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1 Introduction

The notion of elementary topos abstracts from the structure of the category of
sets. retaining many of its essential features. Nonetheless, elementary toposes
include a rich collection of other very different categories, including categories
that have arisen in fields as diverse as algebraic geometry, algebraic topology,
mathematical logic, and combinatorics; see [[REFS]] for general overviews.

Not only are elementary toposes generalized categories of sets, but it is also
possible to view them as categories of generalized sets. Indeed, elementary
toposes possess an internal logic, which is a form of higher-order type theory.
see e.g. [8,7,9,6], and which allows one to reason with objects of the topos as
if they were abstract sets in the sense of [?]; that is, as if they were collections
of elements. The reasoning supported by the internal logic is both natural
and powerful, but it differs in several respects from the set-theoretic reasoning
available in the familiar first-order set theories, such as Zermelo-Fraenkel set
theory (ZF).

A first main difference between the internal logic and ZF is:

(1) Except in the special case of boolean toposes, the underlying internal
logic of a topos is intuitionistic rather than classical.

Many toposes of mathematical interest are not boolean. The use of intuition-
istic logic is thus an inevitable feature of internal reasoning in toposes. Fur-
thermore, as fields such as synthetic differential geometry [?] and synthetic
domain theory [?] demonstrate, the non-validity of classical logic is a strength
rather than a weakness of the internal logic. In these areas, intuitionistic logic
offers the opportuntity of working consistently with useful but classically in-
consistent properties such as the existence of nilpotent infinitesimals, or the
existence of nontrivial sets over which every endofunction has a fixed point.

Although the intuitionistic internal logic of toposes is a powerful tool, there
are potential applications of set-theoretic reasoning in toposes for which it is
too restrictive. This is due to a second main difference between the internal
logic and first-order set theories.



(2) In first-order set theories, one can quantify over classes, such as the class
of all sets, whereas, in the internal logic of a topos, every quantifier is
bounded by an object of a topos, i.e. by a set.

Sometimes, one would like to reason about mathematical structures derived
from the topos that are not “small”, and so cannot be considered internally
at all. For example, the category of locales relative to a topos is frequently
considered as the natural home for doing topology in a topos [6] [[CHECK
REF]]. Although locally small, the category of locales is not a small category
(from the viewpoint of the topos), and there is therefore no way of quanti-
fying over all locales directly within the internal logic itself. Similarly, recent
approaches to synthetic domain theory work with a derived category of pre-

domains relative to a topos, which is also locally small, but not necessarily
small [?,?].

The standard approach to handling non-small categories relative to a topos
is to invoke the machinery of fibrations (or the essentially equivalent machin-
ery of indexed categories). In this paper we provide the foundations for an
alternative more elementary approach. We show how to conservatively extend
the internal logic of a topos to explicitly permit direct set-theoretic reason-
ing about non-small structures. To achieve this, we directly address issue (2)
above, by embedding the internal logic in a first-order set theory which does
allow quantification over classes, including the class of all sets (i.e. all objects
of the topos). We believe that this extended logic will provide a useful tool for
establishing properties of non-small structures (e.g., large categories), relative
to a topos, using straightforward set-theoretic arguments. In fact, one such
application of our work has already appeared [?].

In Part I of the paper, we present the set theory that we shall interpret over
an aribitrary elementary topos (with natural numbers object), which we call
Basic Intuitionistic Set Theory (BIST). Although very natural, and based on
familiar looking set-theoretic axioms, there are several differences compared
with standard formulations of intuitionistic set theories, such as Friedman’s
IZF [[REFS]]. Two of the differences are minor: in BIST the universe may con-
tain non-sets as well as sets, and non-well-founded sets are permitted (though
not obliged to exist). These differences are inessential conveniences, adopted
to make the connections established in this paper more natural. (Arguably,
they also make BIST closer to mathematical practice, see [?].) The essential
difference is the following.

(3) BIST is a conservative extension of intuitionistic higher-order arithmetic
(HAH). In particular, by Gddel’s second incompleteness theorem, it can-

not prove the consistency of HAH.

This property is unavoidable because we wish BIST to be compatible with the



internal logic of any elementary topos (with natural numbers object), and in
the free such topos the internal logic is exactly HAH.

Property (3) means that BIST is necessarily proof-theoretically weaker than
IZF (which has the same proof-theoretic strength as ZF). That such weakness
is necessary has long been recognised. The traditional account has been that
the appropriate set theory is bounded Zermelo (bZ) set theory,® which is ZF set
theory with the axiom of Replacement removed and with Separation restricted
to bounded (i.e. Ag) formulas [[REFS]]. The standard results connecting bZ set
theory with toposes run as follows. First, from any (ordinary first-order) model
of bZ one can construct a well-pointed boolean topos whose objects are the
elements of the model and whose internal logic expresses truth in the model.
Conversely, given any well-pointed (hence boolean) topos £, certain “transitive
objects” can be identified, out of which a model of bZ can be constructed. This
model captures that part of the internal logic of £ that pertains to transitive
objects. See [[REFS]] for detailed accounts of this correspondence.

This standard story is unsatisfactory in several respects. First, it applies only
to well-pointed (hence boolean) toposes. Second, by only expressing properties
of transitive objects in £, whole swathes of such a topos may be ignored by the
set theory. Third, with the absence of Replacment, bZ is neither a particularly
convenient nor natural set theory to reason in, see [?] for a critique.

We argue that the set theory BIST introduced in Section 2 provides a much
more satisfactory connection with elementary toposes. We have already stated
that we shall interpret this set theory over an arbitrary elementary topos (with
natural numbers object). In fact, we shall do this in such a way that the class
of all sets in the set theory can be understood as being exactly the collection
of all objects of the topos. Thus any elementary topos is (equivalent to) a
category of sets compatible with the set theory BIST. Moreover, we believe
that BIST is a rather natural theory in terms of the set-theoretic reasoning it
supports. In particular, one of its attractive features is that it contains the full
axiom of Replacement. In fact, not only do we model Replacement, but we also
show that every topos validates the stronger axiom of Collection (Coll). Some
readers familiar with classical (but not intuitionistic) set theory may be feeling
uncomfortable at this point. In classical set theory, Replacement is equivalent
to Collection and implies full Separation, thus taking one beyond the the
proof-theoretic strength of elementary toposes. The situation is completely
different under intuitionistic logic. Indeed, it has long been known from work
of Friedman and others that, over an intuitionistic base logic, the full axioms
of Replacement and Collection are compatible with proof-theoretically weak
set theories [[REFS]]. A reader eager to see examples illustrating this weakness
is referred to the discussion at the end of Section 4.

5 Also known as “Mac Lane” set theory [?].



The precise connection between BIST and elementary toposes is elaborated
in Part II of this paper. In order to interpret quantification over classes, we
have to address a fourth difference between the internal logic of toposes and
first-order set theories.

(4) In first-order set theories (such as BIST), one can compare the elements
of different sets for equality, whereas, in the internal logic of a topos, one
can only compare elements of the same object.

In Section 3, we consider additional structure on an elementary topos, which
enables the comparison of (generalized) elements of different objects. This ad-
ditional structure, a directed structural system of inclusions (dssi), directly im-
plements a well-behaved notion of subset relation between objects of a topos.
In particular, a dssi on a topos induces a finite union operation on objects,
using which (generalized) elements of different objects can be compared for
equality.

Although not particularly natural from a category-theoretic point of view,
the structure of a dssi turns out to be exactly what is needed to obtain an
interpretation of the full language of first-order set theory in a topos, including
unbounded quantification; and thus indeed resolves issue (2) above. We present
this interpretation in Section 4, using a suitably defined notion of “forcing”
over a dssi.

We mention, at this point, that a similar forcing semantics for first-order set
theory in toposes was previously introduced by Hayashi in [?]. In Hayashi’s
case, the notion of inclusion was provided by the canonical notion of inclusion
map between the transitive objects in a topos, and his interpretation of first-
order set theory was thus only able to express properties of transitive objects.
In contrast, because we use the general axiomatic notion of dssi on a topos,
all objects of the topos are included in our interpretation. Furthermore, we
considerably extend Hayashi’s results in three significant ways. First, as men-
tioned above, we show that, for any elementary topos, the forcing semantics
always validates the full axiom of Collection (and hence Replacement). Thus
we obtain a model of BIST plus Collection (henceforth BIST+ Coll), which is
a very natural set theory in its own right. Second, we give correct conditions
under which the full axiom of Separation is modelled (BIST itself supports
only a restricted separation principle). Third, we obtain a completeness re-
sult showing that the theory BIST+ Coll axiomatizes exactly the set-theoretic
properties validated by our forcing semantics. That such a completeness result
holds is by no means routine, and its proof is one of the main contributions
of the present paper.

The proof of completeness for the forcing interpretation involves a lengthy
detour through an axiomatic theory of “categories of classes”, which is also of



interest in its own right. This is the topic of Part III of the paper.

The idea behind Part III is to consider a second type of category-theoretic
model for first-order set theories. Because such set theories permit quantifi-
cation over classes, rather than merely considering categories of sets, it is
natural to instead take categories of classes as the models since this allows
the quantifiers of the set theory to be interpreted using the quantifiers in the
internal logic of the categories. This idea was first proposed and developed in
the pioneering book on Algebraic Set Theory by Joyal and Moerdijk [7], in
which they gave an axiomatic account of categories of classes, imposing suffi-
cient structure for these to model Friedman’s IZF set theory. Their axiomatic
structure was later refined by the third author, who obtained a corresponding
completeness result for IZF [11]. See also [3] for related work.

In this paper we are interested in axiomatizing appropriate structure on a
category of classes suitable for modelling the set theory BIST of Part I. We
introduce this in two stages. In Section 5, we present the notion of a category
with basic class structure, which axiomatizes those properties of the category
of classes that are compatible with a very weak (predicative) constructive set
theory. Although the study of such predicative set theories is outside the scope
of the present paper (cf. [?,?]), the notion of basic class structure nonetheless
serves the purpose of identifying the basic category-theoretic structure of cat-
egories of classes. Second, in Section 6, we consider the additional properties
that we need to axiomatize a category of classes, intended to correspond to
the structure of the category of classes in the set theory BIST. Such cate-
gories of classes provide the main vehicle for our investigations throughout
the remainder of Part III.

The precise connection between BIST and categories of classes is elaborated
in Section 7. Any category of classes C contains a universal object U, and we
show how this is perceived as a set-theoretic universe by the internal logic of
C. Indeed, such universes always validate the axioms of BIST. Thus BIST is
sound with respect to universes in categories of classes. In fact, BIST is also
complete for such interpretations. The proof is by construction of a simple
syntactic category, following [11].

The goal of Section 8 is to show that every elementary topos embeds as the
full subcategory of sets within some category of classes. Since categories of
classes model BIST, this justifies our earlier assertion that, for any elementary
topos, the collection of objects of the topos (more precisely, of an equivalent
topos, see below) can be seen as the class of all sets in a model of BIST. In
order to obtain the embedding result, we again require a dssi (in the sense of
Section 3) on the topos. The category of classes is then obtained by a form of
“ideal completion”, analogous to the ideal completion of a partial order.



The construction of Section 8 gives rise to a second interpretation of the theory
BIST+ Coll over an elementary topos (with dssi), since this theory is modelled
by the universal object in the category of ideals. In the short Section 9, we
show that the new interpretation in ideals coincides with the old interpetation
given by the forcing semantics of Section 4. Thus the soundness of BIST+ Coll
in the ideal completion of a topos, provides a second proof of the soundness of
the theory BIST+ Coll with respect to the forcing interpretation of Section 4.
Furthermore, the completeness of the forcing semantics is thereby reduced to
the completeness of BIST+ Coll with respect to categories of ideals.

In Section 10, we finally prove this missing completeness result. The approach
is to reduce the known completeness of BIST+ Coll with respect to arbitrary
categories of classes (satisfying an appropriate Collection axiom), from Sec-
tion 7, to an analogous result for categories of ideals. To this end, we show
that any categories of classes satisfying Collection has a suitably “conserva-
tive” embedding into a category of ideals. The proof of this result fully exploits
the elementary nature of our axiomatization of categories of classes, making
use of the closure of categories of classes under filtered colimits and other
general model-theoretic constructions from categorical logic.

Parts I-III described above form the main body of the paper. However, there
is a second thread within them, the discussion of which we have postponed till
now. It is known that many naturally occurring toposes, which are defined over
the external category of sets (which we take to be axiomatized by ZFC) are
able to model Friedman’s IZF set theory, which is proof-theoretically as strong
as ZFC. For example, all cocomplete toposes (and hence all Grothendieck
toposes) enjoy this property; see Fourman [4] and Hayashi [?] for two different
accounts of this. Similarly, all realizability toposes [?,?] also model IZF, as
follows, for example, from McCarty’s realizability interpretation of I1ZF [?].
Thus, if one is primarily interested in such “real world” toposes, then the
account above is unsatisfactory in merely detailing how to interpret the weak
set theory BIST inside them.

To address this, in parallel with the development already described, we further
show how the approach described above adapts to model the full Separation
axiom (Sep) in toposes such as cocomplete and realizability toposes. (The
set theory BIST+ Coll+ Sep is interinterpretable with IZF.) The appropriate
structure we require for this task is a modification of the notion of dssi from
Section 3, extended by strengthening the directedness property to require
upper bounds for arbitrary (rather than just finite) sets of objects. Given
a topos with such a superdirected structural system of inclusions (sdssi), we
show that the forcing interpretation of Section 4 does indeed model the full
Separation axiom. Since cocomplete toposes and realizability toposes can all
be endowed with sdssi’s, we thus obtain a uniform explanation of why all such
toposes model IZF. To our knowledge, no such uniform explanation was known



before.

We also show that the construction of the category of ideals, of Section 8§,
adapts in the presence of an sdssi. Indeed, given an sdssi on a topos, we define
the full subcategory of superideals within the category of ideals. We show that
this is again a category of classes, which, in addition, satisfies the Separation
axiom of [7,11]. In particular, the category of superideals is a category with
class(ic) structure in the sense of [11], and models both BIST + Coll+ Sep
and IZF. We therefore obtain a uniform embedding of both cocomplete and
realizability toposes in categories with class structure a la [11]. We mention
that one application of these embeddings has already appeared in Section 15

of [?].

Finally, in Part IV of the paper, we fulfil some technical obligations postponed
from earlier. In Section 11, we show that every elementary topos is equivalent
to a topos carrying a dssi. Thus the forcing interpretation and construction of
the category of ideals can indeed be defined for any topos, as claimed above.
We also show that every cocomplete topos (again up to equivalence) can be en-
dowed with an sdssi. Similarly, in Section 12, we show that every realizability
topos is also equivalent to one carrying an sdssi. In doing so, we establish that
every object in a realizability topos occurs (up to isomorphism) somewhere
within the cumulative hierarchy of McCarty’s realizability interpretation of
IZF. Thus the difference between realizability toposes and McCarty’s realiz-
ability interpretation of set theory turns out to be purely presentational rather
than substantive.

PART I — FIRST-ORDER SET THEORIES

2 Basic Intuitionistic Set Theory (BIST) and extensions

All first-order set theories considered in this paper are built on top of a basic
theory, BIST (Basic Intuitionistic Set Theory). The axiomatization of BIST
is primarily motivated by the desire to find the most natural first-order set
theory under which an arbitrary elementary topos may be considered as a
category of sets. Nonetheless, BIST is also well motivated as a set theory
capturing basic principles of set-theoretic reasoning in informal mathematics.
It is from this latter viewpoint that we introduce the theory.

The axioms of BIST axiomatize properties of the intuitive idea of a mathe-
matical universe consisting of mathematical “objects”. The universe gives rise
to notions of “class” and of “set”. Classes are arbitrary collections of math-
ematical objects; whereas sets are collections that are, in some sense, small.



Membership yex — S(z)
Extensionality S(z) AS(y) AN (Vz.z€x - 2€y) — o=y
Indexed-Union S(z) A (Vy € x.22.¢) — 2z.Jy€x.¢

Emptyset z. L

Pairing ez.z=xVz=y
Equality ez.z=x Nz=y
Powerset S(z) - Cy.yCx

Fig. 1. Axioms for BIST™

Coll S(x) N (Vy € x.3z. ¢) —
Jw. (S(w) AN (Vy € z.3z € w.¢) A (Vz € w.Ty € x.9))

Fig. 2. Collection axiom

The important feature of sets is that they themselves constitute mathematical
objects belonging to the universe. The axioms of BIST simply require that the
collection of sets be closed under various useful operations on sets, all familiar
from mathematical practice. Moreover, in keeping with informal mathematical
practice, we do not assume that the only mathematical objects in existence
are sets.

The set theory BIST is formulated as a theory in intuitionistic first-order logic
with equality. © The language contains one unary predicate, S, and one binary
predicate, €. The formula S(z) expresses that x is a set. The binary predicate
is, of course, set membership.

Figure 1 presents the axioms for BIST~, which is BIST without the axiom of
infinity. All axioms are implicitly universally quantified over their free vari-
ables. The axioms make use of the following notational devices. As is stan-
dard, we write Vx € y.¢ and Jdx € y.¢ as abbreviations for the formulas
Ve.(x €y — ¢) and Jx. (x € y A @) respectively, and we refer to the prefixes
Ve € y and Jx € y as bounded quantifiers. In the presence of non-sets, it is
appropriate to define the subset relation, x C y, as abbreviating

S(x) ANS(y) NVzez.z€y.

This is important in the formulation of the Powerset axiom. We also use the

6 As discussed in Section 1, the use of intuitionistic logic is essential for formulating
a set theory interpretable in any elementary topos.
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notation 2z. ¢, which abbreviates

Fy. (S(y) ANVz.(z ey < ¢)),

where y is a variable not occurring free in ¢. Thus 2z. ¢ states that the class
{z | ¢} forms a set. Equivalently, 2 can be understood as a generalized quan-
tifier, reading 2x. ¢ as “there are set-many x satisfying ¢”.

Often we shall consider BIST ™ together with the axiom of Collection, presented
in Figure 2.7 One reason for not including Collection as one of the axioms
of BIST™ is that it seems better to formulate the many results that do not
require Collection for a basic theory without it. Another is that Collection has
a different character from the other axioms in asserting the existence of a set
that is not uniquely characterized by the properties it is required to satisfy.

There are three main non-standard ingredients in the axioms of BIST™. The
first is the Indexed-Union axiom, which is taken from [2] (where it is called
Union-Rep). In the presence of the other axioms, Indexed-Union combines the
familiar axioms below,

Union S(x) N (Vy € x.S(y)) — Cz.Jy€x.z €y,
Replacement S(x) N (Vy e x.3z.¢) — 22z.TFy € x. 9,

into one simple axiom, which is also in a form that is convenient to use. We
emphasise that there is no restriction on the formulas ¢ allowed to appear in
Indexed-Union. This means that BIST ™ supports the full Replacement schema
above. The second non-standard feature of BIST ~is the inclusion of an explicit
Equality axiom. This is to permit the third non-standard feature, the absence
of any Separation axiom. In the presence of the other axioms, including Equal-
ity and Indexed-Union (full Replacement is crucial), this turns out not to be

a major weakness. As we shall demonstrate, many instances of Separation are
derivable in BIST".

First, we establish notation for working with BIST ™. As is standard, we make
free use of derived constants and operations: writing ) for the emptyset, {z}
and {z,y} for a singleton and pair respectively, and x Uy for the union of
two sets x and y (defined using a combination of Pairing and Indexed-Union).
We write d,, for the set {z | 2 = 2 A 2z = y} (which is a set by the Equality
axiom). It follows from the Equality and Indexed-Union axioms that, for sets
r and y, the intersection x Ny is a set, because z Ny = U,e; Upey 0zu-

7 Coll, in this form, is often called Strong Collection, because of the extra clause
Vz € w.dy € x. ¢, which is not present in the Collection axiom as usually formulated.
The inclusion of the additional clause is necessary in set theories, like BIST ™, that
do not have full Separation.

11



We now study Separation in BIST™. By an instance of Separation, we mean a
formula of the form ®

¢lz,yl-Sep S(z) — Cy.(y €z A ¢),

which states that the subclass {y € = | ¢} of x is actually a subset of x. We
now analyse the instances of Separation that are derivable in BIST™.

Following [2], the development hinges on identifying when a formula ¢ ex-
presses a property of a restricted kind that is possible to use in instances of
Separation. For any formula ¢, we write !¢ to abbreviate the following special
case of Separation

2z.(z=0 N ¢),

where z is not free in ¢. We read !¢ as stating that the property ¢ is restricted. °
Note that, trivially, (¢ < ¢) — (l¢ < ). The utility of the concept is given
by the lemma below, showing that the notion of restrictedness exactly captures
when a property can be used in an instance of Separation.

Lemma 2.1 BIST™ + (Vy € z.1¢) < ¢[z,y]-Sep.

PROOF. We reason in BIST™. Suppose that, for all y € z, ¢, and also S(z).
We must show that 2y.(y € x A ¢). For each y € z, we have 2z.2 = () A ¢.
Hence, by Replacement, 2z.2 = y A ¢. Thus by Indexed-Union, 2z. (Jy
r.z=yNo¢). Le. Cy.(y € x A ¢) as required.

Conversely, suppose that ¢z, y]-Sep holds. Take any yy € x. By Membership,
x is a set hence 2z. (Jy € x. 2z = y A ¢). Write w for this set. Then wN{yo} is
a set. For any z € wN {yy} there exists a unique v such that v = ). Therefore,
by Replacement, {v | v = 0 A Jz.2 € wN{y}} is a set. In other words,
{v]v=0A¢[x,y0]} is a set, i.e. 1z, yo]. Thus indeed, Vy € z.!¢. O

We next establish important closure properties of restricted propositions.

Lemma 2.2 The following all hold in BIST™.

(1) = y).

8 We write ¢[z,y] to mean a formula ¢ with the free variables x and y (which may
or may not occur in ¢) distinguished. Moreover, once we have distinguished = and
y, we write ¢[t,u] for the formula @[t/x,u/y]. Note that ¢ is permitted to contain
free variables other than z,y.

9 The terminology “restricted” is sometimes used to refer to formulas in which all
quantifiers are bounded. We shall instead used “bounded” for the latter syntactic
condition.

12



(2) If S(z) then !(y € x).

(3) If l¢ and 19 then /(¢ A1), (o V Y), (d — ) and !(—¢).
(4) If S(x) and Yy € z.1¢ then |(Vy € x.¢) and |(Jy € x. ¢).
(5) If oV = then l¢.

PROOF. We reason in BIST™.

(1) Using Equality, {v | v = xAv = y} is a set, call it w. For every v € w there
exists a unique u with « = ). So, by Replacement, {z =0 | Jv.v € w} is
a set, i.e. 2z.(z =0 A x = y) as required.

(4) Suppose S(z) and, for all y € z, !¢, i.e. 2z. (z =0 A ¢). That !(Jy € z. ¢)
holds follows from Indexed-Union, because 2z. 3y € x. (2 = () A ¢), hence
2z.(z = 0 A Jy € x.¢). To show that |(Vy € x.¢), consider the set
w = {y € x | ¢}, which is a set by Lemma 2.1. By (1) above and
Lemma 2.1, {z € {0} | w = z} is a set. But w = «x iff Vy € x. ¢. Hence
indeed 2z. (2 =0 A Yy € z.9), i.e. [(Vy € z.9).

(2) We have

YyeExr « Jzer.z=9y.
Thus, if S(z), then we obtain !(y € ) by combining (1) and (4) above.

(3) Suppose l¢ and ¢b. We show that (¢ — 1), which is the most interesting
case. For this, we have

(0—=v) & (Vzefz[z2=0A ¢} 9).

But {z]2=0 A ¢} is a set because !¢. Also 4. Thus (¢ — ¢) by (4).

(5) Suppose ¢ V —¢. Then, (for all x € {0}) there exists a unique set y
satisfying

=0V (y

So, by Replacement, w = {y | (y = 0)

By (1) and Lemma 2.1, {y | y € w A

{0} A —9).

A @)V (y={0} A —¢)}is a set.
y =0} is a set. But

(y=0A0) < (yewny=10).
So indeed 2y. (y =0 A ¢).

g

The following immediate corollary gives a useful class of instances of Separa-
tion that are derivable in BIST ™.

Corollary 2.3 Suppose that ¢[z1,...,zx] is a formula containing no atomic
subformula of the form S(z) and such that every quantifier is bounded and of
the form Yy € z; or 3y € x; for some 1 <1 < k. Then

13



RS Restricted Sethood IS(x)
RS Restricted 3 (Vz.l¢p) —1(3x. ¢)
RV Restricted V (Vx.lp) — (V. ¢)

Fig. 3. Axioms on restricted properties

In order to obtain further instances of Separation, it is necessary to aug-
ment BIST™ with further axioms. In this connection, we study the axioms in
Figure 3. The point of the first lemma is that the result holds without the
assumption S(z).

Lemma 2.4 BIST"+RS F Cy.yecx.

PROOF. We reason in BIST "+ RS. Consider the set {z}. By RS, we have
aset u={z' € {x} | S(z’)}. Clearly, for all 2’ € u, S(z’). So w = u is a set,
ie. Cy.y €w. But y € w < y € x. Thus indeed 2y.y € x. O

Corollary 2.5 The following all hold in BIST ™+ RS.

(1) 1S(z);
(2) Wy € x);
(3) if Vy € x.1¢ then |(Vy € x. ¢) and |(Jy € z. ¢).

PROOF. Statement 1 is immediate. Statements 2 and 3 follow easily from
Lemma 2.2.(2)&(4), because y € x holds if and only if y is a member of the
collection of all elements of x, which is a set by Lemma 2.4. O

We say that a formula is bounded if all quantifiers occurring in it are bounded,
and we write bSep for the schema of bounded Separation, namely ¢[z,y]-Sep
for all bounded ¢. By combining Lemmas 2.1, 2.2 and Corollary 2.5, it is clear
that bounded Separation is derivable in BIST+ RS. Moreover, as RS is itself
an instance of bounded Separation, we obtain:

Corollary 2.6 BIST 4 bSep = BIST + RS.

We write Sep for the full Separation schema: ¢[z, y]-Sep for all ¢. Obviously,
this is equivalent to the schema !¢ for all ¢. To obtain Sep from bounded
Separation, it suffices for restricted properties to be closed under arbitrary
quantification. In fact, as the next lemma shows, closure under existential
quantification is alone sufficient. This will prove useful in Section 4 for verifying
Sep in models.
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Lemma 2.7 BIST+R3 + RV.1

PROOF. Assume Rd. Suppose that Vz.!¢. We show below that
(v2.6) « VpeP{0}).(Fu.(6 — Oep) — Oep. (1)

It then follows that !(Vx.¢), because the right-hand formula is restricted by
Lemma 2.2 and R4.

For the left-to-right implication of (1), suppose Vz. ¢, and suppose that p €
P({0}) satisfies Jz. (¢[x] — 0 € p). Then there is some xq such that ¢[zg] —
) € p. But ¢[zg] because V. ¢. Thus indeed @) € p.

