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topos, together with the extra structure of a directed structural system of inclusions (dssi)
on the topos, a forcing-style interpretation of the language of first-order set theory in the
topos is given, which conservatively extends the internal logic of the topos. This forcing

MSC: interpretation applies to an arbitrary elementary topos, since any such is equivalent to one
03E70 carrying a dssi. We prove that the set theory BIST+ Coll (where Coll is the strong Collection
03F50 axiom) is sound and complete relative to forcing interpretations in toposes with natural
03G30 numbers object (nno). Furthermore, in the case that the structural system of inclusions is
18B05 superdirected, the full Separation schema is modelled. We show that all cocomplete and

realizability toposes can (up to equivalence) be endowed with such superdirected systems
Keywords: of inclusions.

Intuitionistic set theory
Elementary topos
Algebraic set theory

A large part of the paper is devoted to an alternative notion of category-theoretic model
for BIST, which, following the general approach of Joyal and Moerdijk’s Algebraic Set Theory,
axiomatizes the structure possessed by categories of classes compatible with BIST. We prove
soundness and completeness results for BIST relative to the class-category semantics.
Furthermore, BIST + Coll is complete relative to the restricted collection of categories of
classes given by categories of ideals over elementary toposes with nno and dssi. It is via this
result that the completeness of the original forcing interpretation is obtained, since the
internal logic of categories of ideals coincides with the forcing interpretation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The notion of elementary topos abstracts from the structure of the category of sets, retaining many of its essential
features. Nonetheless, elementary toposes encompass a rich collection of other very different categories, including categories
that have arisen in fields as diverse as algebraic geometry, algebraic topology, mathematical logic, and combinatorics; see
e.g. [31] for a general overview.

Not only do elementary toposes generalise the category of sets, but it is also possible to view the objects of any elemen-
tary topos as themselves being “sets” according to a generalised notion of set. Specifically, elementary toposes possess an
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internal logic, which is a form of higher-order type theory, see e.g. [28,8,30,24], and which allows one to reason with objects
of the topos as if they were abstract sets in the sense of [29]; that is, as if they were collections of elements. The reason-
ing supported by the internal logic is both natural and powerful, but it differs in several respects from the set-theoretic
reasoning available in the familiar first-order set theories, such as Zermelo-Fraenkel set theory (ZF).

A first main difference between the internal logic and ZF is:

(A) Except in the special case of boolean toposes, the underlying internal logic of a topos is intuitionistic rather than
classical.

Many toposes of mathematical interest are not boolean. The use of intuitionistic logic is thus an inevitable feature of internal
reasoning in toposes. Furthermore, as fields such as synthetic differential geometry [37,26] and synthetic domain theory [22]
demonstrate, the non-validity of classical logic is a strength rather than a weakness of the internal logic. In these areas,
intuitionistic logic offers the opportunity of working consistently with useful but classically inconsistent properties such as
the existence of nilpotent infinitesimals, or the existence of non-trivial sets over which every endofunction has a fixed point.

Although the intuitionistic internal logic of toposes is a powerful tool, there are potential applications of set-theoretic
reasoning in toposes for which it is too restrictive. This is due to a second main difference between the internal logic and
first-order set theories.

(B) In first-order set theories, one can quantify over the elements of a class, such as the class of all sets, whereas, in the
internal logic of a topos, every quantifier is bounded by an object of a topos, i.e. by a set.

Sometimes, one would like to reason about mathematical structures derived from the topos that are not “small”, and so
cannot be considered internally at all. For example, the category of locales relative to a topos is frequently considered as the
natural home for doing topology in a topos [24, C1.2]. Although locally small, the category of locales is not a small category
(from the viewpoint of the topos), and there is therefore no way of quantifying over all locales directly within the internal
logic itself. Similarly, recent approaches to synthetic domain theory work with a derived category of predomains relative to
a topos, which is also locally small, but not necessarily small [44].

The standard approach to handling non-small categories relative to a topos is to invoke the machinery of fibrations (or
the essentially equivalent machinery of indexed categories). In this paper we provide the foundations for an alternative,
more elementary approach. We show how to conservatively extend the internal logic of a topos to explicitly permit direct
set-theoretic reasoning about non-small structures. To achieve this, we directly address issue (B) above, by embedding
the internal logic in a first-order set theory which does allow quantification over classes, including the class of all sets
(i.e. all objects of the topos). We hope that this extended logic will provide a useful tool for establishing properties of
non-small structures (e.g., large categories), relative to a topos, using straightforward set-theoretic arguments. In fact, one
such application of our work has already appeared [44].

In Part [ of the paper, we present the set theory that we shall interpret over an arbitrary elementary topos (with natural
numbers object), which we call Basic Intuitionistic Set Theory (BIST). Although very natural, and based on familiar looking
set-theoretic axioms, there are several differences compared with standard formulations of intuitionistic set theories, such as
Friedman’s IZF [17,18,47]. Two of the differences are minor: in BIST the universe may contain non-sets as well as sets, and
non-well-founded sets are permitted (though not obliged to exist). These differences are inessential conveniences, adopted
to make the connections established in this paper more natural. (Arguably, they also make BIST closer to mathematical
practice.) The essential difference is the following.

(C) BIST is a conservative extension of intuitionistic higher-order arithmetic (HAH). In particular, by Gédel’s second incom-
pleteness theorem, it cannot prove the consistency of HAH.

This property is unavoidable because we wish BIST to be compatible with the internal logic of any elementary topos (with
natural numbers object), and in the free such topos the internal logic is exactly HAH.

Property (C) means that BIST is proof-theoretically weaker than IZF (which has the same proof-theoretic strength as
ZF). That such weakness is necessary has long been recognised. The traditional account has been that the appropriate
set theory is bounded Zermelo (bZ) set theory, which is ZF set theory with the axiom of Replacement removed and with
Separation restricted to bounded (i.e. Ag) formulas (cf. [30]). The standard results connecting bZ set theory with toposes run
as follows. First, from any (ordinary first-order) model of bZ one can construct a well-pointed boolean topos whose objects
are the elements of the model and whose internal logic expresses truth in the model. Conversely, given any well-pointed
(hence boolean) topos &, certain “transitive objects” can be identified, out of which a model of bZ can be constructed. This
model captures that part of the internal logic of £ that pertains to transitive objects. See [34,14,40,30] for accounts of this
correspondence.

This standard story is unsatisfactory in several respects. First, it applies just to well-pointed (hence boolean) toposes.
Second, by only expressing properties of transitive objects in £, whole swathes of such a topos may be ignored by the set
theory. Third, with the absence of Replacement, bZ is neither a particularly convenient nor natural set theory to reason in,
see [32] for a critique.
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We argue that the set theory BIST introduced in Section 2 provides a much more satisfactory connection with elementary
toposes. We have already stated that we shall interpret this set theory over an arbitrary elementary topos with natural
numbers object (nno). In fact, we shall do this in such a way that the class of all sets in the set theory can be understood
as being exactly the collection of all objects of the topos. Thus any elementary topos is (equivalent to) a category of sets
compatible with the set theory BIST. Moreover, we believe that BIST is a rather natural theory in terms of the set-theoretic
reasoning it supports. In particular, one of its attractive features is that it contains the full axiom of Replacement. In fact,
not only do we model Replacement, but we also show that every topos validates the stronger axiom of Collection (Coll).

Some readers familiar with classical (but not intuitionistic) set theory may be feeling uncomfortable at this point. In
classical set theory, Replacement is equivalent to Collection and implies full Separation, thus taking one beyond the proof-
theoretic strength of elementary toposes. The situation is completely different under intuitionistic logic, where, as has
long been known from work of Friedman and others, the full axioms of Replacement and Collection are compatible with
proof-theoretically weak set theories [17,18,47]. (Examples illustrating this weakness appear in the discussion at the end of
Section 4.)

The precise connection between BIST and elementary toposes is elaborated in Part II of this paper. In order to interpret
quantification over a class, we have to address a fourth difference between the internal logic of toposes and first-order set
theories.

(D) In first-order set theories (such as BIST), one can compare the elements of different sets for equality, whereas, in the
internal logic of a topos, one can only compare elements of the same object.

In Section 3, we consider additional structure on an elementary topos, which enables the comparison of (generalised)
elements of different objects. This additional structure, a directed structural system of inclusions (dssi), directly implements a
well-behaved notion of subset relation between objects of a topos. In particular, a dssi on a topos induces a finite union
operation on objects, using which (generalised) elements of different objects can be compared for equality.

Although not particularly natural from a category-theoretic point of view, the structure of a dssi turns out to be exactly
what is needed to obtain an interpretation of the full language of first-order set theory in a topos, including unbounded
quantification; and thus resolves issue (B) above. Thus, the notion of dssi is justified by the informal equation:

interpretation of language of set theory in topos £ =dssion £. (1)

The interpretation of the language of set theory is presented in Section 4, using a suitably defined notion of “forcing” over
a dssi. In fact, a similar forcing semantics for first-order set theory in toposes was previously introduced by Hayashi in [20],
where the notion of inclusion was provided by the canonical inclusions between the transitive objects in a topos. Our general
axiomatic notion of dssi is a natural generalisation, which avoids the a priori restriction to transitive objects. Furthermore,
we considerably extend Hayashi’s results in three directions, each significant. First, as mentioned above, we show that, for
any elementary topos, the forcing semantics always validates the full axiom of Collection (and hence Replacement). Thus we
obtain a model of BIST plus Collection (henceforth BIST 4 Coll), which is a very natural set theory in its own right. Second,
we give correct conditions under which the full axiom of Separation is modelled (BIST itself supports only a restricted
separation principle). Third, we obtain a completeness result showing that the theory BIST + Coll axiomatizes exactly the
set-theoretic properties validated by our forcing semantics. In view of these results, Eq. (1) above can be refined to:

model of BIST + Coll = elementary topos £ with nno + dssi on £. (2)

The completeness of BIST + Coll relative to the forcing semantics is by no means routine, and is one of the main con-
tributions of the present paper. The proof involves a lengthy detour through an axiomatic theory of “categories of classes”,
which is of interest in its own right. This is the topic of Part III of the paper.

The idea behind Part III is to consider a second type of category-theoretic model for first-order set theories. Because such
set theories permit quantification over the elements of a class, rather than merely considering categories of sets it is natural
to instead take categories of classes as the models, since this allows the quantifiers of the set theory to be interpreted using
the quantifiers in the internal logic of the categories. This idea was first proposed and developed in the pioneering book on
Algebraic Set Theory by Joyal and Moerdijk [25], in which they gave an axiomatic account of categories of classes, imposing
sufficient structure for these to model Friedman’s IZF set theory. Their axiomatic structure was later refined by the third
author, who obtained a corresponding completeness result for IZF [43] (see also [13] for related work).

In this paper we are interested in axiomatizing the structure on a category of classes suitable for modelling the set
theory BIST of Part I. We introduce this in two stages. In Section 5, we present the notion of a category with basic class
structure, which axiomatizes those properties of the category of classes that are compatible with a very weak (predicative)
constructive set theory. Although the study of such predicative set theories is outside the scope of the present paper (cf. [36,
7,45]), the notion of basic class structure nonetheless serves the purpose of identifying the basic category-theoretic structure
of categories of classes. Second, in Section 6, we consider the additional properties that we need to axiomatize a category of
classes, intended to correspond to the structure of the category of classes in the set theory BIST. Such categories of classes
provide the main vehicle for our investigations throughout the remainder of Part IIL
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The precise connection between BIST and categories of classes is elaborated in Section 7. Any category of classes C
contains a universal object U, and we show how this is perceived as a set-theoretic universe by the internal logic of C.
Indeed, such universes always validate the axioms of BIST. Thus BIST is sound with respect to universes in categories of
classes. In fact, BIST is also complete for such interpretations. The proof is by construction of a simple syntactic category.

The goal of Section 8 is to show that every elementary topos embeds as the full subcategory of sets within some
category of classes. Since categories of classes model BIST, this justifies our earlier assertion that, for any elementary topos,
the collection of objects of the topos (more precisely, of an equivalent topos, see below) can be seen as the class of all sets
in a model of BIST. In order to obtain the embedding result, we again require a dssi (in the sense of Section 3) on the topos.
The category of classes is then obtained by a form of “ideal completion”, analogous to the ideal completion of a partial
order.

The construction of Section 8 gives rise to a second interpretation of the theory BIST + Coll over an elementary topos
(with dssi), since this theory is modelled by the universal object in the category of ideals. In the short Section 9, we show
that the new interpretation in ideals coincides with the old interpretation given by the forcing semantics of Section 4.
Thus the soundness of BIST + Coll, in the ideal completion of a topos, provides a second proof of the soundness of the
theory BIST + Coll with respect to the forcing interpretation of Section 4. Furthermore, the (at this stage still outstanding)
completeness of the forcing semantics is thereby reduced to the completeness of BIST + Coll with respect to categories of
ideals.

In Section 10, we finally prove this missing completeness result. The approach is to reduce the known completeness of
BIST + Coll with respect to arbitrary categories of classes (satisfying an appropriate Collection axiom), from Section 7, to
an analogous result for categories of ideals. To this end, we show that any categories of classes satisfying Collection has a
suitably “conservative” embedding into a category of ideals. The proof of this result fully exploits the elementary nature of
our axiomatization of categories of classes, making use of the closure of categories of classes under filtered colimits and
other general model-theoretic constructions from categorical logic.

Parts I-1II described above form the main body of the paper. However, there is a second thread within them, the discus-
sion of which we have postponed till now. It is known that many naturally occurring toposes, which are defined over the
external category of sets (which we take to be axiomatized by ZFC), are able to model Friedman’s IZF set theory, which is
proof-theoretically as strong as ZFC. For example, all cocomplete toposes (and hence all Grothendieck toposes) enjoy this
property; see Fourman [15] and Hayashi [20] for two different accounts of this. Similarly, all realizability toposes [21,23]
also model IZF, as follows, for example, from McCarty's realizability interpretation of IZF [33]. Thus, if one is primarily inter-
ested in such ‘real world’ toposes, then the account above is unsatisfactory in merely detailing how to interpret the weak
set theory BIST inside them.

To address this, in parallel with the development already described, we further show how the approach described above
adapts to model the full Separation axiom (Sep) in toposes such as cocomplete and realizability toposes. (The set theory
BIST + Coll + Sep is interinterpretable with IZF.) The appropriate structure we require for this task is a modification of the
notion of dssi from Section 3, extended by strengthening the directedness property to require upper bounds for arbitrary
(rather than just finite) sets of objects. Given a topos with such a superdirected structural system of inclusions (sdssi), we show
that the forcing interpretation of Section 4 does indeed model the full Separation axiom. Since cocomplete toposes and
realizability toposes can all be endowed with sdssi’s, we thus obtain a uniform explanation of why all such toposes model
IZF. To our knowledge, no such uniform explanation was known before.

We also show that the construction of the category of ideals, of Section 8, adapts in the presence of an sdssi. Indeed,
given an sdssi on a topos, we define the full subcategory of superideals within the category of ideals. We show that this
is again a category of classes, which, in addition, satisfies the Separation axiom of [25,43]. In particular, the category of
superideals is a category with class structure, as defined in [43],> and models both BIST + Coll + Sep and IZF.

We therefore obtain a uniform embedding of both cocomplete and realizability toposes in categories with class structure.
We mention that one application of these embeddings has already appeared in Section 15 of [44].

Finally, in Part IV of the paper, we fulfil some technical obligations postponed from earlier. In Section 11, we show that
every elementary topos is equivalent to a topos carrying a dssi. Thus the forcing interpretation and construction of the
category of ideals can indeed be defined for any topos, as claimed above. The proof of this uses a notion of membership
graph, which adapts the transitive objects developed by Cole, Mitchell and Osius, see [34,14,40,30], to a set-theoretic universe
incorporating (a class of) atoms. A similar construction shows that every cocomplete topos (again up to equivalence) can
be endowed with an sdssi. Then, in Section 12, we show that every realizability topos is also equivalent to one carrying an
sdssi. In doing so, we establish that every object in a realizability topos occurs (up to isomorphism) somewhere within the
cumulative hierarchy of McCarty’s realizability interpretation of IZF.

The paper concludes with a short section which discusses the relation of our work to other more recent research.

3 We prefer class structure to the terminology classic structure used in [43].
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Membership yex— S(X)
Extensionality S(x) AS(Y)A(Vzzex<zey) >x=Yy
Indexed-Union  S(x) A (Vy € x.2z.¢p) — 2z.3y € x.¢

Emptyset 2z. L

Pairing 2z.z2=XxVz=Yy
Equality 22.Z=XNZ=Yy
Powerset Sx) > 2y.y Cx

Fig. 1. Axioms for BIST™.

Coll SX) A (Vy ex.z.¢) —>
Iw.(S(W) A (Vy ex.dze w.¢) A (Vze w.dy € x.9))

Fig. 2. Collection axiom.
Part I. FIRST-ORDER SET THEORIES
2. Basic Intuitionistic Set Theory (BIST) and extensions

All first-order set theories considered in this paper are built on top of a basic theory, BIST (Basic Intuitionistic Set Theory).
The axiomatization of BIST is primarily motivated by the desire to find the most natural first-order set theory under which
an arbitrary elementary topos may be considered as a category of sets. Nonetheless, BIST is also well motivated as a set
theory capturing basic principles of set-theoretic reasoning in informal mathematics. It is from this latter viewpoint that we
introduce the theory.

The axioms of BIST axiomatize properties of the intuitive idea of a mathematical universe consisting of mathematical
“objects”. The universe gives rise to notions of “class” and of “set”. Classes are arbitrary collections of mathematical objects;
whereas sets are collections that are, in some sense, small. The important feature of sets is that they themselves constitute
mathematical objects belonging to the universe. The axioms of BIST simply require that the collection of sets be closed under
various useful operations on sets, all familiar from mathematical practice. Moreover, in keeping with informal mathematical
practice, we do not assume that the only mathematical objects in existence are sets.

The set theory BIST is formulated as a theory in intuitionistic first-order logic with equality.* The language contains
one unary predicate, S, and one binary predicate, €. The formula S(x) expresses that x is a set. The binary predicate is, of
course, set membership.

Fig. 1 presents the axioms for BIST~, which is BIST without the axiom of infinity. All axioms are implicitly universally
quantified over their free variables. The axioms make use of the following notational devices. As is standard, we write
Vx € y.¢ and 3x € y.¢ as abbreviations for the formulas Vx.(x € y — ¢) and 3x.(x € y A ¢) respectively, and we refer to the
prefixes Vx € y and 3x € y as bounded quantifiers. In the presence of non-sets, it is appropriate to define the subset relation,
X C y, as abbreviating

SX) AS(y) AVzex.zey.

This is important in the formulation of the Powerset axiom. We also use the notation 2x.¢, which abbreviates

y.(S) AVR.(x €y < 9)),

where y is a variable not occurring free in ¢ (cf. [3, §2.1]). Thus 2x.¢ states that the class {x | ¢} forms a set. Equivalently,
2 can be understood as a generalised quantifier, reading 2x.¢ as “there are set-many x satisfying ¢”.

Often we shall consider BIST™ together with the axiom of Collection, presented in Fig. 2.> One reason for not including
Collection as one of the axioms of BIST™ is that it seems better to formulate the many results that do not require Collection
for a basic theory without it. Another is that Collection has a different character from the other axioms in asserting the
existence of a set that is not uniquely characterized by the properties it is required to satisfy.

There are three main non-standard ingredients in the axioms of BIST™. The first is the Indexed-Union axiom, which is
taken from [3] (where it is called Union-Rep). In the presence of the other axioms, Indexed-Union combines the familiar
axioms below,

Union Sx) A (Yy €x.S(y)) > 2z3dyex.zey,
Replacement S(x) A (Vy € x.3!z.¢p) — 2z.3y € x.¢,

into one simple axiom, which is also in a form that is convenient to use. We emphasise that there is no restriction on the
formulas ¢ allowed to appear in Indexed-Union. This means that BIST™ supports the full Replacement schema above. The

4 As discussed in Section 1, the use of intuitionistic logic is essential for formulating a set theory interpretable in any elementary topos.
5 Coll, in this form, is often called Strong Collection, because of the extra clause Vz € w.3y € x.¢, which is not present in the Collection axiom as usually
formulated. The inclusion of the additional clause is necessary in set theories, like BIST™, that do not have full Separation.
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second non-standard feature of BIST™ is the inclusion of an explicit Equality axiom. This is to permit the third non-standard
feature, the absence of any Separation axiom. In the presence of the other axioms, including Equality and Indexed-Union (full
Replacement is crucial), this turns out not to be a major weakness. As we shall demonstrate, many instances of Separation
are derivable in BIST™.

