To summarize, then:

Theorem 4.13. If E is a topos, then Idl(E) is a category with powered class
structure with respect to the small maps given in Lemma 4.11.

4.3 Predicative Powerobjects in Idl(C)
We will strengthen the result of the foregoing section by showing that even
if C is only a Heyting pretopos the category Idl(C) is a category with basic
class structure. In light of Theorem 4.9 it remains to identify the powerobject
structure on Idl(C). This is made more complicated than in the topos case due
to the fact that the category C does not possess a powerobject structure of its
own.

In order to motivate the definition of the powerobjects Ps (X) in Idl(C)
notice that when E is a topos and C is an object of E we have Ps (yC) ∼= y(ΩC)
and at any object E in E :

Ps (yC)(E) ∼= y(ΩC)(E)
= HomE(E,ΩC)
∼= HomE(E × C,Ω)
∼= SubE(E × C).

Dropping both the assumption that the indexing category is a topos and that we
are working in presheaves, we therefore adopt the following provisional definition
of the powerobject of yC in Idl(C):

Ps (yC) := SubC(−× C),

where the contravariant action is by pullback. We then extend Ps (−) continu-
ously to ideals X = lim−→i

yCi by:

Ps (X) := lim−→
i

Ps (yCi).

We will show that this definition of Ps (X) is justified by first showing that
SubC(−× C) is indeed an ideal and then that the functor:

C
Subr
C // Idl(C)

C � // SubC(−× C),

36



preserves monomorphisms. We then apply Proposition 4.10 to obtain an exten-
sion Ps : Idl(C) // Idl(C) which will be seen to be a powerobject functor in the
sense of satisfying (P1).

Similarly, the membership relation εX // // X × Ps X is defined as the
restriction of the sheaf (hence also of the presheaf) membership relation to
Ps X. Explicitly, for a representable yC, an ideal X := lim−→i

yCi and an object
D of the base category C:

εyC (D) := {〈f, S〉 ∈ yC(D)× Ps (yC)(D)|Γ(f) ≤ S}, and
εX := lim−→

i

εyCi
,

where Γ(f) // //D×C is the graph of f and ≤ is the partial ordering of subobjects
in C. I.e., Γ(f) ≤ S indicates that in SubC(D × C) the subobject Γ(f) factors
through S. We first prove that the foregoing definition of powerobjects in Idl(C)
does actually determine an ideal.

Lemma 4.14. If C is a pretopos and C is an object of C, then the purported
powerobject presheaf Ps (yC) := SubC(−× C) is a sheaf.

Proof. Notice that Ps (yC)(0) ∼= {∗} and, since coproducts in C are stable,
Ps (yC)(A+B) ∼= Ps (yC)(A)×Ps (yC)(B). Suppose f : A � ,2B is a cover and
let h, k : Z // // SubC(B×C) be given such that SubC(f×C)◦h = SubC(f×C)◦k.
Then, for any z ∈ Z, h(z), k(z) ∈ SubC(B×C) and the pullback P of h(z) along
f ×1C is also the pullback of k(z) along f ×1C . But covers are preserved under
pullback in C so that h(z) = k(z) by the uniqueness of image factorizations.

Proposition 4.15. If C is a Heyting pretopos and C is an object of C, then the
purported powerobject Ps (yC) is an ideal.

Proof. Since C is effective it suffices by Proposition 4.4 to show that Ps (yC)
has a small diagonal. To that end let yD // Ps (yC) × Ps (yC) be given and
consider the following diagram:

Ps (yC) Ps (yC)× Ps (yC)// ∆ //

yD

Ps (yC)× Ps (yC)

i

��
Ps (yC)× Ps (yC) Ps (yC)

π1 //Ps (yC)× Ps (yC) Ps (yC)
π2

//

We will show that the equalizer of i1 := π1 ◦ i and i2 := π2 ◦ i is representable,
which clearly suffices.

By the Yoneda lemma there are subobjects α and β of D × C classified by
i1 and i2, respectively. We want to find some H and h : H //D in C such that
the result of pulling α back along h× 1C is the same as the result of pulling β
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back along h× 1C :

D × C H × Coo
h×1C

β

D × C

��

��

β ·oo ·

H × C

��

��
H × C D × C

h×1C

//

·

H × C

��

��

· α// α

D × C

��

��

Define the subobject H of D as follows:

H := [[x : D|∀z : C.α(x, z)⇔ β(x, z)]],

and write h : H // //D for the canonical inclusion. It is then a trivial application
of the internal language to see that, by definition of H, α and β both pull back
to the same thing along h× 1C . Therefore, i1 ◦ yh = i2 ◦ yh.