For the converse, suppose that the right-hand side of (1) holds. We must show
that Vz. ¢. Take any xq. Define pg = {0 | ¢[xo]}. Then py is a set because
lp[xo]. Thus py € P({0}). Hence, by the assumption, we have (3z. (¢[z] —
0 € py)) — 0 € po. But, by the definition of py, we have ¢[xg] — 0 € pg. So
() € po. Hence, again by the definition of py, we have ¢[zo] as required. O

The above proof was inspired by the derivation of universal quantification
from existential quantification in [11].

Corollary 2.8 BIST+ Sep = BIST 4+ RS+ R4.

PROOF. That BIST+ Sep validates RS and R3 is immediate. For the con-
verse, we have that R9 implies RV, by Lemma 2.7. Thus, we can derive !¢, for
any formula ¢, by induction on its structure, using the closure conditions of
Lemma 2.2, Corollary 2.5, R4 and RV. O

At this point, it is convenient to develop further notation. Any formula ¢[x]
determines a class {z | ¢}, which is a set just if 2z. ¢. We write U for the class
{z | x = z}, and S for the class {z | S(z)}. Given a class A = {z | ¢}, we
write y € A for ¢ly], and we use relative quantifiers Vo € A and 3x € A in
the obvious way.

Given two classes A and B, we write A x B for the product class:

{p|IreAIyeBp=(z,y)},

10 Here, R3 and RY are the full schemas.
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Inf 31.30e€ [.3s € I'. (Vz € I.s(x) #0) A
(Vo,y € I.s(x) = s(y) — v =y)
vN-Inf A.(Del ANVzel.S(x)ANzU{x}el)

Fig. 4. Infinity axioms

where (z,y) = {{z},{z,y}} is the standard Kuratowski pairing construc-
tion. ! Using Indexed-Union, one can prove that if A and B are both sets
then so is A x B [REF]. Similarly, we write A 4+ B for the coproduct class

plFreAp=_{z},0) v Bye B.p=(0,{y}))} .

Given a set x, we write A” for the class

{fIS(fyAN(VpefpexxA) AN (Vyex. Tz (y,2) € f)}

of all functions from = to A. By the Powerset axiom, if A is a set then so is
A”. We shall use standard notation for manipulating functions.

We next turn to the axiom of Infinity. As we are permitting non-sets in the uni-
verse, there is no reason to require the individual natural numbers themselves
to be sets. Infinity is thus formulated as in Figure 4. Define

BIST = BIST + Inf.

For the sake of comparison, we also include, in Figure 4, the familiar von
Neumann axiom of Infinity, which does make assumptions about the nature
of the elements of the assumed infinite set. We shall show in Section 4 that:

Proposition 2.9 BIST+ Coll t/ vN-Inf.

It is instructive to construct the set of natural numbers in BIST and to derive
its induction principle. The axiom of Infinity gives us an infinite set I together
with an element 0 and a function s. We define N to be the intersection of all
subsets of I containing 0 and closed under s. By the Powerset axiom and
Lemma 2.2, N is a set. This definition of the natural numbers determines N
up to isomorphism.

There is a minor clumsiness inherent in the way we have formulated the Infinity
axiom and derived the natural numbers from it. Since the infinite structure

(1,0, s) is not uniquely characterized by the Infinity axiom, there is no definite
description for N available in our first-order language. The best we can do is

' See [REF] for a proof that Kuratowski pairing works intuitionistically.
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use the formula Nat(N,0,s):

0€ENAseNY A (VoeN.s(x)#0) A (Vo,y € N.s(z) =s(y) — z=y)
AVXePN. 0e X ANVreX.s(z)eX) - X=N,

where N, 0, s are variables, to assert that (IV,0, s) forms a legitimate natural
numbers structure. Henceforth, for convenience, we shall often state that some
property v, mentioning N, 0, s, is derivable in BIST. In doing so, what we
really mean is that the formula

VN,0,s. (Nat(N,0,s) — 1)

is derivable in BIST. Thus, informally, we treat IV, 0, s as if they were constants
added to the language and we treat Nat(N,0,s) as if it were an axiom. The
reader may wonder why we do not simply add such constants and assume
Nat(N,0,s) (instead of our axiom of Infinity) and hence avoid the fuss. (Indeed
this is common practice in the formulation of weak intuitionistic set theories,
see e.g. [[REFS]].) Our reason for not doing so is that, in Parts II-1II, we shall
consider various semantic models of the first-order language and we should
like it to be a property of such models whether or not they validate the axiom
of Infinity. This is the case with Infinity as we have formulated it, but would
not be the case if it were formulated using additional constants, which would
require extra structure on the models.

For a formula ¢[x], the induction principle for ¢ is
dlx]-Ind  ¢[0] A (Vx € N.¢[z] — ¢[s(x)]) — VYV € N.¢[x] .

We write Ind for the full induction principle, ¢-Ind for all formulas ¢, and we
RInd for Restricted Induction:

RInd (Vx € N.1¢p) — ¢[z]-Ind.

Lemma 2.10 BIST F RInd.

PROOF. Reasoning in BIST, suppose, for all x € N, l¢[x]. Then, by Lemma 2.1,
the class X = {z | x € N A ¢[x]} is a subset of N. Thus the induction prop-
erty holds by the definition of N from I as the smallest subset containing 0
and closed under s. O

Thus induction holds for restricted properties.

Corollary 2.11 BIST+ Sep + Ind.
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DE Decidable Equality r=y V o(x=y)
REM Restricted Excluded Middle (l¢) — (¢ V —9)
LEM Law of Excluded Middle oV o

Fig. 5. Excluded middle axioms
PROOF. Immediate from Lemma 2.10. O

On the other hand:

Proposition 2.12 BIST+ Ind + vN-Inf.

PROOQOF. One proves the following statement by induction.

vn € N.3f, € SteeNlesn}
Vie{zeN|z<n} (=0 — folx)=0)A
(>0 — folx) = fulz =) U{fulz = 1)}),
making use of standard arithmetic operations and relations. Then a set satis-

fying vN-Inf is constructed as the union of the images of all f,,, using Indexed-
Union. O

Corollary 2.13 BIST+ Coll F/ Ind.

PROOF. Immediate from Propositions 2.9 and 2.12. O

Figure 5 contains three other axioms that we shall consider adding to our
theories. LEM is the full Law of the Excluded Middle, REM is its restriction
to restricted formulas and DE (the axiom of Decidable Equality) its restriction
to equalities. The latter two turn out to be equivalent.

Lemma 2.14 [n BIST™, azioms DE and REM are equivalent.

PROOF. REM implies DE because equalities are restricted. Conversely, work-
ing in BIST™, suppose !¢. Thus w = {z | z = 0 A ¢} is a set. So, by DE, either
w = {0} or w # {0}. In the first case ¢ holds. In the second case —¢ holds.
Thus indeed ¢ V —¢. O

Henceforth, we consider only REM. Of course properties established for REM
also hold inter alia for DE.
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Proposition 2.15 BIST+ LEM F Sep.

PROOF. By Lemma 2.2.5, BIST ™+ LEM F !¢, for any ¢. Sep then follows
by Lemma 2.1. O

Corollary 2.16 BIST+ Sep+ REM = BIST + LEM.

PROOF. Immediate from Proposition 2.15 and Lemma 2.1. O

In the sequel, we shall show how to interpret the theories BIST + Coll in
any elementary topos with natural numbers object. Also, we shall interpret
BIST+ Coll+ REM in any boolean topos with natural numbers object. From
these results, we shall deduce

Proposition 2.17 BIST+ Coll+ REM ¥ Con(HAH),

where Con(HAH) is the I} formula asserting the consistency of Higher-order
Heyting Arithmetic [[REF]]. Indeed, this proposition is a consequence of the
conservativity of our interpretation of BIST + Coll4+ REM over the internal
logic of boolean toposes, see Proposition 4.10 and surrounding discussion. On
the other hand,

Proposition 2.18 BIST+ Ind + Con(HAH).

PROOF. One proves the following statement by induction.

Vn e N.3lf, e SlzeNlzsn},
Vee{reN|z<n}. (=0 — f,(z)=N)A
(>0 — fa(z) = P(fulz —1))),

where P is the powerset operation. Define the set V., to be the union of the
images of all f,,. In the usual way, V., is a non-trivial internal model of higher-
order arithmetic, where the arithmetic modelled is intuitionistic because BIST
is an intuitionistic theory. 0O

Corollary 2.19 If any of the schemas Ind, Sep or LEM are added to BIST

then Con(HAH) is derivable. Hence, none of these schemas is derivable in

BIST+ Coll+ REM.

PROOQOF. By Proposition 2.15 and Corollary 2.11, we have, in BIST, the
implications LEM = Sep = Ind. Thus, by Proposition 2.18, each
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schema implies Con(HAH); whence, by Proposition 2.17, none is derivable in
BIST+ Coll+ REM. O

Note that, in each case, the restriction of the schema to restricted properties
15 derivable.

Proposition 2.17 shows that BIST + Coll is considerably weaker than ZF set
theory. As well as BIST, we shall also be interested in the theory:

IST = BIST+ Sep ,

introduced in [11]. IST is closely related to Friedman’s Intuitionistic Zermelo-
Fraenkel set theory IZF [12]. On the one hand, by adding a set-induction
principle and the axiom Vz.S(z), one obtains IZF in its version with Replace-
ment rather than Collection. (For all theories considered in this paper, we take
Replacement as basic, and explicitly mention Collection when assumed.) Thus
IZF is an extension of IST. Further, by relativizing quantifiers to an appropri-
ately defined class of well-founded hereditary sets in IST, it is straightforward
to interpret IZF in IST. These translations show that IST and IZF are of
equivalent proof-theoretic strength. Similarly, IST+ Coll and IZF+ Coll have
equivalent strength. It is known, [[REF]], that IZF+ Coll, and hence IST+ Coll,
proves the same II3-sentences as classical ZF. It is also known, [[REF]], that
IZF, and hence IST, is strictly weaker than ZF, with regard to II3-sentences. It
is an open question whether IZF, and hence IST, proves the same I1{ sentences
as ZF.

We end this section with a brief discussion about the relationship between
BIST and other intuitionistic set theories in the literature. To the best of our
knowledge, none of the existing literature on weak set theories interpretable in
elementary toposes [[REFS]] considers set theories with unrestricted Replace-
ment or Collection axioms. In having such principles, our set theories are simi-
lar to the “constructive” set theories of Myhill, Friedman and Aczel [10,5,1,2].
However, because of our acceptance of the Powerset axiom, none of the set
theories presented in this section are “constructive” in the sense of these au-
thors. 2 In fact, in comparison with Aczel’s CZF [1,2], the theory IST+ Coll
represents both a strengthening and a weakening. It is a strengthening be-
cause it has the Powerset axiom, and this indeed amounts to a strengthening
in terms of proof-theoretic strength. On the other hand, Aczel’s CZF has the
full Ind schema, obtained as a consequence of a general set-induction principle.
In contrast, for us, the full Ind schema is ruled out by Proposition 2.18.

12 For us, Powerset is, of course, unavoidable because we are investigating set theo-
ries associated with elementary toposes, where powerobjects are a basic ingredient
of the structure.
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PART II — TOPOSES

3 Toposes and systems of inclusions

In this section we introduce the categories we shall use as models of BIST™
and the other theories. In this part of the paper, a category I will always be
locally small, i.e. the collection of objects |K| forms a (possibly proper) class,
but the collection of morphisms K(A, B), between any two objects A, B, forms
a set. We write Set for the category of sets. Of course all this needs to be
understood relative to some meta-theory supporting a class/set distinction.
For us, the default meta-theory will be BIST itself, although we shall work
with it informally. Occasionally, it will be convenient to use stronger meta-
theories, e.g. ZFC. We highlight whenever this is so.

We briefly recall the definition of elementary topos. An (elementary) topos is
a category £ with finite limits and with powerobjects:

Definition 3.1 A category £ with finite limits has powerobjects if, for every
object B there is an object P(B) and a mono 35 ~——— P(B) x B such that,

T

for every mono R A X B there exists a unique map x,: A — P(B)
fitting into a pullback diagram:

R

>B

_]

Ax B

P(B) x B
Xr X 1B

We shall always assume that toposes come with specified structure, i.e. we have

specified binary products A <—— A x B —=» B, specified terminal object 1,
a specified equalizer for every parallel pair, and specified data providing the
powerobject structure as above.

Any morphism f: A —— B in a topos factors (uniquely up to isomorphism)
as an epi followed by a mono

f=A—In(f)— B.

Thus, given f: A —— B, we can factor the composite on the left below, to
obtain the morphisms on the right.

Ipayxf

Sa—— P(A) x A P(A)x B = 34 — Ry —+ P(A) x B
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Using the defining property of powerobjects, we obtain x,,: P(A) — P(B).
We write Pf: P(A) — P(B) for x,,. This morphism is intuitively the direct-
image function determined by f. Its definition is independent of the choice of
factorization. The operations A — PA and f — Pf are the actions on objects
and morphisms respectively of the covariant powerobject functor.

The main goal in this part of the paper, is to interpret the first-order language
of Section 2 in an elementary topos £. Moreover, we shall show that such
interpretations always model the theory BIST™.

There are many inequivalent ways of interpreting the first-order language in
any given topos €. Thus the interpretation needs to be defined with reference
to additional structure on £. The required structure, a directed structural sys-
tem of inclusions (dssi), is a collection of special maps, “inclusions”, intended
to implement a “subset” relation between objects of the topos. Indeed, the
reader should henceforth bear in mind the equation:

model of BIST™ = elementary topos £ + dssi on £. (2)

In the remainder of this section, we introduce and analyse the required notion
of dssi.

Definition 3.2 (System of inclusions) A system of inclusions on a cate-
gory K is a subcategory Z (the inclusion maps, denoted —— ) satisfying the
four conditions below.

(sil) Every inclusion is a monomorphism in K.
(si2) There is at most one inclusion between any two objects of K.

(si3) For every mono P —— A in K there exists an inclusion A,, — A that
is isomorphic to m in IC/A.
(si4) Given a commuting diagram

A’ ;Z, A
Al/

with 4, j inclusions, then m (which is necessarily a mono) is an inclusion.

We shall always assume that systems of inclusions come with a specified means
of finding A,, = A from m in fulfilling (si3). By (si3), every object of K is an
object of Z, hence every identity morphism in K is an inclusion. By (si2), the
objects of 7 are preordered by inclusions. We write A = Bif A ——~ B —— A.

If A=+ B then A = B iff ¢ is an isomorphism, in which case i~! is the

22



inclusion from B to A.

When working with an elementary topos £ with a specified system of inclusions

7, we always take the image factorization of a morphism A . Bin & tobe
of the form '
Adep = A Y% m(f) L B,

i.e. an epi followed by an inclusion, using (si3) to obtain such an image.

We say that 7 is a partially-ordered system of inclusions when the preorder
on Z is a partial order (i.e. when A = B implies A = B).

Proposition 3.3 (McLarty (REF)) The following are equivalent.

(1) T is a partially-ordered system of inclusions on K.
(2) T is a subcategory of KC satisfying (sil), (si2) and also:
(si3!) For every mono P »—— A in K there exists a unique inclusion
A,, & A that is isomorphic to m in KC/A.

PROOF. 1 = 2 is trivial. For the converse, we need to show that (sil),
(si2) and (si3!) together imply: (i) that inclusions form a partial order, and
(ii) that (si4) holds.

For (i), given inclusions A <'.pct. A, we have j = i™1, so j is isomorphic
to 14 in C/A. Also, as 14 is an identity, it is an inclusion/ Thus, by the
uniqueness part of (si3!), j = 14, hence A = B.

For (ii), Suppose we have 7, j,m as in diagram (3). Let A/ <* . A’ be the
unique inclusion isomorphic to m in K/A’. Then iok: A] —— Aisisomorphic
to j: A” —— A in K/A. Hence, by the uniqueness part of (si3!), A, = A”
and i ok = j =1 om. Thus, as ¢ is a mono, we have k = m, i.e. m is indeed
an inclusion. O

Given a (preordered) system of inclusions on a small category IC, there is a
straightforward construction of a partially-ordered system of inclusions on a
category K/ =, whose objects are equivalence classes of objects of I under
=. Moreover, the evident quotient functor Q: K — K/ = is full, faithful,
surjective on objects and preserves and reflects inclusions. This might suggest
that there is little to choose between the preordered and partially-ordered def-
initions. Also, the motivating intuition that inclusion maps represent subset
inclusions might encourage one to prefer the partial order version. However,
the preordered notion is the more general and useful one when working in a
weak meta-theory (such as BIST). It is more useful because many construc-
tions of systems of inclusions, e.g. those in Part IV, naturally form preorders
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in the first instance. It is more general because, for a locally small category
IC, additional assumptions on the meta-theory are required to construct the
category K/ = above.® Moreover, even when K/ = does exist, the quotient
functor Q: K — K/ = is, in general, only a weak equivalence.!? Because
of these issues, we henceforth work with the preordered notion of system of
inclusions.

Definition 3.4 (Directed system of inclusions) A system of inclusions Z
on a category K (with at least one object) is said to be directed if the induced
preorder on Z is directed (i.e. if, for any pair objects A, B, there exists an
object Cyp with A —— Cyp ~— B)

Again, we shall always assume that a directed system of inclusions comes
with a means of selecting an upper bound Cyp given A and B. This selection
mechanism is not required to satisfy any additional coherence properties.

Proposition 3.5 Suppose T is a directed system of inclusions on an elemen-
tary topos E£. Then:

(1) The preorder I has finite joins. We write O for a selected least element
(the “empty set”), and AU B for a selected binary join (the “union” of
A and B).

(2) An object A of £ is initial if and only if A= 0.

(3) The preorder T has binary meets. We write AN B for a selected binary
meet (the “intersection” of A and B).

(4) The square below is both a pullback and a pushout in E.

ANB———A

B—AUB

PROOF. First we construct A U B. Let C' be such that A <'.0c-l. B
We obtain the map A + B 0 Define A Uc B to be the object in the

13 Because K is only locally small, the equivalence classes of objects under = may be
proper classes, and there is no reason for a class of all equivalence classes to exist.
4 A weak equivalence is a functor F: K1 — Ky that is full, faithful and essentially
surjective on objects, i.e. for every object Y € |Ko| there exists X € || with
FX 2Y. An equivalence requires, in addition, a functor G: Ky — K1 such that GF
and F'G are naturally isomorphic to the identity functors on K and K9 respectively.
Only in the presence of global choice is every weak equivalence an equivalence.
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image factorization

A+B-" ¢ = A4 B AUsB—— C.

Now suppose C' LI D,;so A . p L7 B Define A Up B as above. But

Ayplilp — 4y p ot p
A+B—w AUs B> (C—D
A+B— AU¢B——D.

So, by the uniqueness of image factorization, the inclusions A Us B —— D
and AUp B —— D are isomorphic in K/D. So, by (si4), AUc B = AUp B.

To define AU B, let C4p be the specified object with A —— Cyp ~——— B.
Define AUB = AUg,, B. To show this is a join, let C' be such that
A —— (' «— B. By directedness, there exists D with Cyp —— D ~—— C.
By the above, AUB = AU¢,, B = AUpB = AU¢ B. Thus, AUB =
AUg B~—— C. Soindeed AUB —— (C.

We next show that for any two initial objects 0,0 of £, we have 0 = 0. By
the above, we have an epi 0 + 0" —~ 0 U 0". But 0 + 0’ is initial and, in any
elementary topos, any image of an initial object is initial. Hence 0UQ’ is initial.
Thus the inclusion 0 —— 0 U 0’ is an isomorphism and hence 0 = 0 U 0'.
Similarly, 0’ = 0 U 0’. Thus indeed 0 = 0'.

Define () to be a selected initial object. We must show that ) —— A, for any
A. Indeed, in a topos, the unique map ) —— A is mono. Hence, by (si3),
there exists an inclusion 0 —— A from some initial object 0. By the above,

) =0~ A. Thus indeed () = A. We have now proved (1) and (2)
To define AN B, construct the pullback below.

m

P A

]

B— AUB
J
Both m and n are mono because they are pullbacks of monos. Using (si3),
define AN B <+ A to be the inclusion representative of m. Thus we have

an isomorphism A N B —2~ P with mop = k. Then i ok = jonop, so, by
(sid), n o p is an inclusion A N B —— B. Moreover, as p is an isomorphism,
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we have the pullback square below.

AnBr .4

_]

To see that AN B is the meet of A and B, suppose that A «—— C —— B.
By (si2), this is a cone for the diagram A —— AU B «—— B. The pullback
above then gives a morphism C —— A N B, which is an inclusion by (si4).
This completes the proof of (3).

To prove (4), it remains only to show that the pullback is a pushout. But this

holds because A + B Iy U B is epi, by the definition of AU B, and, in a
topos, any pullback of a jointly epic pair of monos is also a pushout. O

Corollary 3.6 Given a directed system of inclusions on an elementary topos,
a (necessarily commuting) square of inclusions

A——B

C———D

1s a pullback if and only if A= BnNC.

PROOF. By Proposition 3.5.1, BUC —— D. Using this, both implications
follow easily from Proposition 3.5.4. O

One of the motivations for condidering directed systems of inclusions is to be
able to compare elements of different objects for equality. For objects A, B of
&, therelation =4 g —— AX B is defined as the inclusion representative of the
subobject obtained by pairing the inclusions ANB —— A and ANB —— B.

For any C' with A < C' <= B, it holds in the internal logic of £ that

r=apy < i(x)=7j) .

The following lemma states that the relations =4 p form what might be called
a heterogeneous equality relation.
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Lemma 3.7 For objects A, B,C, the following hold internally in E:

(1) x =aay if and only if v =y
(2) © =45y implies y =p . x.
(3) If v =apy andy =pc z then v =4¢ z.

PROOF. Straightforward. O

Definition 3.8 (Structural system of inclusions) A system of inclusions
7 on an elementary topos £ is said to be structural if it satisfies the conditions
below relating inclusions to the specified structure on £.

f
(ssil) For any parallel pair A —— B, the specified equalizer £ —— A is an
g
inclusion.

(ssi2) For all inclusions A’ —— A and B’ —.— B, the specified product
A" x B' 22+ A x B is an inclusion.

(ssi3) For every object A, the membership mono 34 »—— P(A) x A is an
inclusion. . .

(ssi4) For every inclusion A’ < A, the direct-image map PA’ T PA s
an inclusion.

The structure we shall require to interpret the first-order language of Section 2
is a directed structural system of inclusions (henceforth dssi). The lemma
below is helpful for constructing dssi’s.

Lemma 3.9 Let Z be a directed system of inclusions, on an elementary topos
&, satisfying property (ssid). Then it is possible to respecify the topos structure
on £ so that I is a dssi with respect to the new structure.

PROOF. For (ssil), given a parallel pair f,g: A—— B, let e: E~—— A
be the equalizer originally specified. The newly specified equalizer is simply
defined to be the specified inclusion A, —— A representing e.

For (ssi2), we specify a new product A x’ B using Kuratowski pairing. Recall
from [REF], that Kuratowski pairing gives a monic natural transformation

kpry = X x x e {ehea)l, pay

Thus, for any A, B, using the inclusions A <L AUB<’, B, we have a
mono
iXJ

map = Ax B2 (AUB) x (AU B) ~P495, p2(4 U B).

27



Define A x’ B to be the domain of the inclusion A x’ B £2% P2(AU B) that
represents the mono myg. Thus we have a unique isomorphism

Ax'B-25 Ax B
such that pap = map o iap. The projections A T Ax' ' B-". B are
defined by 7} = m; 0i4p. This is a product diagram because i4p is an iso. One
easily verifies that, given f: A —— A’ and g: B —— B’, then the product
morphism f x" g: A X’ B—— A’ X’ B’ is the unique morphism satisfying
iap o (f x'g)=(f xg)oiap.

We now show that (ssi2) holds. Suppose then that f, g are inclusions. We must
show that f x’ g is an inclusion. As f, g are inclusions, we have an inclusion

AUB <"+ A"U B'. Thus the diagram below commutes.

. o L
Ax'BA8. Ax B )L (AUB) x (AUB) —PHAUB, p24y B)
fx'g fxg kxk P2(k)

A X! BB s g P (AU B x (AU B SPGB p2ogr Y

(The middle square commutes because f,g,1, 7,7, 7', k are all inclusions; the
right-hand square by the naturality of kpr.) The diagram expresses the equa-
tion P%(k)opap = parpo(f x'g). But pap and pp are inclusions. Moreover,
by (ssi4), P?(k) is also an inclusion. Thus f x’ g is indeed an inclusion, by
(sid).

Finally, we need to respecify the powerobject structure on £ consistently with
the new product A x’ B, and check that (ssi4) remains true. In fact, the
object P(A) remains unchanged. The membership mono 2y, «—— P(A) x" A
is defined as the inclusion representative of the mono

1

54— P(A) x A TDA DAY KA

We have thus satisfied (ssi3). Moreover, one readily checks that, with this re-
definition, the action of the covariant powerobject functor remains unaffected.
Thus (ssi4) still holds. O

We make some basic observations concerning the existence of dssis. First, we
observe that not every topos can have a dssi placed upon it. For a simple
counterexample, using ZFC as the meta-theory, consider the full subcategory
of Set whose objects are the cardinals. This is a topos, as it is equivalent to
Set itself. However, it can have no system of inclusions placed upon it. Indeed,
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if there were a system of inclusions, then, by condition (si3) of Definition 3.2,
each of the two morphisms 1 —— 2 would have to be an inclusion, thus
violating condition (si2). Since subset inclusions give a (partially-ordered) dssi
on Set, we see that the existence of a dssi is not preserved under equivalence
of categories. Nevertheless, every topos is equivalent to one carrying a dssi.

Theorem 3.10 (BIST+ REM) Given a topos &, there exists an equivalent
category E' carrying a dssi I' relative to specified topos structure on E'.

By showing that here is no loss in generality in working with toposes carrying
sdsi’s, this theorem is essential for placing the various constructions in Parts
IT-IIT of the paper that rely on the presence of systems of inclusions in context.
Nevertheless, in spite of its importance, we postpone the proof of the theorem,
which is rather technical, to Part IV. The reader will have also noticed that
Theorem 3.10, as stated, assumes Restricted Excluded Middle in the meta-
theory. In Part IV, we shall obtain a sharper version, which merely relies on
BIST as the meta-theory. Again the precise formulation of this is somewhat
technical, see Proposition 11.14 for details.

We next establish some basic properties of an elementary topos £ with a dssi
Z. These properties will be useful in Sections 4 and 8.

Proposition 3.11 Let Z be a dssi on an elementary topos £. Then:

(1) (Ax BYN (A x B)) = (AN A") x (BN B);
(2) (PA)N (PB) = P(AN B).

PROQOF. For 1, the square below is a pullback, because, by Proposition 3.5.4
and (ssi2), it is a product of pullback squares.

(AnNA)x(BNB)——+ AX B

A'xB «——— (AUA") x (BUB)
Thus, by Corollary 3.6, (A x B)N (A’ x B') = (ANA) x (BN B').

Similarly, for 2, the square below is a pullback, by Proposition 3.5.4 and (ssi4),
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because the covariant powerobject functor preserves pullbacks of monos.

P(ANB)— PA

PB —— P(AUB)

Again, by Corollary 3.6, (PA)N (PB)=P(ANB). O

In an elementary topos with dssi, a map (s, t): X — PAX A factors through
54 — PAx Aif and only if Im (s,t) —— >,4. Furthermore, ifi: A~ B
then Pi x i: PAXx A~—— PB x B and hence 54 —— 3p.