First, we establish notation for working with BIST™. As is standard, we make free use of derived constants and operations:
writing @ for the emptyset, {x} and {x, y} for a singleton and pair respectively, and xU y for the union of two sets x and y
(defined using a combination of Pairing and Indexed-Union). We write 8y, for the set {z|z=x Az =y} (which is a set by
the Equality axiom). It follows from the Equality and Indexed-Union axioms that, for sets x and y, the intersection x Ny is
a set, because XNy = U ey Uwey Szw-

We now study Separation in BIST™. By an instance of Separation, we mean a formula of the form®

¢x, yI-Sep S(X) —> 2y.(y €XxA @),

which states that the subclass {y € x | ¢} of x is actually a subset of x. We now analyse the instances of Separation that are
derivable in BIST™.

Following [3, §3.3], the development hinges on identifying when a formula ¢ expresses a property of a restricted kind
that is possible to use in instances of Separation. For any formula ¢, we write !¢ to abbreviate the following special case of
Separation

2z.(z=0 N ),

where z is not free in ¢. We read !¢ as stating that the property ¢ is restricted.” Note that, trivially, (¢ <> ¥) — (I <>!y).
The utility of the concept is given by the lemma below, showing that the notion of restrictedness exactly captures when a
property can be used in an instance of Separation.

Lemma 2.1. BIST™ F (Vy € x.!1¢) < ¢[x, y]-Sep.

Proof. We reason in BIST™. Suppose that, for all y € x, !¢, and also S(x). We must show that 2y.(y € x A ¢). For each y € x,
we have 2z.z = A ¢. Hence, by Replacement, 2z.z = y A ¢. Thus by Indexed-Union, 2z.(3y e x.z=y A¢). le. 2y.(y XA )
as required.

Conversely, suppose that ¢[x, y]-Sep holds. Take any yo € x. By Membership, x is a set hence 2z.(3y e x.z=y A ¢).
Write w for this set. Then w N {yp} is a set. For any z € w N {yg} there exists a unique v such that v = @. Therefore, by
Replacement, {v | v =0 A 3z.z€ wN{yo}} is a set. In other words, {v | v =0 A ¢[x, yol} is a set, i.e. 1¢[x, yo]. Thus indeed,
Vyexlp. O

We next establish important closure properties of restricted propositions.
Lemma 2.2. The following all hold in BIST—.

L !Ix=y).

2. If S(x) then !(y € x).

3. Ifl¢ and !y then !(¢p A ), (P Vv V), (¢ — ¥) and !(—¢).
4, IfS(x) andVy € x.\¢p then !(Vy € x.¢p) and !(Ay € x.¢).

5. If ¢ v —¢ then ¢.

Proof. We reason in BIST .

1. Using Equality, {v|v=xAv =y} is a set, call it w. For every v € w there exists a unique u with u = #. So, by
Replacement, {z=@|3v.v € w} is a set, i.e. 2z.(z=0 A x=y) as required.

4. Suppose S(x) and, for all y e x, !¢, i.e. 2z.(z=0 A ¢). That !(3y € x.¢p) holds follows from Indexed-Union, because
2z3dy e x.(z=0 A ¢), hence 2z.(z= 0 A Ay € x.¢p). To show that !(Vy € x.¢), consider the set w = {y € x | ¢}, which
is a set by Lemma 2.1. By (1) above and Lemma 2.1, {z € {#} | w = x} is a set. But w = x iff Vy € x.¢. Hence indeed
2z.(z=0AVyex.p),ie. |(Vy € x.¢).

2. We have

yex<dzexz=y.

6 We write ¢[x, y] to mean a formula ¢ with the free variables x and y (which may or may not occur in ¢) distinguished. Moreover, once we have
distinguished x and y, we write ¢[t, u] for the formula ¢[t/x, u/y]. Note that ¢ is permitted to contain free variables other than x, y.

7 The terminology “restricted” is sometimes used to refer to formulas in which all quantifiers are bounded. We shall instead used “bounded” for the
latter syntactic condition.
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RS Restricted Sethood !S(x)
R3  Restricted 3 (Vx.!¢) —!(3x.¢)
RY  Restricted V (Vx.1¢) —(VX.¢)

Fig. 3. Axioms on restricted properties.

Thus, if S(x), then we obtain !(y € x) by combining (1) and (4) above.
3. Suppose !¢ and !v. We show that !(¢ — ), which is the most interesting case. For this, we have

(=)o (Vze{z|z=0Ad}Y).

But {z|z=0 A ¢} is a set because !¢. Also !v. Thus !(¢ — ) by (4).
5. Suppose ¢ Vv —¢. Then, (for all x € {(J}) there exists a unique set y satisfying

Y=9rP)V(y =10} A—d).

So, by Replacement, w ={y | (y =0 A ®) Vv (y ={0} A —¢)} is a set. By (1) and Lemma 2.1, {y |y e w A y =@} is a set.
But

Y=0nr9)(yewAy=0).
So indeed 2y.(y=0A¢). O

The following immediate corollary gives a useful class of instances of Separation that are derivable in BIST™.

Corollary 2.3. Suppose that ¢[x1, . .., X¢] is a formula containing no atomic subformula of the form S(z) and such that every quantifier
is bounded and of the form Vy € x; or Ay € x; for some 1 < i < k. Then

BIST™ F S(x1) A --- A S(xp) —¢.

In order to obtain further instances of Separation, it is necessary to augment BIST~ with further axioms. In this connec-
tion, we study the axioms in Fig. 3. The point of the first lemma is that the result holds without the assumption S(x).

Lemma 2.4.BIST” + RSH2y.y e x.

Proof. We reason in BIST™ +RS. Consider the set {x}. By RS, we have a set u = {x’ € {x} | S(x')}. Clearly, for all ¥’ € u, S(x').
So w=Ju is a set, i.e. 2y.y € w. But y € w <> y € x. Thus indeed 2y.y ex. O

Corollary 2.5. The following all hold in BIST~ +RS.
1. 1S(x);
2. I(y €x);
3. ifVy e x.\¢ then |(Vy € x.¢p) and !(Ay € x.¢).

Proof. Statement 1 is immediate. Statements 2 and 3 follow easily from Lemma 2.2(2) and (4), because y € x holds if and
only if y is a member of the collection of all elements of x, which is a set by Lemma 2.4. O

We say that a formula is bounded if all quantifiers occurring in it are bounded, and we write bSep for the schema of
bounded Separation, namely ¢[x, y]-Sep for all bounded ¢. By combining Lemmas 2.1, 2.2 and Corollary 2.5, it is clear that
bounded Separation is derivable in BIST~ 4+ RS. Moreover, as RS is itself an instance of bounded Separation, we obtain:
Corollary 2.6. BIST~ + bSep = BIST™ +RS.

We write Sep for the full Separation schema: ¢[x, y]-Sep for all ¢. Obviously, this is equivalent to the schema !¢ for all ¢.
To obtain Sep from bounded Separation, it suffices for restricted properties to be closed under arbitrary quantification. In
fact, as the next lemma shows, closure under existential quantification is alone sufficient. This will prove useful in Section 4

for verifying Sep in models.

Lemma 2.7. BIST~ +R3+RV.8

8 Here, R3 and RY are the full schemas.
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Fig. 4. Infinity axioms.

Proof. Assume R3. Suppose that Vx.!¢. We show below that

(Vx.$) <> Vp € P({0}).(Ix.(p > Ve p)) > Ve p. (3)

It then follows that !(Vx.¢), because the right-hand formula is restricted by Lemma 2.2 and R3.

For the left-to-right implication of (3), suppose Vx.¢, and suppose that p € P({#}) satisfies Ix.(¢[x] — ¥ € p). Then there
is some xg such that ¢[xg] — @ € p. But ¢[xg] because Vx.¢. Thus indeed ¢ € p.

For the converse, suppose that the right-hand side of (3) holds. We must show that Vx.¢. Take any xg. Define pg = {# |
¢[xol}. Then pg is a set because !¢p[xg]. Thus pg € P({#}). Hence, by the assumption, we have (Ix.(¢[x] — @ € po)) — ¥ € po.
But, by the definition of pg, we have ¢[xg] — @ € po. So @ € po. Hence, again by the definition of py, we have ¢[xp] as
required. O

The above proof was inspired by the derivation of universal quantification from existential quantification in [43].
Corollary 2.8. BIST~ + Sep =BIST™ + RS +R3.

Proof. That BIST™ + Sep validates RS and R3 is immediate. For the converse, we have that R3 implies RV, by Lemma 2.7.
Thus, we can derive !¢, for any formula ¢, by induction on its structure, using the closure conditions of Lemma 2.2, Corol-
lary 2.5, R3 and RY. O

At this point, it is convenient to develop further notation. Any formula ¢[x] determines a class {x | ¢}, which is a set just
if 2x.¢. We write U for the class {x | x=x}, and S for the class {x | S(x)}. Given a class A = {x | ¢}, we write y € A for ¢[y],
and we use relative quantifiers Vx € A and 3x € A in the obvious way.

Given two classes A and B, we write A x B for the product class:

{plIxeAJyeBp=xy}

where (x, y) = {{x}, {x, y}} is the standard Kuratowski pairing construction.” Using Indexed-Union, one can prove that if A
and B are both sets then so is A x B [3, Proposition 3.5]. Similarly, we write A + B for the coproduct class

{pl(IxeAp=({x.9)v(@yeBp=(4{y}))}

Given a set x, we write A* for the class

{FISHA(Ypefpexx A A(VyexIz(y,2) € f)}

of all functions from x to A. By the Powerset axiom, if A is a set then so is A*. We shall use standard notation for
manipulating functions.

We next turn to the axiom of Infinity. As we are permitting non-sets in the universe, there is no reason to require the
individual natural numbers themselves to be sets. Infinity is thus formulated as in Fig. 4. Define

BIST = BIST™ + Inf.

For the sake of comparison, we also include, in Fig. 4, the familiar von Neumann axiom of Infinity, which does make
assumptions about the nature of the elements of the assumed infinite set. We shall show in Section 4 that:

Proposition 2.9. BIST + Coll ¥ vN-Inf.

It is instructive to construct the set of natural numbers in BIST and to derive its induction principle. The axiom of Infinity
gives us an infinite set I together with an element 0 and a function s. We define N to be the intersection of all subsets of I
containing 0 and closed under s. By the Powerset axiom and Lemma 2.2, N is a set. This definition of the natural numbers
determines N up to isomorphism.

There is a minor clumsiness inherent in the way we have formulated the Infinity axiom and derived the natural num-
bers from it. Since the infinite structure (I, 0,s) is not uniquely characterized by the Infinity axiom, there is no definite

9 See [3, §3.2] for a proof that Kuratowski pairing works intuitionistically.
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DE  Decidable Equality X=yVv-kx=y)
REM Restricted Excluded Middle (1¢) — (¢ V —¢)
LEM Law of Excluded Middle oV —¢

Fig. 5. Excluded middle axioms.

description for N available in our first-order language. The best we can do is use the formula Nat(N, 0, s):
0eNAseNVA(VxeNsx) £0) A (Vx,y e Ns(x) =s(y) = x=y)
AVX€ePN.(0€ X AVxe X.s(x) €X) > X =N,

where N, 0, s are variables, to assert that (N, 0, s) forms a legitimate natural numbers structure. Henceforth, for convenience,
we shall often state that some property v, mentioning N, 0, s, is derivable in BIST. In doing so, what we really mean is that
the formula

VN, 0,s.(Nat(N,0,s) — )

is derivable in BIST. Thus, informally, we treat N,0,s as if they were constants added to the language and we treat
Nat(N, 0,s) as if it were an axiom. The reader may wonder why we do not simply add such constants and assume
Nat(N, 0, s) (instead of our axiom of Infinity) and hence avoid the fuss. (Indeed this is common practice in the formulation
of weak intuitionistic set theories, see e.g. [38,47].) Our reason for not doing so is that, in Parts II-III, we shall consider
various semantic models of the first-order language and we should like it to be a property of such models whether or not
they validate the axiom of Infinity. This is the case with Infinity as we have formulated it, but would not be the case if it
were formulated using additional constants, which would require extra structure on the models.
For a formula ¢[x], the induction principle for ¢ is

#[x]-Ind  ¢[0] A (Vx € N.¢[x] > ¢[s(x)]) = Vx € N.p[x].

We write Ind for the full induction principle, ¢-Ind for all formulas ¢, and we RInd for Restricted Induction:

RInd (Vx e N.!¢p) — ¢[x]-Ind.
Lemma 2.10. BIST + RInd.

Proof. Reasoning in BIST, suppose, for all x € N, !¢[x]. Then, by Lemma 2.1, the class X = {x| x € N A ¢[x]} is a subset of N.
Thus the induction property holds by the definition of N from I as the smallest subset containing O and closed under s. O

Thus induction holds for restricted properties.
Corollary 2.11. BIST + Sep  Ind.
Proof. Immediate from Lemma 2.10. O

On the other hand:
Proposition 2.12. BIST + Ind - vN-Inf.

Proof. One proves the following statement by induction.
vn e N3l f, € SKENxsnl,
vxefxeN|x<n}.(x=0— fa(x) =0) A
(x>0— fu(®) = fulx— DU {falx—1}),

making use of standard arithmetic operations and relations. Then a set satisfying vN-Inf is constructed as the union of the
images of all f;, using Indexed-Union. O

Corollary 2.13. BIST + Coll ¥ Ind.
Proof. Immediate from Propositions 2.9 and 2.12. O
Fig. 5 contains three other axioms that we shall consider adding to our theories. LEM is the full Law of the Excluded

Middle, REM is its restriction to restricted formulas and DE (the axiom of Decidable Equality) its restriction to equalities.
The latter two turn out to be equivalent.
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Lemma 2.14. In BIST~, axioms DE and REM are equivalent.

Proof. REM implies DE because equalities are restricted. Conversely, working in BIST~, suppose !¢. Thus w ={z | z=0 A ¢}
is a set. So, by DE, either w = {{J} or w # {#}. In the first case ¢ holds. In the second case —¢ holds. Thus indeed ¢ Vv —¢. O

Henceforth, we consider only REM. Of course properties established for REM also hold inter alia for DE.
Proposition 2.15. BIST~ + LEM | Sep.
Proof. By Lemma 2.2.5, BIST~ + LEM F!¢, for any ¢. Sep then follows by Lemma 2.1. O
Corollary 2.16. BIST™ + Sep 4+ REM = BIST™ + LEM.
Proof. Immediate from Proposition 2.15 and Lemma 2.1. O

In the sequel, we shall show how to interpret the theories BIST + Coll in any elementary topos with natural numbers
object. Also, we shall interpret BIST + Coll + REM in any boolean topos with natural numbers object. From these results, we
shall deduce

Proposition 2.17. BIST + Coll + REM ¥ Con(HAH),

where Con(HAH) is the 17? formula asserting the consistency of Higher-order Heyting Arithmetic (for the formulation of
HAH, see [46]). Indeed, this proposition is a consequence of the conservativity of our interpretation of BIST + Coll + REM
over the internal logic of boolean toposes, see Proposition 4.10 and surrounding discussion. On the other hand,

Proposition 2.18. BIST + Ind - Con(HAH).

Proof. One proves the following statement by induction.

vn e N3l f, € SKeNksn,
vxefxeN|x<nk.(x=0— fa(x) =N) A
(X >0— fa(x) :P(fn(x - 1)))7

where P is the powerset operation. Define the set V., to be the union of the images of all f;. In the usual way, V14
is a non-trivial internal model of higher-order arithmetic, where the arithmetic modelled is intuitionistic because BIST is an
intuitionistic theory. O

Corollary 2.19. If any of the schemas Ind, Sep or LEM are added to BIST then Con(HAH) is derivable. Hence, none of these schemas is
derivable in BIST + Coll + REM.

Proof. By Proposition 2.15 and Corollary 2.11, we have, in BIST, the implications LEM — Sep = Ind. Thus, by Proposi-
tion 2.18, each schema implies Con(HAH); whence, by Proposition 2.17, none is derivable in BIST 4 Coll + REM. O

Note that, in each case, the restriction of the schema to restricted properties is derivable.
Proposition 2.17 shows that BIST + Coll is considerably weaker than ZF set theory. As well as BIST, we shall also be
interested in the theory:

IST = BIST + Sep,

introduced in [43]. IST is closely related to Friedman’s Intuitionistic Zermelo-Fraenkel set theory IZF [47]. On the one
hand, by adding a set-induction principle and the axiom Vx.S(x), one obtains IZF in its version with Replacement rather
than Collection. (For all theories considered in this paper, we take Replacement as basic, and explicitly mention Collection
when assumed.) Thus IZF is an extension of IST. Further, by relativizing quantifiers to an appropriately defined class of
well-founded hereditary sets in IST, it is straightforward to interpret IZF in IST. These translations show that IST and IZF
are of equivalent proof-theoretic strength. Similarly, IST + Coll and IZF + Coll have equivalent strength. It is known, [47,
Section 3], that IZF 4 Coll, and hence IST + Coll, proves the same Hg—sentences as classical ZF. It is also known, [19,47], that
IZF, and hence IST, is strictly weaker than ZF, with regard to Hg-sentences. It is an open question whether IZF, and hence
IST, proves the same 17]0 sentences as ZF.
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We end this section with a brief discussion about the relationship between BIST and other intuitionistic set theories in
the literature. To the best of our knowledge, none of the existing literature on weak set theories interpretable in elementary
toposes [8,30,20,40] considers set theories with unrestricted Replacement or Collection axioms. In having such principles,
our set theories are similar to the “constructive” set theories of Myhill, Friedman and Aczel [38,18,1,3]. However, because
of our acceptance of the Powerset axiom, none of the set theories presented in this section are “constructive” in the sense
of these authors.'® In fact, in comparison with Aczel's CZF [1,3], the theory IST + Coll represents both a strengthening and
a weakening. It is a strengthening because it has the Powerset axiom, and this indeed amounts to a strengthening in terms
of proof-theoretic strength. On the other hand, Aczel’s CZF has the full Ind schema, obtained as a consequence of a general
set-induction principle. In contrast, for us, the full Ind schema is ruled out by Proposition 2.18.

Part II. TOPOSES
3. Toposes and systems of inclusions

In this section we introduce the categories we shall use as models of BIST~ and the other theories. In this part of the
paper, a category C will always be locally small, i.e. the collection of objects |/| forms a (possibly proper) class, but the
collection of morphisms /C(A, B), between any two objects A, B, forms a set. We write Set for the category of sets. Of
course all this needs to be understood relative to some meta-theory supporting a class/set distinction. For us, the default
meta-theory will be BIST itself, although we shall work with it informally. Occasionally, it will be convenient to use stronger
meta-theories, e.g. ZFC. We highlight whenever this is so.

We briefly recall the definition of elementary topos. An (elementary) topos is a category £ with finite limits and with
powerobjects:

Definition 3.1. A category £ with finite limits has powerobjects if, for every object B there is an object P(B) and a mono

> »— P(B) x B such that, for every mono R »'+~ A x B there exists a unique map xr:A — P(B) fitting into a
pullback diagram:

R

>B

_

AxB

P(B) x B
Xr X 1p

We shall always assume that toposes come with specified structure, i.e. we have specified binary products A U
Ax B 2% B, specified terminal object 1, a specified equalizer for every parallel pair, and specified data providing the
powerobject structure as above.

Any morphism f:A — B in a topos factors (uniquely up to isomorphism) as an epi followed by a mono

f=A — Im(f) > B.
Thus, given f:A — B, we can factor the composite on the left below, to obtain the morphisms on the right.

Ipayx f
e

54 > P(A) x A P(A) x B = 54 — R; ~» P(A) x B.

Using the defining property of powerobjects, we obtain xr, : P(A) — P(B). We write P f : P(A) — P(B) for xr,. This mor-
phism is intuitively the direct-image function determined by f. Its definition is independent of the choice of factorization.
The operations A +— PA and f +— Pf are the actions on objects and morphisms respectively of the covariant powerobject
functor.

The main goal in this part of the paper is to interpret the first-order language of Section 2 in an elementary topos £.
Moreover, we shall show that such interpretations always model the theory BIST™.

Given a topos &, the interpretation is defined with reference to a certain additional structure on £ of which there are
many different instances, giving rise to inequivalent interpretations of the first-order language in £. As adumbrated in the
introduction, see Eq. (1), the required structure is that of a directed structural system of inclusions (dssi). This is given by a
collection of special maps, “inclusions”, intended to implement a “subset” relation between objects of the topos.

In the remainder of this section, we introduce and analyse the required notion of dssi.

10 For us, Powerset is, of course, unavoidable because we are investigating set theories associated with elementary toposes, where powerobjects are a
basic ingredient of the structure.
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Definition 3.2 (System of inclusions). A system of inclusions on a category /X is a subcategory Z (the inclusion maps, denoted
<) satisfying the four conditions below.

(si1) Every inclusion is a monomorphism in K.

(si2) There is at most one inclusion between any two objects of K.

(si3) For every mono P »" A in K there exists an inclusion Am — A that is isomorphic to m in C/A.
(si4) Given a commuting diagram

A’ ;Z, A
m . (4)
J
Al/

with i, j inclusions, then m (which is necessarily a mono) is an inclusion.