To see that yh : yH // //yD is the equalizer suppose given some η : X //yD
with i1 ◦ η = i2 ◦ η. It suffices to assume that X is representable, so suppose
X ∼= yE. Consider the image factorization yE′ of η:

yE

yD

η ��??????yE yE′
ye // // yE′

yD

��
ym�������

Notice that i1 ◦ ym = i2 ◦ ym since ye′ is a cover. In particular, the Yoneda
lemma implies that:

C |= ∀x : E′, y : C.α(m(x), y)⇔ β(m(x), y). (4)

As a special case of (4) we obtain that m : E′ // //D factors through h : H // //D;
i.e.:

E′  ∀z : C.α(m, z)⇔ β(m, z).

That is, there exists a map ζ : E′ // H such that the following triangle com-
mutes:

E′

D.

��

m ��??????
E′ H// ζ // H

D.

��

h��������

Clearly, ζ ◦ e is the unique map E // H such that h ◦ ζ ◦ e = η since h is a
momomorphism. Therefore we have shown that yh : yH // yD is the equalizer
of i1 and i2, as required.

Lemma 4.16. The functor SubrC : C // Idl(C) defined by

SubrC(C) := SubC(−× C),

preserves monomorphisms.
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Proof. A map f : D // C induces a natural transformation ϕ : SubC(− ×
D) // SubC(−× C) given at an object E of C by:

S ∈ SubC(E ×D) � ϕE // S′ ∈ SubC(E × C), where
S′ := (1E × f)!(S).

As such, we define SubrC(f) := ϕ. Notice that ϕ is natural because C satisfies
the Beck-Chevalley condition.

If f is monic, then each component ϕE is monic and, by the Yoneda lemma,
ϕ is monic (since the monomorphisms, like other limits, in Idl(C) agree with
those in Ĉ).

Definition 4.3. For any object X = lim−→i
yCi of Idl(C), where C is a Heyting

pretopos, we have by Proposition 4.10 and the foregoing lemma that there is a
unique functor Ps : Idl(C) // Idl(C) with:

Ps (X) ∼= Ps (lim−→
i

yCi)

∼= lim−→
i

SubrC(Ci)

= lim−→
i

SubC(−× Ci).

We will now show that the axiom (P1) holds in Idl(C) where C is a Heyting
pretopos. It will be more efficient to break the proof into several steps. Also,
notice that we write ∈X for the membership relation in Ĉ and εX for the
membership relation in Idl(C). Similarly, we write PX for the power object in
Ĉ and Ps X for the small power object in Idl(C).

Lemma 4.17. Given any small relation R //r // X × Y in Idl(C) there exists a
unique classifying map r̂ : Y // Ps X.

Proof. First consider the case where R // // yC × yD. Then in Ĉ both of the
following squares (and the outer rectangle):

yC × Ps yC yC × PyC//
1×i

//

εyC

yC × Ps yC

��
��

εyC ∈yC// // ∈yC

yC × PyC

��
��

Ps yC PyC//
i

//

yC × Ps yC

Ps yC

��
��

yC × Ps yC yC × PyC// // yC × PyC

PyC

��
��

are pullbacks where ∈yC and PyC are the presheaf membership and powerobject
relations and i is the inclusion of Ps yC into PyC (Ps yC is, by definition, a
subfunctor of PyC). Notice that R is representable since r is a small relation.
In particular, R = yE for some object E of C and r = ye. So, using the ‘twist’
isomorphism ˜ : C ×D ∼= D × C, we have a relation ẽ : E // // D × C. By the
Yoneda lemma such an element corresponds to a map r̂ : yD // Ps yC.
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We will now show that the canonical classifying map ρ : yD // PyC in Ĉ
factors through r̂. I.e., we show that:

yD

PyC
ρ ��?????yD Ps yC

r̂ // Ps yC

PyC

��
i������

commutes. Notice that, by the two pullbacks lemma, this will suffice to show
that r̂ is a classifying map for R in Idl(C). By the proof of the Yoneda lemma
the action of r̂ on a given member f of yD(F ) is:

f � // Ps (yC)(f)(ẽ).