Proposition 3.12 Let 7 be an dssi on an elementary topos €. Suppose that
(s,t): X — PAXA factors through >4 —— PAxA and that Im(s) — PB.
Then Im(t) —— AN B and Im (s,t) —— S4np.

PROOF. Given any X U, PA x A where Im(s) = PB, trivially also
Im(s) = PA. So, by Proposition 3.11(2), Im(s) = P(AN B). Thus, (s, t)
is given by the bottom-left composite below

X e * D4 &> 34
n _, n
(€g,1) P(ANB) x (AN B)

Y Y

Im(s) x A——> P(ANB)x A——> PAXx A

The right-hand rectangle is a pullback, because the inclusion P(A N B) X
A —— PAx Ais obtained as P(i) x 14, where i: ANB <~ B. Now suppose
(s,t) factors through 34 < PA x A. Then, by the pullback property, (s, t)
factors via a map X —— 34np. So indeed Im (s,t) —— 2 4~p5. Moreover,
because the left-hand rectangle above commutes, also Im(t) —— AN B. O

Proposition 3.13 If A —— PB then the collection {C' | A~ PC} has a
least element under the —— relation.
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PROOF. Suppose that A =—— P B. Then the inclusion map is characteristic
for a relation R —— B x A and define [J A to be the image factorization of

R B x A—"+ B. It is easily checked that C' = (JA) —— B is the
required least element. O

It will be useful in Section 8 to have a definition of coproduct that interacts
well with the inclusion structure on £. Define:

A+B = {(X,Y): PAxPB| ((3: A.X = {z}) A Y = 0)
V(X=0AFy: BY ={y}))} .

The injections are given by the maps

r— ({z},0): A— A+ B
y— (0,{y}): B—— A+ B .

It is routine to verify that this indeed defines a coproduct.

Proposition 3.14 The coproduct defined above enjoys the properties below.

(1) If A" —— A and B' — B then A' + B'—— A+ B.

(2) If C —— A+ B then C = A"+ B’ for some A’ —— A and B’ —— B.
(3) (A+B)N(A+B)=(ANnA")+ (BNB).

(4) (A+ B)U(A+B)=(AUA")+ (BUB).

PROOF. We just verify statement 2. Suppose C' —— A + B. Define A’, B’
by pullback as below.

A el B
_] L

inl inr

A A+ B B

By statement 1, there is an inclusion A" + B’ —— A + B. By the stability
of coproducts in &, the top edge in the diagram above is also a coproduct
diagram. Thus the inclusions C —— A+ B and A’ + B’ —— A + B factor
through each other. Thus indeed A’ + B'=C. O

We end this section with a discussion of the extra structure we shall require
to interpret IST and other set theories with full Separation.
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Definition 3.15 (Superdirected system of inclusions) A system of in-
clusions Z on a category K is said to be superdirected if, for every set A of
objects of IC, there exists an object B that is an upper bound for A in Z.

The structure we shall require to interpret set theories with full Separation is
a superdirected structural system of inclusions (henceforth sdssi).

Proposition 3.16 If £ is a small topos with an sdssi then, for every object
A, it holds that A = 1, hence every object is isomorphic to 1.

PROOF. As £ is small, it has a set of objects. Hence, because 7 is superdi-
rected, Z has a greatest element U. Then PU —— U, so PU —— U. One can
now mimic Russell’s paradox in U to derive the inconsistency of the internal
logic of £. Thus every morphism in £ is an isomorphism, and hence A = U
for every object A, including 1. The result follows. O

Thus sdssis are only interesting on locally small toposes whose objects form a
proper class.

Proposition 3.17 Suppose that T is an sdssi on a topos £. Consider the
statements below.

(1) € is cocomplete. ™
(2) The preorder T has small joins.
(3) For every object A, the subobject lattice is a complete Heyting algebra.

Then 1 — 2 = 3.

PROOF. That 1 = 2 follows by a straightforward generalization of the
proof of Proposition 3.5.1. For the proof of 2 =— 3, assume that Z has
small joins. Let {P, ———~ A};c; be any small family of monos. Consider the
corresponding family of inclusions {A4,,, = A};c;. Then, using 2, we obtain
(Uier Am,) = A, which represents the join of { P, ——» A};c; in the subobject
lattice. O

It is easy to see that the implication 2 = 3 cannot be reversed. For a
counterexample, take any non-trivial full subcategory of Set, e.g. in ZFC, the
category of all finite sets, with inclusion maps given by subset inclusions. We

15 A category K is cocomplete if every small diagram has a colimit. As it has co-
equalizers, a topos is cocomplete if and only if it has small coproducts.
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do not, at present, know any example of a topos carrying an sdssi with small
joins that is not cocomplete.

Cocompleteness is an in important condition in relation to the existence of
sdssi’s, as it is a sufficient condition for obtaining an analogue of Theorem 3.10.

Theorem 3.18 For any cocomplete topos £, there is an equivalent category
E' carrying an sdssi I' relative to specified topos structure on &'.

However, as the next result shows, cocompleteness is not a necessary condition
for the existence of an sdssi. Our proof uses ZFC as the meta-theory.

Theorem 3.19 (ZFC) For any realizability topos £, there is an equivalent
category E' carrying an sdssi I' relative to specified topos structure on E'.

The proofs of Theorems 3.18 and 3.19 will be given in Sections 11 and 12
respectively.

4 Interpreting set theory in a topos with inclusions

In this section we give an interpretation of the first-order language of Section 2
in an arbitrary elementary topos with dssi. We show that this interpretation
validates the axioms of BIST = Coll. Moreover, the axiom of Infinity (hence
BIST + Coll) is validated if (and only if) the topos has a natural numbers
object. We exploit these general soundness results to establish the various non-
derivability claims of Section 2. We also state a corresponding completeness
result, which will be proved in Part III.

For the entirety of this section, let £ be an arbitrary elementary topos with
dssi Z.

The interpretation of the first-order language is similar to the well-known
Kripke-Joyal semantics of the Mitchell-Bénabou language [[REFS]], but with
two main differences. First, we have to interpret the untyped relations S(z),
r = y and x € y. Second, we have to interpret unbounded quantification.
To address these issues, we make essential use of the inclusion structure on
€. In doing so, we closely follow Hayashi [?], who interpreted the ordinary
language of first-order set theory using the canonical inclusions between so-
called transitive objects in £. The difference in our case is that we work with
an arbitrary dssi on £. See Section 1 for further comparison.

We interpret a formula ¢(x1, ..., zx) (i.e. with at most x4, ..., xy free) relative
to the following data: an object X of £, a “world”; and an “X-environment” p

mapping each free variable x € {zy, ..., z;} to a morphism X LA, in £ We
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X Ik, S(z) iff there exists B with I, —— PB

X x=y iff iy op, =14y 0 p, where iy, 1, are the inclusions
A, e A, UA, <2 A,

X Ik, €y iff there exist inclusions I, '+ Band I, <. PB such that
x Yoewices), PB x B factors through >pg

Xk L iff X is an initial object

X oAy iff X1, ¢and X I, 9

X I, ¢V iff there exist jointly epic Y e Xand Z - X
such that Y Ik, ¢ and Z Ik, v

X ¢—vyiff forall Y LN X, Y It ¢ implies Y I 9

X Ik, Ve ¢ iff forall Y —— X and ¥ —2 A, Y IFopjaa] ¢

X I, dz. ¢ iff there exists an epi YV e X and map Y ——~ A
such that Y Ik pot)ja/z) @

Fig. 6. The forcing relation

write X Ik, ¢ for the associated “forcing” relation, which is defined inductively
in Figure 6. In the definition, we use the notation X 5 1, e, A, for the
epi-inclusion factorization of p,. Also, given Y’ x , we write pot for the Y-

environment mapping = to p, ot. Similarly, given morphisms A, e B,, for
each free variable x, we write bo p for the X-environment mapping x to b, o p,.
Finally, given a variable = ¢ {z1,...,zx}, and a morphism a: X — A,, we
write pla/z] for the environment that agrees with p on {z1, ..., x}, and which
also maps x to a.

It is immediate from the definition of the forcing relation that the relation
X Ik, ¢ depends only on the value of p on variables that appear free in ¢. The

next few lemmas establish other straightforward properties.

Lemma 4.1 For any Y LN X, if X Ik, ¢ then Y Ib,op ¢.

PROOF. An easy induction on the structure of ¢. O

Lemma 4.2 For any finite jointly epic family Y; b X,..., Y, e, X, if
Yilbpor, @ and ... and Yy, IFyep, ¢ then X Ik, ¢.
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PROOF. We first make the following observation. For each variable z €

dom(p), the map p, ot;: Y; —— A, factors as Y] S, I, ; ~— A;. Thus
there is a commuting diagram:

6;71+"'+6;7k
Vit oo+ i

o Lyt L e L U UL

X »Iazc . ‘A:c

€y ly

where the left edge is epi because the t; are jointly epi. Thus, by the uniqueness
of image factorizations, we have I, = I} ; U---U I} ;.

The proof now proceeds by induction on the structure of ¢. We give one case,
to illustrate the style of argument.

If ¢ is x € y then, by assumption, for each i, there exists B;, with I ; S B!

and I, ; <. PB! such that (j! o e, 1 o e, ;) factors through >p. Thus
I,=1,,U--Ul[, — BjU---UByand I, = I, ,U---UI , — PBjU---U
PB;, — P(B{U---UBy). So, defining B = B{U---UBy, we havei: [, — B
and j: I, —— PB. We must show that (joe,,ioe,): X — PB x B factors
through >p. Reasoning internally in &£, take any a: X. We must show that
i(es(a)) € j(ey(a)). As the t; are jointly epi, there exist ¢ and b: Y; such that
a = t;(b). By assumption, 7(e, ;(b)) € ji(e, (b)) (where 7(e} ;(b)): B and
Ji(e,:(b)): PB;). By the definition of €/ ; and e, ;, the inclusion B} ~—— B
maps i;(e}, ;(b)) to i(e,(t:(b))) = i(ex(a)), and the inclusion PB; —— PB
maps j; (e, ;(b)) to j(e,(t:(b))) = j(ey(a)). Also 55 —— 3p, by the remarks
above Proposition 3.12. So indeed i(e,(a)) € j(ey(a)). O

Lemma 4.3 Given inclusions A, e, B, for all free x in ¢, it holds that
X Ik, ¢ if and only if X Ik, ¢.

PROOF. Straightforward induction on the structure of ¢. O

The lemma below establishes a convenient property of the forcing semantics
of the membership relation.

Lemma 4.4 If X Ik, v € y and I, <L . PB then there ewists an inclusion

I, <~ B such that (joey, ioey): X —— PB x B factors through >p.
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PROOF. Suppose X Ik, z € y. Then there exist ¢': [, — Aand j': [, — PA
such that (j' o ey, ¢’ 0 e;): X —— PA x A factors through > 4. Suppose also

I, <.+ PB. Then, by Proposition 3.12, I, = Im(i’ o e,) <+ AN B and

Im(j’ o ey, i' 0 ;) = Sanp. However, Im(j’ o e,, i’ o e,;) =Im(e,, €,) =
Im(j o ey, i 0 €;). SoIm(j o ey, i 0 €,) — Sanp — Sp. Thus indeed,
(j oey, i0e,) factors through 5. O

The next lemma gives a direct formulation of the derived forcing conditions
for the various abbreviations introduced into the set theoretic language.

Lemma 4.5 If I, <5+ PC then

X,V €z iff forall V' —— X andY' —5~ C, if
yr oot s, PC x C' factors through >¢
then Y IH potr)[s' /o] @
iff Y Iepot)s/a) @, where Y = {(c,a): C x X | c € k(e.(a))}
and s: Y —— C and t: Y —— X are the projections.
Xk dv ez ¢ iff there exists an epi Y e X and map Y —— C
such that Y
and Y 1 pot)[s/2] @

XlHxCy iff there exists B such that I, <. PRl I,

koeyot,s

) PC x C factors through >¢

and (ioez, joe,): X — PB x PB factors through
Cp — PB xPB
X Ik, Cx. ¢ iff there exist objects B and R —— X x B such that,
for all objects A and maps Y e X andY A,
Y IR ponyis/z) ¢ ff Tm(p) — R,
where p = (t,s): Y — X x A.
X Ik, iff the family {Y | Y e X andY ki @} has a greatest

element under inclusion.

PROOF. We include two cases: the characterization of X I, 2. ¢, for which
we give the proof in detail (this is the most intricate case), and the character-
ization of X I, !¢, for which we outline the argument.

Suppose X |-, 2z.¢, ie. X Ik, Jy. (S(y) A Va.(z € y <« ¢)), where y is
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not free in ¢. Then there exist ¢t: Y —— X and s: ¥ —— A such that
Y Iontsy) S(y) and

Y ”_(pot)[s/y] V. ($ cy ¢) (4)

By Lemma 4.3, one can, without loss of generality, assume that s is also epi.
Thus there exists B such that i: A —— PB. Define

R={(a,b): X x B|3Je: Y. t(c)=a N bei(s(c))}.

Take any maps Y’ . X and Y’ —>+ A’. We must show that Y” I pot[s /2]
¢ iff Im (t',s') = R. Moreover, by Lemma 4.3, we can, without loss of
generality, assume that s is epi.

First, note that, for any commuting diagram:

y'— L .y
r t (5)
v \4
Ve X
in which 7’ is epi, we have
Y’ ”_(pot’)[s’/a:] ¢ iff Y” ||‘(pot/07«/)[5/0r//x} g25 (by Lemmas 4.1 and 4.2)
iff Y ”_(potor)[s’or’/:v] ¢
Y I potor)sor /1y, stor fa] @ (as y is not free in ¢)
iff Y ”_(potor)[sor/y,s’or’/z] T ey (by (4) above).

To show that Y’ ko572 ¢ implies Im (', s’) —— R, construct Y, 7,7/, as in
Diagram (5), by taking the pullback of ¢ along . Suppose Y Ik ,op) (s /2] ¢- By
the above equivalences, Y Ik otor)[sor/y, s'or /2] T € Y. Since there are inclusions
Im(sor) —— A~ PB, it follows from Lemma 4.4 that Im(s’ o7’) —— B
and Im (sor, s’ or’) —— >p. However, A’ = Im(s' or’) because s’ and r’ are
epi, so we have j: A" —— B, and hence Im (' o7/, s' o r’') —— X x B. We
show that this inclusion factors through the subobject R. Reasoning internally
in &, take any d: Y. Define ¢ = r(d). Then t(c) = t'(r'(d)). Above, we saw
that Im (sor, s or’) —— 3p,s0 (iosor, jos or') factors through >,
hence j(s'(r'(d))) €p i(s(r(d))) = i(s(c)). This establishes that Im (t' o', s" o
"y —— R. It follows that Im (t', s’) —— R, because r’ is epi.

Conversely, suppose that Im (¢, ') —— R. As R —— X x B and A’ = Im(s'),
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there exists j: A" —— B. Define Y by
Y" = {(d,0): Y x Y | t(c) = t'() A j(s'()) €ils(e))},

and write 7': Y —— Y’ and r: Y” —— Y for the two projections. Triv-
ially ' o r’ = t or. Also, because Im (t', s') —— R, it follows from the def-
inition of R that r’ is epi. It is immediate from the definition of Y” that
Y" IFpotor)[sor/y, s'or' /2] T € y. Hence, by the equivalences below Diagram 5,
indeed Y’ H_(pot’)[s’/a:] gb

To prove the right-to-left implication of the characterization of X I, 2xz. ¢,
suppose there exist B and R —— X X B with the properties in the statement
of the lemma. We must show that X |-, 3y. (S(y) A Vz.(z € y < ¢)), where
y is not free in ¢. Define r: X —— PB by

r(z) = {y: B (z,y) € R}.

we show that X Iy S(y) A Va. (v € y < ¢). Trivially, X Ik S(y).
To show that X Ik, Vo. (v € y < ¢), consider any ¢: Y —— X and
s: Y —— A. We must show that X ”_(p[r/y]ot)[s/x] reyiff X ||—(p[T/y]ot)[S/$] ¢ By
Lemma 4.3, we can assume that s is epi. Also, X I, /y00)s/2) @ HE X 1 pot)(s/a]
¢ (because y is not free in ¢), iff Im (¢, s) = R (by the main assumption).
It thus suffices to show that Im (¢,s) —— R iff X Ik, p/y0t)[s/2] © € y. For
the left-to-right implication, suppose that Im (¢, s) —— R. As R—— X x B
and s is epi, we have A = Im(s) =—— B. Also, by the definition of r, it holds
that Im(rot) =—— PB and (rot, s) factors through 55 <~ PB x B. Thus
indeed X' IF,0p)jrot/y,s/2] © € y. Conversely, suppose X N op)rot/y,s/2] T € Y.
As Im(r ot) =—— PB and s is epi, it follows from Lemma 4.4 that i: A =
Im(s) = B and (r ot,ios) factors through 55 —— PB x B. By the
definition of r, it follows that (¢,7 o s) factors through R —— X X B, i.e.
Im (¢,70s) = R. Thus indeed, Im (¢, s) = Im (t,i 0 s) —— R.

We now turn to the characterization of X I+, !¢. First, an auxiliary remark.
For any X, p, it is easily shown that X Ik, x = 0 iff I, —— {0}, where we
write {0} for the object P{ of .

Now suppose that X Ik, !¢, in other words that X I, 2z. (2 =0 A ¢), where z
is not free in ¢. Thus there exists R —— X x B such that, for all Y —— X
and Y —— A, it holds that Y IFpotyis/z] 2 =0 A ¢ iff Im (¢, s) —— R. Using
the remark above, one shows that R = RN (X x {0}). The we can define
19: Yo — X by
Yy = {a: X | (a,0) € R}.

We show that (i) Yp IF,04, ¢, and (ii) for any i: ¥ —— X such that Y IF,.; ¢,
it holds that ¥ = Y. Property (i) holds because Im (io, )) = R. For
property (ii), suppose i: Y —— X is such that Y IF,.; ¢, Then, by the earlier
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remark, Y k00072 2 =0 A ¢, Hence Im (i,)) —— R. Thus Y —— Yj by
the definition of Yj.

Conversely, suppose there exists Yo —— X such that (i) and (ii) above
hold. We must show that X |-, 2z.(2 = 0 A ¢). Defining R = Yy x {0},
we show that, for all Z —— X and Z —— A, it holds that Z Itz
z =0 A ¢ iff Im(t,s) —— R. Take any Z—+X and Z ——+ A, and
let Z —» Y <"+ X be the image factorization of ¢t. Suppose Z IFpot) s/ 2]
z =0 A ¢. Then Im(s) —— {0}, by the earlier remark, and Y I-,; ¢, by
Lemma 4.2. Thus Y = Yj, by (ii). So indeed, Im (¢, s) =—— Yy x {0} = R.
Conversely, suppose that Im (¢, s) = Yy x{0}. Then Z Ik 04572 2 = 0, by the
earlier remark. Also, Y —— Yj, 50 Y IFp0i)s/2) @, by (i), hence Z I o)is/2) @,
by Lemma 4.1. Thus indeed, Z lk,ops/2) 2 =0 A ¢. O

For a sentence ¢, we write (£,7) = ¢ to mean that, for all worlds X, it holds
that X IF ¢ (by Lemma 4.1, it is enough that 1 |= ¢). Similarly, for a theory
(i.e. set of sentences 7'), we write (£,7) =7 to mean that (£,Z) = ¢, for all
¢ € T. The next theorem, is our main result about the forcing semantics.

Theorem 4.6 (Soundness and completeness for forcing semantics) For
any theory T and sentence ¢, the following are equivalent.

(1) BIST+ Coll + T  ¢.
(2) (£,1) & ¢, for all toposes £ and dssi T satisfying (£,1) =T .

In this section, we give the proof of the soundness direction, (1) = (2), of
Theorem 4.6, and explore some of its consequences. The proof of completeness,
which makes essential use of the technology of categories with class structure
introduced in Part III of the paper, will eventually be given in Section 10.

PROOF of Theorem 4.6 (Soundness). The proof is in two parts. The first
part is to verify that the forcing semantics soundly models the intuitionistic
entailment relation. This part is completely routine, and we omit it entirely.
The second part is to verify that the forcing interpretation validates the ax-
ioms of BIST™+ Coll. The verification of these axioms makes extensive use
of Lemma 4.5. Indeed, much of the hard work has already been done in the
proof of this lemma. Here, we just give a detailed verification of the Collec-
tion axiom, which is arguably the most interesting case. The other cases are
omitted.

To verify Coll, suppose we have X and p such that X |-, S(z) and X Ik, Vy €
x.3z. ¢. We must show that X |-, Jw. (S(w) A (Vy € .3z € w.¢) A (Vz €

w.dy € x.9) ).
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Because X I, S(z), we have B such that I, —— PB. Define
Y ={(b,a): Bx X |b€e,(a)}

Let s: Y —— B and t: Y —— X be the projections. By Lemma 4.5,
Y IFpot)is/y] 2. ¢. So there exist r: Z — Y and u: Z —— A, such that

Z ”_(potor)[sor/y,u/z} (b (6>

Define A, = PA, and p,: X — A, by

pw(a) ={u(c) | ¢: Z and t(r(c)) = a}.

Henceforth, we work relative to the environment p|p,, /w], for which we con-
tinue to write p. Using Lemma 4.5, we verify

Xl (Vyex3dzew o)A (V2 ewIy € x.¢).

For the left-hand conjunct, we must show that Y Ik o)(s/y) 32 € w. ¢. Note that
I, ~—— A, =PA,. Also, by (6), we haver: Z — Y and u: Z — A, such
that Z Ik potor)[sor/y, u/2] ¢- We must show that (p,,otor,u) factors through >4, .
But this is immediate from the definition of p,,. For the right-hand conjunct,
consider
Z'={(d,a): A, x X | d € py,(a)},

together with its projections s': 2/ —— A, and t': Z/ —— X. We must show
that Z' Ik poysr/2) 3y € x. ¢. Define:

Y' = {(s(r(c)), u(c), t(r(c))): Bx A, x X | ¢: Z}.

By the definition of p,, if (b,d,a): Y’ then d € p,(a). Accordingly, there
are projections u': Y —— B and r’: Y/ —— Z’. Reasoning internally in
&, we show that 7’ is epi. Suppose that (d,a): Z’; i.e. d € py(a). Then d =
u(c) for some c¢: Z such that t(r(c)) = a. So (s(r(c)), d, a): Y’ is such that
' (s(r(c)), d, a) = (d,a). Hence r’ is indeed epi. By the definition of Y, if
(b,d,a): Y' then b € e,(a). Thus (e, ot o' u’) factors through >pp. It
remains to show that Y Ik oporsior )z, w /y) ¢- For this, consider the morphism
7: Z — Y’ defined by 7(c) = (s(r(c)),u(c), t(r(c))). Then t'or’or = tor and
s'or’or = wand u'oT = sor. So, by (6), it holds that Z Ik et or)sror /2, u’ jy))or -
It is immediate from the definition of Y that 7 is epi. Hence, by Lemma 4.2, we
have that Y Ik ororisor /2, u /4] @ as required. This completes the verification
of Collection. O

The single case presented in the proof above should be sufficient to convey a
flavour of the direct proof of soundness to the reader. The main reason for not
giving a more comprehensive proof is that we shall anyway obtain a second
proof of the soundness direction of Theorem 4.6 in Part I1I, which, although
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very indirect, is in many ways less brutal than a direct proof. (See Section 9
for the culmination of this proof.)

The next two propositions can be used in combination with Theorem 4.6 to
obtain sound and complete classes of models for extensions of BIST + Coll
with Inf and/or REM.

Proposition 4.7 (£,7) = Inf if and only if £ has a natural numbers object.

PROOF. We outline the proof of the more interesting (left-to-right) direc-
tion. Suppose that (£,7) | Inf, i.e.

(£, )30 l.3seI'. (Ve el.s(x) £0) A
(Ve,y e I.s(x) =s(y) — x=y).

By stripping off all three existential quantifiers together, there exists an epi
X — 1, withmaps p;: X — PB,py: X — Band ps: X — P(BxB),
satisfying, internally in &, for all a: X,

po(a) €5 pr(a)
Vo: B.x €p pr(a). y: B. (x,y) € ps(a)

Ve,y: B.x € pr(a) A (x,y) € ps(a) — y € ps(a),
and such that:

Xk, (Veel.s(x)#0) AN Ve,yel.s(x)=s(y) — x=1y) (7)

Define Ix —— X x B as the relation represented by p;. The above data
determines morphisms Ox: X —— Ix and sy: [y — Ix. Moreover, by
unwinding the meaning of (7), it holds that sy is mono and has disjoint image
from Oy, i.e. that [0y, sx]: X + Iy —— Ix is mono. Now define I to be the

exponential Iy~ in £. We have a point 0: 1 —— I and morphism s: I —— T
defined by

0 = (a— Ox(a))
s(f) = (a = sx(f(a))).

Trivially, s is mono. Also, 0 and s have disjoint image, because Ox and sx do
and the map X —— 1 is an epi. We thus have a mono [0,s]: 1+ — [ in &.
It is a standard result that a natural numbers object in £ can be constructed
from such a mono. [[REFERENCE???]] O

Proposition 4.8 (£,7) = REM if and only if £ is a boolean topos.
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PROOF. Suppose £ is a boolean topos. Take any ¢, X and p such that
X IF,l¢. We must show that X |-, ¢ V —¢. Let i: Y —— X be the greatest
subobject included in X such that Y I, ¢, which exists by Lemma 4.5. Let
j: Z —— X be the complement of Y, which exists because £ is boolean. As 7, j
are jointly epic and Y IF,.; ¢, it suffices to show that Z IF,.; —¢. Accordingly,
suppose t: W — Z is such that W Ik ;0 ¢. Factoring t: W —— Z as
%74 » 7' —— Z, we have, by Lemma 4.2, that Z’ IF ;o ¢. But then
7' —— Y by the characterizing property of Y. Since also Z’ —— Z and 7 is

the complement of Y, we have that Z’ is an initial object. Thus Z’ IF ;05 L,
and so W Ik ,qjor L, by Lemma 4.1. This shows that indeed Z IF,.; —¢.

Conversely, suppose that (£,7) = REM. Then

ED)EYYp.pC{0} — (p=0Vvp={0}),

since this is a straightforward consequence of REM in BIST™. The forcing
semantics of the above sentence unwinds straightforwardly to obtain the fol-
lowing consequence in the Kripke-Joyal semantics of the internal logic of &,

EE Vp:P{0}. p=0 Vv p={0} .

It is routine (and standard) that the property above is valid in the internal
logic of £ if and only if £ is boolean. O

We remark that the proposition above has the following perhaps surprising
consequence. The underlying logic of the first-order set theories that we as-
sociate with boolean toposes is not classical. Such set theories always satisfy
the restricted law of excluded middle REM, but not in general the full law
LEM. Such “semiclassical” set theories have appeared elsewhere in the litera-
ture on intuitionistic set theories, see e.g. [[REFS]]. Here we find them arising
naturally as a consequence of our forcing semantics.