We shall always assume that systems of inclusions come with a specified means of finding A, — A from m in fulfilling
(si3). By (si3), every object of K is an object of Z, hence every identity morphism in K is an inclusion. By (si2), the objects

of 7 are preordered by inclusions. We write A=B if A~ B~ A. If A c's B then A=B iff i is an isomorphism, in
which case i~ is the inclusion from B to A.
When working with an elementary topos £ with a specified system of inclusions Z, we always take the image factoriza-

tion of a morphism A s Bin £ to be of the form

A Lo B = a5 im(f) <L B,

i.e. an epi followed by an inclusion, using (si3) to obtain such an image.
We say that 7 is a partially-ordered system of inclusions when the preorder on Z is a partial order (i.e. when A = B implies
A = B). The following observation is due to C. McLarty.

Proposition 3.3. The following are equivalent.

1. Z is a partially-ordered system of inclusions on K.
2. T is a subcategory of K satisfying (si1), (si2) and also:

(si3!) For every mono P »s Ain K there exists a unique inclusion A, < A that is isomorphic tom in IC/A.

Proof. 1 = 2 is trivial. For the converse, we need to show that (si1), (si2) and (si3!) together imply: (i) that inclusions
form a partial order, and (ii) that (si4) holds.

For (i), given inclusions A !y B =ds A, we have j=1i"", so j is isomorphic to 14 in K/A. Also, as 14 is an identity,
it is an inclusion. Thus, by the uniqueness part of (si3!), j =14, hence A =B.

For (ii), suppose we have i, j,m as in diagram (4). Let A, ¥, A’ be the unique inclusion isomorphic to m in X/A’. Then
iok:Aj, — A is isomorphic to j: A” — A in IC/A. Hence, by the uniqueness part of (si3!), A;, = A” and iock= j=iom.
Thus, as i is a mono, we have k =m, i.e. m is indeed an inclusion. O

1

Given a (preordered) system of inclusions on a small category K, there is a straightforward construction of a partially-
ordered system of inclusions on a category X'/ =, whose objects are equivalence classes of objects of IC under =. Moreover,
the evident quotient functor Q : KC — K/ = is full, faithful, surjective on objects and preserves and reflects inclusions. This
might suggest that there is little to choose between the preordered and partially-ordered definitions. Also, the motivating
intuition that inclusion maps represent subset inclusions might encourage one to prefer the partial order version. However,
the preordered notion is the more general and useful one when working in a weak meta-theory (such as BIST). It is more
useful because many constructions of systems of inclusions, e.g. those in Part IV, naturally form preorders in the first in-
stance. It is more general because, for a locally small category C, additional assumptions on the meta-theory are required
to construct the category K/ = above.!! Moreover, even when X/ = does exist, the quotient functor Q : K — K/ = is, in

1 Because K is only locally small, the equivalence classes of objects under = may be proper classes, and there is no reason for a class of all equivalence
classes to exist.
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general, only a weak equivalence.!? Because of these issues, we henceforth work with the preordered notion of system of
inclusions.

Definition 3.4 (Directed system of inclusions). A system of inclusions Z on a category K (with at least one object) is said
to be directed if the induced preorder on Z is directed (i.e. if, for any pair objects A, B, there exists an object C4p with
A —— Cpp <—— B).

Again, we shall always assume that a directed system of inclusions comes with a means of selecting an upper bound
Cap given A and B. This selection mechanism is not required to satisfy any additional coherence properties.

Proposition 3.5. Suppose 7 is a directed system of inclusions on an elementary topos £. Then:

1. The preorder Z has finite joins. We write () for a selected least element (the “empty set”), and A U B for a selected binary join (the
“union” of A and B).

2. An object A of £ is initial if and only if A = 0.

3. The preorder Z has binary meets. We write A N B for a selected binary meet (the “intersection” of A and B).

4. The square below is both a pullback and a pushout in £.

ANB——— A

B—— AUB

Proof. First we construct AU B. Let C be such that A < 4% B. We obtain the map A+ B LY} C. Define AUc B to
be the object in the image factorization
A+B L c—A+B — AUCB < C.
Now suppose C ok, D, so A kel p <’% B. Define A Up B as above. But

Aqp ekl 4 p Wil cck p

=A+B —» AUcB~—> C~—> D
=A+B —> AUcB —— D.

So, by the uniqueness of image factorization, the inclusions AUc B <~ D and AUp B < D are isomorphic in C/D. So,
by (si4), AUc B=AUp B.

To define AU B, let Cap be the specified object with A — Cap «<— B. Define AU B = A Uc,, B. To show this is a
join, let C be such that A —» C <— B. By directedness, there exists D with C4jp —> D <— C. By the above, AUB =
AUc,g B=AUpB=AUcB. Thus, AUB=AUc B —— (. So indeed AUB —— C.

We next show that for any two initial objects 0,0 of £, we have 0 = 0. By the above, we have an epi 0+0 — 0U0'.
But 0 + 0’ is initial and, in any elementary topos, any image of an initial object is initial. Hence 0 U 0’ is initial. Thus the
inclusion 0 — QU 0’ is an isomorphism and hence 0 =0U 0'. Similarly, 0' =0 U 0'. Thus indeed 0=10'.

Next we observe that 0 — A, for any initial object 0 and object A. Indeed, in a topos, the unique map 0 — A is a
mono. Hence, by (si3), there exists an inclusion 0 —» A from some initial object 0'. By the above, 0 = 0’ — A. Thus
indeed 0 —— A. It follows that the least elements in the inclusion preorder are exactly the initial objects, completing the
proof of (1) and (2).

To define AN B, construct the pullback below.

m

P A

_

B——— AUB

12 A weak equivalence is a functor F:/Cy — K that is full, faithful and essentially surjective on objects, i.e. for every object Y € |KC3| there exists X € |KC1]
with FX =Y. An equivalence requires, in addition, a functor G: K, — Ky such that GF and FG are naturally isomorphic to the identity functors on Kq
and KC; respectively. Only in the presence of global choice is every weak equivalence an equivalence.
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Both m and n are mono because they are pullbacks of monos. Using (si3), define AN B <*. A to be the inclusion repre-

sentative of m. Thus we have an isomorphism A N B 25 P with mo p=k.Theniok=jonop, so, by (si4), nop is an
inclusion AN B —— B. Moreover, as p is an isomorphism, we have the pullback square below.

k
ANB— A

]

nop i
Bc—— AUB
J

To see that AN B is the meet of A and B, suppose that A «— C —— B. By (si2), this is a cone for the diagram
A —— AUB <— B. The pullback above then gives a morphism C — A N B, which is an inclusion by (si4). This com-
pletes the proof of (3).
[i,j1

To prove (4), it remains only to show that the pullback is a pushout. But this holds because A+ B —» A U B is epi, by
the definition of AU B, and, in a topos, any pullback of a jointly epic pair of monos is also a pushout. O

Corollary 3.6. Given a directed system of inclusions on an elementary topos, a (necessarily commuting) square of inclusions

Ac——B

C———D

is a pullback if and only if A= BN C.
Proof. By Proposition 3.5.1, BUC —— D. Using this, both implications follow easily from Proposition 3.5.4. O

One of the motivations for considering directed systems of inclusions is to be able to compare elements of different
objects for equality. For objects A, B of £, the relation =4 3 — A x B is defined as the inclusion representative of the

subobject obtained by pairing the inclusions ANB —— A and AN B — B. For any C with A «'s ¢ <L B, it holds in
the internal logic of £ that

X=aBYy<iXx)=jQ).

The following lemma states that the relations =4 g form what might be called a heterogeneous equality relation.
Lemma 3.7. For objects A, B, C, the following hold internally in £:

1. x=payifandonlyifx=y.
2. X=p,p yimplies y =p a X.
3. Ifx=apyandy =g czthenx=4cz

Proof. Straightforward. O

Definition 3.8 (Structural system of inclusions). A system of inclusions Z on an elementary topos £ is said to be structural if
it satisfies the conditions below relating inclusions to the specified structure on &.

f
(ssil) For any parallel pair A — B, the specified equalizer E »— A is an inclusion.

g
(ssi2) For all inclusions A’ —= A and B’ <L~ B, the specified product A’ x B’ —% A x B is an inclusion.
(ssi3) For every object A, the membership mono 54 =— P(A) x A is an inclusion.

(ssi4) For every inclusion A’ 'y A, the direct-image map PA’ s PA is an inclusion.

The structure we shall require to interpret the first-order language of Section 2 is a directed structural system of inclusions
(henceforth dssi). The lemma below is helpful for constructing dssi’s.
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Lemma 3.9. Let Z be a directed system of inclusions, on an elementary topos &, satisfying property (ssi4). Then it is possible to respecify
the topos structure on & so that Z is a dssi with respect to the new structure.

Proof. For (ssil), given a parallel pair f,g:A — B, let e: E = A be the equalizer originally specified. The newly spec-
ified equalizer is simply defined to be the specified inclusion A, — A representing e.

For (ssi2), we specify a new product A x’ B using Kuratowski pairing. It is not hard to see that Kuratowski pairing gives
a monic natural transformation

ker:X)(X Mi PZX

Thus, for any A, B, using the inclusions A <'s AUB <« B, we have a mono
ixj

map=Ax B >k (AUB) x (AUB) 4% p2(A U B).

Define A x’ B to be the domain of the inclusion A x’ B £4% PZ(A U B) that represents the mono myap. Thus we have a
unique isomorphism

Ax'B -4 A B

’
Ty

such that pag =map oiap. The projections A « Ax'B 2% B are defined by 7] = m;j o iap. This is a product diagram
because isp is an iso. One easily verifies that, given f:A — A’ and g:B — B/, then the product morphism f x’ g:
A x'B —» A’ x’ B’ is the unique morphism satisfying iz p o (f x' g) = (f x g) oiap.

We now show that (ssi2) holds. Suppose then that f, g are inclusions. We must show that f x’ g is an inclusion. As

f, g are inclusions, we have an inclusion AU B <*. A’UB'. Thus the diagram below commutes.

. o .

Ax'B AP, 4w B L (AUB) x (AUB) —PHAUB, p24y B)

fx'g fxg kExk P2(k)
./ ’ i/ i’ k 7 ’

A X' B B qr g D (4GB x (AU B SREAUBL p2ary By

(The middle square commutes because f, g, i, j,i’, j’,k are all inclusions; the right-hand square by the naturality of kpr.)
The diagram expresses the equation P2 (k) o pag = pag o (f x’ £). But pag and pap are inclusions. Moreover, by (ssi4),
P2 (k) is also an inclusion. Thus f x’ g is indeed an inclusion, by (si4).

Finally, we need to respecify the powerobject structure on £ consistently with the new product A x’ B, and check that
(ssi4) remains true. In fact, the object P(A) remains unchanged. The membership mono 3, — P(A) x’ A is defined as
the inclusion representative of the mono

1
1
54 — P(A) x A28 PA) X' A.
We have thus satisfied (ssi3). Moreover, one readily checks that, with this redefinition, the action of the covariant power-
object functor remains unaffected. Thus (ssi4) still holds. O

We make some basic observations concerning the existence of dssis. First, we observe that not every topos can have a
dssi placed upon it. For a simple counterexample, using ZFC as the meta-theory, consider the full subcategory of Set whose
objects are the cardinals. This is a topos, as it is equivalent to Set itself. However, it can have no system of inclusions placed
upon it. Indeed, if there were a system of inclusions, then, by condition (si3) of Definition 3.2, each of the two morphisms
1 — 2 would have to be an inclusion, thus violating condition (si2). Since subset inclusions give a (partially-ordered) dssi
on Set, we see that the existence of a dssi is not preserved under equivalence of categories. Nevertheless, every topos is
equivalent to one carrying a dssi.

Theorem 3.10 (BIST + REM).'> Given a topos &, there exists an equivalent category £ carrying a dssi relative to specified topos
structure on £’

By showing that there is no loss in generality in working with toposes carrying dssi’s, this theorem is essential for
placing the various constructions in Parts II-1II of the paper that rely on the presence of systems of inclusions in context.

13 Whenever BIST alone is not the metatheory, we indicate this in the statements of theorems. For lemmas, propositions, etc., the metatheory will normally
be explained in the surrounding context; however, we include such information explicitly when useful for emphasis.
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In spite of its importance, we nevertheless postpone the rather technical proof of the theorem to Part IV. Theorem 3.10, as
stated, assumes Restricted Excluded Middle in the meta-theory. In Part IV, we shall obtain a sharper version, which merely
relies on BIST as the meta-theory. Again the precise formulation of this is somewhat technical, see Proposition 11.14 for
details.

We next establish some basic properties of an elementary topos £ with a dssi Z. These properties will be useful in
Sections 4 and 8.

Proposition 3.11. Let Z be a dssi on an elementary topos £. Then:

1. (AxB)N(A' xB)Y=(ANA) x (BNB);
2. (PA)N(PB)="P(AN B).

Proof. For 1, the square below is a pullback, because, by Proposition 3.5.4 and (ssi2), it is a product of pullback squares.

(ANA)x(BNB')~——+ AXB

A'xB «—ws (AUA") x (BUB)
Thus, by Corollary 3.6, (A x B)N (A’ x B)=(ANA") x (BNB).
Similarly, for 2, the square below is a pullback, by Proposition 3.5.4 and (ssi4), because the covariant powerobject functor

preserves pullbacks of monos.

P(ANB) — PA

PB —— P(AUB)
Again, by Corollary 3.6, (PA)N(PB)=P(ANB). O

In an elementary topos with dssi, a map (s,t):X — PA x A factors through 34 — PA x A if and only if
Im(s, t) — >4. Furthermore, if i: A — B then Pi xi:PA x A —» PB x B and hence 54 — 3>3.

Proposition 3.12. Let Z be an dssi on an elementary topos £. Suppose that (s, t) : X — PA x A factors through 54 — PAx A
and that Im(s) — PB. ThenIm(t) —> AN B andIm(s,t) — >ans.

Proof. Given any X S PA x A where Im(s) — PB, trivially also Im(s) — PA. So, by Proposition 3.11(2),

Im(s) = P(ANB). Thus, (s,t) is given by the bottom-left composite below

X e > D4nB %3‘4
al _, N
(s, 1) P(ANB) x (AN B)

Im(s) x A—— P(ANB)x A ——— PAX A

The right-hand rectangle is a pullback, because the inclusion P(ANB) x A — PA x A is obtained as P(i) x 14, where
i:ANB — A. Now suppose (s,t) factors through 54 —— PA x A. Then, by the pullback property, (s,t) factors via
a map X — >ang. So indeed Im(s,t) —> >anp. Moreover, because the left-hand rectangle above commutes, also
Im(t) — ANB. O
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Proposition 3.13. [f A —— PB then the collection {C | A — PC} has a least element under the — relation.

Proof. Suppose that A = PB. Then the inclusion map is characteristic for a relation R = B x A and define [ J A to be
the image factorization of R —» Bx A I, B.1tis easily checked that C = (|J A) = B is the required least element. O

It will be useful in Section 8 to have a definition of coproduct that interacts well with the inclusion structure on £.
Define:
A+B={(X,Y): PAxPB|((Ix: AX={x})AY =0)
V(X=0n(3y: BY ={y}))}.
The injections are given by the maps
x> ({x},0):A — A+B
y+ (2,{y}):B — A+B.

It is routine to verify that this indeed defines a coproduct.
Proposition 3.14. The coproduct defined above enjoys the properties below.

1. IfAY > Aand B — Bthen A+ B —» A+B.

2. IfC —> A+ BthenC=A"+ B’ forsome A’ —» Aand B —» B.
3. A+B)NA+B)Y=(ANA)+(BNB.

4. (A+B)U(A'+B)=(AUA") + (BUB).

Proof. We just verify statement 2. Suppose C — A + B. Define A’, B’ by pullback as below.

A C ~ B’
_ L

A inl A+ B inr B

By statement 1, there is an inclusion A’ + B’ —— A + B. By the stability of coproducts in &£, the top edge in the diagram
above is also a coproduct diagram. Thus the inclusions C — A + B and A’ + B’ — A + B factor through each other.
Thus indeed A’+ B'=C. O

We end this section with a discussion of the extra structure that will be required to interpret IST and other set theories
with full Separation.

Definition 3.15 (Superdirected system of inclusions). A system of inclusions Z on a category I is said to be superdirected if, for
every set A of objects of I, there exists an object B that is an upper bound for A in Z.

The structure that will be required to interpret set theories with full Separation is a superdirected structural system of
inclusions (henceforth sdssi).

Proposition 3.16. If £ is a small topos with an sdssi then, for every object A, it holds that A = 1, hence every object is isomorphic to 1.

Proof. As £ is small, it has a set of objects. Hence, because Z is superdirected, Z has a greatest element U. Then

PU < U, so PU »— U. One can now mimic Russell’s paradox in U to derive the inconsistency of the internal logic

of £. Thus every morphism in £ is an isomorphism, and hence A = U for every object A, including 1. The result follows. O
Thus sdssis are only interesting on locally small toposes whose objects form a proper class.

Proposition 3.17. Suppose that Z is an sdssi on a topos £. Consider the statements below.

1. € is cocomplete.'*

14 A category K is cocomplete if every small diagram has a colimit. As it has coequalizers, a topos is cocomplete if and only if it has small coproducts.
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2. The preorder Z has small joins.
3. For every object A, the subobject lattice is a complete Heyting algebra.

Then 1 — 2 — 3.

Proof. That 1 =— 2 follows by a straightforward generalisation of the proof of Proposition 3.5.1. For the proof of 2 — 3,
assume that Z has small joins. Let {P; LN Alic; be any small family of monos. Consider the corresponding family of

inclusions {An, < Al}ic;. Then, using 2, we obtain ({_;c; Am;) = A, which represents the join of {P; LN Alic; in the
subobject lattice. O

It is easy to see that the implication 2 = 3 cannot be reversed. For a counterexample, take any non-trivial full subcate-
gory of Set, e.g. in ZFC, the category of all finite sets, with inclusion maps given by subset inclusions. We do not, at present,
know any example of a topos carrying an sdssi with small joins that is not cocomplete.

Cocompleteness is an in important condition in relation to the existence of sdssi's, as it is a sufficient condition for
obtaining an analogue of Theorem 3.10.

Theorem 3.18. For any cocomplete topos E, there is an equivalent category £ carrying an sdssi relative to specified topos structure
oné&'.

However, as the next result shows, cocompleteness is not a necessary condition for the existence of an sdssi. Our proof
uses ZFC as the meta-theory.

Theorem 3.19 (ZFC). For any realizability topos &, there is an equivalent category £’ carrying an sdssi relative to specified topos
structure on £’

We comment that sdssi’s on realizability toposes do not have small joins. This follows from Proposition 3.17, because
subobject lattices in realizability toposes are, in general, not complete.
The proofs of Theorems 3.18 and 3.19 will be given in Sections 11 and 12 respectively.

4. Interpreting set theory in a topos with inclusions

In this section we give an interpretation of the first-order language of Section 2 in an arbitrary elementary topos with
dssi. We show that this interpretation validates the axioms of BIST™ + Coll. Moreover, the axiom of Infinity (hence BIST +
Coll) is validated if (and only if) the topos has a natural numbers object. We exploit these general soundness results to
establish the various non-derivability claims of Section 2. We also state a corresponding completeness result, which will be
proved in Part III.

For the entirety of this section, let £ be an arbitrary elementary topos with dssi Z.

The interpretation of the first-order language is similar to the well-known Kripke-Joyal semantics of the Mitchell-
Bénabou language [30], but with two main differences. First, we have to interpret the three untyped relations: sethood
S(x), equality x =y and membership x € y. Second, we have to interpret unbounded quantification. To address these issues,
we make essential use of the inclusion structure on £. In doing so, we closely follow Hayashi [20], who interpreted the
ordinary language of first-order set theory using the canonical inclusions between so-called transitive objects in £. The
difference in our case is that we work with an arbitrary dssi on £. See Section 1 for further comparison.

The reader may find the following high-level explanation of the interpretation useful. Elements of the universe are
interpreted as generalised elements of objects of £, with inclusion maps serving to identify elements from distinct objects.
The “sets” in the model are given by generalised elements of the powerobjects specified in the topos structure.

We interpret a formula ¢ (x1,...,X,) (i.e. with at most x1,..., X, free) relative to the following data: an object X of &
(a “stage of definition”), and an “X-environment” p mapping each free variable x € {x1,...,xx} to a morphism X LN Ax

in £ We write X I, ¢ for the associated “forcing” relation, which is defined inductively in Fig. 6 with the help of the
following notation:

(i) we write X S I, <% A, for the epi-inclusion factorization of py,
(ii) given Y L X, we write p ot for the Y-environment mapping x to px o,
(iii) given morphisms Ay b, By, for each free variable x,
we write b o p for the X-environment mapping x to by o px,
(iv) given a variable x ¢ {x1,...,xx}, and a morphism a: X — Ay, we write p[a/x] for the environment that agrees with
p on {xq,...,X}, and which also maps x to a.