But, ρF (f) = (yf × 1yC)∗(yẽ) = i(Ps (yC)(f)(ẽ)).
For uniqueness suppose that q : yD // Ps yC such that:

yC × yD yC × Ps yC
1×q

//

yE

yC × yD

��
��

yE εyC// εyC

yC × Ps yC

��
��

is a pullback. Then, in Ĉ, ye is the pullback of ∈yC along i◦q and along i◦ r̂ = ρ.
Since ρ is unique with this property it follows that i ◦ r̂ = i ◦ q and, since i is
monic, q = r̂.

Now, for any ideal X ∼= lim−→i
yCi and small relation r : R // // X × yD, R

must be representable since the projection:

R // //X × yD // yD

is small. I.e., R ∼= yE for some E. Therefore there exists a factorization of r:

R // // yCi × yD // //X × yD

for some i. Thus indeed Hom(−,Ps X) ∼= lim−→i
Hom(−,Ps (yCi)).

Lemma 4.18. For any ideal X, εX // //X × Ps X is a small relation.

Proof. It clearly suffices to verify this for the case where X is a representable
yC. Let yD // //Ps yC be given. Then there is a r : R // //C ×D in C such that:

εyC Ps yCπyC

//

yR

εyC
��

yR yD
π◦yr // yD

Ps yC
��

is a pullback, as required.

Corollary 4.19. Any relation R // // X × Y such that there exists a unique
classifying map ρ : Y // Ps X is a small relation.
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Proof. By (S2) and the fact that εX is a small relation.

Putting the foregoing together we have the following proposition:

Proposition 4.20. If C is a Heyting pretopos and X ∼= lim−→i
yCi is an object of

Idl(C), then Ps (X) = lim−→i
SubR(−× Ci) is a powerobject.

Moreover, when combined with the fact that axioms (S1)-(S5) are satisfied
in pretoposes we have shown the following:

Theorem 4.21. If C is a Heyting pretopos, then Idl(C) is a category with basic
class structure.

Remark. Alex Simpson was the first to prove Proposition 4.15. His proof dif-
fered from that given here; it did not use Joyal’s small diagonal condition from
Theorem 4.4.

4.4 Exponentiation

We now extend the results of the preceding subsection by showing that if C is a
Π-pretopos, then Idl(C) satisfies condition (E) from Section 3.4. First we need
the following beautiful and useful fact:

Proposition 4.22. If C is a small category and P is an object of Idl(C), then:

Idl(C)/P ' Idl(
∫
C
P),

where
∫
C P is the category of elements of P as in [18].

Proof. It is well known that

Ĉ/P '
∫̂
C
P.

In particular, there are two functors R : Ĉ/P //
∫̂
C P and L :

∫̂
C P // Ĉ/P

such that L a R and the two maps are pseudo-inverse to one another. These
functors are defined as follows:

• R(η : F // P ) is a functor given by:

(c, C) � // Hom bC/P (c̃ : yC // P, η : F // P ),

where c̃ is the map in Ĉ corresponding to the element c ∈ P (C) by the
Yoneda lemma.

• L(F ) := lim−→J π ◦ i where J :=
∫R
C P

, i :
∫
C P

// Ĉ/P is the map taking
an object (c, C) to the corresponding c̃ : yC // P as above and π is the
projection from the category of elements.
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We begin by showing that if (η : F // P ) is an object of Idl(C)/P , then R(P )
is isomorphic to an object of Idl(

∫
C P). Let η be given as mentioned. Then,

since F is an ideal we have F ∼= lim−→I yDi with maps µi : yDi
// F making up

the cocone.
We define a functor G : I //

∫
C P such that lim−→I yGi

∼= R(η) and lim−→I yGi
is an object of Idl(

∫
C P). Let G(i) := η̃ ◦ µi be the object corresponding via the

Yoneda lemma to η ◦ µi. Given f : i // j in I, let G(f) := D(f). G is easily
seen to be functorial.

Next, let T := lim−→I yG. We now define an isomorphism ϕ : R(η) //T . If f ∈
R(η)(c, C) then we have f : yC // F . By familiar properties of representables,
there exists an i together with a map yl : yC // yDi such that µi ◦ yl = f .
Now, an element of T (c, C) is an equivalence class [g : C // Di]∼ where g :
C // Di ∼ g′ : C // Di′ if and only if there exists an object i′′ of I together
with maps h : i // i′′ and h′ : i′ // i′′ such that D(h) ◦ g = D(h′) ◦ g′. So
we define ϕ(c,C)(f) := [l]∼. The naturality of ϕ follows from the fact that I is
filtered and the maps µk : yDk

// F are monic.
Now we need an inverse map ψ : T // R(η). If [g : C // Di]∼ ∈ T (c, C),

then let ψ(c,C)([g]∼) := µi ◦ yg. This definition is independent of choice of
representative by the fact that I is filtered and naturality is straightforward.