At this point, we pause to discuss the meta-theory for the above results. We
mention first that our proof of the completeness direction of Theorem 4.6,
which appears in Part III of the paper, will use ZFC as its meta-theory. How-
ever, none of the proofs we have thus far given in the present section requires
such a strong meta-theory. In fact all are formalizable in BIST itself in the
following sense. If £ is a small topos then all proofs are directly formalizable
in BIST. However, when £ is only a locally small topos, a difficulty arises. In
such a case, although the forcing semantics can be formalized for any fixed
formula ¢, the inductive definition of the forcing semantics for all formulas ¢
cannot be internalized in BIST. Hence, for a locally small topos £, the various
soundess results are only formalizable in the following schematic sense: for
any formula ¢ with a real-world proof in the relevant theory, the set-theoretic
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formula formalizing the statement (£,Z) = ¢ is provable in BIST.'® This
situation cannot be improved upon, because, in BIST, the category Set is
a non-trivial locally small topos with natural numbers object and dssi, and
so, if the full soundness result were directly formalizable, then BIST would be
able to prove its own consistency, contradicting Godel’s second incompleteness
theorem.

One consequence of the above discussion is worth mentioning. Because, from
the viewpoint of BIST, the category Set is a non-trivial locally small topos
with natural numbers object and dssi, the schematic soundness result above
unwinds to yield a translation of BIST+ Coll into BIST. " Thus the theory
BIST exhibits the interesting property of being able to interpret Collection
using Replacement.

Our next goal is to establish that, in the presence of a superdirected system
of inclusions, the full Separation schema is validated by the forcing seman-
tics. Thus, by Theorems 3.18 and 3.19, there is a useful collection of toposes
modelling the full Separation schema. However, this result is only available if

we strengthen our meta-theory by adding both Separation and Collection to
BIST.

Proposition 4.9 (IST+ Coll) If 7 is an sdssi on € then (€,7) |= Sep.

(Because toposes with sdssi’s are not small, the above result holds in the
meta-theory IST+ Coll only in the schematic sense discussed above.)

PROOF. By Corollary 2.8, it suffices to verify RS and R3. We use the
characterization of the forcing conditions for restrictedness established by
Lemma 4.5.

First, we show that (£,7) = RS, i.e. for all X, p, it holds that X IF,!¢. We
must show that the family

Y= {Y; |V, X and Y Ik, ¢}

has a greatest element. Because £ is locally small, the hom-set £(1,PX)
determines a canonical set of inclusions into X in which each subobject of
X is represented exactly once. Henceforth, we understand the inclusions in
the definition of ) above as being restricted to this canonical set. Because
the meta-theory has full Separation, the family ) is itself a set. For every

16 Moreover, this schematic soundness result should itself be provable in a weak
arithmetic such as PRA.

17Tt might be interesting to describe this translation explicitly. However, this lies
outside the scope of the present paper.
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Y; € ), there exists B such that Im(p o i) =—— PB. By Collection in the
meta-theory, there exists a set B such that, for every Y; there exists B € B
with Im(poi) = PB. Using superdirectedness, there exists an upper bound
C for B in Z. Thus, for all Y;, we have Y; —— PC". Define Y = X NPC'". This
is clearly the required greatest element of ).

To show that (£,7) = R3, suppose that X |-, Vz.l¢. We must show that
X Ik, 1(Fz. ¢), i.e. that the family

Y ={Y; |V, X and Y Ibp; 3. ¢}

has a greatest element. As above, we restrict the inclusions ¢ in the definition
of Y to the canonical ones, and, by full Separation in the meta-theory, ) is a

set. For each Y; € ), there exist V; <— Z —~+ A such that Z IFpoior)aja)] -
By Collection in the meta-theory, there is a set Z whose elements represent

data of the form X ~7—Y; «— Z —“—~ A for which Z IF,0jon(a/a] ¢,
such that, for every Y; € Y, there exists data as above in Z with Y¥; = Y.

By superdirectedness, the set {A | (X ~2—=Y; «<— Z —“+ A) € Z} has an

upper bound B in Z. Consider the projections X ' X xB —°+ B.Because
X Ik, Va.1g, we have X X B I-01)s/2) |¢. Therefore, the family

h
{R|R— X xBand R IF(poton)[son/a] o}

has a greatest element, S <L X x B. Let S —» Y <+ X be the image
factorization of ¢t o k. We show that Y is the required greatest element of ).

Because S —> Y and S IF(potok)[sok/a] @, 1-€. S IF(pojoe)(sok/a] @, We indeed have
that Y IF,; Jz.¢. Now consider and Y; € ). We must show that ¥; —— Y.

By the definitions of Z and B, there exists ¥; ««— Z —— A with A~ B
such that Z b oior)fa/z) ¢- Defining b to be the composite Z oA B,

we have, by Lemma 4.3, that Z I eior)p/z) @- Let X R SN X x B be the
image factorization of (i o7, b). Then Z I sotohog)[sohog/z] ¢- S0, by Lemma 4.2,

R I poton)[son/] @- Thus R SN S, by the definition of S. Then:
ior =tohoq =tokolog = joeolog.
But ¢, 7 are inclusions and r an epi, so
Yi=Im(ior)=Im(joeoloq) =Im(eoloqg) — Y.

Thus indeed YV; —— Y. O

We make one comment on the above proof. Curiously, it is not at all straight-
forward to directly verify the validity of the schema RV from Figure 3 using
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an intuitionistic metatheory such as IST+ Coll. (The verification is easy in
a classical metatheory.) Thus Lemma 2.7, on which Corollary 2.8 depends, is
extremely helpful in permitting the simple proof above.

In contrast to the characterizations of Inf and REM, Proposition 4.9 only
establishes a sufficient condition for the validity of full Separation. Indeed,
there appears to be no reason for superdirectedness to be a necessary condition
for Sep to hold. Similarly, there is no reason for BIST~+ Coll+ Sep to be
complete axiomatization of the valid sentences with respect to toposes with
sdssi’s. It would be interesting to have mathematical confirmation of these
expectations.

We next consider a further important aspect about the forcing semantics of the
first-order language, its conservativity over the internal logic of £. In order to
fully express this, using the tools of the present section, one would need to add
constants to the first-order language for the global points in £, interpret these
in the evident way in the forcing semantics, and give a laborious translation
of the typed internal language of £ into first-order set theory augmented with
the constants. In principle, all this is routine. In practice, it is tedious. Rather
than pursuing this line any further, we instead refer the reader to Section 9
in Part III, where the tools of categorical logic are used to express the desired
conservativity property in more natural terms. At this point, we simply remark
on one important consequence of the general conservativity result.

Proposition 4.10 Suppose £ has a natural numbers object. Then for any
first-order sentence ¢ in the language of arithmetic, £ = ¢ in the internal
logic of € if and only if (£,Z) |= ¢ in the forcing semantics (using the natural
translation of ¢ in each case).

PROOF (outline). This essentially follows from the forcing semantics of
the formula Nat(N,0, s) from Section 2, which characterizes N: 1 —— PA,
for some A, as classifying the natural numbers object of £. Given this, the
forcing interpretation of bounded quantifiers in Lemma 4.5 means that they
are interpreted identically to quantifiers in the internal logic of £. O

Again, there is a more natural formulation of the above result using the tools
of categorical logic in Section 9. As a consequence, we obtain the postponed
proof of Proposition 2.17.

PROOF of Proposition 2.17. Let £ be the free topos with natural numbers
object. By Theorem 3.10 there is an equivalent category £’ carrying a dssi Z'.
By Godel’s second incompleteness theorem, the II9 sentence Con(HAH) is
not validated by the internal logic of £. see e.g. [[REF]], and hence not by
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&' either. Therefore, by Proposition 4.10, Con(HAH) is not validated by the
forcing semantics in £'. It now follows from the soundness results above that
BIST+ Coll+ REM t/ Con(HAH). O

We end this section with further applications of the soundness theorem to
obtain non-derivability results, for which we take ZFC as the meta-theory. Let
A be any set. For each ordinal o, we construct the von-Neumann hierarchy
Va(A) relative to A as a set of atoms in the standard way, viz

Vapa(A) = A+ P(Va(A))
Vi(4) = | Va(4) A a limit ordinal.

a<

Note that Vy = 0, and o < 3 implies V,(A) C V3(A). We write V(A) for the
unbounded hierarchy U, V. (A).

For a limit ordinal A > 0, we define the category V,(A) to have subsets
X CV,(A), for any a < A, as objects, and arbitrary functions as morphisms.
It is readily checked that V)(A) is a boolean topos. Moreover, subset inclusions
provide a dssi on V) (A) relative to the naturally given topos structure. In the
propositions below, we omit explicit mention of the inclusion maps, which are
always taken to be subset inclusions.

Proposition 4.11 V,(N) |= Inf, but V,,(N) & vN-Inf.

PROOF (outline). One can straightforwardly check the following general
equivalences. The category V,(A) has a natural numbers object if and only
if A\ > w or |A] > Ny. Hence, by Proposition 4.7, V)(A) = Inf if and only
if A > w or |A] > Rg. Also V\(A) = vN-Inf if and only if A > w (because
for A = w, all sets in V,(A) have finite rank and so cannot model vN-Inf). In
particular, V,(N) |= Inf but V,(N) & vN-Inf. O

Proposition 2.9 follows as an immediate consequence. In fact, more generally:
Corollary 4.12 BIST+ Coll+ REM I/ vN-Inf.

By the proof of Proposition 4.11, we have that V_,,(0) = vN-Inf. Hence,
V., 1w(0) is a model of BIST+ Coll+ REM+ vN-Inf. Examples such as this may
run contrary to the expectations of readers familiar with the standard model
theory of set theory, where, in order to model Replacement and Collection,
it is necessary to consider cumulative hierarchies V)(A) with A a strongly
inaccessible cardinal. The difference in our setting is that our forcing semantics
builds Collection directly into its interpretation of the existential quantifier.
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The price one pays for this is that the underlying logic of the set theory
is intuitionistic. In consequence, the standard arguments using Replacement
that take one outside of V)(A) for A non-inaccessible, are not reproducible.
For example, the argument in the proof of Proposition 2.18, which attempts
to construct the union of the chain N,P(N),P?(N),..., is not validated by
the forcing semantics of 'V, (0). Indeed, although V_.,(f) is a model of
BIST+ Coll+ REM + vN-Inf, it does not model Ind (thus LEM and Sep are
also invalidated). More specifically, consideration of this model shows that
it is impossible to define the sequence N, P(N), P?*(N),... inside the theory
BIST+ Coll+ REM+ vN-Inf. Given that the existence of such a sequence is the
quintessential example of an application of Replacement in ZF set theory, some
readers may wonder whether Collection and Replacement are of any practical
use in BIST if they cannot be applied to obtain such standard consequences.
In fact, these principles are highly useful in BIST for performing any form
of reasoning relating small and large structures, for example the development
of the theory of locally small categories. Since one of our main motivations
for the present work is the development of a language for reasoning about
large structures relative to any elementary topos (see Section 1 for further
discussion), it is a major advantage of our approach that Replacement and
Collection are validated.

We end the section with the remark that the full hierarchy V(@) models full
Separation, by Proposition 4.9. Hence, by Corollary 2.16, the category V() is
a model of the theory BIST+ Coll4+ LEM. In fact, making use of Collection in
ZFC to unwind the forcing semantics, it is straightforward to show that the
forcing semantics in V() simply expresses meta-theoretic truth in ZFC.

PART III — CATEGORIES OF CLASSES

5 Basic class structure

In the previous sections we have shown how to interpret the language of first-
order set theory in any elementary topos endowed with a system of inclusions,
where the system of inclusions is used to interpret the unbounded quantifiers.
There is an alternative more algebraic approach to modelling quantification
over classes, namely to consider categories in which the objects themselves
represent classes rather than sets. Within such categories, the “unbounded”
quantifiers become de facto bounded, and can thus be handled using the stan-
dard machinery of categorical logic. The axiomatic basis for such an approach
was developed by Joyal and Moerdijk in their book on algebraic set theory [7],
and further refined in [11,7]. In this part of the paper, we adapt this approach
to obtain categories of classes appropriate for modelling the set theory BIST
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and its variants.

Following the approach of algebraic set theory, we axiomatize properties of
a collection of “small maps” within an ambient category of classes. The idea
is that arbitrary maps represent functions (i.e. functional relations) between
classes, and small maps are the functions with “small” fibres. The basic notion
of small map determines natural notions of smallness for other concepts.

Definition 5.1 (Small object) An object A is called small if the unique
map A —— 1 is small.

Definition 5.2 (Small subobject) A subobject A —— C'is called small if
A is a small object.

Definition 5.3 (Small relation) A relation R ——— C' x D is called small
if its second projection R —— C' x D —— D is a small map.

Note that the definition of small relation is orientation-dependent. The ori-
entation is chosen so that a morphism f: A —— B is small if and only if
its graph (1, f): A= A x B is a small relation. (This is opposite to the
orientation of “small relations” in [11].)

In this section, we define a notion of basic class structure on a category, ad-
equate to ensure that the category behaves like the category of classes for a
very weak first-order set theory (cf. [[REFS]]). This notion provides the basis
for considering strengthened notions of class structure in subsequent sections.

Before axiomatizing the required properties of small maps, we need to place
basic requirements on the ambient category. A positive Heyting category is a
category C satisfying the following conditions:

(C1) Cis regular: i.e. it has finite limits; the kernel pair *® ki, ky of every arrow
f ' A—— B has a coequalizer ¢ : B —— ('; and regular epimorphisms are
stable under pullback.

(C2) C has finite coproducts, and these are disjoint and stable under pull-
backs.

(C3) C has dual images, i.e. for every arrow f : C'—— D, the inverse image
map f~!: Sub(D) — Sub(C) has a right adjoint V; : Sub(C') — Sub(D)
(considering f~! as a functor between posets).

Condition (C1) implies that every morphism f: A — B in C factors (uniquely
up to isomorphism) as a regular epi followed by a mono

f=A—TIn(f)——B .

8 The kernel pair of f: A —— B is the span ki,ky: P —— A that forms the
pullback of f along itself.

48



(N.B., it is not necessarily the case that every epi is regular in C.) Moreover,
such image factorizations are stable under pullback. Further, for every arrow
f : C —— D, the inverse image map, f~! : Sub(D) — Sub(C) has a left
adjoint, 3¢ : Sub(C') — Sub(D).

One reason for focusing on positive Heyting categories is the following standard
proposition, cf. [[ELEPHANT??7]].

Proposition 5.4 In every positive Heyting category, each partial order Sub(C')
of subobjects of C is a Heyting algebra. For every arrow f: C'—— D, the in-
verse image functor f=1 : Sub(D) — Sub(C) has both right and left adjoints
V¢ and 3¢ satisfying the “Beck-Chevally condition” of stability under pullbacks.
In particular, C models intuitionistic, first-order logic with equality.

By a system of small maps on a positive Heyting category C we mean a
collection of arrows S of C satisfying the following conditions:

(S1) § = C is a subcategory with the same objects as C. Thus every
identity map 1o : C —— (' is small, and the composite go f : A —— C of
any two small maps f: A —— B and g : B —— (' is again small.

(S2) The pullback of a small map along any map is small. Thus in an arbitrary
pullback diagram,

C’ C
/! f
D' D

if f is small then so is f’.
Proposition 5.5 Given (S1) and (S2), the following are equivalent.
(1) Every diagonal A : C —— C x C' is small.

(2) Every regular monomorphism is small.
(3) if go f is small, then so is f.

PROOF. That 1 implies 2 follows from (S2), because every regular mono is
a pullback of a diagonal.

To show 2 = 3, suppose regular monos are small. Consider the following
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pullback diagram, with g o f small:

D2

P - B

D1 g

A - B - C
/ g

The arrow p; is a split epi, as can be seen by considering the pair1: A — A
and f: A—— B. Call the section s : A —— P. This is a split mono, hence
regular mono hence small. But ps is small by (S2). So f = py o s is small.

Finally, because identities are small, 3 implies that split monos are small. In
particular, diagonals are small. O

(S3) The equivalent conditions of Proposition 5.5 hold.

Note that a consequence of Proposition 5.5(3) is that if an object A is small
then every morphism f: A —— B is a small map.

(S4) If foeis small and e is a regular epi, then f is small, as indicated in
the diagram:

A— % B
fo f

S
C

(S5) Copairs of small maps are small. Thusif f: A—— Candg: B— C
are small, then so is [f,g9] : A+ B — C.

Proposition 5.6 Given (S1)-(S5), the following also hold:
(1) The objects 0 and 1+ 1 are small.

(2) If the maps f : C —— D and f' : C' —— D' are small, then so is
f+f:C+C"——D+D'.

PROQOF. This follows easily from disjointness and stability of coproducts. O

The final axiom of basic class structure requires every class to have a “pow-
erclass” of all small subobjects (i.e., a class of all subsets). Its formulation is
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similar to the defining property of powerobjects in toposes (Definition 3.1),
only adjusted for small relations.

(P) Every object C' has a small powerobject: an object PC with a small
relation € =~ C' x PC (the membership relation) such that, for any
object X and any small relation R ——— C x X, there is a unique arrow
Xgr : X — PC fitting into a pullback diagram of the form below.

R - Co

CxX - C xPC
le X xr

Definition 5.7 (Basic class structure) A category with basic class struc-
ture is given by a positive Heyting category C together with a collection of
small maps S satisfying axioms (S1)—(S5) and (P) above.

Definition 5.8 (Logical functor) A functor between categories with basic
class structure is said to be logical if it preserves: positive Heyting category
structure, small maps and membership relations.

As is standard, in this definition, we do not require the positive Heyting cat-
egory structure and membership relations to be preserved “on the nose”, but
up to coherent isomorphism.

Later on we shall also need the natural category of sets associated with a
category with basic class structure. We define this now.

Definition 5.9 (Category of sets) Given a category C with basic class struc-
ture S, the associated category of sets Es(C) is the full subcategory of C on
the small objects. Note that £s(C) is also a full subcategory of S.

In the remainder of the section, we establish properties of categories with basic
class structure. Assume that C is such a category with small maps S.

For any small A A B, the relation (14, f): A —— A x B is small, and we

-1
write B L+ PA for the unique morphism fitting into a pullback diagram

A €A

]
(1a, f) (8)

AXx B AxPA
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Equivalently, f~! is the unique morphism fitting into a pullback diagram

A €A
_
f A (9)
B4 pa

where 7,4 is the composite €4 —— A x PA —2+ PA, which is a small map.
The lemma below will prove useful later.

Lemma 5.10 If f is a small reqular epi then f~! is a small mono.

PROOF. Suppose A . Bis a small regular epi. Let A —— €4 be as in
diagram (8). By that diagram, the composite A — €4 —— AxPA " A
is the identity. Therefore A —— €4 is a split mono, hence small by (S3).
In the pullback diagram (9), the left edge is a regular epi and the top edge a
mono. It is a property of regular categories that, in any such pullback square,
the bottom edge is also a mono. Thus f~! is a mono. It is small by (S4),
because the top-right composite of (9) is small. O

By the existence of f~! for small f, one sees that a a map A . Bis small
if and only if it can be obtained as a pullback of m4. This fact allows the
property of “smallness” to be expressed using the internal logic of C in the
following sense, cf. [7, Proposition 1.6].

Proposition 5.11 Every f: A —— B determines a subobject m: By —— B
satisfying: for any map t: C' —— B, it holds that the pullback t*(f) is small
if and only if t factors through m.

PROOF. Using the internal logic of C, define By to be the subobject:
{y: B|3Z: P(A).Vx: A(x € Z < f(z)=1y)} .

That this has the right properties is easily verified using the Kripke-Joyal
semantics of C. O

Henceforth, we use the more suggestive {y: B | f~!(y) is small} for the sub-
object By determined by the proposition.

A consequence of axioms (S1),(S2) and (S4) in combination is that small
relations form a category under relational composition. Clearly the identity
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relation A : A —— Ax Aissmall. To see that relational composition preserves
smallness, suppose R —— A x B and R’ —— B x (' are small relations. Recall
that the composite relation (R; R') —— A x C'is obtained by the factorization

Rxp R — (B;R)—— Ax C
of the pair formed from the span below.

RxpR - R - C
_

A

We show that R; R’ is indeed a small relation. By assumption, we have that
the morphisms R —— B and R' —— C'in (10) are small. By (S2), the arrow
R xp R —— R’ is also small. Thus, the composite

RxgR — R —+C = RxgR — AxC-2+(C

", O now follows

is small. The required smallness of (R o R) —— A x C
from (S4).

We write Rs(C) for the category with the same objects as C and with small
relations R ——— A x B as morphisms from A to B. There is an identity-
on-objects functor I: & — Rgs(C) mapping any small f: A—— B to the
small relation (14, f) = A x B. There is also an identity-on-objects functor
J: C°? — Rs(C) mapping any f: A — B to (f,14) B x A.

Axiom (P) is equivalent to asking for the functor
Rs(C)[A, J(—)]: CP — Set
to be representable for every object A. That is, there is an isomorphism
Rs(C)[A, J(B)] = C[B,PA]
natural in B. Defining €2 = P1, this specializes to
Rs(C)[1,J(B)] =C[B,] . (11)

Easily, Rs(C)[1, J(B)] is isomorphic to the collection of small monomorphisms
into B. Thus (2 classifies subobjects defined by small monomorphisms. By (S3),
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every regular mono is small. Conversely, every small mono B’ —— B is the
equalizer of its classifier B —— Q with T: B —— (), where T is classifies the
identity 15. Thus a monomorphism is small if and only if it is regular. So €2 is
a regular-subobject classifier. Note that every small subobject is represented
by a small monomorphism, but small monomorphisms do not necessarily de-
termine small subobjects. For example, 1g is a small monomorphism for every
B, but only determines a small subobject when B is small. However, in the
case that B is a small object, a monomorphism A ~——— B is small if and only
if it presents A as a small subobject of B

Axiom (P) is also equivalent to asking for J to have a left adjoint. By compos-
ing the functor J : C°® — Rg(C) with its left adjoint, we obtain a comonad
on C°, hence monad on C, whose underlying functor is a covariant small
powerobject functor.

For future reference, we give explicit definitions of the covariant functor and

the unit of the monad. The endofunctor maps an object A to PA. Its action

on morphisms maps f: A —— B to f; : PA —— PB is defined as follows.

Let U —— B x PA be obtained as the mono part of the factorisation of:
fx1

€4 — AxPA—+ BxPA

By (S4), U =—— B x P A represents a small relation. Accordingly, define f, to
be the unique map fitting into the pullback below:

U €B

]

BxpaI 5 pp

Proposition 5.12 If f: A—— B is mono then so is fi: PA—— PB.

PROOF. It is easily checked that J: C® — Rs(C) preserves epis. Its left ad-
joint automatically preserves epis. Thus the composite endofunctor on C°P pre-
serves epis too, whence the corresponding endofunctor on C preserves monos.
It is easily verified that f +— fi is this endofunctor. O

The unit of the monad is given by {-} : A — PA defined by {-} = 147*. By
Lemma 5.10, {-} is a small mono.

Next, following the argument outlined in [11], we establish a “descent” prop-
erty, Proposition 5.14 below, which says that a map is small if it is small locally
on a cover. This property was assumed as an axiom for small maps in [7]. First,
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we need a technical lemma, establishing an internal Beck-Chevalley property
(cf. [9, p. 206]).

Lemma 5.13 For any pullback diagram as on the left below with f small, the
diagram on the right commutes.

U A pA I pg
_

I f o [

p—9 B p—9 B

PROOF. We prove that both sides of the right-hand square represent the
small relation (¢, f'): A’ —— A x B'. For f~! o g this is by a simple compo-
sition of pullbacks:

A J - A - €4
_ _

(g, 1) (L, f)

1 1x -1
AxB 29 4 g glpB

For g{ o f’ ~! we have the pullbacks below.

A
_, Y
(1, 1)
Y —1
A x B Lx f
_

g x1 g x1

A x PA

1 x f’_1 !

Ax B Ax PA

Let U »—— A x PA’ x A be the image of €4 — A’ x PA LN A pA
Then, by the stability of images and because A’ YTl Ax B is mono, the outer
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pullback square above implies that the left-hand square below is a pullback.

A - U - €4
_ _

(g, 1)

1x f/1

Ax B AxPA —L AxPA

The right-hand square is also a pullback, by the definition of g. So g{ o f'~"
does indeed represent (¢', f'). O

Proposition 5.14 (Descent) If g appears in a pullback diagram

el

A e
_

f g
B—° oD

where e is reqular epi and f is small, then it follows that g is small.

PROOF. By defining B’ & B to be the kernel pair of B —— D and

T2
pulling back, we obtain:

7 !
A 1 A— % ¢
o _
I f g
B—t —p_ % . p
]

where both rows are exact diagrams, ' and each of the two left-hand squares
is a pullback. By applying Lemma 5.13 to the two left-hand pullbacks we
obtain: ejo f~tory = €jo ()0 f 7t = €jo ()0 f T =ejo f ory. So, by the

coequaliser property of e, there exists D . PC such that hoe = efo fL

. . . " e . .
19 An exact diagram is a diagram A —% B —»» C where 71,79 is the kernel pair
T2
of e and e is the coequalizer of r{,rs.
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As in the proof of Lemma 5.13, we have pullbacks:

A - U - Co
_ _

(¢, f)
1x f!

1 /
CxB <

C xPA C x PC

showing that e o f~! represents (¢/, f) = C' x B. Using the equality hoe =
ej o f~1, we reconstruct the outer rectangle above by pulling back in stages:

A—" X - €
_ _
(¢, f) m (12)
1 1xh
CxB—XﬁCxD—X»CxPC
1xry e
But C' x B’ X:: C x B X% € x D is an exact diagram. So, by pulling it
1X7reo
back along m we obtain:
7" i
A——za "X
| _
(d, ") (¢, f) m
I xr 1xe
B xC—=CxB—(CxD
1 x 9

where d = ¢’ o] = ¢ orl. But then the top row is exact, hence €’ coequalizes
], 5. Since €’ also coequalizes /|, 75, the left-hand pullback square of (12) can
be taken to be:

6/

-C

(¢, f) (1,9)

1
CxB-25CxD
Then, by the right-hand pullback of (12), m = (1, g) is a small relation. Hence
g is indeed small (and also h = ¢g~'). O

Finally in this section, we verify that basic class structure is preserved by
taking slice categories. To establish this, we need an internal subset relation.
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Definition 5.15 (Subset relation) For any object B, a subset relation is a
relation Cp : PB — P B such that any morphism (f,g) : A — PB x PB
factors through Cp ~——— PB x PB if and only if, in the diagram below,
P —— B x A factors through Q —— B x A.

P - Cp +

Q
] L

1 1
XfoPBﬁBxA

Bx A

The definition uniquely characterizes the subset relation, which indeed exists
by the proposition below.

Proposition 5.16 For every B, the subset relation Cg : PB —— PB exists.

PROOQOF. The relation Cg ~— PB x PB, can be constructed logically as:
Cp = [(y,2) : PBXxPB|Vz:B.x€y=x€z|

Here we use the canonical interpretation | — | of first-order logic in the inter-
nal logic of C, interpreting the atomic formula € y using the membership
relation € »— B x PB. It is routine to verify that this has the required
properties. O

For any slice category C/I, define S; to be the subcategory of those maps
whose image under the forgetful to C is small. Our next result is the analogue

for basic class structure of the “fundamental theorem” of topos theory, see e.g.
[[REFS]].