It is immediate from the definition of the forcing relation that the statement X I, ¢ depends only on the value of p on
variables that appear free in ¢. The next few lemmas establish other straightforward properties.
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Xk, S(x) iff there exists B with Iy — PB
XlFpx=y iff iyo py=1iyopy, where iy, i, are the inclusions
Ay 2 AVUA, <2 Ay
XlFpxey iff there exist inclusions Iy <'s Band Iy <! PB such that

X M PB x B factors through >p

Xy L iff X is an initial object

Xlkp ¢ Ay iff XIk,¢and X1k, ¢

Xy ¢ vy iff there exist jointly epic Y —+ Xand 7 -+ X
such that Y I-pos ¢ and Z IFpor ¥

Xlkp¢— ¢ iff forall Y — X, Y IFpor ¢ implies Y I po ¥

Xk, Vx.¢ iff forallY —> X and Y —2» A, Y IF(pora/x] &

XIFp3x.¢  iff there exists an epi Y 5% X and map Y v A
such that Y |F(,oot)[a/x] ¢

Fig. 6. The forcing relation.

Lemma4.1. Forany Y —» X, if X I, ¢ then Y I por ¢.

Proof. An easy induction on the structure of ¢. O
Lemma 4.2. For any finite jointly epic family Y1 A, X, ..., Y N X, ifY1lpot; ¢ and ... and Yy Ik por, ¢ then X 1, ¢.

Proof. We first make the following observation. For each variable x € dom(p), the map px o t;:Y; — Ay factors as

’

e’ .
Y; =5 I’ ; & Ay. Thus there is a commuting diagram:

€1t el

zv

Yi+---+Y, [;,1-1-"'-0—[;)1@*’[;,1U"'UI;,k

t1+ -+ 1k

X I, : A,

€z 1y

where the left edge is epi because the t; are jointly epi. Thus, by the uniqueness of image factorizations, we have Iy =

Iy “UTL,
x,k
The proof now proceeds by induction on the structure of ¢. We give one case, to 111ustrate the style of argument.

If ¢ is x € y then, by assumption, for each i, there exists B}, with I;(» L» B; and 1311‘ PB;, such that
(Ji oey i 1 oe;“.) factors through g, Thus Iy=1[,;U---Ul,, — BjU---UBj and I, = 13,’1 U---u I;, r — PBjU
--UPBj, — P(B{ U---UBy). So, defining B=B| U---U B;c, we have i: Iy — B and j:I, — PB. We must show

that (jo ey,io ex): X — PB x B factors through >3. Reasonmg internally in &, take any a: X. We must show that
i(ex(a)) € j(ey(a)). As the t; are jointly epi, there exist i and b : Y; such that a =t;(b). By assumption, i (e (b)) € (ey (b))

(where i} (e (D)) : B’ and j; (e (D) : PB i)- By the definition of el i and e , the inclusion B’ — B maps i) (e ;(b)) to
z(ex(t,(b))) =i(ex(a)), and the mclusmn PB/ & PB maps jj (ey (b)) to ](ey(tl(b))) = j(ey(a)). Also 3p —* 33, by the
remarks above Proposition 3.12. So indeed i(ex(a)) € j(ey(a)). O

Lemma 4.3. Given inclusions Ax i, By, for all free x in ¢, it holds that X I, ¢ if and only if X IFjo .
Proof. Straightforward induction on the structure of ¢. O

Lemma 4.3 will often allow us to us to restrict attention in proofs to epimorphic maps X L5 Ay
The lemma below establishes a convenient property of the forcing semantics of the membership relation.

Lemma44.IfXIF,xe yandl, i, ‘P B then there exists an inclusion I '+ B suchthat (joey,ioex): X — PB x B factors
through >p.
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Proof. Suppose X Ik, x € y. Then there exist i':Iy — A and j':I, < PA such that (j'oey,i’ oex): X — PAx A
factors through >4. Suppose also Iy <J» PB. Then, by Proposition 3.12, I, = Im(i’ o ey) == AN B and Im(j’ o ey,i’o
ex) — >ang. However, Im(j’ oey,i’ oeyx) =Im(ey,ex) =Im(joey,ioey). So Im(joey,ioey) —> >anp — 3p. Thus
indeed, (joey,ioey) factors through 5. O

The next lemma gives a direct formulation of the derived forcing conditions for the various abbreviations introduced into
the set theoretic language.

Lemma4.5. If [, —» PC then

XlpVxez¢ iff forallY’ s Xandy' —» C, if
y’ Keeols) pe o C factors through >¢
. then 'Y’ |F(pot’)[s’/x] ¢
iff Y I-ot)s/x1 @, whereY ={(c,a): C x X |c e k(ez(a))}
ands:Y — Candt:Y — X are the projections.
XlFp3Ixez.g iff thereexistsanepiy 5% Xand map Y LAY
such that Y {koezot,) PC x C factors through >¢
and Y ”_(pot)[s/x] (]5 ) )
XFpxCy iff there exists B such that I ' PR < Iy
and (i oex, joey): X — PB x PB factors through
Cp — PB x PB.
Xlp 2x.¢ iff there exist objects B and R — X x B such that,
for all objects Y, A and maps Y Y Xandy - A,
Y I-potyis/x) @ iff Im(p) =< R,
where p = {t,s):Y — X x A.
XIFplo iff thefamily {Y |Y s Xandy IF ooi ¢} has a greatest
element under inclusion.

Proof. We include two cases: the characterization of X I, 2x.¢, for which we give the proof in detail (this is the most
intricate case), and the characterization of X I-,!¢, for which we outline the argument.

We first show the left-to-right implication of the characterization of X I, 2x.¢. Suppose X I, 2x.¢, i.e. X1, 3y.(S(y) A
Vx.(x € y <> ¢)), where y is not free in ¢. Then there exist t':Y’ —» X and s":Y" — A’ such that Y’ IF(yerys7/y1 S(¥)
and

Y/”_(pot’)[s’/yj Vx.(xey<—>¢). (5)

By Lemma 4.3, one can, without loss of generality, assume that s’ is an epi. Thus there exists B such that i': A" —— PB.
Define

R={(ab):XxB|3c:Y't'(c)=anbei(s(0)}.

Take any objects Y, A and maps Y s X and Y —>» A. We must show that Y IF(pot)is/x1 ¢ iff Im(t, s) — R. Moreover,
by Lemma 4.3, we can, without loss of generality, assume that s is an epi.
First, note that, for any commuting diagram:

r

Y// Y/
r t (6)
Y X

t

in which r is epi, we have

Y IFpotyisixg @ 1 Y7 IF(potorysor/x) @ (by Lemmas 4.1 and 4.2)
iff y” IF(potor)(sor/x] @
iff Y IF(potror)is'or' /y,sor/x] P (as y is not free in ¢)

iff Y |- potroryisior /y,sorx X €Y (by (5) above).
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To show that Y IF(yor)s/x) ¢ implies Im(t,s) — R, construct Y”,r,r’, as in Diagram (6), by taking the pullback of t’
along t. Suppose Y I-(or)s/x] ¢- By the above equivalences, Y” Ik(,ororysior/y,sor/x] X € ¥. Since there are inclusions Im(s’ o
'y — A’ — PB, it follows from Lemma 4.4 that Im(sor) — B and Im(s'or’,sor) — >p. However, A=Im(sor)
because s and r are epi, so we have j: A — B, and hence Im{(tor,sor) = X x B. We show that this inclusion factors
through the subobject R. Reasoning internally in &, take any d : Y”. Define ¢ =r'(d). Then t'(c) = t(r(d)). Above, we saw that
Im(s’or’,sor) & 3>p,50 (i’os’ or’, josor) factors through >g, hence j(s(r(d))) €p i'(s'(r'(d))) =i’(s'(c)). This establishes
that Im(t or,sor) = R. It follows that Im(t,s) = R, because r is epi.

Conversely, suppose that Im(t,s) < R. As R — X x B and A =Im(s), there exists j: A — B. Define Y” by

Y'={(c.c'): Y x Y [t(c) =t'(<) A j(s(0) €' (s'(c')) }»
and write r:Y” — Y and r’:Y” — Y’ for the two projections. Trivially t or =t" or’. Also, because Im(t,s) —» R, it
follows from the definition of R that r is epi. It is immediate from the definition of Y” that Y” Ik (jopor)isor/y,sor/x] X € Y-
Hence, by the equivalences below Diagram 6, indeed Y IF(pot)[s/x] b-
To prove the right-to-left implication of the characterization of X I, 2x.¢, suppose there exist B and R — X x B with

the properties in the statement of the lemma. We must show that X Ik, 3y.(S(y) A Vx.(x € y <> ¢)), where y is not free
in ¢. Define r: X — PB by

rx) ={y: B|(x,y) € R},

we show that X IFpyir/y) S(¥) A VX.(Xx € y < ¢). Trivially, X IFpr/y) S(¥). To show that X IFp/y) VX.(x € ¥ < ¢), consider
any t:Y — X and s:Y — A. We must show that X I-,[r/y1et)s/x1 X € ¥ iff X I=(p1r/y10t)1s/x1 @ By Lemma 4.3, we can
assume that s is epi. Also, X IF(oir/ylotis/x) @ iff X I-(poryis/x) @ (because y is not free in ¢), iff Im(t,s) — R (by the
main assumption). It thus suffices to show that Im(t,s) =< R iff X IF(sr/ylot)[s/x X € ¥. For the left-to-right implication,
suppose that Im(t,s) — R. As R — X x B and s is epi, we have A =Im(s) — B. Also, by the definition of r, it
holds that Im(rot) — PB and (rot, s) factors through 33 —— PB x B. Thus indeed X IF(po)[rot/y,s/x] X € y. Conversely,
suppose X I-(potyirot/y,s/x) X € y. As Im(r ot) — PB and s is epi, it follows from Lemma 4.4 that i: A =Im(s) — B and
(rot,ios) factors through 55 —— PB x B. By the definition of r, it follows that (t,ios) factors through R — X x B,
i.e. Im(t,ios) — R. Thus indeed, Im(t,s) =Im(t,ios) — R.

We now turn to the characterization of X I-,!¢. First, an auxiliary remark. For any X, p, it is easily shown that X |-, x =¢
iff I, — {#}, where we write {¢} for the object P# of £.

Now suppose that X I-,!¢, in other words that X |-, 2z.(z =0 A ¢), where z is not free in ¢. Thus there exists

R < X x B such that, for all Y —» X and Y — A, it holds that Y IFpotyis/z1 Z =9 A ¢ iff Im(t,s) — R. Using
the remark above, one shows that R = RN (X x {#}). The we can define iy: Yy — X by

Yo={a: X|(a,0) € R}.

We show that (i) Yo IFpoi, ¢, and (ii) for any i:Y —— X such that Y Iy, ¢, it holds that Y —— Yq. Property (i)
holds because Im(ig, ) — R. For property (ii), suppose i:Y — X is such that Y I, ¢, Then, by the earlier remark,
Y IF(poiji0/z1 Z =¥ A ¢, Hence Im(i, #) — R. Thus Y —— Yq by the definition of Y.

Conversely, suppose there exists Yo — X such that (i) and (ii) above hold. We must show that X Ik, 2z.(z=0 A ¢).
Defining R = Yo x {#}, we show that, for all Z s Xand z 2+ A, it holds that Z I-(pot)[s/z1 2 =0 A ¢ iff Im(t,s) —> R.
Take any Z —» X and Z —>» A, and let Z — Y —'» X be the image factorization of t. Suppose Z IFpotys/z1 Z =
@ A ¢. Then Im(s) — ()}, by the earlier remark, and Y I-y.; ¢, by Lemma 4.2. Thus Y = Yy, by (ii). So indeed,
Im(t,s) — Yo x {#f} = R. Conversely, suppose that Im(t,s) — Yo x {#}}. Then Z IF(yot)[s/z) Z= ¥, by the earlier remark.
Also, Y —— Yo,s0Y H_(poi)[s/z] @b, by (1), hence Z ”_(pot)[s/z] ¢, by Lemma 4.1. Thus indeed, Z ”_(pot)[s/z] z=0 A¢. O

For a sentence ¢, we write (£,7) = ¢ to mean that, for all objects X, it holds that X I- ¢ (by Lemma 4.1, it is enough
that 1 = ¢). Similarly, for a theory (i.e., a set of sentences 7°), we write (£,Z) =7 to mean that (£,7) =¢, forall ¢ € T.
The next theorem, is our main result about the forcing semantics.

Theorem 4.6 (Soundness and completeness for forcing semantics). For any theory T and sentence ¢, the following are equivalent.

1. BIST™ + Coll + T + ¢.
2. (£,7) = ¢, for all toposes & and dssi T satisfying (£, 1) =T.

In this section, we give the proof of the soundness direction, (1) = (2), of Theorem 4.6, and explore some of its
consequences. The proof of completeness, which makes essential use of the technology of categories with class structure
introduced in Part III of the paper, will eventually be given in Section 10.

Proof of Theorem 4.6 (Soundness). The proof is in two parts. The first part is to verify that the forcing semantics soundly
models the intuitionistic entailment relation. This part is completely routine, and we omit it entirely. The second part is to
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verify that the forcing interpretation validates the axioms of BIST~ + Coll. The verification of these axioms makes extensive
use of Lemma 4.5. Indeed, much of the hard work has already been done in the proof of this lemma. Here, we just give a
detailed verification of the Collection axiom, which is arguably the most interesting case. The other cases are omitted.

To verify Coll, suppose we have X and o such that X |-, S(x) and X IF, Yy € x.3z.¢. We must show that X I-,
Aw.(S(w) A (Vy ex.Fze w.p) A (Vz e w.Ty € x.¢)).

Because X I, S(x), we have B such that Iy < PB. Define

Y ={(b,a): Bx X |beex@).
Let s:Y — B and t:Y — X be the projections. By Lemma 4.5, Y IF-(por)is/y)] 32.¢p. So there exist r:Z —» Y and
u:Z — A, such that

ZIF (potoryisor/y,u/z] P- (7)
Define Ay, =PA; and py : X — Ay by

pw(@ = {u(c) |c: Zand t(r(c)) =aj.

Henceforth, we work relative to the environment p[py /w], for which we continue to write p. Using Lemma 4.5, we verify

XlFp (Vyexdzew.g) A(Vzew.dy ex.¢).

For the left-hand conjunct, we must show that Y IF(ye)s/y) 32 € w.¢. Note that I, — A,y =PA;. Also, by (7), we have
r:Z — Y and u:Z — A; such that Z I yotor)sor/y,u/z] $- We must show that (ow ot or,u) factors through >4,. But
this is immediate from the definition of p,,. For the right-hand conjunct, consider

Z'={d,a): A; x X |d € pw(@]},

together with its projections s': Z" —» A; and t': Z’ — X. We must show that Z’ Ik (,or)(s'/21 3y € X.¢b. Define:

Y ={(s(r(©), u(c).t(r(c))) : Bx A, x X | c: Z}.

By the definition of py, if (b,d,a):Y’ then d € py (a). Accordingly, there are projections u':Y" — B and 1':Y — Z'.
Reasoning internally in £, we show that r’ is epi. Suppose that (d,a) : Z’, i.e. d € pw(a). Then d = u(c) for some c: Z such
that t(r(c)) = a. So (s(r(c)),d,a) : Y’ is such that r'(s(r(c)),d,a) = (d,a). Hence r’ is indeed epi. By the definition of Y, if
(b,d,a): Y’ then b € ex(a). Thus (exot’ or’,u’) factors through >pp. It remains to show that Y’ Ik (yepor)(sor/z,u'/y) ¢- For
this, consider the morphism 7:Z — Y’ defined by 7(c) = (s(r(c)), u(c), t(r(c))). Then t' or' ot =tor and s’ o’ oT =1u
and v’ o T =sor. So, by (7), it holds that Z I-((yor'ory(s'or’/z,u’/yl)or @- It is immediate from the definition of Y’ that 7 is epi.
Hence, by Lemma 4.2, we have that Y’ Ik (o oryis'or'/z,u/y] ¢ @S required. This completes the verification of Collection. O

The single case presented in the proof above should be sufficient to convey a flavour of the direct proof of soundness to
the reader. The main reason for not giving a more comprehensive proof is that we shall anyway obtain a second proof of
the soundness direction of Theorem 4.6 in Part III, which, although very indirect, is in many ways more conceptual and less
brutal than the direct proof. (See Section 9 for the culmination of this proof.)

The next two propositions can be used in combination with Theorem 4.6 to obtain sound and complete classes of models
for extensions of BIST~ + Coll with Inf and/or REM.

Proposition 4.7. (£, 7) |= Inf if and only if £ has a natural numbers object.

Proof. We outline the proof of the more interesting (left-to-right) direction. Suppose that (£,7) = Inf, i.e.

(€D E=30eldsel' (Vxelsx) £0) A (Yx y e Lsx) =s(y) = x=y).

By stripping off all three existential quantifiers together, there exists an epi X — 1, with maps p;:X — PB,
po:X — B and ps: X — P(B x B), satisfying, internally in &, for all a: X,

po(a) € pr(a)
Vx:B.xep pr(a).3y : B.(x, y) € ps(a)
Vx,y:B.xep pr(a) A (x,y) € ps(@) — y € ps(a),

and such that:
X1y (Vx € Ls(x) #0) A (Vx, y € Ls(x) =s(y) > x=y). (8)

Define Ix — X x B as the relation represented by p;. The above data determines morphisms Ox:X — Ix and
sx :Ix — Ix. Moreover, by unwinding the meaning of (8), it holds that sx is mono and has disjoint image from Oy, i.e.
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that [Ox,sx]: X + Ix — Ix is mono. Now define I to be the exponential (Ix)* in £ We have a point 0:1 — [ and
morphism s:I — [ defined by

0= (ar 0x(a))
s(f) = (ar>sx(f@)).

Trivially, s is mono. Also, 0 and s have disjoint image, because Ox and sx do and the map X — 1 is an epi. We thus have
amono [0,s]:1+1 — [ in £. It is a standard result that a natural numbers object in £ can be constructed from such a
mono. O

Proposition 4.8. (£, 7) = REM if and only if £ is a boolean topos.

Proof. Suppose £ is a boolean topos. Take any ¢, X and p such that X IF,!¢. We must show that X |-, ¢ v —¢. Let
i:Y — X be the greatest subobject included in X such that Y I-,.; ¢, which exists by Lemma 4.5. Let j:Z — X be
the complement of Y, which exists because £ is boolean. As i, j are jointly epic and Y Ik, ¢, it suffices to show that

Z IF poj —¢. Accordingly, suppose t:W —» Z is such that W Iy, jor ¢. Factoring t: W — Z as W — Z’ <, Z, we
have, by Lemma 4.2, that Z’ IF,,j» ¢. But then Z' —» Y by the characterizing property of Y. Since also Z’ — Z and
Z is the complement of Y, we have that Z’ is an initial object. Thus Z’ IFpojojr L, and so W IFpoj0r L, by Lemma 4.1. This
shows that indeed Z Ik —¢.

Conversely, suppose that (£,7Z) &= REM. Then

EDEYPPSW— (p=0VDp={A),

since this is a straightforward consequence of REM in BIST~. The forcing semantics of the above sentence unwinds straight-
forwardly to obtain the following consequence in the Kripke-Joyal semantics of the internal logic of £,

EEVD:P{@p=0Vvp={0}.

It is routine (and standard) that the property above is valid in the internal logic of £ if and only if £ is boolean. O

We remark that the proposition above has the following perhaps surprising consequence. The underlying logic of the
first-order set theories that we associate with boolean toposes is not classical. Such set theories always satisfy the restricted
law of excluded middle REM, but not in general the full law LEM. Such “semiclassical” set theories have appeared elsewhere
in the literature on intuitionistic set theories, see e.g. [47]. Here we find them arising naturally as a consequence of our
forcing semantics.

At this point, we pause to discuss the meta-theory for the above results. Firstly, we note that our proof of the complete-
ness direction of Theorem 4.6, which appears in Part III of the paper, will use ZFC as its meta-theory. However, none of
the proofs we have thus far given in the present section requires such a strong meta-theory. In fact all are formalizable in
BIST itself in the following sense. If £ is a small topos then all proofs are directly formalizable in BIST. However, when £ is
only a locally small topos, a difficulty arises. In such a case, although the forcing semantics can be formalized for any fixed
formula ¢, the inductive definition of the forcing semantics for all formulas ¢ cannot be internalized in BIST. Hence, for a
locally small topos &, the various soundness results are only formalizable in the following schematic sense: for any formula
¢ with a real-world proof in the relevant theory, the set-theoretic formula formalizing the statement (£,Z) |= ¢ is provable
in BIST.!> This situation cannot be improved upon, because, in BIST, the category Set is a non-trivial locally small topos
with natural numbers object and dssi, and so, if the full soundness result were directly formalizable, then BIST would be
able to prove its own consistency.

One consequence of the above discussion is particularly worth mentioning. Because, from the viewpoint of BIST, the
category Set is a non-trivial locally small topos with natural numbers object and dssi, the schematic soundness result above
unwinds to yield a translation of BIST + Coll into BIST.!® Thus the theory BIST enjoys the interesting property of being able
to interpret Collection using Replacement.