Finally, it is straightforward to verify, using the fact that I is filtered, that
ϕ ◦ ψ = 1T . Moreover, ψ ◦ ϕ = 1R(η) is trivial. Furthermore, G is easily seen
to preserve monomorphisms. As such, we have shown that R(η) is an ideal in
Idl(

∫
C P).

Similarly, given an object F of Idl(
∫
C P) it follows from the fact that π :∫R

C P
F //

∫
C P and i :

∫
C P

// Ĉ/P both preserve monomorphisms that L(F )
is an object of Idl(C)/P .

Theorem 4.23. If C is a Π-pretopos, then Idl(C) is a category with class struc-
ture.

Proof. All that remains is to verify that Idl(C) satisfies (E).
First, we show that given !yC : yC //1 and f : X //yC the map Π!yC

(f) //1
is small. By definition we have the following pullback square:

1 yCyCgπyC

//

Π!yC
(f)

1
��

Π!yC
(f) XyC// XyC

yCyC

fyC

��

where π̃yC is the transpose of 1yC . However, since f is small it follows that X is
representable. I.e., X ∼= yE for some E. But since R is a Π-pretopos it follows
that:

yCyC ∼= y(CC), and
yEyC ∼= y(EC).
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Therefore fyC is a small map and by (S2) so is the map π!yC
(f) // 1.

The general case now follows from the foregoing proposition.

4.5 Universes in Idl(E)
We move to find a universe in Idl(C) where C is a Heyting pretopos. We are
particularly interested in universes U which include C, in the sense that for
every representable yC there is a monomorphism yC // // U . This will allow us
to conclude that every Heyting pretopos occurs, up to equivalence, as the small
objects of a basic category of classes with a universal object, and analogously
for Π-pretoposes and toposes.

Since the powerobject functor Ps (−) is ideal continuous (cf. Proposition
4.10), we may find fixed points for it by standard means (further details and
examples can be found in both [8] and [22]). For present purposes we compose
Ps (−) with the ideal continuous functor C � // A + C for a fixed A in Idl(C),
to obtain the functor GA defined by C � // A + Ps (C). To construct a univer-
sal object, we wish for every representable to have a monomorphism into our
universe, so we take as our starting point A :=

∐
C∈C yC (where the coproduct

is taken in sheaves). This is an ideal, for it is the colimit of the ideal diagram
of finite coproducts of representables, which themselves are representable since
yA+ yB ∼= y(A+B), with arrows the coproduct inclusions.

Now consider the ideal diagram of ideals:

A // iA //A+ Ps A //1A+(iA)!// A+ Ps (A+ Ps A) // // . . .

Where iA is the coproduct inclusion. Call the colimit U . Then, since the functor
GA is ideal continuous:

A+ Ps U ∼= U.

Therefore, there exists a universe U consisting of the ‘class’ A of atoms and the
‘class’ Ps U of ‘sets’. We note that with respect to the powerobject endofunctor
Ps (−) : Idl(C) // Idl(C) this construction makes U the free Ps -algebra over A.

The so-constructed object U is not yet a universal object, however. We
obtain, finally, our basic category of classes (respectively, category of classes or
powered category of classes) containing C as the small objects by ‘cutting out’
the part of Idl(C) that we need.

Lemma 4.24. If C is a category with basic class structure (respectively, class
structure or powered class structure) and U is a universe in C, then the full
subcategory ↓(U) // //C of objects A in C such that there exists a monomorphism
A // // U is a basic category of classes (respectively, a category of classes or a
powered category of classes) with the structure it inherits from C and with U as
its universal object.

Proof. Using the results of Section 3.7 it is straightforward to verify that ↓(U)
is closed under the Heyting and basic class (respectively, class or powered class)
structure.
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We now summarize our chief results as follows:

Theorem 4.25. Every Heyting pretopos (respectively, Π-pretopos or topos) C
occurs, up to equivalence, as the small objects in a basic category of classes
(respectively, category of classes or powered category of classes) with a universal
object.

Corollary 4.26. Every Heyting pretopos C is a model of the set theory BCST
in a canonical way, namely in its own ideal completion Idl(C),(

↓(U), U
)
|= BCST.

Moreover, the same holds for Π-pretoposes and CST, and toposes and BIST.