Proposition 5.17

(1) S gives basic class structure on C/I.

(2) For any h : I —— J, the reindexing functor h* : C/J — C/I is logical.

(3) For any small h : I — J, the reindexing functor h* : C/J — C/I has a
right adjoint 11, : C/J — C/I.

The proof is presented as a series of lemmas.

Lemma 5.18 S; gives basic class structure on C/I.

PROOF. 1t is standard that C/I satisfies (C1)—(C3), and easily checked that
(S1)—(S5) hold for S;. We verify that (P) holds.
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For any object B ——~ I of C/I, define Pg to be the left edge of the diagram
below

"/ -
|
pBx 1 92 pr kP
T2
I

We must show that C/I[—,Pg] = Rs,(C/I)[g, Ji(—)] (where here we write
Jr for the inclusion functor from (C/I)°? to Rs,(C/I)). Consider any object

AL Tme /I. By the pullback defining Pg, we have that

C/If,Pg|={A—~PB|{(goy, {}of) factors through C; }

But any A —2~ PB is contained in the above set if and only if the left-hand
edge below factors through the right-hand edge.

P LU e 14
| | L L
A (f,1)
a2 pp oy oy X L Iy

By the definition of g;, the mono U —— I x PB is obtained as the image
factorization of: )
gXx

€p —— BxPB — I xPB

So, by the stability of images under pullback, P ~—— I x A is the mono part
of the factorization of:

gx1

h=R——BxA=>Z%IxA

where R B x A represents the small relation for which yg = y. Then
P ~—— I x A factors through (f, 1) if and only if A does. So we have shown
that:

C/If,Pg]={R € Rs(C)[B,A]| fora=gor}

where (ry,7) are the components of R~ B x A. But the right-hand set
above is Rs,(C/I)[g, f] as required. The naturality of the isomorphism is
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routine to check, and is inherited from the naturality of the map from any
R e Rs(C)[B,A] to xp: A—— PB. O

Lemma 5.19 For any h : I — J, the reindexing functor h* : C/J — C/I
18 logical.

PROOF. Given h : I — J, the reindexing functor h* : C/J — C/I has
the usual left adjoint ¥, given by postcomposition with h. We shall define
functors Rh* : Rs,(C/J) — Rs,(C/I) and RE), : Rs,(C/1) — Rs,(C/J)
with RY), right (sic) adjoint to Rh*. The action of Rh* on objects is as for
h*. Given objects A —+ Jand B—2~ J in the slice C/J, a small relation
R~—— f xgin Rs,(C/J) represented by R —— A x; B is mapped by Rh*
to the relation R’ —— h*(A) x; h*(B) given by the pullback below.

R’ R

]

h*(A) Xr h*(B) — A XJ B
This is indeed a small relation by (S2).

The functor RY; behaves like X5, on objects. Given A N Tand B—2+ I'in
C/1, a morphism R~ f x g in Rg,(C/I) represented by R —— A X B is
mapped by R, to the relation from X (f) to £p(g) in Rs,(C/J) represented
by the evident composite:

R~ Ax;B~——~ AXx;B
This is a small relation by (S3), because the composite
R—— Ax;B~— Ax;B—— B
is small since R —— f X g was assumed a small relation in C/I.

It is easily checked that the above definitions are good definitions of functors.
To verify the adjunction, noting that the pullback square

frh
_
hf f

h*A A
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defines (RY),)(RA*)(f) = hoh* f, the components of the unit of the adjunction
are the maps Jr(f*h), where J; is the functor (C/I)® — Rs,(C/I). It is the

contravariance of this functor that is reponsible for RY;, being a right adjoint.

It is straightforward from the definitions of Rh* and R, that both squares
of functors below commute (up to equality).

e/ e R (/1)

R =3, Rh* | 4| R,

/7y 2 Rs, (1)

By Lemma 5.18, axiom (P) holds in C/I and C/J, so J; and J; have left
adjoints P; and P; respectively. Since the square of right adjoints above com-
mutes, so does the square of associated left adjoints (up to natural isomor-
phism), i.e. h*P; = Py/Rh*. But then we have h*P;J; =2 P/Rh*J; = PrJih*.
So h* maps the small powerclass P;J; in C/J to the small powerclass P;J;
in C/I. A similar argument shows that h* preserves membership relations, as
these are the components of the units of the P 4 .J adjunctions. O

Lemma 5.20 If A is a small object in C then it is exponentiable, i.e. every
exponential B4 exists.

PROOF. Write ({(a,b),z) for the components of the membership relation
€axp — (A x B) x P(A x B). Since this is a small relation, z is a small
map. But z = w5 0 (a, 2) so, by (S3), (a,z): €axp AXx P(A X B) is
also a small map. Therefore the mono (b, (a, z)) determines a small relation
€axp — Bx(AxP(Ax B)). We write r : Ax P(Ax B) — PB for its
characteristic map. Now define U —— A x P(A x B) by pullback:

U B

_]
{} (13)

AxPAxB) L PB

By Lemma 5.10, {-} is a small mono, hence so is U —— A x P(A x B). The
projection my : AXP(AxB) — P(Ax B) is small because A is a small object,
so the composite map U — P(A x B) is small, i.e. U —— A x P(A x B)
is a small relation. We write xy : P(A x B) —— PA for the characteristic
map of this small relation. Let [A] : 1 —— PA be the inverse image (!4)~"
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of 14: A—— 1, which exists because A is a small object. Define B4 as the
pullback:

BA
_]
[A] (14)

P(Ax B) X . pa

The above construction is similar to the construction of exponentials from
powerobjects in a topos, see e.g. [[REFS]], only taking account of smallness.
The verification that the construction indeed gives an exponential is also sim-
ilar, and thus omitted. O

To prove Statement 3 of Proposition 5.17, suppose h: I —— J is small. The
required I, maps any object f: A —— I in the slice C/I to the exponential
(ho f)" calculated in C/J. This exponential exists by relativizing Lemma 5.20
to the slice category C/J, using that h is a small object in this category. A
standard argument shows that II; indeed defines a right adjoint to A*, cf.
[[REFS]]. This completes the proof of Proposition 5.17.

6 Additional axioms

In this section, we consider several independent ways of adding additional
properties and structure to categories with basic class structure. Throughout,
let C be a category with collection of small maps S giving basic class structure.

6.1 Powerset

The notion of basic class structure provides a basis for considering category-
theoretic models for a range of constructive set theories, including predicative
set theories, see [[REFS]]. In the present paper, we are interested in models
of the (impredicative) set theories associated with elementary toposes. This
requires a further axiom on top of basic class structure: the Powerset axiom.

Proposition 6.1 The following are equivalent.

(1) C4—— PA xPA is a small relation.
(2) In any slice C/I, the operation P(—) preserves small objects.
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PROOF. Assume 1. To show 2 we provide an alternative construction of
small powerobjects in slice categories, available for small maps only. Given a
small g: B —— I, we claim that Pg in C/I can be defined as the left edge of
the diagram below.

‘( - Cp
_
\ 1 1
PBx I PB x PB (15)
Uy’
I

This left edge is small by the assumption and (S2).

For the claim, we show that C/I[—, Pg] = Rs,(C/I)]g, Jr(—)]. We have that

C/If,Pg|={A—~PB|(y, g' o f) factors through Cp}.

But any A —2~ PB is contained in the above set if and only if the left-hand
edge below factors through the right-hand edge.

R - Cp < B« P
_ L L

(1,9)

-1 1x f

1
9 pxr<>) Bxa

1
BxA-"Y BxpPB

As maps y : A —— PB are in one-to-one correspondence with small relations,
it is immediate that

C/If,Pg|={R— B x A| R asmall relation and fory=gor} ,

where (11, r9) are the components of R —— B x A. As required, the right-hand
set above is R, (C/I)[g, J1(f)]. The naturality of the established isomorphism
is routine.

For the converse, we show below that
Cy—— PBxPB-"+PB (16)
is isomorphic to P(r) in C/(PB), where 7 is

€g —— BxPB -+ PB . (17)
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As 7 is small, the smallness of the relation Cg ~——— PB x PB then follows
from 1.

It remains to show that P(w) is isomorphic to (16). Consider 7 and 7’ =
mo: BXPB — PB as objects of C/(PB), together with the associated mono

72+ 7', Applying the covariant small powerobject functor on C /(PB), we
obtain

P(r) = P(x') .

which is a mono by Proposition 5.12. We shall prove that the subset relation
is given by the image of this mono under the forgetful from C/(PB) to C.

By Lemma 5.19, the object P7’ is (isomorphic to) PB x PB ——~ PB with
the membership relation:

epxl

€g XPB—"—+ (BxPB)xPB = (B xPB) xpp(PB x PB)

Thus (€p): is indeed a binary relation on PB.

P(m)

Writing C'g PB for the object P(m) of C/(PB), we must show that
the mono C’g PB x PB represents the subset relation. Accordingly,

consider any A L% PB x PB. Define P ="+ B x Aand Q —+ B x A by
pullback as in Definition 5.15. We must show that p factors through ¢ if and

only if (f, g) factors through C'y €2}, pB x PB.

(€

First, p: P B x A defines a mono P~—— 7' x g in C/(PB), since
B x A= 7' xppg. Using the explicit description of P(7’) above, the pullback
diagram below shows that P = 7’ x ¢ is a small relation with characteristic
map (f,g) : g — P(7’') in C/(PB).

|
P_|<’go”20p> ~P><73B_, - €5 xPB
D px1 €p x1 (18)
Bxa 190 oy gy pp XX pp By pB

Next, consider the membership relation: €, »— mxppP(7) in C/(PB). This
exists in C as a mono €, ~— € Xpp C5. By the definition of the small

powerobject functor, C'y NCN PB x PB fits into the right-hand pullback
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below.

P - Cro » € XPB

|| _|
m

' = 1><7>BZ ' ,

C?_, €p xpp A €p Xpp Cp

€p Xppl €p x1

q (PBXB) XpB ng

' 1 x 1x (e
BxA © - Bx €o) gy pBxPB

Suppose now that p factors through ¢ by P —— Q. By the pullback definition
of ¢, we have Q = m Xpp ¢g. The projection of m: P~ 7 X g to g is equal
to the projection of the small relation P —— 7’ x g to g. Hence the relation
m: P~—— 7 x ¢gin C/(PB) is small, and its characteristic map z: A — C’
completes the two left-hand pullbacks in C above, where we write €g xpg A
for the domain of 7 x ¢ in C/(PB). The outer pullback above shows that
(€p) 0 z is the characteristic map of P —— 7’ x g. Hence (€g)102 = (f, 9).
So (f, g) does indeed factor through (€p);.

Conversely, suppose (f, g) factors through (€g), by some z: A —— C’. Then
(€p) 0 z is the characteristic map of P —— 7’ x ¢g. Thus the outer pullback

of diagram (18) can be reconstructed in stages as in the diagram above to
provide the required m: P —— @) showing that p factors through ¢q. O

(Powerset) The equivalent conditions of Proposition 6.1 hold.

Since every slice category of a slice category C/I is itself a slice category of
C, it follows from statement 2 of Proposition 6.1 that if the Powerset axiom
holds in C then it holds in every slice.

Proposition 6.2 If the Powerset axiom holds then

(1) If A, B are small objects then so is the exponential B*.

(2) If h: I —— J is small, then I1,: C/I — C/J preserves small objects.
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PROOF. For 1, by the Powerset axiom, the object P(A x B) is small. Hence
any map out of P(A x B) is small, including yy: P(A x B) —— PA from
the proof of Lemma 5.20. That B# is small now follows from (S2) using the
pullback in diagram (14).

Statement 2 follows from statement 1, because ITj,(f) is given by the exponen-
tial (ho f)!inC/J. O

Proposition 6.3 If the Powerset axiom holds then the category of sets Es(C)
15 an elementary topos.

PROOQOF. The category of sets has finite limits inherited from C. It is cartesian
closed by Proposition 6.2. As in the discussion below (11), the object Q = P1
classifies subobjects defined by small monomorphisms in C. Since the inclusion
Es(C) = C preserves limits, it preserves monos. Thus, for a small object B,
a mono A~—— B in C is small if and only if it is a mono in £s(C). By the
Powerset axiom, €2 is itself a small object. Therefore it is a subobject classifier

in 55(6) (I

A related consequence of the Powerset axiom is that the category Es(C)
has basic class structure itself, with all maps small. Further, the inclusion
Es(C) = C is logical.

6.2 Separation

As observed in the discussion below equation (11), in a category with basic
class structure, a monomorphism is small if and only if it is regular. This gives
a restricted separation principle of the following form: if B is a small object
and A —— B is a regular subobject, then A is a small object. In other words,
certain (i.e. regular) subclasses of sets are sets. The Separation axiom drops
the restriction to regular subobjects, and asserts (in every slice) that arbitrary
subobjects of small objects are small.

Proposition 6.4 The following are equivalent.

(1) Every monomorphism in C is small.

(2) Every monomorphism in C is regular.

(3) In every slice C/1, subobjects of small objects are small.
(4) C has a subobject classifier.
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PROOF. As monomorphisms are small if and only if regular, the equivalence
of 1 and 2 is immediate. For 1 = 3, if A~ B is a subobject of a small
object B—— I in C/I, then A~ [ is indeed small as a composition of
small maps. Conversely, every monomorphism A —— B is a subobject of
the small object 15: B —— B of C/B. That 1 = 4, is immediate from
the fact that €2 = P1 classifies subobjects defined by small monos, see the
discussion below equation (11). Finally, when C has a subobject classifier, it
follows directly that every monomorphism is regular, thus 4 = 2. O

(Separation) The equivalent conditions of Proposition 6.4 hold.

Using item 1 of Proposition 6.4, it is immediate that the Separation axiom is
preserved by slicing.

In [11,7], categories with basic class structure satisfying both Powerset and
Separation were considered under the description categories with class(ic)
structure. As shown in [11], it is possible to give an economical axiomati-
zation of such categories, using just axioms (C1),(S1), (S2) and (P) together
with the Powerset and Separation axioms (the latter in the guise that all
monomorphisms are small). Axioms (C2), (C3), (S3), (S4) and (S5) are then

all derivable.

6.3 Infinity

Proposition 6.5 If the Powerset aziom holds then the following are equiva-
lent:

(1) There is a small object I with a monomorphism 1+ I —— 1.
(2) The category Es(C) of small objects has a natural numbers object.

PROOF. &s(C) is an elementary topos. O

(Infinity) The equivalent conditions of Proposition 6.5 hold.

Using item 1 of Proposition 6.5, it is clear that the axiom of infinity is preserved
by taking slice categories.

The axiom of infinity ensures that the category of sets has an nno. It does not
follow that this is an nno in the category of classes, C, which need not even
possess an nno. This situation is analogous to the presence of restricted induc-
tion but not full induction in BIST, see Section 2. For BIST, the addition of
the axiom of Separation is sufficient to ensure the derivability of full induction
(Corollary 2.11). Similarly, as outlined in [11], when C satisfies Separation, it
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does hold that an nno in the category of sets is automatically an nno in the
category of classes.

6.4 Collection

In set theory, see Section 2, the axiom of Collection asserts that, for every
total relation R between a set A and a class Y (i.e. a relation satisfying
Ve € Ady € Y. R(x,y)), there exists a subset B of Y such that R restricts
to a total relation between A and B. Without loss of generality, in place of
total relations, one can consider surjective class functions from a class X onto
a set A. Trivially, any such class function is a total relation between A and
X. Conversely, given a total relation between A and Y, one can use the class
X ={(z,y) | * € Ajy € Y,R(x,y)}, and consider its projection onto A.
Collection, can now be rephrased as, for any surjective class function from a
class X onto a set A, there exists a set B and a function B — X such that the
composite B — X — A is still surjective. (In the presence of Replacement, it
is unnecessary to demand that B is a subset of X, since such a subset can be
found by taking the image of B — X.)

The above discussion, suggests formulating a collection property in C as fol-
lows. For any regular epi X —» A, where A is a small object, there exists a
map B —— X, where B is small, such that the composite B —— X — A
is a regular epi. However, this is not quite right. Logically, it should be suffi-
cient for the existence of B and B —— X to hold in the internal logic of C,
and this does not require the real-world existence of corresponding external
object and map. Second, as with any axiom, it is necessary to ensure that
the property it asserts is preserved by slicing. Both modifications are taken

account of simultaneously in property 1 of the proposition below, which is due
to Joyal and Moerdijk [7].

Proposition 6.6 The following are equivalent.

(1) For every small A —— I and reqular epi X —~ A, there exists a quasi-
pullback diagram®

B - X - A

(19)

J -/

20 Diagram (19) is a quasi-pullback if it commutes and the canonical map
B —— J x1 A to the actual pullack is a regular epi.
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with J —» I regular epi and B —— J small.
(2) If e: X —Y is a regular epi then so is e;: PX — PY.

This is Proposition 3.7 of [7], the proof of which goes through in our setting.
(Collection) The equivalent conditions of Proposition 6.6 hold.

It is a straightforward consequence of property 1 of Proposition 6.6 that the
Collection axiom is preserved by taking slice categories.

6.5 Universes and universal objects

All the axioms we have considered up to now are compatible with the assump-
tion that all objects of C (and hence all maps) are small, in which case C is an
elementary topos and PX is the powerobject of X.

For elementary toposes, a version of Cantor’s diagonalization argument shows
that it is inconsistent to have an object X with a mono PX ~——— X. Thus
the following notions, introduced in [11], ensure that C (if consistent) has a
non-small object U.

Definition 6.7 (Universe) A universe is an object U together with a mono
i: PU—U.

Definition 6.8 (Universal object) A wuniversal object is an object U such
that, for every object X, there exists a mono X —— U.

The notion of universe captures the idea that C, which may be seen as a
“typed” world of classes, contains an object U, which may be considered as
an “untyped” universe of “sets” and “non-sets” with the mono PU »—— U
singling out the subcollection of sets in U. We remark that this method of
obtaining an untyped set-theoretic universe within a typed world of classes
may be seen as analogous to Dana Scott’s identification of models of the
untyped A-calculus as reflexive objects in cartesian closed categories [?].

The stronger notion of universal object enforces that every class can be seen as
a subclass of the untyped universe U. This situation occurs naturally in first-
order set theory, where classes are defined as subcollections of an assumed
universe.

As observed in [11], any universe U acts as a universal object in a derived
category with basic class structure. Indeed, defining C<y and S<iy to be the
full subcategories of C and S on subobjects (in C) of U, we have:

Proposition 6.9 If U is a universe then C<y with S<y has basic class struc-
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ture with universal object U.

PROOF (outline). The main points are to observe that C<y is closed under
finite product and P(—) in C. The latter is a consequence of Proposition 5.12.
For the former, Kuratowski pairing (cf. the proof of Lemma 3.9), defines a
mono U x U —— PPU, and we have just seen that PPU —— U. Thus we
obtain a composite mono U x U = U, from which the closure of C<;y under
finite products follows easily. O

By this result, universal objects are essentially just as general as universes,
and so it is no real restriction to consider the former in preference to the latter.

In fact universal objects enjoy useful properties that do not hold of arbitrary
universes. One such property, again taken from [11], is that the map 7y : €y
—— PU, which one may think of as giving the PU-indexed family of all sets,
is a generic small map in the following sense.

Proposition 6.10 If U is a universal object, then a map f: X —— Y s
small if and only there exists g: Y —— PU fitting into a pullback:

X Cu
f Ty
y — 9 py

PROOF. For the interesting direction, given f, take a mono m: X —— U
and define ¢ = my o f~1. It is easily checked that this determines a pullback
as above. 0O

Obviously, every logical functor F': C — C’ between categories with basic
class structure preserves universes. It need not, howerver, preserve universal
objects. We say that a functor F' is cofinal if for every object Y of C' there
exists X € C with Y —— FX. Easily, a logical functor preserves universal
objects if and only if it is cofinal.

It is readily checked that when C has a universal object then so does every slice

category C/I, and for every f: I —— J the reindexing functor f*: C/J — C/I
is cofinal.
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6.6 Categories of classes

Having now considered several additional properties one may require on top
of basic class structure, we enshrine in a definition the main properties that
will henceforth be relevant to our study of category-theoretic models of the
set theory BIST™.

Definition 6.11 (Category of classes) A category of classes is a positive
Heyting category C together with basic class structure S satisfying the Pow-
erset axiom and a universal object U.

This definition should be considered local to the present paper. In other sit-
uations, different combinations of basic properties might well be equally de-
serving of the appellation “category of classes”.

7 Interpreting set theory in a category of classes

In this section, we interpret the first-order language of Section 2 in a category
of classes. We use the universal object U as an untyped universe of sets (and
non-sets), and interpret the logic using the internal logic of C. We shall see that
the set theory validated in this way is exactly BIST~. Moreover, the additional
axioms of Section 6 are related to their set-theoretic analogues from Section 2.

Given a category C with basic class structure and universe ¢: PU —— U,
we interpret the first-order language of Section 2 in the internal logic of C
by interpreting first-order variables and quantifiers as ranging over U. Thus a

formula ¢(z1,...,zx) is given an interpretation
k
—
[z1,...;2p | @] —— U x---x U

which is determined by the interpretations of the basic relations = € y and
S(z), defined as follows.

[z|S(x)] = PU——~U
ey |lzey] = €y ——~UxPU—LHUXU .

We write C |= ¢ to mean that a sentence ¢ is validated in this interpretation,
i.e. that [¢] = 1.2

21 Strictly speaking, C = ¢ is an abuse of notation, since the interpretation is de-
termined by all of C,S,P(—),U and i.
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Theorem 7.1 (Soundness and completeness for class-category semantics)
For any theory T and sentence ¢, the following are equivalent.

(1) BIST "+ T F ¢.
(2) C = ¢, for all categories of classes C satisfying C =T .

7.1 Soundness of class-category semantics

To prove the soundness direction of Theorem 7.1, it is enough to verify that
the axioms of BIST™ (Fig. 1) are validated by any category of classes, since the
soundness of intuitionistic logic is a standard consequence of Proposition 5.4.
We present a few illustrative cases.

Extensionality: S(z) A S(y) A (Vz.z€x— 2z€y) — z=y
Suppose given arbitrary (a,b) : Z — U x U factoring through the subobject
[,y | S(x) AS(y) AVz.(z €x = 2z €y)] — U xU

then by the first two conjuncts there are small relations [z,z | z € a(x)] and
[z,y | z € b(y)] on U x Z, and by the third these satisfy

[z |z cal2)] = [2y]yeblz)]

as subobjects of U x U. Whence a = b by the uniqueness of characteristic
maps in axiom (P) on basic class structure.

To verify the axioms involving the “set-many” quantifier, we make use of the
following lemma.

Lemma 7.2 For any formula o(z1, ..., Tk, y), the subobject [T | 2y. ¢] —— U*
s given by

{2:U* | p(2) is small} |
using the notation introduced below Proposition 5.11, where p is the composite

2

[y, % | ¢] —— U x UF 2 U* .

PROOF. Routine verification using the definition of the 2 quantifier, and
the Kripke-Joyal semantics of C. O

Indexed-Union: S(z) A (Vy € x.22.¢) — 2z.Jy € x. ¢
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We must show that
[z,% | S(x) A (Vy € 2.22. ¢)] < [x,% | 22. Fy € 2. ¢] in Sub(U x U*)

for formulas ¢(z,y,x, ), where @ abbreviates a vector of k variables. For
notational convenience, we give the proof for empty w. The same argument
works in the general case.

Consider the projection maps in the diagram below.
DPy.x
[2.9,2 | S(2), (Vy € w.22.¢),y € x,¢] = [y,z | S(2), (Vy € v.22. ¢),y € ]

q,z@ Dz

4z

[z,2 | S(z), (Vy € :'U 2z. ¢),y € z. P] [z | S(x), (Vy € x.22. ¢)]

The map p, is small, because S(x) holds. By Lemma 7.2 and Proposition 5.11,
Py 15 small, because for (y,z) in the codomain it holds that 2z. ¢. Thus the
composite, p, o p,, is small. By (S4), ¢, is small. The required inclusion of
subobjects now follows from Lemma 7.2 and Proposition 5.11.

The other axioms involving the “set-many” quantifier are similarly reduced
to Lemma 7.2 and Proposition 5.11. Indeed, Emptyset and Pairing hold by
Proposition 5.6(1), the latter also requiring (S4). The Equality axiom follows
from (S3). Finally, the Powerset axiom of BIST ™ is a consequence of its name-
sake for small maps.

7.2 Completeness of class-category semantics

In fact, we shall prove the stronger statement that there exists a single category
of classes Cr such that, for any formula ¢:

Cr = ¢ implies BIST +7 F ¢ .

The category Cr is constructed similarly to the syntactic category of the first-
order theory BIST™+ 7, cf. [6], D1.4. In our setting, due to the first-order
definability of finite products of classes (cf. Section 2), it suffices to build the
category out of formulas with at most one free variable.

Definition 7.3 The category Cr is defined as follows.
objects {x|¢}, where ¢ is a formula with at most z free, identified up to

a-equivalence (i.e. {z|¢} and {y|p|y/z]|} are identified).
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arrows [0] : {z|¢p} — {y|1} are equivalence classes of formulas 6(z,y) that
are “provably functional relations”, i.e. the following hold in BIST™+ 7

0(z,y) — o(x) N(y)
o(x) — Jy.0(x,y)
Oz, y) NO(x,y') — y=1y

with two such 8 and 0 identified if 6 < 6 holds in BIST~+ 7.
identity 14 = [z =y A ¢]: {z|0} — {y|oly/z]}
composition [¢'(y, 2)] o [0(z, )] = [By. 0(z, y) A 0'(y, 2)].

Lemma 7.4 The syntactic category Cr is a positive Heyting category.

PROOF. Finite products and coproducts are given by (co)product classes as
defined in Section 2. For equalizers and the regular and Heyting structures,
standard arguments from categorical logic apply, cf. [6] D1.4.10. O

For later use, we remark that in the proof of the lemma, one characterizes a
map [0(z,y)]: {z|]¢} — {y|¥} in Cr as being a regular epi if and only if it
holds in BIST™+ 7 that:

Y(y) — Jx.0(x,y) . (20)

Similarly, [#(x,y)] is a mono if and only if:

O(x,y) NO(2',y) — z=1". (21)

Now define a map [0] : {z|¢o} —— {y|¢} in Cy to be small if in BIST+ 7

Y(y) — 2x.0(x,y) .

Note that this definition is indeed independent of the choice of representative
formula 6. We write Sz for the collection of small maps.

Lemma 7.5 The small maps St in Cr satisfy axioms (S1)-(S5).

PROOF. For (S1) we need to show that the small maps form a subcategory.
An identity map

[z =2 A d(2)] : {z|p(2)} — {2'|o(2")}
is small because in bIST:

d(x) — ex'.(x =2" N p(x)) .
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For composition, suppose we have the arrows:

[0(z,y)] - {|d1} — {yld2} [0(y, 2)] « {ylda} — {2]s}

and we know that:

$2(y) — ex.0(z,y) ¢3(2) — 2y.0'(y,2) .

Then, by Indexed-Union, one has:

¢3(2) — ex.3y.0(z,y) NO'(y,z) |
as required.