Our next goal is to establish that, in the presence of a superdirected system of inclusions, the full Separation schema is
validated by the forcing semantics. Thus, by Theorems 3.18 and 3.19, there is a useful collection of toposes modelling the
full Separation schema. However, this result is only available if we strengthen our meta-theory by adding both Separation
and Collection to BIST.

Proposition 4.9 (IST + Coll). If Z is an sdssi on £ then (£, T) |= Sep.

15 Moreover, this schematic soundness result should itself be provable in a weak arithmetic such as Primitive Recursive Arithmetic (PRA).
16 1t might be interesting to describe this translation explicitly. However, this lies outside the scope of the present paper.
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(Because toposes with sdssi’s are not small, the above result holds in the meta-theory IST + Coll only in the schematic
sense discussed above.)

Proof. By Corollary 2.8, it suffices to verify RS and R3. We use the characterization of the forcing conditions for restricted-
ness established by Lemma 4.5.
First, we show that (£,7) =RS, i.e. for all X, p, it holds that X IF,!S(x). We must show that the family

Y={Yil¥; > Xand Y Ipei S®)},

where the objects Y; are indexed by their unique inclusions into X, has a greatest element. Because £ is locally small, the
hom-set £(1, PX) determines a canonical set of inclusions into X in which each subobject of X is represented exactly once.
Henceforth, we understand the inclusions in the definition of )’ above as being restricted to this canonical set. Because the
meta-theory has full Separation, the family ) is itself a set. For every Y; € ), there exists B such that Im(p oi) = PB. By
Collection in the meta-theory, there exists a set 1 such that, for every Y; there exists B € B with Im(p oi) — PB. Using
superdirectedness, there exists an upper bound C for B in Z. Thus, for all Y;, we have Y; —— PC. Define Y = X N PC.
Then Y is the required greatest element of ).
To show that (€, 7) |=R3, suppose that X I, Vx.!¢. We must show that X I-,!(3x.¢), i.e. that the family

Y={Yi|V; => Xand Y o Ix.0}

has a greatest element. As above, we restrict the inclusions i in the definition of ) to the canonical ones, and, by full
Separation in the meta-theory, ) is a set. For each Y; € ), there exist Y; «— 7 % A such that Z IF(poioryia/x1 - BY

Collection in the meta-theory, there is a set Z whose elements represent data of the form X <l Y; «— 7 %% Afor
which Z IF(pojoryia/x) ¢, such that, for every Y; € Y, there exists data as above in Z with Y; =Yj;. By superdirectedness,

the set {A | (X <= Yj «<— Z —%+ A) € Z} has an upper bound B in Z. Consider the projections X <—— X x B —» B.
Because X I, Vx.!¢, we have X x B I (yor)(s/x1'¢. Therefore, the family

h
{RIR = X x Band R IF(potohysohyx] ]

has a greatest element, S *e X x B. Let S —% Y <J» X be the image factorization of t o k. We show that Y is
the required greatest element of ). Because S % Y and S IF(potok)lsok/x] @ 1-€. S IF(pojoe)[sok/x] ¥, We indeed have that
Y IFpoj 3x.¢. Now consider any Y; € Y. We must show that Y; — Y. By the definitions of Z and B, there exists

Y; «— Z —%+ A with A = B such that Z IF(pojora/x] ¢- Defining b to be the composite Z —4+ A < B, we have, by
(poior)[a/x]

Lemma 4.3, that Z IF(peior)ip/x) ¢- Let Z 4R L X x B be the image factorization of (ior, b). Then Z I (potohoq)[sohoq/x1 @-

So, by Lemma 4.2, R IF(potoh)[soh/x] ¢- Thus R LI S, by the definition of S. Then:

ior=tohoq=tokolog=joeoloq.

But i, j are inclusions and r an epi, so

Yi=Im({ior)=Im(joeologq)=Im(eoloq) — Y.

Thus indeed Y; —— Y. O

We make one comment on the above proof. Curiously, it is not at all straightforward to directly verify the validity of
the schema RV from Fig. 3 using an intuitionistic metatheory such as IST + Coll. (The verification is easy in a classical
metatheory.) Thus Lemma 2.7, on which Corollary 2.8 depends, is extremely helpful in permitting the simple proof above.

In contrast to the characterizations of Inf and REM, Proposition 4.9 only establishes a sufficient condition for the validity
of full Separation. Indeed, there appears to be no reason for superdirectedness to be a necessary condition for Sep to hold.
Similarly, there is no reason for BIST~ + Coll + Sep to be a complete axiomatization of the valid sentences with respect to
toposes with sdssi’s. It would be interesting to have mathematical confirmation of these expectations.

We next consider a further important aspect about the forcing semantics of the first-order language, its conservativity
over the internal logic of £. In order to fully express this using the tools of the present section, one would need to add
constants to the first-order language for the global points in &£, interpret these in the evident way in the forcing semantics,
and give a laborious translation of the typed internal language of £ into first-order set theory augmented with the constants.
In principle, all this is routine. In practice, it is tedious. Rather than pursuing this line any further, we instead refer the reader
to Section 9 in Part III, where the tools of categorical logic are used to express the desired conservativity property in more
natural terms. At this point, we simply remark on one important consequence of the general conservativity result.

Proposition 4.10. Suppose £ has a natural numbers object. Then for any first-order sentence ¢ in the language of arithmetic, £ = ¢
in the internal logic of £ if and only if (£, Z) = ¢ in the forcing semantics (using the natural translation of ¢ in each case).
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Proof (outline). This essentially follows from the forcing semantics of the formula Nat(N, 0, s) from Section 2, which char-
acterizes N:1 — PA, for some A, as classifying the natural numbers object of £. Given this, the forcing interpretation of
bounded quantifiers in Lemma 4.5 means that they are interpreted identically to quantifiers in the internal logic of £&. O

Again, there is a more conceptual formulation of the above result using the tools of categorical logic in Section 9. As a
consequence of the foregoing, we obtain the postponed proof of Proposition 2.17.

Proof of Proposition 2.17. Let £ be the free topos with natural numbers object. By Theorem 3.10 there is an equivalent
category &’ carrying a dssi Z. By Godel's second incompleteness theorem, the I'[? sentence Con(HAH) is not validated by
the internal logic of &, see e.g. [28], and hence not by &’ either. Therefore, by Proposition 4.10, Con(HAH) is not validated
by the forcing semantics with respect to Z in £’. It now follows from the soundness results above that BIST + Coll + REM ¥
Con(HAH). O

We end this section with further applications of the soundness theorem to obtain non-derivability results, for which we
take ZFC as the meta-theory. Let A be any set. For each ordinal o, we construct the von-Neumann hierarchy V4 (A) relative
to A as a set of atoms in the standard way, viz

Vat1(A) = A+P(Va(A))
V,(A) = U Vg (A) ). a limit ordinal.

a<i

Note that Vo=, and o < g implies V4 (A) C Vg(A). We write V (A) for the unbounded hierarchy | J, Vo (A).

For a limit ordinal A > 0, we define the category V,(A) to have subsets X C V,(A), for any « < A, as objects, and
arbitrary functions as morphisms. It is readily checked that V, (A) is a boolean topos. Moreover, subset inclusions provide
a dssi on V, (A) relative to the naturally given topos structure. In the propositions below, we omit explicit mention of the
inclusion maps, which are always taken to be subset inclusions.

Proposition 4.11. V,,(N) = Inf, but V,,(N) = vN-Inf.

Proof (outline). One can straightforwardly check the following general equivalences. The category V,(A) has a natural
numbers object if and only if A > w or |A| > Rg. Hence, by Proposition 4.7, V;, (A) = Inf if and only if A > w or |A] > Ro.
Also V; (A) = vN-Inf if and only if A > w (because for A = w, all sets in V4 (A) have finite rank and so cannot model vN-Inf).
In particular, V,(N) & Inf but V,(N) £ vN-Inf. DO

By Corollary 2.11 and Proposition 2.12, it follows that V,(N) = Sep. Because the subobject lattice of every object in
V,(N) is complete, this shows that the completeness of subobject lattices is not a sufficient condition for Separation to
hold, correcting a claim made in [20].

Proposition 2.9 follows as an immediate consequence of Proposition 4.11. More generally:

Corollary 4.12. BIST + Coll + REM ¥ vN-Inf.

By the proof of Proposition 4.11, we have that V., (#) = vN-Inf. Hence, V1, (#) is a model of BIST + Coll + REM +
vN-Inf. Examples such as this may run contrary to the expectations of readers familiar with the standard model theory of
set theory, where, in order to model Replacement and Collection, it is necessary to consider cumulative hierarchies V, (A)
with A a strongly inaccessible cardinal. The difference in our setting is that our forcing semantics in effect builds Collection
directly into the (entirely natural) interpretation of the existential quantifier. The price one pays for this is that the underly-
ing logic of the set theory is intuitionistic. In consequence, the standard arguments using Replacement that take one outside
of V;,(A) for A non-inaccessible, are not reproducible. For example, the argument in the proof of Proposition 2.18, which
attempts to construct the union of the chain N, P(N), P2(N), ..., is not validated by the forcing semantics of V. (#).
Indeed, although V1., (#) is a model of BIST + Coll + REM + vN-Inf, it does not model Ind (thus LEM and, as already re-
marked, Sep are also invalidated). More specifically, consideration of this model shows that it is impossible to define the
sequence N, P(N), P%(N), ... inside the theory BIST + Coll + REM + vN-Inf. Given that the existence of such a sequence is
the quintessential example of an application of Replacement in ZF set theory, some readers may wonder whether Collec-
tion and Replacement are of any practical use in BIST if they cannot be applied to obtain such standard consequences. In
fact, these principles are highly useful in BIST for performing any form of reasoning relating small and large structures, for
example the development of the theory of locally small categories. Since one of our main motivations for the present work
is the development of a language for reasoning about large structures relative to any elementary topos (see Section 1 for
further discussion), it is a major advantage of our approach that Replacement and Collection are validated.
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We end the section with the remark that the full hierarchy V(#) models full Separation, by Proposition 4.9. Hence, by
Corollary 2.16, the category V() is a model of the theory BIST 4 Coll 4+ LEM. In fact, making use of Collection in ZFC to un-
wind the forcing semantics, it is straightforward to show that the forcing semantics in V() simply expresses meta-theoretic
truth in ZFC.

Part III. CATEGORIES OF CLASSES
5. Basic class structure

In the previous sections we have shown how to interpret the language of first-order set theory in any elementary topos
endowed with a system of inclusions, where the system of inclusions is used to interpret the unbounded quantifiers. There
is an alternative more algebraic approach to modelling quantification over classes, namely to consider categories in which
the objects themselves represent classes rather than sets. Within such categories, the “unbounded” quantifiers become de
facto bounded, and can thus be handled using the standard machinery of categorical logic. The axiomatic basis for such an
approach was developed by Joyal and Moerdijk in their book Algebraic set theory [25], and was further refined in [43,13]. In
this part of the paper, we adapt this approach to obtain categories of classes appropriate for modelling the set theory BIST
and its variants.

Following the approach of algebraic set theory, we axiomatize properties of a collection of “small maps” within an
ambient category of classes. The idea is that arbitrary maps represent functions (i.e. functional relations) between classes,
and small maps are the functions with “small” fibres. The basic notion of small map determines natural notions of smallness
for other concepts.

Definition 5.1 (Small object). An object A is called small if the unique map A — 1 is small.
Definition 5.2 (Small subobject). A subobject A = C is called small if A is a small object.

Definition 5.3 (Small relation). A relation R =— C x D is called small if its second projection R —» C x D — D is a
small map.

Note that the definition of small relation is orientation-dependent. The orientation is chosen so that a morphism
f:A — B is small if and only if its graph (1, f): A »— A x B is a small relation. (This convention is opposite to the
orientation of “small relations” in [43].)

In this section, we define a notion of basic class structure on a category, adequate to ensure that the category behaves
like the category of classes for a very weak first-order set theory (cf. [13]). This notion provides the basis for considering
strengthened notions of class structure in subsequent sections.

Before axiomatizing the required properties of small maps, we need to place some basic requirements on the ambient
category. A positive Heyting category is a category C satisfying the following conditions:

(C1) C is regular, i.e.: it has finite limits; the kernel pair kq,k,: P — A of every arrow f:A — B (the pullback of f
against itself) has a coequalizer g: B — C; and regular epimorphisms are stable under pullback.

(C2) C has finite coproducts, and these are disjoint and stable under pullbacks.

(C3) C has dual images, i.e. for every arrow f:C —» D, the inverse image map f~!:Sub(D) — Sub(C) has a right adjoint
V¢ :Sub(C) — Sub(D) (considering f~1 as a functor between posets).

Condition (C1) implies that every morphism f:A — B in C factors (uniquely up to isomorphism) as a regular epi
followed by a mono

f=A — Im(f) > B.

(N.B., it is not necessarily the case that every epi is regular in C.) Moreover, such image factorizations are stable un-
der pullback. Further, for every arrow f:C —» D, the inverse image map, f~!:Sub(D) — Sub(C) has a left adjoint,
3¢ :Sub(C) — Sub(D), given by taking images.

One reason for focusing on positive Heyting categories is the following standard proposition.

Proposition 5.4. In every positive Heyting category, each partial order Sub(C) of subobjects of C is a Heyting algebra. For every
arrow f:C — D, the inverse image functor f~1:Sub(D) — Sub(C) has both right and left adjoints V¢ and 3y satisfying the
“Beck—Chevalley condition” of stability under pullbacks. In particular, C models intuitionistic, first-order logic with equality.

By a system of small maps on a positive Heyting category C we mean a collection of arrows S of C satisfying the following
conditions:
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(S1) S — C is a subcategory with the same objects as C. Thus every identity map 1¢:C — C is small, and the com-
posite go f:A — C of any two small maps f:A — B and g:B — C is again small.

(S2) The pullback of a small map along any map is small. Thus in an arbitrary pullback diagram,

c’ c
f f
D’ D

if f is small then so is f’.

Proposition 5.5. Given (S1) and (S2), the following are equivalent.

1. Every diagonal A:C — C x C is small.
2. Every regular monomorphism is small.
3. Ifgo fissmall thensois f.

Proof. That 1 implies 2 follows from (S2), because every regular mono is a pullback of a diagonal.
To show 2 implies 3, suppose regular monos are small. Consider the following pullback diagram, with go f small:

P P2 B
D1 g
A B C
f g

The arrow p; is a split epi, as can be seen by considering the pair 1:A — A and f:A — B. Call the section
s:A — P. This is a split mono, hence regular mono hence small. But p, is small by (S2). So f = p, os is small.
Finally, because identities are small, 3 implies that split monos are small. In particular, diagonals are small. O

(S3) The equivalent conditions of Proposition 5.5 hold.

Note that a consequence of Proposition 5.5(3) is that if an object A is small then every morphism f:A — B is a small
map.

(S4) If f oe is small and e is a regular epi, then f is small, as indicated in the diagram:

(S5) Copairs of small maps are small. Thus if f:A — C and g:B — C are small, then so is [f,g]:A+ B — C.

Proposition 5.6. Given (S1)-(S5), the following also hold:

1. The objects 0 and 1 + 1 are small.
2. Ifthemaps f :C — Dand f':C’ — D’ are small, thensois f + f':C+C' —> D+ D’.

Proof. This follows easily from disjointness and stability of coproducts. O

The final axiom of basic class structure requires every class to have a “powerclass” of all small subobjects (i.e., a class of
all subsets). Its formulation is similar to the defining property of powerobjects in toposes (Definition 3.1), only adjusted for
small relations.
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(P) Every object C has a small powerobject: an object PC with a small relation ¢ »— C x PC (the membership relation)
such that, for any object X and any small relation R »— C x X, there is a unique arrow xg:X — PC fitting into a
pullback diagram of the form below.

R > Ec

CxX C xPC

le X Xr

Definition 5.7 (Basic class structure). A category with basic class structure is given by a positive Heyting category C together
with a collection of small maps S satisfying axioms (S1)-(S5) and (P) above.

Definition 5.8 (Logical functor). A functor between categories with basic class structure is said to be logical if it preserves
positive Heyting category structure, small maps and membership relations.

As is standard, in this definition, we do require the positive Heyting category structure and membership relations to be
preserved in the sense that the canonical comparison maps are required to be invertible.

Later on we shall also need the natural category of sets associated with a category with basic class structure. We define
this now.

Definition 5.9 (Category of sets). Given a category C with basic class structure S, the associated category of sets £s(C) is the
full subcategory of C on the small objects. Note that £s(C) is also a full subcategory of S.

We remark that categories with basic structure in which every map (equivalently object) is small coincide with elemen-
tary toposes; and a functor between such categories is logical in the sense of Definition 5.8 if and only if it is logical in the
sense of topos theory. Thus the theory of categories with class structure is a generalisation of (logical) topos theory.

In the remainder of the section, we establish properties of categories with basic class structure. Assume that C is such a
category with small maps S.

-1
For any small A N B, the relation (14, f): A — A x B is small, and we write B I PA for the unique morphism
fitting into a pullback diagram

A

€a

_
(L1a, f) (9)

1x f~1

Ax B AxPA

Equivalently, f~! is the unique morphism fitting into a pullback diagram

A €A

_|
f A (10)
B 1 P4

where 74 is the composite €4 »— A x PA 2 PA, which is a small map. The lemma below will prove useful later.

Lemma 5.10. If f is a small regular epi then f~! is a small mono.

Proof. Suppose A S, B is a small regular epi. Let A — €4 be as in diagram (9). By that diagram, the composite

A—> €4 — AxPA I Ais the identity. Therefore A —» €4 is a split mono, hence small by (S3). In the pullback
diagram (10), the left edge is a regular epi and the top edge a mono. It is a property of regular categories that, in any such
pullback square, the bottom edge is also a mono. Thus f~! is a mono. It is small by (S4), because the top-right composite
of (10) is small. O
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By the existence of f~! for small f, one sees that a map A L+ B is small if and only if it can be obtained as a
pullback of 4. This fact allows the property of “smallness” to be expressed using the internal logic of C in the following
sense, cf. [25, Proposition 1.6].

Proposition 5.11. Every f:A — B determines a subobject m: By »~— B satisfying: for any map t:C — B, it holds that the
pullback t*(f) is small if and only if t factors through m.

Proof. Using the internal logic of C, define By to be the subobject:

{y:B|3Z:PA)Nx:A(xeZ < f(x)=y)}.
That this has the right properties is easily verified using the Kripke-Joyal semantics of C. O
Henceforth, we use the more suggestive {y: B | f~!(y) is small} for the subobject By determined by the proposition.
A consequence of axioms (S1), (S2) and (S4) in combination is that small relations form a category under relational
composition. Clearly the identity relation A:A —— A x A is small. To see that relational composition preserves smallness,

suppose R = A x B and R’ »— B x C are small relations. Recall that the composite relation (R;R’) = A x C is
obtained by the factorization

RxgR — (R;R') > AxC

of the pair formed from the span below.

RxgR R C
_
R B (11)
A

We show that R; R’ is indeed a small relation. By assumption, we have that the morphisms R — B and R* — C in (11)
are small. By (S2), the arrow R xg R’ — R’ is also small. Thus, the composite R xg R” — R’ — C is small. But this
composite is equal to R xg R" —» Ax C 2, C. Whence the required smallness of (R"oR) — (R; R’) »— AxC 2 c
follows from (S4).

We write Rs(C) for the category with the same objects as C and with small relations R »—» A x B as mor-
phisms from A to B. There is an identity-on-objects functor I:S — Rs(C) mapping any small f:A — B to the small
relation (14, f) »— A x B. There is also an identity-on-objects functor J:C°°? — Rs(C) mapping any f:A — B to
(f,14) »—> B x A.

Axiom (P) is equivalent to asking for the functor

Rs(C)[A, J(—)]:C% — Set

to be representable for every object A. That is, there is an isomorphism

Rs(O)[A, J(B)] =C[B, PA],

natural in B. Defining £2 = P1, this specializes to

Rs(O)[1, J(B)] =C[B, £2]. (12)

Easily, Rs(C)[1, J(B)] is isomorphic to the collection of small monomorphisms into B. Thus §2 classifies subobjects defined
by small monomorphisms. By (S3), every regular mono is small. Conversely, every small mono B’ = B is the equalizer
of its classifier B — £ with T:B — £2, where T is classifies the identity 15. Thus a monomorphism is small if
and only if it is regular. So §2 is a regular-subobject classifier. Note that every small subobject is represented by a small
monomorphism, but small monomorphisms do not necessarily determine small subobjects. For example, 15 is a small
monomorphism for every B, but only determines a small subobject when B is small. However, in the case that B is a small
object, a monomorphism A »— B is small if and only if it presents A as a small subobject of B.
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Axiom (P) is also equivalent to asking for J to have a left adjoint. By composing the functor J:C° — R s(C) with its left
adjoint, we obtain a comonad on C°P, hence a monad on C, whose underlying functor is the covariant small powerobject
functor.