Remark. The particular universe U constructed above validates the Decidable
Sethood condition:

∀x.S(x) ∨ ¬S(x)

since Ps U // // U is a coproduct inclusion. As a further consequence, Separa-
tion thus holds for all bounded formulae. I.e., if ϕ is a ∆0 formula, then the
(universally quantified) statement:

S(x)→ Sy ∈ x.φ

is validated by this universe (cf. the discussion in Section 2.1 and the conditions
in Corollary 2.6). It also satisfies some further conditions such as ∈-induction,
but we will not pursue this here (cf. [22]).

Moreover, if C is a Boolean topos, then this U validates the principle of
excluded middle for all simple formulae (and, a fortiori all ∆0 formulae). The
reader is directed to [22] for a more detailed discussion of this approach to the
construction of universes.
Remark. Recall that, as a set theoretic axiom in the language Ls from Section
2, Strong Collection is the following axiom:

S(a) ∧ (∀x ∈ a.∃y.ϕ)⇒ ∃b.(S(b) ∧ coll(x ∈ a, y ∈ b, ϕ),

where:

coll(x ∈ a, y ∈ b, ϕ) := (∀x ∈ a.∃y ∈ b.ϕ) ∧ (∀y ∈ b.∃x ∈ a.ϕ).

The category theoretic formulation of this axiom is given by the following ad-
ditional condition on small maps (cf. [17]):

(S6) For any cover p : D � ,2C and f : C //A in S there exists a quasi-pullback
square:

A′ A
h

// //A′

C ′

��
f ′

C ′ D// D C
p // //

A

C

��
f

such that h is a cover and f ′ is in S.
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Whenever C is a Heyting pretopos its ideal completion Idl(C) will satisfy a
principle (called small covers) which in turn implies (S6) (cf. [8] or [27]). Thus,
in particular, for any Heyting pretopos C and universe U in Idl(C) constructed
as in Section 4.5:

(↓(U), U) |= Strong Collection.

Awodey et al [8] have obtained, for the (impredicative) theory BISTC , obtained
by adding Strong Collection to the axioms of BIST, a strengthening of the
completeness theorem from Section 3. This so-called ‘topos-completeness’ result
states that BISTC is complete with respect to models of the form (↓ (U), U)
where E is a topos and U is a universe in Idl(E).

5 Sheaf models of class theories

Any small category C with powered class structure can be embedded into sheaves
Sh(C) (coherent coverage) on C by the Yoneda embedding, which is a full and
faithful—and therefore conservative—Heyting functor (into Sh(C)). Similarly,
for a topos E , the category Idl(E) has powered class structure and the inclusion
functor Idl(E) � � // Sh(E) is a full and faithful Heyting functor, and so our
construction below can be carried out for this case as well. The leading idea
is to use the higher-order structure present in sheaf categories to model class
theory extensions of the set theories of the embedded categories, C � � // Sh(C)
or Idl(E) � � // Sh(E). Thus, in particular, to consider categories C that model
BIST or ZF and obtain models in Sh(C) of the class theories BICT or BIMK
introduced in Section 2.2. Here we provide details of the BIMK case and
direct the reader to [12] for details of the, similar, BICT case. Because the
Yoneda embedding is a conservative functor, these class theories are conservative
extensions of the set theories we begin with, and this fact manifests itself insofar
as we have to choose between full separation or full comprehension. This is a
question of which sheaf to choose to interpret the sort of classes: Here we use the
full sheaf powerobject of the universe to interpret the sort of classes, and define
a particular subobject of this powerobject to be the ‘collection of separable
classes’. This results in a full comprehension scheme for classes, but separation
only holds for classes in the defined subobject. One could, of course, choose to
interpret the sort of classes as this subobject instead, but then one would not
have full comprehension.

For the purpose of brevity, we shall restrict ourselves, here, to the special
case where (C, ι : PsU ∼= U) is a small class category modelling ZF, e.g. C could
be the syntactic category of ZF. Notice that in Sh(C) there is both the ‘small’
powerobject y(Ps U) and the ‘full’ sheaf powerobject P (yU). For notational
convenience we will write ∈ // // yU × yU for the relation y( εU // // U × U)
and η // // yU × P (yU) for the ‘full’ sheaf membership relation. The presence
of both the ‘small’ membership relation inherited from C and the ‘full’ sheaf
membership relation allows us to interpret the two sorted language Lc of sets
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and classes in Sh(C). In the following we describe this structure and some of
the formulas which are validated therein.