Axiom (S2) concerns pullbacks, which in C7 are constructed as follows. Given
0:(x,2)): {xlor} — (=10} and [02(y, 2)]: {ylo2} — {=10}, the pullback

has vertex
{(z,y) | 32 01(2, 2) A Oa(y,2)}

using Kuratowski pairing, as in the definition of product classes. The pullback
cone maps are the projections. Now suppose that [05(y, z)] is small, i.e.

U(z) — 2y.0x(y, 2) . (22)
We must show that the pullback along [6(x,y)] is small, i.e. that
¢1(z) — 2y.32.01(x, 2) A Oa(y,2) ,

but this follows directly from (22), because ¢;(x) implies there exists a unique
z such that 0, (z, z).

Axiom (S3) requires the diagonal A, : {z|¢p} — {z|¢} x {z|¢} to be small.
But Ay is represented by the formula 6(z, p):

o(x) N p=(z,x) .
For this to be small, we require:
(Fy, 2. 0(y) No(2) Ap = (y,2)) — Cx.p=(z,2) ,

equivalently:
Py No(z) = Cox=yAhe =2z,
and this follows from the Equality axiom of BIST™.

For axiom (S4), suppose we have

0(z,y)] - {z|¢1} — {ylo2} [0'(y, 2)] : {yloa} — {zl¢s} ,
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with [¢'(y, z)] o [#(x,y)] small and [#(x,y)] regular epi. By (20), the latter
condition amounts to

P2(y) — 3. 0(z,y) . (23)

The former condition gives

Thus, for any z such that ¢3(z), there is a set {z | Jy.0(x,y) A 0 (y,2)}.
Moreover, it holds that

¢3(2) — Vo € {z |y 0(z,y) AO(y,2)} 2y 0(z,y) A0 (y,2) . (24)
because there is in fact a unique such y. We must show that
¢3(z) — cy.0'(y,2) .
By (23), the above property is equivalent to
o3(z) — 2y.Fx.0(x,y) N0 (y, 2)
which indeed follows from (24), by the Indexed-Union axiom of BIST.

The remaining case (S5) is left to the reader. O

Using the characterization of monomorphisms (21), one easily shows that, up
to isomorphism, every binary relation R —— {z|¢} x {y|t} in C7 is of the
form R = {(x,y)|p(x,y)}, where p(z,y) is a formula satisfying

p(r,y) — o(x) ANY(y) ,

with the evident inclusion map for the morphism part. Further, the relation
is small if and only if:

U(y) — 2x.plz,y) - (25)
Small powerobjects in C7 are defined in the expected way by,

Plzlo} = {ylS(y) A\Vx € y. ¢},

with the membership relation given, as above, by the formula:

o) NS(y) N (Vz€y.0) Nz €y .
The smallness of the membership relation follows easily from (25).

Lemma 7.6 Cr satisfies axiom (P).
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PROOF. Suppose R —— {z|¢} x{y|t} is a small relation, defined by p(x,y)
as above. The required map xgr: {y|v} — P{z|¢} is given by [0(y, )] where
0 is the formula:

S(z) A\Vz.x € z — p(z,y) .

The routine verification that this has the required property is left to the
reader. O

Lemma 7.7 Cr satisfies the Powerset axiom.

PROOF. The subset relation C »—— P{x|¢p} x P{z|¢}, is given by the
formula p(y, 2):

S(y) N (Vx€y.¢) ANS(z) AN (Vx € z.0) NyC z .

The smallness of this relation follows from (25) using the Powerset axiom of
BIST-. O

Lemma 7.8 Cr has universal object U = {u|u = u}.

PROOF. For any object {x|¢}, there is a canonical morphism

ip = [p(x) N =u| : {z|p} — U ,

which is a mono by (21). O

In combination, Lemmas 7.4-7.8 show that Cy is a category of classes in the
sense of Definition 6.11.

To prove completeness, it is necessary to analyse the validity of first-order for-
mulas in C7. The interpretation of the first-order language in Cz, with respect
to the canonical mono PU ——— U yields, for each formula ¢(zq,...,x,) a
subobject

[z1,... 20 | ¢] — U™,

as in Section 7.1. On the other hand, ¢ also determines an object of Cr:

{p|3z1,...;20.p=(21,...,2) N\ ¢},

using a suitable n-ary tupling. Henceforth, we write {z1,...,z, | ¢} for the
above object. There is an evident mono

o {x1, . Ty | 9 — U™,

given by inclusion.
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Lemma 7.9 For any formula ¢(x1, ..., x,),

[z1,...,xn | @] = {z1,..., 2 | ¢}

as subobjects of U™. This subobject is isomorphic to U™ if and only if

BIST "+ 7 F Vay,...,2,.0¢ .

PROOF. The equality of subobjects is proved by a straightforward but te-
dious induction on the structure of ¢. For the second part, it follows easily from
the definition of equality between morphisms in C7 that {z1,...,z, | ¢} = U"
if and only if BIST™+7 + Vay,...,2,.¢. O

The completeness direction of Theorem 7.1 now follows. By Lemma 7.9, we
have that Cr = ¢ if and only if BIST+ 7 F ¢, for sentences ¢. By the
right-to-left implication, Cr does indeed satisfy Cr = 7. Completeness then
follows from the left-to-right implication.

7.8  Additional azioms

In this section, we extend the soundness and completeness of Theorem 7.1 to
relate the additional axioms on categories of classes introduced in Section 6
to the corresponding axioms extending BIST™ from Section 2.

Proposition 7.10 For any theory T and sentence ¢, the following are equiv-
alent.

(1) BIST + Sep+ 7 F ¢ (i.e. ISTH+ T F ¢).
(2) For all categories of classes C satisfying Separation, C =T implies C |= ¢.

PROQOF. For the soundness direction, suppose C is a category of classes. Us-
ing Lemma 7.2, one shows that [ | !¢] = U” if and only if the monomorphism
[Z | ¢] = U* is small. If C satisfies the Separation axiom then all monos
are small, hence indeed C [=!¢ for all ¢, i.e. C |= Sep.

Conversely, for completeness, one verifies straightforwardly that if 7 contains
all instances of Separation then the syntactic category Cr, defined in Sec-
tion 7.2, satisfies Separation. O

One might hope for a stronger completeness theorem of the form if C = Sep
then the category of classes C satisfies Separation. However, this does not hold.
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The reason is that the validity of the Separation axiom of set theory only
requires first-order definable monomorphisms in C to be small, from which it
need not follow that all monos are small. We give a concrete example after
Theorem 9.3 below.

Proposition 7.11 For any theory T and sentence ¢, the following are equiv-
alent.

(1) BIST+T F ¢.
(2) For all categories of classes C satisfying infinity, C |= T implies C |= ¢.

PROQOF. If C has a small natural numbers object N, then the mono N —— U
generates points

0=1-—2+Nev—uU
s=1—> NV o PU—U.

With these, it is easily verified that C |= Inf.

Conversely, for completeness, suppose that 7 contains the Infinity axiom.
Consider the syntactic category Cr. This need not satisfy infinity. However,
consider the object

X ={I,0,s| 0l Asel' A (Vxels(z)+#0)
A (Vo,y e l.s(x) =s(y) — z=y)},

using the notation established above Lemma 7.9. Then it is easily seen that
the slice category C7/X does satisfy condition 1 of Proposition 6.5, and hence
the infinity axiom. Let ¢ be a sentence in the language of set theory. Then,
writing Inf(I,0,s) for the formula used to define X,

Cr/X ¢ iff BIST+ T+ Inf(1,0,s)F ¢
iff BIST+7TF¢ .

Here, the first equivalence follows from Lemma 7.9, and the second holds
because Inf (1,0, s) is the only formula containing I, 0, s as free variables. Thus
the category C7/X demonstrates the required completeness property. O

We remark that, in fact, for a category of classes C, it holds that C |= Inf if
and only if there exists an object X with global support 2? such that the slice
category C/X satisfies the infinity axiom of Section 6.3. Thus an alternative

22 An object X has global support if the unique map X — 1 is a regular epi.
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approach to modelling the Infinity axiom of set theory would be to weaken
the infinity axiom on categories of classes to merely require a small infinite
object in some globally supported slice. This has the disadvantage of being
less natural, and we shall not consider it further.

It is worth commenting that the completeness theorem for the theory IST
of [11, Theorem 11] follows immediately from the combination of Proposi-
tions 7.10 and 7.11 above.

Proposition 7.12 For any theory T and sentence ¢, the following are equiv-
alent.

(1) BIST + Coll+ T + ¢.
(2) For all categories of classes C satisfying Collection, C = T implies C |= ¢.

PROOF. The proof of soundness is a simple verification that when C satisfies
Collection, it holds that C |= Coll. The argument is essentially given by Joyal
and Moerdijk [7, Proposition 5.1].

For the converse, suppose 7 contains all instances of Collection. One verifies
easily that the covariant small powerobject functor in the syntactic category
Ct preserves regular epis. Thus C7 satisfies Collection axiom. Hence complete-
ness holds. O

8 Categories of ideals

Proposition 6.3 showed that, in any category of classes, the full subcategory of
small objects is a topos. In this section we prove that conversely every topos
occurs as the category of small objects in a category of classes, in fact in a
category of classes satisfying Collection. By Theorem 3.10, we can, without
loss of generality, work with toposes endowed with a directed structural system
of inclusions, i.e. a dssi as defined in Section 3. Given such a topos, we build a
category of classes whose objects are ideals of objects in the topos under the
inclusion order. The small objects turn out to be exactly the principal ideals,
and thus essentially the same as the objects of original topos. Moreover, the
resulting category of ideals automatically satisfies the Collection axiom.

We also give a variation on the ideal construction in the case of a topos en-
dowed with a superdirected structural system of inclusions (i.e. an sdssi), using
which we embed the topos in a category of classes satisfying both Collection
and Separation axioms

Throughout this section, let £ be a fixed topos with dssi Z. For convenience, we
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assume that Z partially orders &, see Proposition 3.3 and ensuing discussion.
By an ideal in £ we then mean an order ideal with respect to the inclusion
ordering, i.e. a non-empty collection C of objects of £, such that A, B € C
and A’ —— A implies AUB € C and A’ € C. A morphism of ideals consists
of an order-preserving function,

f:-C—-D
together with a family of epimorphisms in &,
fo: C — £(C) forall C € C

satisfying the naturality condition that, whenever C’ —— C'in C, the follow-
ing diagram commutes in &.

f
C c

- £(C)

o4 - £(C)

C/

With the obvious identities and composition, these morphisms form the cat-
egory of ideals in the topos Ewith dssi Z, denoted Idlz(€). Usually, we omit
explicit mention of Z, and we simply write f for the morphism (f, (fo)cec).

Because epi-inclusion factorizations in £ are unique, the values f(C') and f¢
determine the values f(C”) and for for all " —— C. Indeed, locally (i.e. on
the segment below any fixed C' € C) the mapping f is essentially the same as
the direct image functor

(fc)r : Sub(C) — Sub(f(C))
This implies the following.
Lemma 8.1 FEvery morphism of ideals f : C — D preserves unions,
f(AuB) =f(A)Uf(B)

for all A, B € C. Moreover, f is “locally surjective” in the sense that for every

C € C and D — £(C), there is some C" — C with £(C") = D.
Next, observe that taking principal ideals determines a functor,

| € — 1d1(E)

81



as follows: for any f: A — B in &, we define:
LA = A) = [(A)— B

where fi(A’) is the image of A’ under f, given by the unique epi-inclusion
factorization, as indicated in:

N

A/

7 fi(A)
Moreover, we can then let | (f), = f’, where f’ is the indicated epi part of
the factorization.

Proposition 8.2 The principal ideal functor is full and faithful.

PROOF. Given any morphism of ideals f : | (A) — | (B), consider the
composite map:

T(f)=iofy: A—f(A)—— B
where i : f(A) = B is the canonical inclusion. Then by naturality, the
value of f on every A’ ——— A is just T(f)(A'), and f4 = | (T(f)), :
A" ——T(f)(A). Thus f = | (T'(f)). Since clearly T'( | (f)) = f for any
morphism f : A —— B, this proves the proposition. O

Our main objective in this section is to prove that the category of ideals
is a category of classes. The intuition is that each ideal represents a class
in terms of its approximating subsets, and that class functions are similarly
represented by their approximating functions on subsets. Accordingly, it is
natural to define a map in Id1(£) to be small if it has an inverse image that
maps approximating subsets of the codomain to approximating subsets of the
domain.

Formally, we define a morphism of ideals f : A —— B to be small if, for every
B € B, the collection

{AcA|f(A) — B}
has a greatest element under inclusion, and we write f~!(B) for the largest
A such that f(A) —— B. Equivalently, f is small if and only the function
from A to B given by its mapping part has a right adjoint f~! as a function
between partial orders.
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Theorem 8.3 The category Id1(E) is a category of classes satisfying the Col-
lection axiom. Moreover, the small objects in Id1(E) are exactly the principal
ideals, and so the principal ideal embedding |: € — Id(E) exibits € as the
full subcategory of sets in Id1(E).

The proof requires a lengthy verification of the axioms for class structure,
which we present as a series of lemmas.

Lemma 8.4 The category Id1(E) of ideals is a positive Heyting category.

PROOF. The terminal ideal is | (1), as is easily verified. The product of
two ideals A and B is the collection: %

AxB={C——+ AxB| A€ A, BeB}
which is an ideal because, if C —— A x B and C' —— A’ x B’, then we have:
CUC'——+ (AxB)U(A' xB')~—— (AUA") x (BUB)

since products preserve inclusions. The projection m; : AxB —— A is defined
by factoring as indicated in the following diagram:

Cc—AxB

T1c ™

71'1(0) A

To see that this is well-defined, suppose also C —— A’ x B’ and consider
(AUA’) x (BUB'). Then since products preserve inclusions, the image 71 (C')
can equally well be computed with respect to (AU A’) x (BU B’), as indicated
in the following:

Ce—Ax B~ (AUA) x (BUB')

T10 T Uy

A\

m(C) < - A< - AUA

Since the same is true for m;(C') computed according to C' —— A’ x B’, the
two must agree. The second projection g is defined analogously. To see that
this specification is indeed the product in Id1(€), given any ideal C and maps

23 By this notation we of course mean the collection of objects C' included in A x B,
not the collection of inclusion maps.
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f:C—>Aandg:C—— B, let (f,g) : C—— A x B take C € C to the
image in the diagram below.

<f7 g>C’ )&O/

-

(f,)(C) — f(C) x g(C)

Then 7 ((f,g)(C)) = £(C) since fo is an epi. We omit the verification of
uniqueness.

For equalizers, given f, g : A —— B, their equalizer is the evident inclusion
into A of:

{Ac A|f(A) =g(A).fa=ga} .
This is clearly down-closed, and if A, A" € A are both in it, then so is AU A’
since f and g both preserve unions.

Combining the foregoing two cases, we obtain the following description of
pullbacks. Given f : A —— C and g : B —— C, the pullback consists of (the
evident projection morphisms on) the object:

AxcB={D——+AxB|Ac A BeB,{f(A)=g(B),frod =gpody}
whered; : D —— A and dy : D —— B are the two components of D <— Ax B.

In order to show that Id1(£) is a regular category, we characterize the regular
epis as those morphisms e : A —— B for which the mapping part A — e(A)
is a surjective function from A to B. Clearly such maps are indeed epis. Below,
we show that, for any morphism f : A —— B, the subcollection,

f(A) = {f(A) | Ac A} CB (26)

is the coequalizer of the kernel pair of f. It follows that the surjective mappings
are indeed regular epis. Conversely, if f is a regular epi then it also coequalizes
its own kernel pair, so we have B = {f(A) | A € A} C B, whence f is
surjective. It remains to prove that (26) indeed coequalizes the kernel pair of
f. According to the description of pullbacks above, the kernel-pair of f is:

K={D—~Ax A | A, A € A, f(A) =f(A),f10d; = fa od}

with the two evident projections w1, T3 : K —— A. But this ideal agrees with
the following one:

K={D— Ax;u A | A A € A f(A)=£(A)}
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where the indicated pullbacks are taken using the maps fu : A — f(A)
and fa : A — f(A") = f(A). Given any morphism g : A —— C with
g om = g o my, one can then define the required extension g’ : f(A) —— C
simply by setting:

g'(f(4)) = g(4),
g,f(A) =ga: A—g(4) .

Having now characterized the regular epis in Idl(€) as the morphisms whose
mappings are surjective, it is straightforward to verify that regular epis are
stable under pullback. Thus Id1(€) is indeed a regular category.

Using the coproduct in £ defined above Proposition 3.14, the coproduct of
ideals A and B is defined by:

A+B ={A+B|AcA BeB}

with the injection morphisms A — A + () and B — () + B. It follows easily
from Proposition 3.14 that this is indeed an ideal. The coproduct property of
A + B in Idl(€) is straightforward to verify.

Finally, the dual image along f : C —— D of a subideal A —— C is calculated
as follows. Without loss of generality, we can assume that A C C. Then let:

Ve(A) ={D e D |forall C € C, f(C) —— D implies C € A} .

To see that this works, note that the condition determining the elements D
in V¢(A) is equivalent to Ve( | (D)) C A. O

Lemma 8.5 The following characterizations hold in the category Id1(E):

(1) The small objects are exactly the principal ideals | E for E € £.

(2) Every morphism £ : | E —— | F between small objects is of the form:
f=1f for aunique f: E —— F in &, and is therefore small.

(8) The small subobjects C' —— C are exactly those isomorphic to subobjects
of the form | C C C for some C € C.

(4) A morphism £ : A — B is small if, whenever S ——— B is a small
subobject, then £71(S) —— A is also small.

PROOF. Straighforward. O

Lemma 8.6 The small maps so defined satisfy axioms (S1)-(S5).

PROOF.
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(S1) Small maps form a subcategory, since adjoints compose.
(S2) Suppose we have a pullback

AxcB-1 .B
p g
A C

f

with g small. To show p small, we need to find p~'(A) € A x¢ B for
each A € A. Consider the pullback diagram:

- T A

] ]

T//

£(A)

A\l

T - g(T) = £(4)

gr

in which T' = g=*(f(A)). It follows that the subobject 7" —— T' x T is in
the pullback A x ¢ B. Define: p~'(A) = T”. We omit the easy verification
that this has the right properties.

(S3) Given A : C——C x Cand T~ A x B in C x C, we take the
pullback:

T’ . T

ANB

(ANB)x (ANB)—— Ax B
ANB

Define A™Y(T) = T’. Again, we omit the straightforward verification.
(S4) Suppose the diagram below commutes

where g is small and e is a regular epi. As in the proof of Lemma 8.4, the
mapping part of e is a surjective function. To show that f is small, for
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C € C, define f71(C) = e(g™'(C). That this has the required properties
follows from the smallness of g and the surjectivity property of e.
(S5) Given small maps f and g as below, we must show that [f, g] is small.

A A+B B

& [f, g] S

C

For C € C, define: [f,g]™'(C) = {71(C) + g (C). We omit the straight-
forward verification that this has the required properties.

a

Next we define small powerobjects in Id1(€). Given any ideal C, define:
PC={S——=PC|CeC} .

This is indeed an ideal because, given S —— PC', and S’ —— PC’, it holds
that SU S —— PCUPC' —— P(CUC").

Because 7 is a dssi on &, for each object C' of £, the membership relation
is given by an incluion €0 —— C x PC. For an ideal C, the membership
relation on small objects is defined by the inclusion of

€Ec={S—— €| CeC}
in the ideal C x PC. It is easily verified that €¢ is indeed an ideal.

Lemma 8.7 The category Id1(E) satisfies aziom (P).

PROOF. Since this is the trickiest case in the verification that Idl(€) is
a category of classes, we give the proof in detail. Suppose we have a small
relation R € C x A, with components r;: R —— C and ry: R —— A.
Because R is a small relation, ry is a small map. We must show that there is
a unique map yr: A —— PC fitting into a pullback diagram:

R

€c

]
(27)

1XXR

CxA C xPC
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First we define yg : A —— PC. For A € A, take ry7!(A) € R, which has the
form ro 7' (A) —— C x A for some C € C. Using the characteristic property
of powerobjects in £ together with an image factorization, define xr(A) and
(xr)a: A — xr(A) to be the unique object and epimorphism fitting into a
pullback diagram:

r271(A) > E¢

|

(28)

le X (xr)A

CxA »C X xr(A) = C x PC

We show that this is independent of C. Accordingly, take another C' € C
such that ro™'(A) —— " x A. Without loss of generality, we can assume
C —— (' (otherwise apply the following argument twice to show that the
objects C, CUC" and C" all determine the same ygr ). Then, composing pullback
squares, we obtain:

rz_l(A) - Co © - Cov
-

— M

- O x Yr(A) = C x PC

10/ X (XR)A

C'x A » " x xr(A) = C' x PC = ' x PC'

where the outer pullback shows that the same action of xyg on A is determined

by the inclusion ry 1 (A) —— C’ x A.

We must verify that yg indeed makes diagram (27) into a pullback and that it
is the unique map doing so. This requires an analysis of the pullback property
itself. For any map g: A —— PC, the pullback

Py

€c

]

1xg

CxA C x PC

can be defined by

P, ={S——~CxA|CeC,AcA, (1xg)S) € ec},
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with the map from P, to C x A given by the evident inclusion. As in the
proof of Lemma 8.4, the object (1 x g)(S) of £ is given by the factorization:

S - (1 xg)(5)

(29)

1><gA

Cx A - O x g(A)

which is independent of C' and A. For S —— C x A if S € P, then we
have (1 x g)(S) —— €¢ for some C' € C. Also, g4 —— PC" for some
C" € C. By redefining C' to be C UC"UC”, and applying the remarks before
Proposition 3.12, we have that if S € Py then there exists C' € C such that
the bottom composite below factors through the right-hand edge:

(30)

1><gA

CxA »(C xg(A) = C x PC

Conversely, by the uniqueness of the factorization (29) defining (1 x g)(.9),
any S —— (' x A, for which there exists an f making the diagram above
commute, is contained in Pg. Thus we have:

P, = {S——CxA|g(A) — P(C), 3f. (30) commutes} . (31)

At last, we show that diagram (27) is indeed a pullback with the defined
Xr. We must show that R = P,,. Suppose that S —— C x A is in R.
Then S« ry7'(A). Interpreting the pullback of (28) as an instance of
diagram (30), we see that ro~'(A) € P, ., by (31). So S € P,,, because P,
is down-closed. Conversely, suppose that S —— C x A is in P,,. By (31),
we have a commuting diagram (30) with g = xr, whose span part is thus a
cone for the pullback of (28). By the pullback property, S —— ry~*(A). Thus
indeed S € R.

Finally, suppose g: A —— PC is such that R = P,. We must show that
g = xr- For any A € A, we have ry '(A) € R = P,. Hence, by (31), there is
a commuting diagram of the form (30), with S =ry7'(A). Let T —— C x A
be the pullback of the right edge along the bottom. Again by (31), T €
P, = R. By the pullback property of T', we have ry~!(A) = T. Conversely,
T —— 1y (A) follows from the defining property of ro(A), because T' € R.
Thus diagram (30) with S = ry7!(A) is itself a pullback, and hence identical
to diagram (28). So indeed g(A) = xr(A4) and g4 = (xr)a. O
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Lemma 8.8 The category Id1(E) satisfies the Powerset aziom.

PROOF. The subset relation C¢ ~— PC x PC is given by the subideal:
Ce={5|S—— C¢ = PCxPC, CecC}
with the evident inclusion. To see that the second projection
q: C¢ —— PC x PC -~ PC
is small, take any S —— PC' in PC, and form the pullback:

S’ - S

CocvPC xPC 2 pC

Define q~1(S) = S’. We omit the verification that this has the required prop-
erties. O

Lemma 8.9 The category Id1(E) satisfies the Collection aziom.

PROOF. We verify that the covariant small powerobject functor preserves
regular epis (property 2 of Proposition 6.6). Accordingly, suppose e: A — B
is regular epi. As in the proof of Lemma 8.4, this means that the mapping
part of e is a surjective function. We must show that the same property holds
of e;: PA —— PB. The map e, has the following explicit description. For
A€ A and S —— PA, the object (e))(S) and map (e))s: S — (e)(S) are
given by the image factorization:

s {5 (@)(s)

pA )L p(e(a))

To show surjectivity of the mapping part, suppose T' —— P B for some B € B.
We must show that there exists S € PA with (e)(S5) =T

By the surjectivity of e, there exists A € A with e(A) = B. But then
(eq);: PA—— PB is an epi, since the covariant powerobject functor in a

90



topos preserves epis. Defining S by pullback:

S T

]

pa—{e4t pp

we see that the factorization defining (e)(S) yields (e)(S) = T, asrequired. O

Lemma 8.10 The category Id1(E) has a universal object

PROOF. The total ideal U = {FE | E € £} is a universal object in Id1(£)
because C C U for every ideal C. O

In combination, Lemma 8.4-8.10 prove Theorem 8.3.

Corollary 8.11 The category Id1(E) satisfies the infinity axiom if and only
if £ has a natural numbers object.

PROOF. Immediate from Theorem 8.3 and Proposition 6.5. O

Thus far, in Part III, we have avoided discussing meta-theoretic issues al-
together. This was justifiable in Sections 5-7, where the development was
entirely elementary and easily formalizable in any reasonable meta-theory, in-
cluding BIST. In this section, the construction of categories of ideals is less
elementary, and meta-theoretic issues do arise exactly parallel to those dis-
cussed in Section 4. Again, we take BIST itself as our primary meta theory.
In the case that £ is a small topos, there is no problem in doing so, as, by the
Powerset axiom, the category of ideals is again small (taking ideals to be sets
of objects). In the case that £ is only locally small, an ideal has to be taken
to be a subclass of the class of objects. In this case, the category Id1(E) is
not itself a locally small category. The collection of morphisms between two
objects A and B may form a class, and the collection of all objects need not
even form a class (just as there is no class of all classes). In this case, it is best
to look at Id1(€) as a “meta-category” in the following sense: its objects and
hom-classes are individually definable as classes, but we never need to gather
them together in a single collection. Instead, the results above should be un-
derstood schematically as applying to the relevant objects on an individual
basis.
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We end this section with a variation on the construction of Idl(£), which
requires the collection Z of inclusions on £ to be a superdirected structural
system of inclusions (sdssi). Under these circumstances, a superideal is a (nec-
essarily nonempty) down-closed collection A of objects in Z such that every
subset of A has an upper bound in A. We write sIdl(€) for the full subcat-
egory of Idl(€) consisting of superideals. And we define a map in sId1(€) to
be small if it is small in Id1(E).

Theorem 8.12 (IST+ Coll) If Z is an sdssi on a locally small category &,
then the category sId1(E) of superideals is a category of classes satisfying both
Collection and Separation azioms. Once again, the small objects in sId1(E)
are exactly the principal ideals, and so the principal ideal embedding | : & —
sIdl(E) exibits € as the full subcategory of sets in sIdl(E). Moreover, the
inclusion functor sIdl(E) — Id1(E) is logical.

(Because toposes with sdssi’s are not small, in the proof below, the meta-
theory IST+ Coll is being used in the schematic sense discussed above.)

PROOF. Suppose that Z is an sdssi on &£. To show that the category of
superideals is a category of classes satisfying Separation, we use the economical
axiomatization of such categories from [11]. For this, it suffices to verify axioms
(C1),(S1), (S2) and (P) together with the Powerset and Separation axioms.