For future reference, we give explicit definitions of the covariant functor and the unit of the monad. The endofunctor
maps an object A to PA. Its action on morphisms maps f:A — B to f;:PA — PB is defined as follows (cf. the
covariant powerobject functor defined in Section 3). Let U »— B x PA be obtained as the mono part of the factorization
of:

eq — AxPA XL Bxpa.

By (S4), U »— B x PA represents a small relation. Accordingly, define f; to be the unique map fitting into the pullback
below:

U

€B

_

fi

BxpA X pupp

Proposition 5.12.If f: A — B ismono thensois f,: PA — PB.

Proof. It is easily checked that J:C° — Rgs(C) preserves epis. Its left adjoint automatically preserves epis. Thus the com-
posite endofunctor on C°P preserves epis too, whence the corresponding endofunctor on C preserves monos. It is easily
verified that f +— f, is this endofunctor. O

The unit of the monad is given by {-}: A —» PA defined by {-} = 14~!. By Lemma 5.10, {-} is a small mono.

Next, following the argument outlined in [43], we establish a “descent” property, Proposition 5.14 below, which says that
a map is small if it is small locally on a cover. This property was assumed as an axiom for small maps in [25]. First, we
need a technical lemma, establishing an internal Beck-Chevalley property (cf. [30, p. 206]).

Lemma 5.13. For any pullback diagram as on the left below with f small, the diagram on the right commutes.

g

AI_I A PA —Z + PA
f f o o
B g B B g B

Proof. We prove that both sides of the right-hand square represent the small relation (g’, f'): A’ »—> Ax B’. For f~log
this is by a simple composition of pullbacks:

— A
_ _
(g, ) (1, )

€a

1 -1
Axp Y9 a2 pipB

For g/o f =1 we have the pullbacks below.



458 S. Awodey et al. / Annals of Pure and Applied Logic 165 (2014) 428-502

A/

ca

_

(L1

1x ft
_

g x1 g x1

A x B A xPA

1x ft

Ax B AxPA

Let U = A x PA’ be the image of €44 »—> A’ x PA’ £l A x PA’. Then, by the stability of images and because
AL A is mono, the outer pullback square above implies that the left-hand square below is a pullback.

A U €a
_| _|

9.1

Ix ft 1xg

Ax B AxPA —5 AxPA

The right-hand square is also a pullback, by the definition of g|. So g o f’_] does indeed represent (g’, f’). O

Proposition 5.14 (Descent). If g appears in a pullback diagram

A—° ¢
_
f g
e
B » D

where e is regular epi and f is small, then it follows that g is small.

;
Proof. By defining B’ _1’, B to be the kernel pair of B —5% D and pulling back, we obtain:
)

" e P
o _
f! f g
1
B’ B © =D
T2

where both rows are exact diagrams,'” and each of the two left-hand squares is a pullback. By applying Lemma 5.13 to the
two left-hand pullbacks we obtain: e} o flor= ejo (o f’_l =ejo (o f’_1 =ejo f~'or,. So, by the coequalizer

property of e, there exists D M PC such that hoe = e o f1
As in the proof of Lemma 5.13, we have pullbacks:

A - U > €0
_ _

(¢, f)

1x f=1 1xef

Cx B CxPA—3 CxPC

. . . H. e . . . .
17 An exact diagram is a diagram A B —» C where rq, 1, is the kernel pair of e and e is the coequalizer of rq, ;.
r
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showing that e!’of‘1 represents (¢/, f): A »— C x B. Using the equality hoe = e!’of‘1, we reconstruct the outer rectangle
above by pulling back in stages:

e//

A - X
_ _
(e, f) m (13)

€c

cxB X8 oxp PN oxpe

1xr
But C x B/ — ,1 Cx B 3% CxDis an exact diagram. So, by pulling it back along m we obtain:

1Xf2
r’l ”
A A - X
o _
(d, f") e, f m
, 1xmr 1xe
B'xC—CxB—CxD
1><7‘2

where d =€’ or} =e’ or}. But then the top row is exact, hence e” coequalizes r}, r’. Since e’ also coequalizes r/, r’, the
left-hand pullback square of (13) can be taken to be:

C

(¢, f) (1,9)

1
CXB—Xf»CxD

Then, by the right-hand pullback of (13), m = (1, g) is a small relation. Hence g is indeed small (and also h=g~'). O

Finally in this section, we verify that basic class structure is preserved by taking slice categories. To establish this, we
need an internal subset relation.

Definition 5.15 (Subset relation). For any object B, a subset relation is a relation Cg:PB — PB such that any morphism
(f,g):A — PB x PB factors through Cg »— PB x PB if and only if, in the diagram below, P »— B x A factors
through Q »— B x A.

P €p Q
_ L

1 1
BxA L g pp X9 pia

The definition uniquely characterizes the subset relation Cz:PB — PB, which can be defined explicitly using the inter-
nal logic.

Cp={(y.2):PBxPB|Vx:B.xcy—>x€z}.

It is routine to verify that this has the required properties.
For any slice category C/I, define S; to be the subcategory of those maps whose image under the forgetful functor to C
is small. Our next result is the analogue for basic class structure of the “fundamental theorem” of topos theory, see e.g. [30].

Proposition 5.16.

1. S gives basic class structure on C/I.
2. Forany h:1 — ], the reindexing functor h*:C/ ] — C/I is logical.
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3. Forany smallh:1 — ], the reindexing functor h*:C/ ] — C/I has a right adjoint IT,, : C/ ] — C/I.
The proof is presented as a series of lemmas.
Lemma 5.17. S; gives basic class structure on C/I.
Proof. It is standard that C/I is a positive Heyting category, and easily checked that (S1)-(S5) hold for S;. We verify that

(P) holds.
For any object B —£s Jof C/I, define Pg to be the left edge of the diagram below

% Cr
_|
pBx1 9 pripr
2
I

We must show that C/I[—, Pg] = Rs,(C/DIg, J1(—)] (where here we write J; for the inclusion functor from (C/I)°P to
Rs,(C/D)). Consider any object A . I in C/I. By the pullback defining Pg, we have that

c/ILf. Pgl={A . PB| (810, {} o f)factors through <, }.

But any A —Y» PB is contained in the above set if and only if the left-hand edge below factors through the right-hand
edge.

P U €r I
_ _ L L

A (f;1)

Ix{} o 1xf 0y

A

14 1
IxA—"YLrxpB 29 1xpr

By the definition of g, the mono U »— [ x PB is obtained as the image factorization of:

cg — BxPB L | x PB.

So, by the stability of images under pullback, P »— I x A is the mono part of the factorization of:

h=R > BxAEL IxA

where R = B x A represents the small relation for which xg = y. Then P = [ x A factors through (f, 1) if and only
if h does. So we have shown that:

C/I1f,Pgl = {Re Rs(C)[B,A]| for,=gor}

where (r{,r2) are the components of R »— B x A. But the right-hand set above is Rs,(C/D)[g, f] as required. The natu-
rality of the isomorphism is routine to check, and is inherited from the naturality of the map from any R € Rs(C)[B, A] to
XR:A — PB. O

Lemma 5.18. For any h: I — ], the reindexing functor h* :C/ ] — C/I is logical.

Proof. Given h:I — ], the reindexing functor h*:C/J — C/I has the usual left adjoint X} given by postcomposition
with h. We shall define functors Rh* :Rgl (C/]) — Rs,(C/1) and RXEy:Rs, (C/I) — Rgl (C/]) with RX}y right (sic)
adjoint to Rh*. The action of Rh* on objects is as for h*. Given objects A 1, J and B £ J in the slice C/], a small
relation R »— f x g inRg,(C/]) represented by R »=— A x; B is mapped by Rh* to the relation R’ »— h*(A) x;h*(B)
given by the pullback below.
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|

}L*(A) Xr h*(B) — A XJB

This is indeed a small relation by (S2).

The functor RX} behaves like X, on objects. Given A I, I and B -5+ I in C/I, a morphism R »— f x g in

Rs, (C/1) represented by R ~— A x| B is mapped by R X} to the relation from Xy (f) to Xy(g) in Rs,(C/]J) represented
by the evident composite:

R>—>A><IB>—>AX]B.

This is a small relation by (S3), because the composite

R Ax;B»—> Ax;B — B

is small since R »— f x g was assumed a small relation in C/I.
It is easily checked that the above definitions are good definitions of functors. To verify the adjunction, noting that the
pullback square

F*h
_
h*f f
h

h*A A

1 J

defines (RX)(Rh*)(f) = h o h* f, the components of the unit of the adjunction are the maps J;(f*h), where J; is the
functor (C/I)°? — Rs,(C/I). It is the contravariance of this functor that is responsible for R X being a right adjoint.
It is straightforward from the definitions of Rh* and R X, that both squares of functors below commute (on the nose).

J
/D> L+ Rs, (/1)
h* 4|2, Rh* | 4| RE,

/0> 2w rs, (/)

By Lemma 5.17, axiom (P) holds in C/I and C/J, so J; and J; have left adjoints P; and P; respectively. Since the
square of right adjoints above commutes, so does the square of associated left adjoints (up to natural isomorphism), i.e.
h*P; = P;yRh*. But then we have h*P; J; = P/Rh* J; = P; J;h*. So h* maps the small powerclass P;J; in C/] to the small
powerclass P;J; in C/I. A similar argument shows that h* preserves membership relations, as these are the components of
the units of the P - J adjunctions. O

Lemma 5.19. If A is a small object in C then it is exponentiable, i.e. every exponential B4 exists.

Proof. Write ((a, b), z) for the components of the membership relation €4x5 »— (A x B) x P(A x B). Since this is a small
relation, z is a small map. But z =, o (a, z) so, by (S3), (a,z):€axp —> A x P(A x B) is also a small map. Therefore
the mono (b, (a, z)) determines a small relation €4xp »— B x (A x P(A x B)). We write r: A x P(A x B) — PB for its
characteristic map. Now define U »— A x P(A x B) by pullback:

U B

_
{} (14)
AxP(AxB) ~— PB

By Lemma 5.10, {-} is a small mono, hence so is U = A x P(A x B). The projection 73 :A x P(A x B) — P(A x B) is
small because A is a small object, so the composite map U — P(A x B) is small, i.e. U > A x P(A x B) is a small
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relation. We write xy :P(A x B) — PA for the characteristic map of this small relation. Let [A]1:1 — PA be the
inverse image (14)~! of 14: A —» 1, which exists because A is a small object. Define BA as the pullback:

BA 1

|
[A] (15)

PAx B) X\ pa

The above construction is similar to the construction of exponentials from powerobjects in a topos, see e.g. [30, §4.2], only
taking account of smallness. The verification that the construction indeed gives an exponential is also similar, and thus
omitted. O

To prove Statement 3 of Proposition 5.16, let f: A — I be an object in the slice C/I, and suppose h:I — ] is small.
The required object IT,(f) of C/] is defined by the pullback below in C/],

I (f)

1

_
(4] (16)

w " h
(ho f)lt —h

which makes use of the exponentiability of h as an object of C/J, which follows from relativizing Lemma 5.19 to the slice
category C/J. A standard argument shows that I7; indeed defines a right adjoint to h*, cf. [24, Lemma 1.5.2]. This completes

the proof of Proposition 5.16.
6. Additional axioms

In this section, we consider several independent ways of adding additional properties and structure to categories with
basic class structure. Throughout, let C be a category with collection of small maps S giving basic class structure.

6.1. Powerset
The notion of basic class structure provides a basis for considering category-theoretic models for a range of constructive
set theories, including predicative set theories, see [25,36,43]. In the present paper, we are interested in models of the

(impredicative) set theories associated with elementary toposes. This requires a further axiom on top of basic class structure:
the Powerset axiom.

Proposition 6.1. The following are equivalent.

1. €4 = PA x PAis asmall relation, for all objects A.
2. In any slice C/I, the operation P(—) preserves small objects.

Proof. Assume 1. To show 2 we provide an alternative construction of small powerobjects in slice categories, available for
small maps only. Given a small g: B — I, we claim that Pg in C/I can be defined as the left edge of the diagram below.

Vv Cn
_
1xg!
PB x 1 PB xPB (17)
T
1

This left edge is small by the assumption and (S2).
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For the claim, we show that C/I[—, Pgl = Rs,(C/DIg, Ji(—)]. We have that

c/1f,Pgl={A L~ PB|(y,g " o f)factors through Cp}.

But any A —Y+ PB is contained in the above set if and only if the left-hand edge below factors through the right-hand
edge.

R €p B P
_ L L
(1,9)

X9 gt

1 1
BxA-2Y BxPB -« BxA

As maps y: A — PB are in one-to-one correspondence with small relations, it is immediate that

C/I[f,Pgl={R »— B x A|Rasmallrelationand f or, =gori},

where (r1,r2) are the components of R = B x A. As required, the right-hand set above is Rs,(C/D[g, Ji(f)]. The natu-
rality of the established isomorphism is routine.
For the converse, we show below that

Cp > PBxPB % PB (18)

is isomorphic to P(rr) in C/(PB), where 1 is

€p > BxPB % PB. (19)

As 7 is small, the smallness of the relation Cg »— PB x PB then follows from 1.
It remains to show that P(;r) is isomorphic to (18). Consider w and 7’ =3 : B x PB — PB as objects of C/(PB),

together with the associated mono 7 w5 Applying the covariant small powerobject functor on C/(PB), we obtain

P(r) 2 (),

which is a mono by Proposition 5.12. We shall prove that the subset relation is given by the image of this mono under the
forgetful functor from C/(PB) to C.

By Lemma 5.18, the object P(r’) is (isomorphic to) PB x PB —% PB with the membership relation:

epx1

€g xPB <255 (B x PB) x PB= (B x PB) xpp (PB x PB).

Thus (€p), is indeed a binary relation on PB.

Writing Cj P PB for the object P(rr) of C/(PB), we must show that the mono Cj LE8) PB x PB represents the

subset relation. Accordingly, consider any A g PB x PB. Define P »2» Bx A and Q »1» B x A by pullback as in

Definition 5.15. We must show that p factors through q if and only if {f, g) factors through ses) PB x PB.

First, p: P »— B x A defines a mono P —— 7’/ x g in C/(PB), since B x A= n’ xpp g. Using the explicit descrip-
tion of P(;r’) above, the pullback diagram below shows that P »— 7’ x g is a small relation with characteristic map
(f.g):g — P(@’) in C/(PB).

|
PJ< :gomop) PXPB_, €p xPB
p px1 ep x1 (20)
1 1 1
Bxa_29°m) gy pp XD XL pp gy PR

Next, consider the membership relation: €; »— 7 xpg P() in C/(PB). This exists in C as a mono €; »—

€p xpp Cp. By the definition of the small powerobject functor, Cf se8) PB x PB fits into the right-hand pullback be-
low.
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P Ex ep XPB
_ |
m
= 1 xXppz
Q —— €pxpp A €p Xpp Cp
€p Xppl ep x1
q (PBXB) XpB CB
1 1 [S

Bx A il + BxCl “(Co) gy PExPEB

Suppose now that p factors through q by P Q. By the pullback definition of q, we have Q = xpp g. The pro-
jection of m: P —— 7 x g to g is equal to the projection of the small relation P »— 7’ x g to g. Hence the relation
m:P —— 7 x g in C/(PB) is small, and its characteristic map z: A — <’ completes the two left-hand pullbacks in C
above, where we write €g xpg A for the domain of & x g in C/(PB). The outer pullback above shows that (€p), oz is the
characteristic map of P —— 7’ x g. Hence (€p);0z=(f, g). So (f, g) does indeed factor through (&p).

Conversely, suppose (f,g) factors through (€p), by some z:A — C’. Then (€p), o z is the characteristic map of
P »— 7’ x g. Thus the outer pullback of diagram (20) can be reconstructed in stages as in the diagram above to pro-
vide the required m: P »— Q showing that p factors through q. O

The Powerset axiom is thus:
(Powerset) The equivalent conditions of Proposition 6.1 hold.

Since every slice category of a slice category C/I is itself a slice category of C, it follows from statement 2 of Proposition 6.1
that if the Powerset axiom holds in C then it holds in every slice.

Proposition 6.2. If the Powerset axiom holds then

1. If A, B are small objects then so is the exponential BA.
2. Ifh:1 — Jissmall, then IT, :C/I — C/ ] preserves small objects.

Proof. For 1, by the Powerset axiom, the object P(A x B) is small. Hence any map out of P(A x B) is small, including
Xu :P(A x B) —» PA from the proof of Lemma 5.19. That BA is small now follows from (S2) using the pullback in
diagram (15).

Statement 2 follows from 1, because, when f:A — I and h:1 — J are both small, diagram (16) exhibits IT,(f) as
a pullback of small objects in the category C/ ], hence IT,(f) is small itself. O

Proposition 6.3. If the Powerset axiom holds then the category of sets £s(C) is an elementary topos.

Proof. The category of sets has finite limits inherited from C. It is cartesian closed by Proposition 6.2. As in the dis-
cussion below (12), the object §2 = P1 classifies subobjects defined by small monomorphisms in C. Since the inclusion
Es(C) — C preserves limits, it preserves monos. Thus, for a small object B, a mono A »— B in C is small if and only if
it is a mono in £s(C). By the Powerset axiom, 2 is itself a small object. Therefore it is a subobject classifier in £s(C). O

If the Powerset axiom holds, we remark that the inclusion functor £s(C) —— C is logical, where the topos £s(C) is
given the (inherited) class structure in which all maps are small (see the discussion after Definition 5.9). Obviously, the
inclusion functor also reflects isomorphisms (so it is conservative in the sense of Definition 10.3 and following text).

6.2. Separation
As observed in the discussion below Eq. (12), in a category with basic class structure, a monomorphism is small if and

only if it is regular. This gives a restricted separation principle of the following form: if B is a small object and A »— B is
a regular subobject, then A is a small object. In other words, certain (i.e. regular) subclasses of sets are sets. The Separation
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axiom drops the restriction to regular subobjects, and asserts (in every slice) that arbitrary subobjects of small objects are
small.

Proposition 6.4. The following are equivalent.

1. Every monomorphism in C is small.

2. Every monomorphism in C is regular.

3. Inevery slice C/I, subobjects of small objects are small.
4. C has a subobject classifier.

Proof. As monomorphisms are small if and only if regular, the equivalence of 1 and 2 is immediate. For 1 =— 3,if A »—» B
is a subobject of a small object B — I in C/I, then A »— [ is indeed small as a composition of small maps. Conversely,
every monomorphism A »— B is a subobject of the small object 13:B — B of C/B. That 1 — 4, is immediate from
the fact that £2 =P1 classifies subobjects defined by small monos, see the discussion below equation (12). Finally, when C
has a subobject classifier, it follows directly that every monomorphism is regular, thus 4 — 2. O

(Separation) The equivalent conditions of Proposition 6.4 hold.

Using item 1 of Proposition 6.4, it is immediate that the Separation axiom is preserved by slicing.

In [43,44], categories with basic class structure satisfying both Powerset and Separation were considered under the
description categories with class(ic) structure.'® As shown in [43], it is possible to give an economical axiomatization of such
categories, using just axioms (C1), (S1), (S2) and (P) together with the Powerset and Separation axioms (the latter in the
guise that all monomorphisms are small). Axioms (C2), (C3), (S3), (S4) and (S5) are then all derivable.

6.3. Infinity
Proposition 6.5. If the Powerset axiom holds then the following are equivalent:

1. There is a small object I with a monomorphism1+1 »— 1.
2. The category £s(C) of small objects has a natural numbers object.

Proof. £5(C) is an elementary topos. O
(Infinity) The equivalent conditions of Proposition 6.5 hold.

Using item 1 of Proposition 6.5, it is clear that the axiom of infinity is preserved by taking slice categories.

The axiom of infinity ensures that the category of sets has a natural numbers object (nno). It does not follow that this
is an nno in the category of classes, C, which need not even possess an nno. This situation is analogous to the presence
of restricted induction but not full induction in BIST, see Section 2. For BIST, the addition of the axiom of Separation
is sufficient to ensure the derivability of full induction (Corollary 2.11). Similarly, as outlined in [43], when C satisfies
Separation, it does hold that an nno in the category of sets is automatically an nno in the category of classes.

6.4. Collection

In set theory, see Section 2, the axiom of Collection asserts that, for every total relation R between a set A and a class Y
(i.e. a relation satisfying Vx € A.3y € Y.R(x, y)), there exists a subset B of Y such that R restricts to a total relation between
A and B. Without loss of generality, in place of total relations, one can consider surjective class functions from a class X
onto a set A. Trivially, any such class function is a total relation between A and X. Conversely, given a total relation between
A and Y, one can use the class X ={(x,y) |x€ A,y € Y, R(x, y)}, and consider its projection onto A. Collection, can now be
rephrased as, for any surjective class function from a class X onto a set A, there exists a set B and a function B — X such
that the composite B — X — A is still surjective. (In the presence of Replacement, it is unnecessary to demand that B is a
subset of X, since such a subset can be found by taking the image of B — X.)