5.1 A sheaf model of BIMK

As in Section 2 we use lower case variables for set variables, and upper case
variables for classes. The sort of sets will be yU , and the sort of classes PyU .
We now need to interpret both the set membership relation ∈ and the class
membership relation η of Lc. In Sh(C) we interpret these relations as follows:

• [[x ∈ y]] is defined to be the subobject:

y
(
εU // // U × Ps U // // U × U

)
.

(recall that y(U × U) ∼= yU × yU)

• [[xηX]] is defined to be:

η // // yU × P (yU).

We refer to this Lc structure in Sh(C) as 〈Sh(C), εU , η〉 and its restriction to the
language Ls as 〈Sh(C), εU 〉. Since the structure 〈Sh(C), εU 〉 is just the image
under Yoneda of the structure that interprets Ls in C (and we have assumed that
C is a model of ZF), and Yoneda is logical, we immediately get the following:

Lemma 5.1. 〈Sh(C), εU 〉 |= ZF, where ZF includes the Law of Excluded Middle
for every formula of Ls.

Equally immediate, using familiar properties of toposes, is the next lemma:

Lemma 5.2. 〈Sh(C), εU , η〉 models Class Extensionality and Class Comprehen-
sion. I.e.,

1. 〈Sh(C), εU , η〉 |= ∀X,Y.(∀x.xηX ⇔ xηY )⇒ X = Y .

2. 〈Sh(C), εU , η〉 |= ∃X.∀z.zηX ⇔ ϕ, for any formula ϕ such that X /∈
FV(ϕ).

Replacement, however, is less obvious.

Lemma 5.3. 〈Sh(C), εU , η〉 models Strong Class Replacement. I.e., the image
of a set under a functional relation is a set. Formally, for any formula ϕ:

〈Sh(C), εU , η〉 |= (∀y ∈ x.∃!z.ϕ)⇒ (∃u.∀z.z ∈ u⇔ ∃y ∈ x.ϕ)

with u /∈ FV(ϕ).

Proof. It makes no essential difference to our proof whether ϕ has additional
parameters or not, so we will assume not. We must show, then, that a gen-
eralized element α : X // y(Ps U) that factors through [[x : y(Ps U)|∀y ∈
x.∃!z.ϕ]] // // y(Ps U) also factors through [[x : y(Ps U)|∃u.∀z.z ∈ u ⇔ ∃y ∈
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x.ϕ]] // // y(Ps U). It suffices, since the representables generate the topos of
sheaves, to test the claim for a representable, so that X = yC. Now, we
can slice over a representable without affecting any properties we need for the
sake of this proof. Specifically, slicing preserves first-order logic; C/C is still
a category with powered class structure; Sh(C)/yC is a topos; the embedding
C/C // Sh(C)/yC, defined by f : D // C 7→ yf : yD // yC, is full, faithful,
and Heyting; and y(C) generates Sh(C). Therefore, we can assume without loss
of generality that our generalized element is a point α : 1 // y(Ps U), such that

Sh(C) |= ∀y ∈ α.∃!z.ϕ

We reason internally in Sh(C) with the necessary translations from Lc usually
left implicit. It more than suffices to find another point β : 1 // yPs U such
that:

Sh(C) |= ∀z.z ∈ β ⇔ ∃y ∈ α.ϕ

We now use the fact that Yoneda is full and faithful and preserves and reflects
finite limits and regular epimorphisms to jump back and forth between C and
Sh(C), thus allowing us to use the class structure on C. As a point of yPs U ,
the point α represents a small subobject yA,

yU × 1 yU × yPs U
1yU×α

//

yA := [[x : U |xεα]]

yU × 1

��

��

yA := [[x : U |xεα]] yε// yε

yU × yPs U

��

��

such that ϕ defines a functional relation on y(A×U) ∼= yA×yU . This functional
relation is the graph of a unique morphism yf : yA // yU , which must be in
the image of y since Yoneda is full. The image factorization of f must again be
small, by axiom S4 for categories with basic class structure, thereby giving us
another small subobject B of U classified by a point β:

yU × 1 yU × yPs U
1yU×β

//

yB

yU × 1

��

��

yB yε// yε

yU × yPs U

��

��

Since we obtained yB as the image of yA := [[x : U |xεα]] under the functional
relation ϕ, we must have that

Sh(C) |= ∀z.z ∈ β ⇔ ∃y ∈ α.ϕ

as hoped for.