For all but the Separation axiom, we verify that the structure already defined
on the category of ideals Id1(£), preserves the property of being a superideal.
The most interesting case is to show that sId1(€) is a regular category, for
which we establish that superideals are closed under images in the category
of ideals. Accordingly, suppose that A is a superideal and e: A — B is a
regular epi in the category of ideals. We show that the ideal B is a superideal.
Suppose then that B is a subset of B. As e is a regular epi, for each B € B,
there exists A € A with e(A) = B. By Collection in the meta-theory, there
exists a set A C A such that, for all B € B, there exists A € A with e(4) = B.
As A is a superideal, there exists an upper bound U € A for A. Then e(U) is
the required upper bound for B in B.

To show the Separation axiom, suppose that m: A ——— B is a mono in
sIdl(€). Without loss of generality A C B. To show that the mono is small,
take any B € B. Consider the collection A = {A € A | A<~ B}. Because
& is locally small, the collection {A € B | A~ B} is a set, so, by full
Separation in the meta-theory, A is a set. As A is a superideal, A has an
upper bound U € A. But then U N B € A is the required object m~*(B)
showing that m is small.

Finally, the inclusion functor is logical because the structure on sId1(€) is all
inherited directly from Id1(£). O
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The reader may have noticed that the above proof shares similarities with
the proof of Proposition 4.9. In common with that proof, we mention that
it is not straightforward to verify directly that superideals are closed under
dual images in Id1(£). Thus the economical axiomatization of [11] is helpful
in enabling the simple proof above.

9 Ideal models of set theory

The ideal construction of the previous section shows that every topos with
dssi embeds in a category of classes satisfying the Collection axiom. Using
the interpretation of set theory in a category of classes from Section 7, one
thereby obtains a model of the set theory BIST "+ Coll. On the other hand,
in Section 3, we gave a direct interpretation of the language of set theory in
a topos with dssi, using the forcing interpretation defined over the inclusions,
which again modelled BIST ™+ Coll. In this short section, we show that these
two interpretations of set theory coincide.

Theorem 9.1 If £ is an elementary topos with dssi T then the following are
equivalent for a sentence ¢ in the first-order language of Section 2.

(1) Id1(€) = ¢, using the class category interpretation of Section 7.
(2) (£,1) & ¢, using the forcing semantics of Section 3.

The theorem is proved by induction on the structure of ¢, and hence we need
to establish a generalized equivalence for formulas with free variables.

Suppose we have such an open formula ¢(x1, ..., z,). Then the interpretation
from Section 7 of ¢ in Id1(€) defines:

[z1,... 2 | ¢] — U~ |

where U is the universal ideal of Lemma 8.10. However, the object U* in
Id1(€) is given by the ideal

Ur = {Sc— A x - x A, | A1,..., Ay objects of £},

and subobjects of U* are simply subideals of this (i.e. down-closed subcollec-
tions closed under binary union). Henceforth in this section, we write [x1, ...,z | @]
to mean such a subideal. In the case that ¢ is a sentence, then [¢] is a subideal

of | 1. By definition, [¢] = | 1 if and only if Id1(€) = ¢.

We next observe that the forcing semantics of Section 3 also associates a
subideal of U* to ¢(z1,...,,), namely:

[[ZL‘l,...,QTk|¢]]/ = {SL»AlxxAHSH—pgb} ,
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where p,, is the projection S —— A; x --- x Ay —— A;. As above, when ¢
is a sentence, [¢] is a subideal of |1. By the remarks above Theorem 4.6, it
holds that [¢]' = | 1 if and only if (£,Z) = ¢.

By the discussion above on the two interpretations [¢] and [¢] of a sentence
¢, Theorem 9.1 is an immediate consequence of the lemma below.

Lemma 9.2 If £ is an elementary topos with dssi I then, for any formula
d(x1, ..., xx), it holds that [xy1, ...,z | @] = [x1, ..., 2k | @]

PROOF. The proof is a straightforward induction on the structure of ¢. We
present one illustrative case.

Assuming [Z,y | ¢] = [#,y | ], we show that:

[7|3y.¢] = [ | Fy.- 9] . (32)

By the semantics of existential quantification in the internal logic of Id1(E),
the ideal [Z | Jy. ¢] is given by the following image factorization in Id1(E).

[y | 6] — [¥ | Fy. 6]

™

U xU U”

To show the C inclusion of (32), suppose that T'—— X; x - -+ x X} is con-
tained in [Z | Jy. ¢]. Applying the characterization of regular epis in Id1(£), as
morphisms whose mapping part is surjective, to the above factorization, there
exist Y and S —— X; x -+ x X}, x Y such that S € [Z,y | ¢] = [Z,y | ¢]
and e(S) = T. Hence the epi eg: S ——= T together with the projection
S X;x---x Xp xY — Y are the data required by the forcing seman-
tics for showing that T' € [ | Jy. ¢]'.

For the converse inclusion, suppose that T"——— X; X .-+ x X} is contained

in [Z | Jy.¢]". Then, by the forcing semantics, there exists maps U T

and U — Y in € such that U IFpotla/y) @ (Where p is built from the evident
projections). Define S by taking the image factorization of the unique map
U—— X; X -+ x X} xY making the solid arrows in the diagram below
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commute.

U ¢ -Y
t
XlX"'XXk‘ X1 x X X1X-..XXkXY

Because the left edge is the image factorization of the bottom-left triangle,
there exists an epi S —= T as indicated. Since U IF,e4q/y @, it follows from
Lemma 4.2 that S Ik, ¢, where p’ again consists of the evident projections
away from S X; X -+ X X x Y. Thus S € [Z,y | ¢] = [Z,y | ¢].
However, it follows from the bottom quadrilateral of (34) that the epi S — T’
is a component of the bottom-left composite of (33). So, by the definition of
[# | Fy. ] as the factorization of this composite, indeed T € [Z | Jy.¢]. O

We now have the promised second proof of the soundness direction of Theo-
rem 4.6. Indeed the result is a consequence of Theorem 9.1 together with the
soundness direction of Theorem 7.1. Thus the direct proof of the soundness of
the forcing semantics in Section 4 has been rendered redundant.

At this point, we return to the issue of the conservativity of the forcing se-
mantics over the internal logic of £, discussed around Proposition 4.10. Using
the tools we have now established, there is a much neater formulation of this.
Since £ is a topos, it can itself be considered as a category with basic class
structure, and, as already discussed at the end of Section 6.1, the embedding
E — Id1(€) is logical and reflects isomorphisms. This expresses in an elegant
way that the first-order logic of quantification over classes of the internal logic
of Id1(€) is conservative over the internal logic of £. By Theorem 9.1. the
forcing semantics of BIST™ is equivalent to the semantics determined by class
quantification over the universal ideal in the internal logic of Id1(€). Hence
the forcing semantics is in general conservative over the internal logic of £. In
particular, when £ has a natural numbers object N, the properties of first-
order arithmetic valid in £ are the same as those valid for | NV in Id1(E) (it is
irrelevant that | N is not a natural numbers object in Id1(€)). Proposition 4.10
follows.

We end the section by observing that, in the case of a topos with superdirected
system of inclusions, the forcing semantics of set theory also coincides with
the interpretation in the category of superideals.
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Theorem 9.3 If & is an elementary topos with sdssi I then the following are
equivalent for a sentence ¢ in the first-order language of Section 2.

(1) sIdL(E) [= ¢, using the class category interpretation of Section 7.
(2) (£,71) = ¢, using the forcing semantics of Section 3.

PROOF. As the inclusion sIdl(£) < Id1(€) is logical (Theorem 8.12), the
interpretation of the language of set theory in sIdl(€) coincides with the in-
terpretation in Id1(£). The forcing semantics is anyway unchanged for a su-
perdirected system of inclusions. Thus the result is an immediate consequence
of Theorem 9.1. O

Finally, we remark that since the interpretation of set theory in Id1(€) and
sIdl(€) coincide, when £ carries an sdssi, it holds that IdI(E€) = Sep even
though the Separation axiom for categories of classes does not hold in Id1(E).
This justifies a comment made after Proposition 7.10 above.

10 Ideal completeness

We have seen that every topos £ with dssi gives rise to a category of ideals
Id1(€) in which the universal object models BIST™+ Coll. The aim of this
section is to strengthen the completeness direction of Theorem 7.1 by showing
that completeness still holds if the quantification over categories of classes is
restricted to categories of ideals. In particular, BIST™+ Coll is a complete
axiomatization of the sentences valid in all categories of ideals.

Theorem 10.1 (Ideal completeness) For any theory T and sentence ¢, if:
for every topos € with dssi, it holds that IdL(E) = T implies IA1(E) | ¢,

then BIST™+ Coll+ T I ¢.

As an immediate consequence of the theorem, we finally obtain the missing
implication of Theorem 4.6, the completeness of the forcing semantics.

Corollary 10.2 The completeness implication of Theorem 4.6 holds.

PROOF. Immediate from Theorems 9.1 and 10.1. O

The rest of this section is devoted to the proof of Theorem 10.1. The strategy
is to derive Theorem 10.1 from the completeness direction of Theorem 7.1, by
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showing that, for every category of classes C satisfying Collection, it is possible
to “conservatively” embed C in a category of ideals. Here, the conservativity
of the embedding means that the category of ideals does not validate any
properties in the internal logic of C that are not already valid in C. Clearly
this is enough to obtain completeness.

In order to construct the embedding, we start with a small category of classes
C satistying Collection, and we work in ZFC as the meta-theory. The construc-
tion of the embedding of C into a category of ideals proceeds in two steps.

Step 1: Any small category of classes C satisfying the axiom of Collection
has a conservative logical functor,

C—-cCr

into another one C* that is “saturated” with small objects.
Step 2: The saturated class category C* has a conservative logical functor,

C* — Idl(€)
into the category of ideals in a topos £.

The topos £ in step 2 is equivalent to the subcategory of small objects in C*.
Step 1 is required to ensure there are enough such objects.

Before proceeding with the two steps, we prepare some necessary machinery
from the general model theory of categories of classes. First we define the
required notion of conservative functor. As is standard, we say that a subobject
X'~ X is proper if its representing mono is not an isomorphism.

Definition 10.3 (Conservative functor) A functor /' : C — D, between
categories of classes, is called conservative if it is both logical and preserves
proper subobjects.

Often we shall use the conservativity of a functor F': C — C’ as follows. Given
a property ¢ expressed in the internal logic of C, one obtains a translation
F¢ in the internal logic of C'. When F' is logical, it holds that C' = ¢ implies
C' = F¢. When F is conservative, it also holds that C' [~ ¢ implies C' |~ F¢.

By applying the above argument to suitable internal formulas, one sees that
conservative functors are faithful and reflect monos, epis and isos. Clearly, a
logical functor is conservative if and only if it reflects isos. We remark that
we do not know if faithful logical functors between categories of classes are
automatically conservative.

Recall (see footnote 22) that an object X is said to have global support if the
unique map X — 1 is a regular epi.
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Lemma 10.4 IfC is a category of classes and X has global support. then the
reindexing functor X*: C — C/X is conservative.

PROOF. X* is logical by Proposition 5.17. That it preserves proper subob-
jects is an easy consequence of X having global support. O

Because categories of classes have universal objects, we shall be interested in
functors preserving these, i.e in cofinal functors in the sense of Section 6.5.
As in the discussion there, all functors X*: C — C/X are indeed cofinal. The
next lemma allows us to build filtered colimits of cofinal conservative functors
between class categories.

Lemma 10.5 (ZFC) If (C;)ics is a filtered diagram of cofinal logical functors
between small categories of classes, then the colimit category,

o
15 also a category of classes, and is a colimit in the large category of categories
of classes and (cofinal) logical functors. If each C; has Collection, then so does
lii>ni Ci. Moreover, if each functor C; — C; is conservative, then so is each
canonical inclusion C; — h_n)lZ C;.

PROOF. A routine verification. Note that the axiom of choice is required
to define the class category structure on hi>nl C;. Also, the cofinality of the
functors is required to define a universal object in hLQz C;,. O

10.1 Saturating a category of classes

Definition 10.6 (Saturated category) A category of classes C is said to
be saturated if it satisfies the following conditions:

Small covers: given any regular epi C' —» A with A small, there is a
small subobject B =~ C such that the restriction B —— C' —> A is
still a regular epi.
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Small generators: given any subobject B —— (), if every small subobject
A —— (' factors through B, then B = (.

Recall that an object X of a regular category is said to be (regular) projective
if, for every regular epi e: Y —» Z and map z: X —— Z, there exists a map
y: X —— Y such that z = eoy. A straightforward pullback argument shows
that X is projective if and only if every regular epimorphism e: ¥ ——» X
splits (i.e. there exists s: X —— Y with eo s = 1x).

We require a strengthened notion of projectivity.

Definition 10.7 (Strong projectivity) An object X in a category of classes
is said to be strongly projective if, for every regular epi e: ¥ —» X and proper
subobject Y/ ~——— Y, there exists a splitting X —— Y of e that does not
factor through Y/ —— Y.

(Classically, strong projectivity implies ordinary projectivity because, for any
regular epi e: Y —> X either 0 —— Y is a proper subobject or 0 =2 Y = X.
In the first case e splits by strong projectivity, in the second e is an iso.

Lemma 10.8 (ZFC) FEvery small category of classes C has a cofinal conser-
vatiwe functor, C — C* into a category of classes C* in which the terminal
object 1 is strongly projective. Also, if C satisfies Collection, then so does C*.

PROOF. First we observe the following fact. If m: C ——— X is a proper
subobject in a category of classes C, then there exists a map x: 1 —— X*X
in C/X (where X*X is the reindexing of X along X*: C — C/X) such that the
property dc: X*C.xz = (X*m)(c) does not hold in the internal logic of C/X.
To see this, define x: 1 —— X*X to be the “generic point” of X*X in C/X,
given by diagonal A: 1, — 9 (recall that X*X = my: X x X —— X). If the
above property were valid in the internal logic of C/X then, by the genericity
of z, we would have C = Vz: X.3c: C.x = m(c), which contradicts that m is
a proper subobject. So indeed it holds that C/X [~ dc: X*C.x = (X*m)(c).

Now we turn to the construction of C* required by the lemma. This is done in
two stages.

First, using the axiom of choice, let (X, )a<x be a well-ordering of the objects
of C that have global support, indexed by ordinals < x. We construct a se-
quence {C,}a<, of categories of classes together with conservative functors
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{Jap: Co — Cala<p<n, forming a filtered diagram, as follows.

CO - C J[)}o - Id
Cor1 = Cs/JopXp  Japr = (JopXp) 0 Jap
C, = limC, Jon = colimit injection (A a limit ordinal)
a<h ’

Here, the functors J, g41 are conservative by Lemma 10.4. Similarly, the func-
tors J, » are conservative by Lemma 10.5. (The diagrams {C, }o<\ are always
filtered by construction.) Moreover, as the Collection axiom is preserved by
slicing and by filtered colimits, if C satisfies Collection then so does every C,.

Define C, = C, and J = Jy,: C — C.. We claim that, for any X, with
global support and proper subobject m: C ——— X, in C, there is an arrow
d:1— JX, in C, such that C, [~ Je: JC. d = (Jm)(c). Indeed, since Jy, is
conservative, Jy ,m is a proper subobject in C,. Thus, by the observation at
the start of the proof, there exists = : 1 Jo,a+1Xa 10 Cot1 = Co/Jo,0Xa
such that Cotq = Je: Joa1C. & = (Joar1m)(c). Since Joy1 , is conservative
and J = Joy14 0 JoaXa, defining d = J,41 .2, we obtain that indeed C, -
de: JC.d = (Jm)(c).

For the second stage, define categories

c’=cC
crtt = (C™), using the construction above
C* =lim C'
—
1<w

Again by Lemma 10.5, these categories are all categories of classes with con-
servative functors between them, and they all satisfy Collection whenever C
does.

We show that 1 is strongly projective in C*. Suppose X has global support
and m: C'—— X is proper in C*. Then the same is already the case in some
C", whence by the argument above there is an arrow d : 1 —— X in C"*! such
that C,41 £ Je: C.d = m(c) (here omitting explicit mention of the mediating
functors C" — C™*! — C*). Since the functor C"*! — C* is conservative, also
C* b~ dc: C.d =m(c). It follows immediately that d does not factor through
min C*. O

Lemma 10.9 If 1 is strongly projective in a category of classes C, then C has
small generators.

PROOQOF. Suppose we have any proper subobject B —— C'in C, and consider
its image PB »— PC under the small powerobject functor. Since B —— C'
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is proper, so is PB —— PC. Since PC —» 1 and 1 is strongly projective,
there is a point @ : 1 —— PC that does not factor through PB. Then a
classifies a small subobject A —— C' that does not factor through B. O

Lemma 10.10 If 1 is projective in a category of classes C with Collection,
then C has small covers.

PROOQOF. Suppose e¢: C' — A is a regular epi with A small. By the Col-
lection axiom e;: PC —— PA is also a regular epi. Since A is small, let
[A]: 1 —— PA be the set A € PA (as in the proof of Lemma 5.20). Because
1 is projective, there exists b: 1 — PC such that eob = [A]. Then letting
B —— (' be the small subobject of C' classified by b, we indeed have that the
composite B —— C' —» A is a regular epi. O

Combining Lemmas 10.8-10.10 yields the desired first step of the completeness
proof.

Proposition 10.11 (ZFC) Every small category of classes C satisfying Col-
lection has a cofinal conservative functor C — C* into a saturated class cate-
gory C*.

10.2 The deriwative functor

Let C be a category of classes, with universal object U. We wish to map C to
a category of ideals over the topos of small objects in C. To do so, we require
a system of inclusions on the topos. To obtain this, we define a category of
classes C, equivalent to C that itself has a system of inclusions defined upon
it.

The objects of C_, are subobjects A ~—— U in C. Using choice, we assume
that each object is represented by a chosen representative mono A —— U.
Then the morphisms from A—— U to B=— U are just the morphisms
from A to B in C.

By the defining property of a universal object, it is clear that C., is a category
equivalent to C. In particular, using choice, there is an equivalence functor

C —C.,.

We say that a map A —— B from A ~—— U to B~ U is an inclusion in
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C., if the triangle below commutes

<

in which case A —— B is clearly a mono. It is easily seen that these inclu-
sion maps have finite meets and joins, and thus give rise to associated finite
intersection and union operations on objects of C...

Because C., is equivalent to C, it too is a category of classes. We define the re-
quired structure in a way that is compatible with the inclusion maps. For this,
we use a chosen subobject PU —— U to define natural products, coproducts,
equalizers, and small powerobjects in C.,, using the same definitions used for
the analogous constructions on classes in Section 2. As is easily verified, all
these constructions preserve inclusion maps in a sense identical to the “struc-
tural” property of dssi’s in Section 3. We refrain from going into the, at this
stage tedious, details.

We write £, for the full subcategory of small objects in C.,. We define the
topos structure on £_, using the class structure described above. Then, as is
easily verified, the inclusion maps in &, inherited from C.,, form a dssi on
the topos &._..

Definition 10.12 Let C be a category of classes. The derivative functor,
d:C., — Idl(En)
is defined as follows.

dC = {A— C | A small}
df : dC ——dD, given f : C —— D, is defined by factoring, as

indicated in the following diagram:

S

c D

— o df(A
(df)a e

Lemma 10.13 For any category of classes C, the derivative functor,

d:C.. — Idl(E.)
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preserves the following structure.

(1) finite limits and coproducts,
(2) small maps,

(3) powerobjects PC,

(4) and the universal object U.

PROOF. Routine verification. Briefly:

(1)

(4)

|

Given C' x D in C.,,

d(CxD)={S—=CxD|Se&.}
={S—=C'xD|S5C,Deé&., C¢"—C, D — D}
=d(C) x d(D)

by factoring any small subobject S ~——— C' x D into S —— C’ x
D'~ C x D with ¢/ = C and D = D’ small subobjects. The
other cases are similar.

Let f : C'—— D be a small map. Since for any small subobject B —— D,
the pullback f~!(B)~—— C'is also a small subobject, we can define an
inverse image for df : dC' —— dD by setting:

(df)~(B) = f1(B)

It is easily checked this satisfies the required property.

For any C' € C, and small A —— PC, the subobject |JA —— C'is also
small, and it satisfies that A —— PX iff JA —— X for all X —— (|,
cf. Proposition 3.13. Thus any small subobject A —— PC can be factored
as A —— PB —— P(C for some small B ~— (C, namely B =JA. We
therefore have:

d(PC)={A——PC | Acé_}
={A——PB|A,Beé&.,, B—C}
={A~——PB|Acé&., BedC}
=P(dC)

For the universal object U, the ideal d U = £_, is a universal object in
Idl(E).

Lemma 10.14 Let C be a category of classes and d : C_, — Idl(E_) the
derivative functor.

(1)

If C has small covers, then d preserves reqular epis.
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(2) If C has small generators, then d preserves dual images and proper sub-
objects.

PROOF. To prove 1, suppose C has small covers. As C., is equivalent to C,
it also has small covers. Take any regular epimorphism e : C' —> D in C...
To show that the morphism de: dC' —— dD is a regular epi in Id1(E_.), we
must show that the mapping part A — (de)(A) is surjective. For this, take
B € dD and pull back the inclusion B —— D along e as in the right-hand
square below.

Ac - B < . C
_

B~———1D

Since B is small, by small covers, there exists small subobject A —— B’ such
that the composite A —— B’ —» B is a regular epi. Thus we have A € dC
with (de)(A) = B, as required.

For 2, suppose C,and hence C.., has small generators. Consider the following
situation in C.,:

S VS

C D

We want to show:
d(V;S) = Vg dS
While we know:

d(V;S)={B=~—D | f'B— S},
VgydS ={B~— D |Vsmall A=~ f'B, it holds that A —— S} |

the latter by the explicit description of dual images in Id1(E..) given in the
proof of Lemma 8.4. The inclusion d(V;S) C Vg dS is easy. For the converse,
suppose that B € Vg dS, i.e. every small subobject of f~'B is included in S.
Using the small generator property, it follows that (f~'B)NS = S, equivalently
f7'B — S. Thus indeed B € d(V;S).

Finally, to show that d preserves proper subobjects, suppose that ¢: C' —— D
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in C', is such that d¢ is an isomorphism. Then the inclusion
{A=—— C | Asmall} C{A~— D | A small}

is an equality. So, by the small generator property, i is also an iso as re-
quired. O

Combining the last two lemmas, we have that if C is saturated then the deriva-
tive functor d: C, — Idl(€..) is logical, cofinal and conservative. Thus,
composing with the equivalence (obtained using choice) C — C..,, we have
completed the desired step 2.

Proposition 10.15 (ZFC) If C is saturated, then there is a cofinal conser-
vative functor C — Id1(E-,).

10.3  The ideal embedding theorem

Putting together the results of Sections 10.1 and 10.2, we have proved the
following embedding theorem for categories of classes with Collection.

Theorem 10.16 (ZFC) For any small category of classes C satisfying Col-
lection, there exists a small topos £ and a cofinal conservative functor C —
Id1(€&).

PROOF. Combine Propositions 10.11 and 10.15. O

As a corollary, finally, we have the proof of Theorem 10.1.

PROOF of Theorem 10.1. Suppose that BIST™+ Coll+ 7 I/ ¢. By (the
proof of) Theorem 7.1, there exists a (small) category of classes C for which
C = T but C [~ ¢. By the foregoing embedding theorem, there exists a small
topos € and a cofinal conservative functor C — Idl(€). Then, as required,

Id1(€) = T but IdI(€) j£ ¢ O
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PART IV — CONSTRUCTING SYSTEMS OF INCLUSIONS

11 Elementary and cocomplete toposes

In this section we give the postponed proofs of Theorems 3.10 and 3.18.

For any locally small topos &£, we need to construct an equivalent topos carry-
ing a dssi. In fact, many different such constructions are possible. (By equa-
tion (2), this corresponds to there being many different ways of modelling
BIST™ in £.) We take a two stage approach. First, in Section 11.1, we con-
struct an equivalent topos carrying a directed system of inclusions. Second, in
Section 11.2, we use the new topos as a basis for the construction of another
equivalent topos in which the system of inclusions is also structural. The two
steps are combined in Section 11.3 to yield the proof of Theorem 3.10.

Theorem 3.18 is proved simultaneously. For each step, we explain the minor
modifications needed to obtain a superdirected system of inclusions in the case
that £ is a cocomplete topos.

Actually, in Section 11.2, we give two different constructions of dssi’s. Each
validates, under the forcing interpretation, additional set-theoretic axioms not
included in BIST. In Section 11.4 we present the two set theories BIZFA (Ba-
sic Intuitionistic Zermelo-Fraenkel with Atoms), and BINWFA (Basic Intu-
itionistic Non-Well-Founded set theory with Atoms) that are modelled by the
different constructions.

11.1  Obtaining a (super)directed system of inclusions

The main goal of this section is to construct, for any locally small topos £, an
equivalent topos &' carrying a directed system of inclusions. We shall do this
using BIST itself as the meta-theory, an enterprise which requires us to make
one extra technical assumption on the topos &£, which would be vacuous were
a classical meta-theory used instead.

Our construction makes essential use of finite sets. Because the meta-theory is
intuitionistic, there are inequivalent notions of finiteness available. The one we
adopt is the standard notion of “Kuratowski finite”. Specifically, a set X is said
to be finite if there exists n € N and a surjection e: {z € N | z < n} - X.
Because equality on X need not be a decidable relation, it is not possible in
general to assume that e is bijective. Also, because subsets Y C X need not
be decidable, it is not necessarily the case that a subset of a finite set is again
finite. See e.g. [[REFS]] for further discussion of Kuratowski finiteness.
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Let & be a locally small topos. We say that £ interprets equality of objects if,
for every X,Y € |£], the category £ possesses a chosen copower:

IT 1.

{01 x=Y}

i.e. the copower of the terminal object 1 indexed by the subsingleton set
{x|x=0 A X =Y} Then, for any object Z of £, the copower

I Z

{0 X=Y}

exists, since it can be defined as Z x [Tgpx=yy 1. We henceforth write Z[x_y
for such a copower. By the universal property of this object, X [x—y is always
isomorphic to Y[ x—y, and there are thus canonical maps X[ x_y — X and
X’VX:Y —Y.

The condition that £ interprets equality of objects may seem obscure. Fortu-
nately, in many situations it is vacuous. For example, if REM is assumed in
the meta-theory, then every topos interprets equality of objects, since a case
analysis on X = Y yields that the required copower is either an initial or
terminal object. (Readers who are happy to use a classical meta-theory for
the construction in this section are thus advised to simply ignore all further
issues concerning interpreting equality of objects.) More generally, whenever
the class |€] has decidable equality, the topos £ interprets equality of objects.
Since the free elementary topos with natural numbers object has decidable
equality between objects (it can be constructed so that its set of objects is in
bijection with the natural numbers), this gives an example topos that, prov-
ably in BIST, interprets equality of objects. Observe also that any cocomplete
topos trivially interprets equality of objects.

We can now formulate the main result of this section, which we shall prove in
BIST.

Proposition 11.1 For any locally small topos £ interpreting equalily of ob-
jects, there exists an equivalent topos E' carrying a directed system of inclu-
510MS.