The above discussion suggests formulating a collection property in C as follows. For any regular epi X —» A, where A
is a small object, there exists a map B — X, where B is small, such that the composite B — X —= A is a regular epi.
However, this is not quite right. Logically, it should be sufficient for the existence of B and B — X to hold in the internal
logic of C, and this does not require the real-world existence of corresponding external object and map. Second, as with any
axiom, it is necessary to ensure that the property it asserts is preserved by slicing. Both modifications are taken account of
simultaneously in property 1 of the proposition below, which is due to Joyal and Moerdijk [25].

18 See footnote 3 on p. 431.



466 S. Awodey et al. / Annals of Pure and Applied Logic 165 (2014) 428-502

Proposition 6.6. The following are equivalent.

1. For every small A — I and regular epi X —» A, there exists a quasi-pullback diagram'®

B X A

(21)

J 1

with | — I regularepiand B — J small.
2. Ife: X — Y isaregularepithensoise :PX —» PY.

This is Proposition 3.7 of [25], the proof of which goes through in our setting.
(Collection) The equivalent conditions of Proposition 6.6 hold.

It is a straightforward consequence of property 1 of Proposition 6.6 that the Collection axiom is preserved by taking slice
categories.

6.5. Universes and universal objects

All the axioms we have considered up to now are compatible with the assumption that all objects of C (and hence all
maps) are small, in which case, as already observed, C is an elementary topos and PX is the powerobject of X.

For elementary toposes, a version of Cantor’s diagonalization argument shows that it is inconsistent to have an object
X with a mono PX »— X. Thus the following notions, introduced in [43], ensure that C (if consistent) has a non-small
object U.

Definition 6.7 (Universe). A universe is an object U together with a mono i: PU »— U.
Definition 6.8 (Universal object). A universal object is an object U such that, for every object X, there exists a mono X »— U.

The notion of universe captures the idea that C, which may be seen as a “typed” world of classes, contains an object U,
which may be considered as an “untyped” universe of “sets” and “non-sets” with the mono PU »— U singling out the
subcollection of sets in U. We remark that this method of obtaining an untyped set-theoretic universe within a typed world
of classes may be seen as analogous to Dana Scott’s identification of models of the untyped A-calculus as reflexive objects
in cartesian closed categories [41].

The stronger notion of universal object enforces that every class can be seen as a subclass of the untyped universe U.
This situation occurs naturally in first-order set theory, where classes are defined as subcollections of an assumed universe.

As observed in [43], any universe U acts as a universal object in a derived category with basic class structure. Indeed,
defining C<y and S¢y to be the full subcategories of C and S on subobjects (in C) of U, we have:

Proposition 6.9. If U is a universe then C<y with Sy has basic class structure with universal object U.

Proof (outline). The main points are to observe that C¢y is closed under finite product and P(—) in C. The latter is a
consequence of Proposition 5.12. For the former, Kuratowski pairing (cf. the proof of Lemma 3.9), defines a mono U x
U »— PPU, and we have just seen that PPU »— U. Thus we obtain a composite mono U x U »— U, from which the
closure of C<y under finite products follows easily. O

By this result, universal objects are essentially just as general as universes, and so it is no real restriction to consider the
former in preference to the latter.

In fact universal objects enjoy useful properties that do not hold of arbitrary universes. One such property, again taken
from [43], is that the map 7y :€y — PU, which one may think of as giving the PU-indexed family of all sets, is a
generic small map in the following sense.

Proposition 6.10. If U is a universal object, then a map f: X — Y is small if and only there exists g:Y — ‘PU fitting into a
pullback:

19 Djagram (21) is a quasi-pullback if it commutes and the canonical map B —» J x; A to the actual pullback is a regular epi.
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X cuU
! U
Y PU

Proof. For the interesting direction, given f, take a mono m:X »— U and define g =mo f~'. It is easily checked that
this determines a pullback as above. O

Obviously, every logical functor F :C — C’ between categories with basic class structure preserves universes. It need not,
however, preserve universal objects. Indeed, a logical functor preserves universal objects if and only if, for every object Y of
C’, there exists X € C with Y = FX. We call such functors universe preserving.

It is readily checked that when C has a universal object then so does every slice category C/I, and for every f:I — ]
the reindexing functor f*:C/J — C/I is universe preserving.

6.6. Categories of classes

Having now considered several additional properties one may require on top of basic class structure, we enshrine in a
definition the main properties that will henceforth be relevant to our study of category-theoretic models of the set theory
BIST™.

Definition 6.11 (Category of classes). A category of classes is a positive Heyting category C together with basic class structure
S satisfying the Powerset axiom and with a universal object U.

This definition should be considered local to the present paper. In other situations, different combinations of basic
properties might well be equally deserving of the appellation “category of classes”.

7. Interpreting set theory in a category of classes

In this section, we interpret the first-order language of Section 2 in a category of classes. We use the universal object U
as an untyped universe of sets (and non-sets), and interpret the logic using the internal logic of C. We shall see that the set
theory validated in this way is exactly BIST~. Moreover, the additional axioms of Section 6 are related to their set-theoretic
analogues from Section 2.

Given a category C with basic class structure and universe i: PU — U, we interpret the first-order language of Sec-
tion 2 in the internal logic of C by interpreting first-order variables and quantifiers as ranging over U. Thus a formula
¢(xq,...,X) is given an interpretation

k
——
[x1,....,% | ¢l > U x---x U,

which is determined by the interpretations of the basic relations x € y and S(x), defined as follows.

x| SX®[=PU > U
1y xi

[x,ylxeyl=cy »— UxPU == U xU.

We write C |= ¢ to mean that a sentence ¢ is validated in this interpretation, i.e. that [¢] = 1.2°

Theorem 7.1 (Soundness and completeness for class-category semantics). For any theory T and sentence ¢, the following are equiva-
lent.

1. BIST™ + 7 - ¢.
2. C = ¢, for all categories of classes C satisfying C |="T.

20 strictly speaking, C |= ¢ is an abuse of notation, since the interpretation is determined by all of C, S, P(—), U and i.
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7.1. Soundness of class-category semantics

To prove the soundness direction of Theorem 7.1, it is enough to verify that the axioms of BIST~ (Fig. 1) are validated by
any category of classes, since the soundness of intuitionistic logic is a standard consequence of Proposition 5.4. We present
a few illustrative cases.

Extensionality: SX) AS(Y) A (Vz.zex<z€y) > x=Yy
Suppose given arbitrary {(a, b):Z — U x U factoring through the subobject

[x.y IS®) AS(y) AVz.(zex < ze Y] — U x U

then by the first two conjuncts there are small relations [[z,x | z€a(x)]] and [[z, ¥y | z€ b(y)]] on U x Z, and by the third
these satisfy

[z.xIxea@]|=[z.y1y eb@]]

as subobjects of U x U. Whence a =b by the uniqueness of characteristic maps in axiom (P) on basic class structure.
To verify the axioms involving the “set-many” quantifier, we make use of the following lemma.

Lemma 7.2. For any formula ¢(x1, ..., Xk, ), the subobject [X | y.¢]| = UK is given by

{z: Uk p~(z)is small},

using the notation introduced below Proposition 5.11, where p is the composite
[y, X1 ¢l — U x U 2 Uk,
Proof. Routine verification using the definition of the 2 quantifier, and the Kripke-Joyal semantics of C. O

Indexed-Union: S(x) A (Yy € x.2z.¢p) — 2z.3y € x.¢
We must show that

[x. W Sx) A (Vy ex.2z.¢)]| < [x, w | 2z.3y € x.¢] in Sub(U x u)

for formulas ¢(z, y, x, w), where w abbreviates a vector of k variables. For notational convenience, we give the proof for
empty w. The same argument works in the general case.
Consider the projection maps in the diagram below.

[2,9,7 | S(@), (Vy € 2.22. ),y € 2, 8] 222 [y, | S(2), (Vy € z.22. ¢),y € 2]
qz,:l: Px

[z,z | S(x), (Vy € z.22. ¢), 3y € x. §] = [z | S(x), (Vy € z.22. ¢)]

The map py is small, because S(x) holds. By Lemma 7.2 and Proposition 5.11, pyx is small, because for (y,x) in the
codomain it holds that 2z.¢. Thus the composite, pyo py x is small. By (S4), qx is small. The required inclusion of subobjects
now follows from Lemma 7.2 and Proposition 5.11.

The other axioms involving the “set-many” quantifier are similarly reduced to Lemma 7.2 and Proposition 5.11. Indeed,
Emptyset and Pairing hold by Proposition 5.6(1), the latter also requiring (S4). The Equality axiom follows from (S3). Finally,
the Powerset axiom of BIST™ is a consequence of its namesake for small maps.

7.2. Completeness of class-category semantics

In fact, we shall prove the stronger statement that there exists a single category of classes C7 such that, for any for-
mula ¢:

Cr =¢ implies BIST™ + 7 F ¢.

The category C7 is constructed similarly to the syntactic category of the first-order theory BIST™ + 7T, cf. [24, D1.4]. In our
setting, due to the first-order definability of finite products of classes (cf. Section 2), it suffices to build the category out of
formulas with at most one free variable.

Definition 7.3. The category Cy is defined as follows.
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objects {x|¢}, where ¢ is a formula with at most x free, identified up to «-equivalence (i.e. {x|¢} and {y|p[y/x]} are
identified).

arrows [0] : {x|¢} — {y|¥} are equivalence classes of formulas 6(x, y) that are “provably functional relations”,
i.e. the following hold in BIST™ + 7T

0(x,y) = ¢(X) A (y)
o) — Ay.0(x,y)
OxX, MNO(XY)—>y=y

with two such 6 and 6’ identified if & <> 6’ holds in BIST™ + 7.

identity 1ix4) =[x=y A¢]: {xI¢} — {yloly/x]}.
compeosition [6'(y,2)] o [0(x, )] =[3y.0(x,y) A0’ (¥, 2)].

Lemma 7.4. The syntactic category C is a positive Heyting category.

Proof. Finite products and coproducts are given by (co)product classes as defined in Section 2. For equalizers and the regular
and Heyting structures, standard arguments from categorical logic apply, cf. [24, D1.4.10]. O

For later use, we remark that in the proof of the lemma, one characterizes a map [0(x, ¥)]: {x|¢} — {y|¥} in C7 as
being a regular epi if and only if it holds in BIST™ + 7T that:

Y () = 0K, y). (22)
Similarly, [0 (x, y)] is a mono if and only if:
OxX, ) NO(X,y) > x=X. (23)
Now define a map [0]: {x|¢} — {y|¥} in Cp to be small if in BIST™ + T

v(y) > 2x.0(x,y).

Note that this definition is indeed independent of the choice of representative formula 6. We write S for the collection of
small maps.

Lemma 7.5. The small maps S in C satisfy axioms (S1)—(S5).

Proof. For (S1) we need to show that the small maps form a subcategory. An identity map
[x=xA¢p®]: {xlp(0} —= {¥Io(x)}
is small because in BIST™

p(x) > X .(x=X A p(x)).

For composition, suppose we have the arrows:

[0C ] x1p1) — (g2} [0'(v, D] (yId2} — {zl¢3)

and we know that:

$2(y) > 2x0x,y)  $3(2) > 2y.0'(y,2).

Then, by Indexed-Union, one has:

¢3(2) = 2x.3y.0(x, y) A6 (v, 2),

as required.
Axiom (S2) concerns pullbacks, which in Cy are constructed as follows. Given [6;(x,2)] : {x|¢1} — {z|¥} and
[62(y, 2)]: {y|p2} — {z|w}, the pullback has vertex

{(x, ) 32.01(x,.2) A62(y. D)},

using Kuratowski pairing, as in the definition of product classes. The pullback cone maps are the projections. Now suppose
that [62(y, z)] is small, i.e.
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Vv (2) > 8y.02(y, 2). (24)
We must show that the pullback along [61(x, y)] is small, i.e. that
$1(x) —> 2y.32.01(x, 2) A 02(Y, 2),

but this follows directly from (24), because ¢1(x) implies there exists a unique z such that 6 (x, z).
Axiom (S3) requires the diagonal Ay : {x|¢} — {x|¢} x {x|¢} to be small. But A, is represented by the formula 6(x, p):

PX) A p=(X,X).

For this to be small, we require:
(Fy.20) AP@ APp=(y,2)) > &x.p = (x,X),
equivalently:

PY)NP(2) >XX=YyAX=2Z,

and this follows from the Equality axiom of BIST™.
For axiom (S4), suppose we have

[0 0] X1} — (yig2} [0/, D] {yIg2} — {zl¢3},
with [0'(y, 2)] o [6(x, y)] small and [0 (x, y)] regular epi. By (22), the latter condition amounts to

d2(y) — IIx0(x, y). (25)

The former condition gives

¢3(2) — 2x.3y.0(x, ¥y) AO'(y, 2).
Thus, for any z such that ¢3(z), there is a set {x | 3y.0(x, y) A6’(y, z)}. Moreover, it holds that

$3(2) > Vx e {x|y.0(x,y) AO'(y,2)}.2y.0(x, y) AO'(Y,2), (26)

because there is in fact a unique such y. We must show that

$3(2) —> 2y.0'(y, 2).
By (25), the above property is equivalent to

$3(2) = 2y.Ix0(x, y) ANO'(V, 2),

which indeed follows from (26), by the Indexed-Union axiom of BIST™.
The remaining case (S5) is left to the reader. O

Using the characterization of monomorphisms (23), one easily shows that, up to isomorphism, every binary relation
R »— {x|¢} x {y|¥} in C7 is of the form R = {(x, y)|p(x, ¥)}, where p(x, y) is a formula satisfying

X, Y)—> o(X) AP (Y),

with the evident inclusion map for the morphism part. Further, the relation is small if and only if:

Y (y) > 2x.p(x, y). (27)

Small powerobjects in C7 are defined in the expected way by,

Pixlp} ={yIS(¥) AVx € y.¢},

with the membership relation given, as above, by the formula:

dX)ANS(Y)ANzey.p) AXEY.

The smallness of the membership relation follows easily from (27).

Lemma 7.6. C satisfies axiom (P).
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Proof. Suppose R »— {x|¢} x {y|y¥} is a small relation, defined by p(x,y) as above. The required map xg:{y|lv} —
P{x|¢} is given by [6(y, z)] where 6 is the formula:

S(Z2) AVXxXx€ezZ< p(X,Y).
The routine verification that this has the required property is left to the reader. O

Lemma 7.7. C1 satisfies the Powerset axiom.

Proof. The subset relation € »— P{x|¢} x P{x|¢}, is given by the formula p(y, z):

SWANxey.d) AS2)ANNXxezp) ANy C 2z

The smallness of this relation follows from (27) using the Powerset axiom of BIST~. O
Lemma 7.8. C7 has universal object U = {u|u = u}.

Proof. For any object {x|¢}, there is a canonical morphism

ip=[¢00 Ax=u]:{xig} —= U,
which is a mono by (23). O

In combination, Lemmas 7.4-7.8 show that Cy is a category of classes in the sense of Definition 6.11.
To prove completeness, it is necessary to analyse the validity of first-order formulas in C7. The interpretation of the
first-order language in C7, with respect to the canonical mono PU »— U yields, for each formula ¢ (x1, ..., x,) a subobject

[X1,...,%n | @1 = U",

as in Section 7.1. On the other hand, ¢ also determines an object of C7:

(P13t %0 p= (X1, .. X0) A @),
using a suitable n-ary tupling. Henceforth, we write {x1, ..., x, | ¢} for the above object. There is an evident mono
ip (X1, ... X | p} »— U",

given by inclusion.

Lemma 7.9. For any formula ¢ (x1, ..., Xn),
[x1,.... % [ @l = {X1,.... % | }}
as subobjects of U™. This subobject is isomorphic to U" if and only if

BIST™ + T VX1, ..., %:.0.

Proof. The equality of subobjects is proved by a straightforward but tedious induction on the structure of ¢. For the second
part, it follows easily from the definition of equality between morphisms in Cy that {xq,...,xp | ¢} = U" if and only if
BIST™ +7 =Vx1,...,x5.¢0. O

The completeness direction of Theorem 7.1 now follows. By Lemma 7.9, we have that Ct = ¢ if and only if BIST™ +7 + ¢,
for sentences ¢. By the right-to-left implication, C7 does indeed satisfy Cy = 7. Completeness then follows from the
left-to-right implication.

7.3. Additional axioms

In this section, we extend the soundness and completeness of Theorem 7.1 to relate the additional axioms on categories
of classes introduced in Section 6 to the corresponding axioms extending BIST~ from Section 2.

Proposition 7.10. For any theory T and sentence ¢, the following are equivalent.

1. BIST  +Sep+ T ¢ (i.e. IST” + T - ¢).
2. For all categories of classes C satisfying Separation, C =T implies C = ¢.
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Proof. For the soundness direction, suppose C is a category of classes. Using Lemma 7.2, one shows that [[X | l¢] = U if
and only if the monomorphism [[X | ¢]] — U is small. If C satisfies the Separation axiom then all monos are small, hence
indeed C =l¢ for all ¢, i.e. C |=Sep.

Conversely, for completeness, one verifies straightforwardly that if 7 contains all instances of Separation then the syn-
tactic category C, defined in Section 7.2, satisfies Separation. O

One might hope for a stronger completeness theorem of the form: if C |=Sep then the category of classes C satisfies
Separation. However, this does not hold. The reason is that the validity of the Separation axiom of set theory only requires
first-order definable monomorphisms in C to be small, from which it need not follow that all monos are small. We give a
concrete example after Theorem 9.3 below.

Proposition 7.11. For any theory T and sentence ¢, the following are equivalent.

1. BIST+ T+ ¢.
2. For all categories of classes C satisfying infinity, C |="T implies C |= ¢.

Proof. If C has a small natural numbers object N, then the mono N = U generates points

=15 pusr—su
0=1—0>N>—>U
s=1—» NN »— PU »— U.

With these, it is easily verified that C = Inf.
Conversely, for completeness, suppose that 7 contains the Infinity axiom. Consider the syntactic category C7. This need
not satisfy infinity. However, consider the object

X={10,s|0elAnsel' A(Vxels(x)#0)
A (Vx, y € Ls(x) =s(y) > x=1y)},

using the notation established above Lemma 7.9. Then it is easily seen that the slice category C7/X does satisfy condition 1
of Proposition 6.5, and hence the infinity axiom. Let ¢ be a sentence in the language of set theory. Then, writing Inf(I, 0, s)
for the formula used to define X,

Cr/XE¢ iff BIST™+7 +Inf(1,0,5) ¢
iff BIST+7 F .

Here, the first equivalence follows from Lemma 7.9, and the second holds because Inf(I, 0, s) is the only formula containing
1,0, s as free variables. Thus the category C7/X demonstrates the required completeness property. O

We remark that, in fact, for a category of classes C, it holds that C = Inf if and only if there exists an object X with
global support?! such that the slice category C/X satisfies the infinity axiom of Section 6.3. Thus an alternative approach to
modelling the Infinity axiom of set theory would be to weaken the infinity axiom on categories of classes to merely require
a small infinite object in some globally supported slice. This has the disadvantage of being less natural, and we shall not
consider it further.

It is worth commenting that the completeness theorem for the theory IST of [43, Theorem 11] follows immediately from
the combination of Propositions 7.10 and 7.11 above.

Proposition 7.12. For any theory T and sentence ¢, the following are equivalent.

1. BIST+ Coll + T + ¢.
2. For all categories of classes C satisfying Collection, C =T implies C = ¢.

Proof. The proof of soundness is a simple verification that when C satisfies Collection, it holds that C |= Coll. The argument
is essentially given by Joyal and Moerdijk [25, Proposition 5.1].

For the converse, suppose 7 contains all instances of Collection. One verifies easily that the covariant small powerob-
ject functor in the syntactic category C7 preserves regular epis. Thus C satisfies Collection axiom. Hence completeness
holds. O

21 An object X has global support if the unique map X —» 1 is a regular epi.
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8. Categories of ideals

Proposition 6.3 showed that, in any category of classes, the full subcategory of small objects is a topos. In this section
we prove that conversely every topos occurs as the category of small objects in a category of classes, in fact in a category
of classes satisfying Collection. By Theorem 3.10, we can, without loss of generality, work with toposes endowed with a
directed structural system of inclusions, i.e. a dssi as defined in Section 3. Given such a topos, we build a category of classes
whose objects are ideals of objects in the topos under the inclusion order. The small objects turn out to be exactly the
principal ideals, and thus essentially the same as the objects of original topos. Moreover, the resulting category of ideals
automatically satisfies the Collection axiom.

We also give a variation on the ideal construction in the case of a topos endowed with a superdirected structural
system of inclusions (i.e. an sdssi), using which we embed the topos in a category of classes satisfying both Collection and
Separation axioms

Throughout this section, let £ be a fixed topos with dssi Z. For convenience, we assume that Z partially orders £. (Al-
though the discussion following Proposition 3.3 emphasised that asking for inclusion partial orders rather than preorders
may lose some generality in a weak metatheory, for the technical development of the categories of ideals we find it conve-
nient to make this assumption purely in order simplify definitions and proofs by working up to equality rather than up to

=)

Definition 8.1. An ideal in £ is an order ideal with respect to the inclusion ordering, i.e. a non-empty collection C of objects
of &, such that A,BeC and A’ =~ A implies AUB € C and A’ € C. A morphism of ideals consists of an order-preserving
function,

f:C—>D
together with a family of epimorphisms in &,

fc:C — f(C) forallCeC

satisfying the naturality condition that, whenever C’ —— C in C, the following diagram commutes in £.

f
C—Sw £(C)

C/

- £(C")

fell

With the obvious identities and composition, these morphisms form the category of ideals in the topos £ with dssi Z,
denoted

Idlz(&).