Consulting table 5 on page 12 which lists the axioms of BIMK, we see that
only the axiom of Simple Class Comprehension (SCC) remains to verify. This
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axiom is formulated in terms of a defined predicate †(−), which in our structure
〈Sh(C), εU , η〉 is interpreted by a subobject of P (yU):

[[X| † (X)]] := [[X|∀x.!(xηX)]] // // P (yU)

But, since the axiom of Simple Class Comprehension itself plays no role in the
proofs of lemmas 2.14 and 2.15, soundness allows us to conclude that,

[[X| † (X)]] = [[X|∀x.(xηX) ∨ ¬(xηX)]] (5)

in SubSh(C)(P (yU)).
This subobject has a more simple characterization as follows. Since Yoneda

preserves the terminal object and finite coproducts, we have that:

y(1 + 1) ∼= y1 + y1 ∼= 1 + 1

This object, 1 + 1, is a decidable subobject classifier in both C and Sh(C). In C
it is in fact a subobject classifier tout court, since C is Boolean, and it can also
be shown to be the small power object of 1, such that Ps1 ∼= 1 + 1. In Sh(C),
however, it is a subobject of the sheaf subobject classifier:

1 + 1 // [>,⊥] // Ω ∼= P1

where> : 1 //Ω as usual denotes the point ‘true’ of Ω, and⊥ is its complement.
Now, P (yU) ∼= P1yU , and the monomorphism [>,⊥] : 1 + 1 // // Ω ∼= P1 yields
a monomorphism:

[>,⊥]yU : (1 + 1)yU // // P1yU ∼= P (yU)

which is easily seen to represent the desired subobject:

(1 + 1)yU ∼= [[X| † (X)]] // // P (yU) (6)

Now that we have a grip on the interpretation of the †(−) predicate in Sh(C),
let us recall what the axiom of Simple Class Comprehension looks like. We want
to show that for any formula ϕ in Lc such that all class variables X1, . . . , Xn

are free in ϕ,

〈Sh(C), εU , η〉 |=
n∧
j=1

†(Xj)⇒ (∃X. † (X) ∧ ∀x.xηX ⇔ ϕ).

For simplicity, we may restrict ourselves to the case with only one free variable
Y in ϕ, as the argument we are about to go through readily generalizes. Dia-
grammatically, then, we have to establish the following inclusion of subobjects:

[[Y | † (Y )]]

P (yU)

""

""DDDDDDDDDD
[[Y | † (Y )]] [[Y |∃X. † (X) ∧ ∀x.xηX ⇔ ϕ]]// //___ [[Y |∃X. † (X) ∧ ∀x.xηX ⇔ ϕ]]

P (yU)

||

||zzzzzzzzzz

48



We do this by showing that

[[Y | † (Y )]] ∩ [[Y |∃X. † (X) ∧ ∀x.xηX ⇔ ϕ]] = [[Y | † (Y )]]

in SubSh(C)(P (yU)). By 6, [[Y | † (Y )]] is the monomorphism

[>,⊥]yU : (1 + 1)yU // // P1yU .

Consider the following pullback:

[[Y : P1yU |∃X. † (X) ∧ ∀x.xηX ⇔ ϕ]] P1yU// //

[[Y : (1 + 1)yU |∃X. † (X) ∧ ∀x.xηX ⇔ ϕ′]]

[[Y : P1yU |∃X. † (X) ∧ ∀x.xηX ⇔ ϕ]]

��

��

[[Y : (1 + 1)yU |∃X. † (X) ∧ ∀x.xηX ⇔ ϕ′]] (1 + 1)yU// // (1 + 1)yU

P1yU

��

��

(7)

We claim that the top arrow is an isomorphism, i.e. that the following holds in
Sh(C):

∀Y : (1 + 1)yU .∃X : (1 + 1)yU .∀x : P1yU .xηX ⇔ ϕ′

As already used, pulling back respects first-order logic, so that if we consider a
formula ϕ′ fitting into a pullback

[[Y : P1yU |ϕ]] P1yU// //

[[Y : (1 + 1)yU |ϕ′]]

[[Y : P1yU |ϕ]]

��

��

[[Y : (1 + 1)yU |ϕ′]] (1 + 1)yU// // (1 + 1)yU

P1yU

��

��

(8)

then up to equivalence this formula can be obtained from ϕ by replacing the
P1yU -sorted free variable (Y ) with a (1 + 1)yU -sorted variable (Y again, say),
and replacing the η membership predicate with its restriction (by pullback) to
yU × (1 + 1)yU , which we call η′. The following is easily checked:

Lemma 5.4.