To prove Proposition 11.1, we suppose, for the rest of Section 11.1, that £ is
a locally small topos interpreting equality of objects.

We first observe that, for any finite set X of objects of £, there exists a
coproduct diagram

(A2 0| Aex)
in £. Indeed, such a diagram can be constructed straightforwardly from any
surjection A_y: {x € N | x < n} — X witnessing the finiteness of X'. For
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this, first take the coproduct [[y<;, Ai, which is easily defined using empty
and binary coproducts in £. Then consider the two maps:

H Az’(Ai:Aj — H A; (35)

0<i,j<n 0<i<n

whose components at ¢, j are respectively

AiTamn, — A —= I A

0<i<n
inj
Aila=a, — A —> [ A,
0<i<n

defined using the canonical maps mentioned above. The desired coproduct
object C'is given by the coequalizer of the parallel pair (35). Then for A € X,
the injection inyg: A —— C' is the composite:

A I A—C

0<i<n

where 7 is such that A; = A. This injection is easily seen to be independent of
the choice of 7.

The above construction shows the existence of coproduct diagram for any
finite set X of objects of £. Note that the coproduct diagram obtained depends
upon the presentation of the finite set X by a finite enumeration. In general,
in BIST, there is no natural way to select a chosen coproduct for X.

We now define the topos £’. The objects are tuples (X, {pa}acx, C, {ina}acx),
where:

1) X is a finite set of objects of &,

(1)

(2) pa: A—— Q (we write P4 —— A for the associated subobject),
(3) C is an object of £, and

(4) {ina: P4 —— C}acx is a coproduct diagram in &.

The morphisms from (X, {pa}tacx, C,{ina}tacx) to (V,{ps}Bey, D,{ing}pecy)
are simply the morphisms from C to D in £.

Proposition 11.2 &’ is equivalent to £ and hence an elementary topos.

PROOF. The equivalence functor from £’ to € maps (X, {pa}acx, C,{ina} acx)
to C. That in the opposite direction takes C' to ({C},{z+— T},C,{l¢}). O

It remains to define a directed system of inclusions on £’. In order to do this,
given an object (X, {pa}acx,C,{ina}acx) of &, it is necessary to extend
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the family {pa}acx to a family {pa: A —— Q}4cjg| indexed by the class of
all objects in £. In doing so, we make essential use of the requirement that £
interprets equality of objects. Given any object B € |€| consider the composite

I Pafacs —— [] Ala=s—— B, (36)
Aex AeXx

where the first map is the sum of the monos Ps[a—p —— A[4—p, and the
second has as components the canonical maps A[s—p — B. Clearly the
first map is a mono. The second is also a mono because it factors as

IT Alace—— JI Afla=s = B,
Aex AcXU{B}

where the first component is the evident mono, and the isomorphism exists
as a consequence of the universal properties of the coproducts involved. The
subobject of B defined by (36) above is independent of the choice of coprod-
uct in its definition, and hence determines pg: B — (2, whence a canonical
Pp —— B. There is also a canonical ing: Pg —— ', given by:

Py = [[ Palacg—— J[ Pa=C .
AeXx Aex

One easily shows that, for B € X, the map pp defined above is equal to
that originally specified by the family {pa}acx, hence the defined Pp also
coincides with the corresponding P4. Also, the canonical ing: Pg — C'
defined above is equal to the coproduct injection specified in the diagram
{ing} aex. Thus there is no ambiguity in the notation. Furthermore, for any
finite Z D X, it holds that {ins}acz is a coproduct diagram with vertex C.
This is a straightforward consequence of the definition of P, as a coproduct,
as in (36) above.

A morphism f from (X, {pa}aecx,C, {ina}acx) to (¥,{q8} ey, D, {in's}pey)
is defined to be an inclusion if, for every A € X there exists a (necessarily
monomorphic) map i4: P4 —— @4 fitting into the diagram below.

P24 o
ia f (37)
A Qa—— D
1m A

where ()4 is obtained by extending the family {¢p} ey to {¢s}sejs|, as above.
When f is an inclusion, then, for arbitrary A € ||, there in fact exists
ia: Py —— Q4 fitting into the diagram above (where, now, P, is also from
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the extended family). This follows easily from the definition of P4 as a coprod-
uct in (36) above. Since {in4}acxuy and {in’y} pexuy are coproduct diagrams
with vertices C' and D respectively, it follows that f = [4cxuy ia; hence, by
stability of coproducts, the square in (37) above is always a pullback.

Proposition 11.3 The inclusion maps defined above provide a directed sys-
tem of inclusions on E'.

PROOF. For (sil), we have observed above that, any inclusion map f is a
coproduct []acxyy 74 of monomorphisms, and hence itself a monomorphism.

For (si2), we must show that there is at most one inclusion between any two ob-
jects. But, given objects (X, {pa}tacx, C, {ina}tacx) and (¥, {gp} ey, D, {in's} pey),
each monos i4, for A € X, in diagram (37), is uniquely determined by the
left-hand triangle. The inclusion f can thus exist only in the case that all the
uniquely determined ¢4 maps exist, in which case f is itself uniquely deter-
mined by the C being the vertex of the coproduct diagram {in4} scx.

For (si3), consider any monomorphism m into (X, {pa}tacx, C, {inatacx) given
by a monomorphism m: P —— C'in €. For each A € X define p/;: A — Q to
be the characteristic map for the top edge of the diagram below, constructed
by pullback.

P, ;I Py - A
in’, iny
P C
m

Then, as is easily seen, the mono m is an inclusion map from the object
(X, {PUu}aex, P {in'a}acx) to (X, {patacx, C,{inataex).

For (si4), suppose we have

f: (X> {pA}AGXa Cv {inA}AEX) - (yv {q;l}A’Eyv D> {in,A’}A’EJJ)
g: (y7 {QA’}A’EJ)J D7 {in/A'}A'ey) - (Za {TA”}A”627 E7 {in//A”}A”EZ) )

with g o f and ¢ inclusions. Thus, for every A € |€|, there exist maps k4 and
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ja fitting into the diagrams below.

P, n4 c O ' 4 D
_ _
ka gof Ja g
A Ry ” E A Ry — m E
m" 4 m- 4

By the pullback on the right, each k4 is of the form j4 o 74 for a unique
ta: Py —— Q4. These i4 are easily seen to have the required properties to
show that f is an inclusion.

Finally, we show directedness. Consider objects (X, {pa}acx,C,{ina}acx)
and (Y, {qB}Bey, D, {in' 5} pey). The required upper bound (in fact the union)
is given simply by (X UV, {ra}tacxuy, F,{in"a}tacxuy), where: r4: A — Qis
the characteristic map for the subobject P4UQ 4 = A (where, of course, P4
and ()4 are taken from the extended families {Pa} acig|, {Qa}acle)); and E and
{in” 4} acxuy is a coproduct cocone for the family . {R4}acxuy- It is easy to
see that both (X, {pA}Ae/y, C, {inA}A€X> and ()), {qB}Bey, D, {iD,B}BGy) are
included in this object. There is one remaining niggle. We have been assum-
ing throughout the paper that directedness should supply a specified upper
bound for any two objects. Thus we have to specify a canonical coproduct
(E,{in" o} acxuy). This is achieved as follows. Any coproduct F induces an
obvious canonical epi C' + D —= E; so simply take E to be the canonical
quotient in |€| of the unique equivalence relation on C' + D induced by such
quotients. O

This completes the proof of Proposition 11.1.
To end this section, we turn to the special case of cocomplete toposes.

Proposition 11.4 For any locally small cocomplete topos &, there exists an
equivalent topos E' carrying a superdirected system of inclusions.

Perhaps surprisingly, only BIST itself is required as the meta-theory for this
result.

PROOQOF. To avoid unnecessary repetition, we simply indicate the modifica-
tions required to the proof of Proposition above. The first main change is to the
construction of £, where objects are now tuples (X, {pa}acx,C,{ina}acx),
where X is an arbitrary set of objects of £, and conditions (2)—(4) on objects
remain as before. The definition of the inclusion maps also remains unaltered,
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as does the proof that inclusion maps form a system of inclusions. It remains to
prove superdirectedness. Suppose then that {(X;, {p%4 }acx,, Ci, {in'a} aca.) bier
is a family of objects of £’. The required upper bound is then:

(zeLJ] X, {TA}AGUZE] X0 E, {inA}AEUielXi) )
where 74: A — Q is the characteristic map for the subobject (U;c; Py) —— A,
obtainned using the cocompleteness of £, and where E =[] ael,, X R4, with
{in4} e, X the corresponding coproduct diagram, again obtained using co-
completeness. Note that, this time, there is no difficulty in obtaining a canon-
ical F since it can simply be taken to be the specified coproduct available via
cocompleteness. O

11.2  Implementing the structural property

In this section, we prove the proposition below.

Proposition 11.5 For any locally small topos € with directed system of in-
clusions I, there exists an equivalent topos E,,p carrying a directed structural
system of inclusions Ly, Moreover, if I is superdirected and £ is cocomplete
then I,y is also superdirected.

For the remainder of Section 11.2, let £ be an elementary topos with directed
system of inclusions Z.

A membership graph is a structure G = (|G|, Ag,r¢) where |G| and Ag are
objects of € and rg: |G| Ag + P|G] is a morphism in €. One thinks
of |G| as a set of vertices with each vertex z € |G| being either, in the case
that rg(x) = inl(a), an atom a: Ag, or, in the case that rg(z) = inr(d), a
branching verter with adjacency set d C |G|.

The relation of bisimilarity between two membership graphs G, H is defined,
internally in £, as the greatest element ~¢ i : P(|G| x |H|) satisfying:

xr~apyift (FarAg, b:Ap. re(z) =1inl(a) A rp(y) =inl(b) A a =4, 4, b)
V (3d:P|G|, e: P|H|. rg(x) =inr(d) A rg(y) =inr(e) A
(Va' ed .y €e. o’ ~auy) A
Vy €edd’ ed 2’ ~any)),

making use of the heterogeneous equality on £, supplied by its directed system
of inclusions, as defined above Lemma 3.7.

As is standard, ~¢ g is in fact the largest relation satisfying just the left-to-
right implication of the above equivalence. Using this fact, and Lemma 3.7,
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one easily proves the lemma below.

Lemma 11.6 For membership graphs G, H, I, the following hold internally
n E.

(1) r ~agaG L.
(2) © ~gpuy impliesy ~pyg .
(3) ifv ~emy andy ~pgr z then x ~g g 2.

One might say that the family of ~ relations is a heterogeneous equivalence
relation over membership graphs. In particular, each ~¢ ¢ is an equivalence
relation, which we henceforth write more simply as ~.

We now define the topos &, over which we shall construct a directed struc-
tural system of inclusions. An object of &, is a triple (D, m,G) where G is
a membership graph, D is an object of £, and m: D —— |G| is a monomor-
phism in £. Since D is a subobject of |G|, the equivalence relation ~ restricts
to an equivalence relation on D, and we write simply d ~¢ d' rather than
m(d) ~g m(d'). Similarly, for notational simplicity, we usually write (D, G)
for an object, leaving the monomorphism m implicit. Of course, rather than
resorting to such notational devices, an alternative would be to simply require
D —— |G|, so that D determines m. However, since this does not lead to any
real simplification, we find it clearer to restrict usage of the inclusion maps in
£ to the one place where they are really essential: the definition of bisimilarity
above.

A morphism from (D, G) to (F, H) is given by a binary relation F' between
D and F satisfying, internally in &:

(F1) ifd~g d, e ~g ¢ and F(d,e) then F(d',¢'); and
(F2) for all d: D there exists e: E such that F(d,e);
(F3) if F(d,e) and F(d,€’) then e ~p €.

The first condition says that I’ is saturated under the equivalence relation;
the second that F'is a total relation; and the third that F' is single-valued
up to equivalence. Such relations are easily seen to be closed under relational
composition, and this defines composition in the category &ys.

Proposition 11.7 &, is equivalent to £ and hence an elementary topos.

PROOF. The equivalence functor from &,¢ to € maps (D, m, G) to the quo-
tient D/~q. The functor in the opposite direction maps an object A of £ to
(A, 14,A4) where A4 is the “discrete” membership graph (A, A,inl). O
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Next we define the inclusion maps Zy¢ in Euyr. A morphism F' from (D, G) to
(E, H) is defined to be an inclusion if, internally in &:

(I) F(d,e) implies d ~¢ p e.

In fact, if F' is an inclusion then also d ~¢ i e implies F(d,e), by a straight-
forward argument combining (F1), (F2), (I) and Lemma 11.6.

Proposition 11.8 7, is a system of inclusions on &,y

PROOF. For (sil), one notes that, in general, a morphism F' from (D, G) to
(E,H) is a mono if and only if F(d,e), F(d',¢') and e ~p €' together imply
that d ~¢ d’'. This holds for inclusions by Lemma 11.6.

For (si2), for any inclusion F', we have F'(d, e) if and only if d ~¢ i e. Obviously
this determines F' uniquely.

For (si3), suppose that F from (D, G) to (E, H) is a monomorphism. Let E’ be
the subobject of E" defined internally as {e: £ | 3d: D. F(d,e)}. Easily, the
identity relation on E’ is an inclusion from (E’, H) to (E, H), and F factors
through this inclusion. The inverse map from (E’, H) to (D, Q) is given by
the relation {(e,d): E' x D | F(d,e)}, which has the required properties by
the characterization of monomorphisms in the proof of (sil) above.

For (si4), suppose we have F': (D,G) — (D',G")and I: (D',G') — (D", G")
with I and I o F' inclusions. To show that F' is an inclusion, suppose that
F(d,d"). By (F2), there exists d’ with I(d’,d"), so also (I o F)(d,d"). Then
d ~q g d’ and d ~g g d" because I and [ o F' are inclusions. Thus indeed
d ~ge d, by Lemma 11.6. O

Proposition 11.9 The system of inclusions L,y ts directed. Moreover, if T
is superdirected and & is cocomplete then it is superdirected.

PROOF. Consider any two objects (D,G) and (D', G’). Take B to be the

specified upper bound for Az and A¢r, using the directedness of Z; sp we have
inclusions i: Ag =~ B and i': Ags = B. Define a membership graph H
as follows.

|H| = |G|+ |G|
Ay =B
ry = [(i+P(inl)) org, (i'+P(inr)) o re]: |G|+|G'| — B + P(|G|+|G'|)

Then (D+ D', H) is easily seen to be an upper bound for (D, G) and (D', G').
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The construction in the case that 7 is superdirected and & is cocomplete is
similar. Specifically, superdirectedness is required to find an object of atoms
containing all objects of atoms of the component graphs, and cocompleteness
is used to construct the required membership graph as a coproduct of the
original graphs. O

It remains to implement the structural property of inclusions. For this, we
define an appropriate powerobject functor on &, such that property (ssid)
of Definition 3.8 is satisfied. Given a membership graph, G, we define its
powergraph Pg G by:

P G| = Ac + P|G]
Ap,.c = Ag
Tpng = 1AG —f-P(T(;)Z A0+P|G| _— AG —f-P(AG +P|G|) .

Thus:

rp, ¢(inl(a)) = inl(a)
rp,c(inr(d)) = inr({rq(z) | v € d}) .

Lemma 11.10 Given graphs G, H, then for any p: [Py, G| and q: [Py H|,

P ~pap,H 4 (JarAg, b: Ay, p=inl(a) A g =inl(b) A a =444, b)
V (3d:P|G|, e: P|H|. p=inr(d) A q=inr(e) A
(Ve'ed. Iy ee. o’ ~auy) N
V' eeI ed 2’ ~cny)) .

PROOF. Straightforward. O

Given an object (D, m,G) in &y, we specify its powerobject Puyi(D, m, G)
to be (PD, inr o P(m), P G). By Lemma 11.10, one sees that PD/ ~p, ¢ =
P(D/ ~¢), thus Puwi(D, m,G) is indeed a carrier for the powerobject on &py.
To specify the membership relation, one first needs to define a binary product
in & The easiest way to do this is to go via the equivalence with £ of
Proposition 11.7. Thus (D, G) x (E, H) is defined to be the discrete object
over the product (D/ ~¢g) x (E/ ~g) in €. The membership relation between
(D,m,G) and Ppywe(D, m, G) is then given by:

S(/~e) = P(D) ~6) x (D) ~a) = (PD/ ~p,q) x (D) ~a) .

Although it may seem unnatural to use the “discrete” product above, doing so
avoids having to use the any of the alternative more “set-theoretic” products
on membership graphs, such as one based on Kuratowski pairing, all of which
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are more complex. Although, ultimately, we also shall need such a set-theoretic
product in order for inclusions to be structural, we use Lemma 3.9.to produce
it for us, and thus do not need to consider it explicitly.

Proposition 11.11 With powerobjects specified as above, I,y satisfies prop-
erty (ssid) of Definition 3.8.

PROOF. Given arbitrary F': (D,G) — (E, H) in Eur, the action of the co-
variant powerobject functor produces that Pyl ': Puwt(D, G) — Puwit(E, H),
defined as follows.

(PawtF)(X,Y)iff Vde X.Fe €Y. F(d,e) AN VeeY.3x € X. F(d,e) .

Suppose now that F' is an inclusion and (PpnyeF)(X,Y). Then Vd € X.3Je €
Y. d ~¢p e and Ve € Y.dx € X. d ~gpu e, because I’ is an inclusion.
Thus X ~p, ¢ p,.n Y, by Lemma 11.10, This shows that Ppuf' is indeed an
inclusion, as required. O

Corollary 11.12 [t is possible to specify topos structure on s such that the
directed system of inclusions Ly, is structural.

PROOF. Apply Lemma 3.9. O

The above corollary finally completes the proof of Proposition 11.5.

The topos &.t represents sets using membership graphs without any well-
foundedness assumption. As one might expect, when the forcing interpretation
is considered over &,y¢, a non-well-founded set theory results; see Section 11.4
below for details. We end this section with a straightforward variation on the
construction of &£,,¢ that instead gives rise to a set theory of well-founded sets.

A membership graphs G is said to be well-founded if, internally in &£,

VX: PIG|. [ (Vx: |G|. (Fa: Ag. rg(x) =inl(a)) — z € X) A
(FY:P|G|.rg(x) =inr(Y) NY CX) -z e X) |
— X =G| .

The topos Eyr is defined to be the full subcategory of E,y¢ of objects (D, m, G)
where G is well-founded. Similarly, define Z; to be the restriction of Z,¢ to
objects of Eyyr.

Proposition 11.13
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(1) The equivalence between € and €,y cuts down to an equivalence between
E and E,y.

(2) The specified powerobject structure on E,,y restricts to E,y.

(3) Ly is a directed structural system of inclusions on E,y.

(4) If T is superdirected and & is cocomplete then L,y is superdirected.

We omit the proof, which is a routine verification that the various construc-
tions all preserve well-foundedness.

11.3  Proofs of Theorems 3.10 and 3.18

Theorems 3.10 and 3.18 are finally proved by a simple combination of the
results of the previous two sections.

The following proposition is the sharper version of Theorems 3.10 referred to
below the statement of the theorem.

Proposition 11.14 Given a topos £ that interprets equality of objects, there
exists an equivalent category E' carrying a dssi I' relative to specified topos
structure on E'.

PROOF. Combine Propositions 11.1 and 11.5. O

The proposition below simply restates Theorem 3.18.

Proposition 11.15 For any cocomplete topos &, there is an equivalent cate-
gory E' carrying an sdssi I' relative to specified topos structure on &'.

PROOF. Combine Propositions 11.4 and 11.5. O

11.4 The set theories BIZFA and BINWFA

As discussed in Section 2, the axioms comprising BIST formalize the con-
structions on sets that are useful in everyday mathematical practice. Never-
theless, there are many standard set-theoretic principles not present in BIST.
In this section, we define two further set theories: BIZFA (Basic Intuitionistic
Zermelo-Fraenkel set theory with Atoms) and BINWFA (Basic Intuitionistic
Non-Well-Founded set theory with Atoms), which are obtained by extending
BIST with just such principles. The rationale for introducing these theories at
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DS S(z) Vv =S(z)

TC y.xeyAVzeyVwezwey

Re-Ind (Vz.lop) — (Vx. (Vy € x. 9ly]) — olz]) — V. ¢[x]

MC S(z) AreU” A (Vyexz.S(r(y)) — r(y) Cz) A
(V' Ca. (Vy € z. (S(r(y)) = Yver(y)vear)—yeca') - 2’ =)

— Jee U Vy €. (=S(r(y)) — cly) =r(y)) A

(S(r()) — e(y) = {c()

AFA S(z) AreU* AN (Vyex.S(r(y)) — r(y) Cx
— dlee U*.Vy € z.(=S(r(y)) — c(y) =r(y)

(S(r(y)) — cly) ={c(v)
Fig. 7. Additional axioms for BIZFA and BINWFA

this point is that BIZFA and BINWFA are validated by the forcing interpre-
tation in the categories &y and &,y ¢, constructed in Section 11.2. respectively.
Thus both set theories are compatible with the internal logic of every elemen-
tary topos, and hence conservative over HAH.

The theories BIZFA and BINWFA are defined as follows

BIZFA™ = BIST + DS+ TC+ Re-Ind+ MC BIZFA = BIZFA™+ Inf
BINWFA™ = BIST 4 DS+ TC+ AFA BINWFA = BINWFA + Inf,

where the new axioms are listed in Figure 7. We now examine these axioms
in more detail.

The axiom DS (Decidable Sethood) was makes a clean division of the universe
into sets and atoms (i.e. non-sets). By Lemma 2.2 and Corollary 2.6, bounded
Separation, bSep, is derivable in BIZFA~+ DS, hence in both BIZFA~ and
BINWFA™.

The axiom TC (Transitive Containment) simply states, in the obvious way,
that every element of the universe (whether a set or not) is a member of a
transitive set.

The schema Re-Ind (Restricted Membership Induction) is an intuitionistically
acceptable formulation of the axiom of Foundation. ?* The axiom is formulated
for restricted properties only. As a special case, one obtains membership induc-
tion for bounded formulas. Also of interest is the full membership induction

24 As has been frequently observed [REF], many classical formulations of Foundation
imply unwanted cases of excluded middle.

118



principle:
e-Ind (V. (Vy € z.¢[y]) — dlz]) — Vr.ox] .

Proposition 11.16 BIZFA ™+ Sep + €-Ind.

PROOF. Immediate. O

The final axiom of BIZFA is MC (Mostowski Collapse). In this axiom, the
function r represents a directed graph structure on a set x of vertices. For
each vertex y € z, either r(y) is an atom (i.e. =S(y)), in which case y is a
leaf vertex and r(y) is its labelling; or, if r(y) is a set, then r(y) C z gives the
adjacency set of y. The second line of the axiom imposes, by way of stating
the appropriate induction principle, the requirement that, as a relation, r is
co-well-founded. The axiom then states that any vertex in such a co-well-
founded graph collapses to an element of the universe by way of a function
¢ that preserves the atoms in x and maps the graph relation on x to the
membership relation. One can prove in BIZFA that c¢ is unique.

In spite of its complexity, MC is a natural axiom to consider together with
DS, TC and Ré-Ind. Indeed, TC and Ré-Ind imply that the membership
relation on the transitive closure of any set x yields a co-well-founded graph,
as above. MC is a kind of ontological completeness axiom, expressing that
every such graph is represented by a set. Note also that DS is used implicitly
in the formulation of MC, where the requirements on the function ¢ make a
case distinction on the basis of whether r(y) is a set or not.

The set theory BINWFA replaces the two axioms Re-Ind and MC with AFA,
which is a straightforward adaptation, to a universe with atoms, of Honsell
and Forti’s Anti Foundation Axiom, as popularized by Aczel [?]. Formally,
the axiom AF A is simply a strengthening of MC with the well-foundedness
assumption on the membership graph dropped. Because well-foundedness is
no longer assumed, in the case of AFA it is necessary to assert the uniqueness
of the collapse function c.

As stated earlier, the reason for introducing the set theories BIZFA and
BINWFA is because they are validated by forcing interpretations into the
toposes with systems of inclusions constructed in Section 11.2. We assert this
formally here, but omit the lengthy (though routine) verification entirely. At
any rate, the result should not present much of a surprise, since the correct-
ness of the new axioms is quite apparent from the construction of the toposes
using membership graphs.
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Proposition 11.17 Let E,yp, Lnwg, Ewr and Ly be as constructed in Section 11.2.
Then:

(1) (Eup, Tup) = BIZFA™
(2) (gnwfa Inwf) }: BINWFA~.

Since, by Sections 11.1 and 11.2, every elementary topos (interpreting equality
of objects) is equivalent both to toposes of the form &, and to toposes of the
form &, it follows that any topos can be construed both as a model of
BIZFA~ and as a model of BINWFA™. It seems plausible that the theeories
BIZFA~ and BINWFA™ are actually complete relative to interpretations in
toposes with sdsi’s of the form (Eyg, Zye) and (Enwr, Zuwe) respectively. However,
we have not investigated this possibility in detail.

We end the section with some simple observations about BIZFA~and BINWFA ™,
Lemma 11.18

(1) BIZFA + vyN-Inf.
(2) BINWFA + vN-Inf.

PROOF. For statement 1, one verifies that, for each n € N, the class {x €
N | # < n} is a set. Define r € UN by r(n) = {x € N | @ < n}. One
verifies that this relation is co-well-founded (this amounts to deriving “course
of values” induction for restricted properties on N). Thus MC gives a unique
c € UV satisfying the specified conditions. One verifies that the image of c,
which is a set by Replacement, satisfies the properties required by vN-Inf.

Statement 2 is proved identically, using AFA rather than MC, thus there is
no need to verify that the relation is co-well-founded. O

The above is a typical, though very simple, application of collapsing a relation
to a set. In a proof-theoretic study relating classical set theories and toposes
[REF], Mathias makes a strong case for the general usefulness of such con-
structions. Indeed, the axiom MC (there formulated as a classically equivalent
axiom called H) plays a central role in his paper.

We end our discussion by showing that the restrictedness condition on the
membership induction axiom of BIZFA is essential. As happens also for the
Separation, Induction and Excluded Middle axioms, if the restrictedness con-
dition on membership induction is dropped, then the proof-theoretic strength
of the set theory goes beyond that compatible with every elementary topos.

Proposition 11.19 BIZFA+ €-Ind  Ind.
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PROOF. Working in BIZFA, by Lemma 11.18, let Nyn be the smallest set
containing () and closed under the operation y — y U {y}. One easily shows
that N,y is isomorphic to the N already constructed. Now assume €-Ind. By
the above, it suffices to prove Ind for N,y rather than N. For any formula
¢[z], consider ¥[z]-€-Ind, where 1 is the formula z € Nyx — ¢[z]. Then
Y[z]-€-Ind simplifies to

(Vx € Nyn. (Vy € . 9ly]) — o[z]) — Vo € Nyn. o[z].

But the membership relation on the (transitive) set Nyx agrees with the arith-
metic relation <. So the above states

(Vx € Nyn. (Yy < z.9[y]) — ¢[z]) — Vo € Nyn. ¢[z].

This is “course of values” induction, which directly implies the simple induc-
tion of ¢[x]-Ind. O

Corollary 11.20 BIZFA+ e-Ind - Con(HAH).

PROOF. By Proposition 2.18.

12 Realizability toposes
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