η′ := [[x : yU,X : (1 + 1)yU |xη′X]] // // yU × (1 + 1)yU

is a complemented subobject. Moreover, it is therefore classified by the evaluation
morphism of (1 + 1)yU :

yU × (1 + 1)yU 1 + 1
eval

//

η′

yU × (1 + 1)yU

��

��

η′ 1// 1

1 + 1

��
>

��
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Lemma 5.5. For the formula ϕ′ of (8),

[[x : yU, Y : (1 + 1)yU |ϕ′]] // // yU × (1 + 1)yU

is a complemented subobject.

Proof. Since any sheaf is a colimit of representables, the claim will follow if we
can show that for any arrow with representable source, 〈f1, f2〉 : yC // yU ×
(1 + 1)yU , the pullback along 〈f1, f2〉:

yC yU × (1 + 1)yU
〈f1,f2〉

//

[[c : yC|ϕ′(f1(c), f2(c))]]

yC

��

��

[[c : yC|ϕ′(f1(c), f2(c))]] [[x : yU, Y : (1 + 1)yU |ϕ′(x, Y )]]// [[x : yU, Y : (1 + 1)yU |ϕ′(x, Y )]]

yU × (1 + 1)yU

��

�� (9)

is a complemented subobject. Consider first the following two pullbacks dia-
gram:

yU × yC yU × (1 + 1)yU
Id×f2

//

[[x : yU, c : yC|xη′f2(c)]]

yU × yC

��

��

[[x : yU, c : yC|xη′f2(c)]] η′// η′

yU × (1 + 1)yU

��

��
yU × (1 + 1)yU 1 + 1

eval
//

η′

yU × (1 + 1)yU

��

��

η′ 1// 1

1 + 1

��
>

��

Since 1 and 1 + 1 are representable and Yoneda preserves products, the outer
pullback square can be taken in C. Therefore, the subobject [[x : yU, c :
yC|xη′f2(c)]] is representable. Now, consider (9). Apart from the variable
Y : (1 = 1)yU and the predicate η′, the formula ϕ′ is constructed only with
variables of sort yU and the yεU predicate. Therefore, the fact that the subob-
ject [[x : yU, c : yC|xη′f2(c)]] is representable allows us to construct the subobject
[[c : yC|ϕ′(f1(c), f2(c))]] entirely within the subcategory y : C ↪→ Sh(C) (keeping
in mind that Yoneda is Heyting). So the subobject [[c : yC|ϕ′(f1(c), f2(c))]] is
itself representable, and therefore complemented (C being Boolean).

With lemma 5.5, we get a classifying arrow % : yU × (1+1)yU //1+1, and
by considering the transpose %̃, we obtain the following two pullbacks diagram:

yU × (1 + 1)yU yU × (1 + 1)yU
Id×e% //

[[x : yU, Y : (1 + 1)yU |ϕ′]]

yU × (1 + 1)yU

��

��

[[x : yU, Y : (1 + 1)yU |ϕ′]] η′// η′

yU × (1 + 1)yU

��

��
yU × (1 + 1)yU 1 + 1

eval
//

η′

yU × (1 + 1)yU

��

��

η′ 1// 1

1 + 1

��
>

��

From the left pullback square we conclude that the following statement in the
internal language of Sh(C) holds in Sh(C):

Sh(C) |= ∀Y : (1 + 1)yU .∃X : (1 + 1)yU .∀x.xη′X ⇔ ϕ′

And hence the left vertical arrow in diagram (7) is an isomorphism, as claimed.
Thus we conclude:
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Lemma 5.6.

〈Sh(C), εU , η〉 |= Simple Class Comprehension.

Finally, by lemma 5.1, lemma 5.2, lemma 5.3, and lemma 5.6 put together:

Proposition 5.7. 〈Sh(C), εU , η〉 is a model of BIMK:

〈Sh(C), εU , η〉 |= BIMK.

Recall now that we assumed of the powered category of classes C only that
it be small, Boolean and a model of ZF. In particular, C could be the syntactic
category of ZF, so that the model of ZF in it is the generic one. This model
is conservative, in the sense that only statements provable in ZF are true in it.
Since Yoneda is a conservative functor, the same holds for the model we have
constructed in Sh(C). That is to say, for any sentence ϕ in Lc that is also a
sentence in Ls:

〈Sh(C), εU , η〉 |= ϕ implies ZF ` ϕ

Therefore,

Proposition 5.8. BIMK is a conservative extension of ZF.
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