Usually, we omit explicit mention of Z, and we simply write f for the morphism (f, (fc)cec)-

Because epi-inclusion factorizations in £ are unique, the values f(C) and fc determine the values f(C’) and fc for all
C’ — C. Indeed, locally (i.e. on the segment below any fixed C € C) the mapping f is essentially the same as the direct
image functor

(fc) : Sub(C) — Sub(f(C)).
This implies the following.
Lemma 8.2. Every morphism of ideals f: C — D preserves unions,
f(AUB) =f(A) Uf(B)
forall A, B € C. Moreover, fis “locally surjective” in the sense that for every C € Cand D — £(C), there is some C' — C withf(C’) = D.
Next, observe that taking principal ideals determines a functor,

(=) €= 1dIE)

as follows: for any f:A — B in £, we define:
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V(A — A) = fi(A)— B

where fi(A’) is the image of A’ under f, given by the unique epi-inclusion factorization, as indicated in:

f

A B

A e fi(A
7 i)

Moreover, we can then let | (f), = f’, where f’ is the indicated epi part of the factorization.

Proposition 8.3. The principal ideal functor is full and faithful.

Proof. Given any morphism of ideals f: | (A) — | (B), consider the composite map:

T()=iofs:A — f(A) —» B

where i:f(A) < B is the canonical inclusion. Then by naturality, the value of f on every A’ = A is just T(f);(A), and
fo=(TE))a: A —> TE)(A). Thus f= | (T(f)). Since clearly T(}(f)) = f for any morphism f:A — B, this proves
the proposition. O

Our main objective in this section is to prove that the category of ideals is a category of classes. The intuition is that
each ideal represents a class in terms of its approximating subsets, and that class functions are similarly represented by
their effect on subsets. Accordingly, it is natural to define a map in IdI(€) to be small if it has an inverse image that maps
approximating subsets of the codomain to approximating subsets of the domain.

Formally, we define a morphism of ideals f:A — B to be small if, for every B € B, the collection

{A€A]| f(A) — B}

has a greatest element under inclusion, and we write f~1(B) for the largest A such that f(A) — B. Equivalently, f is
small if and only if the mapping f:A — B has a right adjoint f~! :B —» A.

Theorem 8.4. The category IdI(E) is a category of classes satisfying the Collection axiom. Moreover, the small objects in Id1(£) are
exactly the principal ideals, and so the principal ideal embedding | (=) : £ — IdI(E) exibits £ as the full subcategory of sets in Id1(E).

The proof requires a lengthy verification of the axioms for class structure, which we present as a series of lemmas.
Lemma 8.5. The category Id1(£) of ideals is a positive Heyting category.

Proof. The terminal ideal is | (1), as is easily verified. The product of two ideals A and B is the collection:

AxB={C > AxB|AcA, BeB),

by which we mean the collection of objects C included in A x B, not the collection of inclusion maps (we reuse this
notational convention several times below). This is an ideal because, if C —> A x B and ¢’ =~ A’ x B/, then we have:

CUC — (AxB)U(A'xB') —» (AUA') x (BUB)

since products preserve inclusions. The projection 71:A x B — A is defined by factoring as indicated in the following
diagram:

C—— AxB

T1C T

7['1(0) > A

To see that this is well-defined, suppose also C — A’ x B’ and consider (AU A’) x (B U B’). Then since products preserve
inclusions, the image 1 (C) can equally well be computed with respect to (AU A’) x (B U B’), as indicated in the following:
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O v Ax B (AUA) x (BUB')
T1iC m m

m(C) — A - AUA

Since the same is true for 71(C) computed according to C — A’ x B/, the two must agree. The second projection 72 is
defined analogously. To see that this specification is indeed the product in IdI(£), given any ideal C and maps f:C — A
and g:C — B, let (f,g):C — A x B take C € C to the image in the diagram below.

C

(fo,80)
<f7 g>C'

(f,8)(C) — f(C) x g(C)

Then 1 ({f, g)(C)) = f(C) since f¢ is an epi. We omit the verification of uniqueness.
For equalizers, given f,g:A ——} B, their equalizer is the evident inclusion into A of the collection

[AcA|f(A) =g(A).fa=ga).

This is clearly down-closed, and if A, A’ € A are both in it, then so is AU A’ since f and g both preserve unions.
Combining the foregoing two cases, we obtain the following description of pullbacks. Given f:A — Cand g:B — C,
the pullback consists of (the evident projection morphisms on) the object:

AxcB=|D <> AxB|AcA, BecB, f(A)=gB),faod =gsody)}

where dy:D — A and d,: D — B are the two components of D < A x B.

In order to show that IdI() is a regular category, we characterize the regular epis as those morphisms e:A — B for
which the mapping part A+ e(A) is a surjective function from A to B. Clearly such maps are indeed epis. Below, we show
that, for any morphism f: A — B, the subcollection,

f(A) = {f(A)|AcA} CB (28)

is the coequalizer of the kernel pair of f. It follows that the surjective mappings are indeed regular epis. Conversely, if f is a
regular epi then it also coequalizes its own kernel pair, so we have B= {f(A) | A € A} C B, whence f is surjective. It remains
to prove that (28) indeed coequalizes the kernel pair of f. According to the description of pullbacks above, the kernel-pair
of f is:

K={D > Ax A |A A €A f(A)=F(A").faod =fu od>}

with the two evident projections w1, 2 : K — A. But this ideal agrees with the following one:

K={D > Axja A" | A, A €A f(A) =£(A)}

where the indicated pullbacks are taken using the maps fa:A —> f(A) and fa : A" —> f(A’) = f(A). Given any mor-
phism g:A — C with go mq = go 2, one can then define the required extension g :f(A) — C simply by setting:

g(f(A)=gA),
g =8a:A — g(A).

Having now characterized the regular epis in IdI(£) as the morphisms whose mappings are surjective, it is straightforward
to verify that regular epis are stable under pullback. Thus IdI(€) is indeed a regular category.
Using the coproduct in £ defined above Proposition 3.14, the coproduct of ideals A and B is defined by:

A+B={A+B|AcA BecB}

with the injection morphisms A+ A+ @ and B — (¢ + B. It follows easily from Proposition 3.14 that this is indeed an ideal.
The coproduct property of A+ B in IdI(£) is straightforward to verify.

Finally, the dual image along f:C — D of a subideal A »— C is calculated as follows. Without loss of generality, we
can assume that A C C. Then let

V¢(A)={D e D |forall C € C, f(C) = D implies C € A}.

To see that this works, note that the condition determining the elements D in V¢(A) is equivalent to V¢(| (D)) CA. O
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Lemma 8.6. The following characterizations hold in the category Id1(£):
1. The small objects are exactly the principal ideals | (E) for E € £.
2. Every morphismf: | (E) — | (F) between small objects is of the form f = | (f) for aunique f : E — F in &, and is therefore
small.

3. The small subobjects C' =~ C are exactly those isomorphic to subobjects of the form | (C) C C for some C € C.
4. Amorphism f: A — B is small if, whenever S = B is a small subobject, then f~1(S) »—— A is also small.

Proof. Straightforward. O
Lemma 8.7. The small maps so defined satisfy axioms (S1)-(S5).

Proof.

(S1) Small maps form a subcategory, since adjoints compose.
(S2) Suppose we have a pullback

AxcBL1 .B

p g

A C

f

with g small. To show p small, we need to find p~!(A) € A x¢ B for each A € A. Consider the pullback diagram:

T T’ A

gr

in which T =g~ 1(f(A)). It follows that the subobject T” — T’ x T is in the pullback A x¢ B. Define: p~1(A) = T”.
We omit the easy verification that this has the right properties.
(S3) Given A:C —> CxCand T — A x B in C x C, we take the pullback:

T’ T

ANB»—— (ANB)x (ANB) =~ Ax B
AnB

Define A~1(T) = T’. Again, we omit the straightforward verification.
(S4) Suppose the diagram below commutes

e

A - B

C

where g is small and e is a regular epi. As in the proof of Lemma 8.5, the mapping part of e is a surjective function.
To show that f is small, for C € C, define f~1(C) = e(g~1(C)). That this has the required properties follows from the
smallness of g and the surjectivity property of e.
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(S5) Given small maps f and g as below, we must show that [f, g] is small.

A A+B B

C
For C € C, define: [f,g]"1(C) = f1(C) + g 1(C). We omit the straightforward verification that this has the required
properties. O

Next we define small powerobjects in IdI(£). Given any ideal C, define:

PC={(S — PC|CeC}.

This is indeed an ideal because, given S — PC, and S’ = P(’, it holds that SUS" <> PCUPC — P(CUC).
Because 7 is a dssi on &, for each object C of £, the membership relation is given by an inclusion €c <~ C x PC. For
an ideal C, the membership relation on small objects is defined by the inclusion of

ec={S > €ec|Ce(}

in the ideal C x PC. It is easily verified that €¢ is indeed an ideal.
Lemma 8.8. The category Id1(&) satisfies axiom (P).

Proof. Since this is the trickiest case in the verification that IdI(£) is a category of classes, we give the proof in detail.
Suppose we have a small relation R C C x A, with components r; :R — C and r:R — A. Because R is a small relation,
rp is a small map. We must show that there is a unique map xgr:A — PC fitting into a pullback diagram:

R

€c

_

XX

1
CxA—"2B cxpC

First we define xgr:A — PC. For A € A, take r~!(A) € R, which has the form r~1(A) »—» C x A for some
C € C. Using the characteristic property of powerobjects in £ together with an image factorization, define xgr(A) and
(xr)a:A —> xr(A) to be the unique object and epimorphism fitting into a pullback diagram:

I‘2_1(A) > €C

_
(30)

O toX (xmr)a

» C X xr(A) = C x PC

To show that this is independent of C, take another C’ € C such that ry~1(A) = C’ x A. Without loss of generality, we can
assume C < (' (otherwise apply the following argument twice to show that the objects C, CUC’ and C’ all determine
the same xgr). Then, composing pullback squares, we obtain:

ry"'(A) €c © Ec
P
1o X (xr)A ,
CxA » C x xr(A) = C x PC

1/
c'xAL(XR)é»C'xXR(A)L»C'xPC@»C’xPO'
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where the outer pullback shows that the same action of xg on A is determined by the inclusion rp~1(A) — C’ x A.
We must verify that yg indeed makes diagram (29) into a pullback and that it is the unique map doing so. This requires
an analysis of the pullback property itself. For any map g:A — PC, the pullback

Py

€c

]

1xg

CxA C xPC

can be defined by

Py={S—— CxA|CeCAcA (1x8)(S)Eec),

with the map from Pg to C x A given by the evident inclusion. (Note that here we use a pullback construction specific to
the case of a mono being pulled back, rather than the general construction given in the proof of Lemma 8.5.) As in the
proof of Lemma 8.5, the object (1 x g)(S) of £ is given by the factorization:

S > (1xg)(5)

1 x
CxA—-"84,

- C'xg(4)

which is independent of C and A. For S — C x A if S € Pg then we have (1 x g)(S) — & for some C’ € C. Also,
g(A) — PC” for some C” € C. By redefining C to be CUC’UC”, and applying the remarks before Proposition 3.12, we
have that if S € Pg then there exists C € C such that the bottom composite below factors through the right-hand edge:

f

S Ste]

(32)

1
OxA—"84 CxgA)w CxPC

Conversely, by the uniqueness of the factorization (31) defining (1 x g)(S), any S —— C x A, for which there exists an f
making the diagram above commute, is contained in Pg. Thus we have:

Py={S <~ CxA|g(A) = P(C),3f.(32) commutes}. (33)

At last, we show that diagram (29) is indeed a pullback with the defined xgr. We must show that R=P,,. Suppose that
S < CxAisinR. Then S = ry~!(A). Interpreting the pullback of (30) as an instance of diagram (32), we see that
r; (A e Pyr. by (33). So S € Py, because Py, is down-closed. Conversely, suppose that S — C x A is in Py,. By (33),
we have a commuting diagram (32) with g = xg, whose span part is thus a cone for the pullback of (30). By the pullback
property, S = rp~!(A). Thus indeed S €R.

Finally, suppose g:A — PC is such that R = Pg. We must show that g = xg. For any A € A, we have r 1(A) eR= Pg.
Hence, by (33), there is a commuting diagram of the form (32), with S =r~'(A). Let T = C x A be the pullback of the
right edge along the bottom. Again by (33), T € Pg =R. By the pullback property of T, we have rp~1(A) — T. Conversely,
T < 1~ 1(A) follows from the defining property of rp~1(A), because T € R. Thus diagram (32) with S =r,~1(A) is itself
a pullback, and hence identical to diagram (30). So indeed g(A) = xr(A) and g4 = (xr)a. O

Lemma 8.9. The category Id1(£) satisfies the Powerset axiom.

Proof. The subset relation C¢ »— PC x PC is given by the subideal:

Cc={S|S=> C¢c = PCxPC,CeC}

with the evident inclusion. To see that the second projection

q:Sc > PCxPC 2 PC
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is small, take any S — PC in PC, and form the pullback:

s’ S

Co s PCxPC 2 s PC

Define q—1(S) = S’. We omit the verification that this has the required properties. O
Lemma 8.10. The category Id1(€) satisfies the Collection axiom.

Proof. We verify that the covariant small powerobject functor preserves regular epis (property 2 of Proposition 6.6). Accord-
ingly, suppose e:A — B is regular epi. As in the proof of Lemma 8.5, this means that the mapping part of e is a surjective
function. We must show that the same property holds of e;: PA — PB. The map e, has the following explicit description.
For A€ A and S —— PA, the object (e/)(S) and map (e))s:S — (e)(S) are given by the image factorization:

5 @5, e)s)
pa UL pe(a))

To show surjectivity of the mapping part, suppose T — PB for some B € B. We must show that there exists S € PA with
(eN(S)=T.

By the surjectivity of e, there exists A € A with e(A) = B. But then (es): PA — PB is an epi, since the covariant
powerobject functor in a topos preserves epis. Defining S by pullback:

S - T

]

pa o0 pp

we see that the factorization defining (e)(S) yields (e))(S) =T, as required. O

Lemma 8.11. The category Id1(E) has a universal object.

Proof. The total ideal U= {E | E € £} is a universal object in IdlI(£) because C C U for every ideal C. O
In combination, Lemmas 8.5-8.11 prove Theorem 8.4.

Corollary 8.12. The category Id1(£) satisfies the infinity axiom if and only if £ has a natural numbers object.

Proof. Immediate from Theorem 8.4 and Proposition 6.5. O

Thus far, in Part IIl, we have avoided discussing meta-theoretic issues altogether. This was justifiable in Sections 5-7,
where the development was entirely elementary and easily formalizable in any reasonable meta-theory, including BIST. In
this section, the construction of categories of ideals is less elementary, and meta-theoretic issues do arise exactly parallel
to those discussed in Section 4. Again, we take BIST itself as our primary meta-theory. In the case that £ is a small topos,
there is no problem in doing so, as, by the Powerset axiom, the category of ideals is again small (taking ideals to be sets
of objects). In the case that £ is only locally small, an ideal has to be taken to be a subclass of the class of objects. In this
case, the category IdI(£) is not itself a locally small category. The collection of morphisms between two objects A and B
may form a class, and the collection of all objects need not even form a class (just as there is no class of all classes). In this
case, it is best to look at IdI(£) as a “meta-category” in the following sense: its objects and hom-classes are individually
definable as classes, but we never need to gather them together in a single collection. Instead, the results above should be
understood schematically as applying to the relevant objects on an individual basis.
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We end this section with a variation on the construction of Idl(£), which requires the collection Z of inclusions on
& to be a superdirected structural system of inclusions (sdssi). Under these circumstances, a superideal is a (necessarily
non-empty) down-closed collection A of objects in Z such that every subset of A has an upper bound in A. We write
sldI(€) for the full subcategory of IdI(E) consisting of superideals. And we define a map in sldI(£) to be small if it is small
in IdI(E).

Theorem 8.13 (IST + Coll). If Z is an sdssi on a locally small category &, then the category sIdI(E) of superideals is a category of
classes satisfying both the Collection and Separation axioms. Once again, the small objects in sld1(E) are exactly the principal ideals,
and so the principal ideal embedding | (—) : £ — sIdI(E) exibits £ as the full subcategory of sets in sld1(E£). Moreover, the inclusion
functor sldI(E) — IdI(E) is logical.

(Because toposes with sdssi’s are not small, in the proof below, the meta-theory IST + Coll is being used in the schematic
sense discussed above.)

Proof. Suppose that Z is an sdssi on £. To show that the category of superideals is a category of classes satisfying Separa-
tion, we use the economical axiomatization of such categories from [43]. For this, it suffices to verify axioms (C1), (S1), (S2)
and (P) together with the Powerset and Separation axioms.

For all but the Separation axiom, we verify that the structure already defined on the category of ideals IdI(£), preserves
the property of being a superideal. The most interesting case is to show that sIdl(£) is a regular category, for which we
establish that superideals are closed under images in the category of ideals. Accordingly, suppose that A is a superideal and
e:A — B is a regular epi in the category of ideals. We show that the ideal B is a superideal. Suppose then that B is a
subset of B. As e is a regular epi, for each B € I3, there exists A € A with e(A) = B. By Collection in the meta-theory, there
exists a set A C A such that, for all B € 53, there exists A € A with e(A) = B. As A is a superideal, there exists an upper
bound U € A for .A. Then e(U) is the required upper bound for B in B.

To show the Separation axiom, suppose that m:A =— B is a mono in sIdl(£). Without loss of generality A C B. To
show that the mono is small, take any B € B. Consider the collection A={A €A|A —— B}. Because & is locally small, the
collection {A € B| A — B} is a set, so, by full Separation in the meta-theory, A is a set. As A is a superideal, .4 has an
upper bound U € A. But then U N B € A is the required object m~!(B) showing that m is small.

The Collection axiom holds in sIdl(£) because it holds in Id1(£). Also, the universal object of sIdI(£) is again given by
the total ideal U (see Lemma 8.11), which is indeed a superideal because 7 is superdirected.

Finally, the inclusion functor is logical because the structure on sIdl(€) is all inherited directly from IdI(£). O

The reader may have noticed that the above proof shares similarities with the proof of Proposition 4.9. In common with
that proof, we mention that it is not straightforward to verify directly that superideals are closed under dual images in
Id1(£). Thus the economical axiomatization of [43] is helpful in enabling the simple proof above.

9. Ideal models of set theory

The ideal construction of the previous section shows that every topos with dssi embeds in a category of classes satisfying
the Collection axiom. Using the interpretation of set theory in a category of classes from Section 7, one thereby obtains a
model of the set theory BIST™ + Coll. On the other hand, in Section 3, we gave a direct interpretation of the language of set
theory in a topos with dssi, using the forcing interpretation defined over the inclusions, which again modelled BIST~ + Coll.
In this short section, we show that these two interpretations of set theory coincide.

Theorem 9.1. If £ is an elementary topos with dssi Z then the following are equivalent for a sentence ¢ in the first-order language of
Section 2.

1. IdI(€) = ¢, using the class category interpretation of Section 7.
2. (€,7) = ¢, using the forcing semantics of Section 3.

The theorem is proved by induction on the structure of ¢, and hence we need to establish a generalised equivalence for
formulas with free variables.
Suppose we have such an open formula ¢ (x1, ..., X;). Then the interpretation from Section 7 of ¢ in IdI(£) defines:

[[X]""vxlc |¢]] — Uks

where U is the universal ideal of Lemma 8.11. However, the object U in IdI(E) is given by the ideal

Uf={(S < Aj; x--- x A¢| A1, ..., Ay objects of £},
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and subobjects of U are simply subideals of this (i.e. down-closed subcollections closed under binary union). Henceforth in

this section, we write [[x1,..., Xk | ¢] to mean such a subideal. In the case that ¢ is a sentence, then [¢]] is a subideal of
J1. By definition, [¢] = |1 if and only if IdI(£) = ¢.
We next observe that the forcing semantics of Section 3 also associates a subideal of U¥ to ¢ (x1, ..., X), namely:

[x1,.... % | @1 ={S = A1 x - x A | SlFp b},

where py, is the projection S — Aj x --- x Ay —> A;. As above, when ¢ is a sentence, [[¢] is a subideal of |1. By the
remarks above Theorem 4.6, it holds that [¢]' = |1 if and only if (£,7) = ¢.

By the discussion above on the two interpretations [¢] and [¢] of a sentence ¢, Theorem 9.1 is an immediate conse-
quence of the lemma below.

Lemma 9.2. If £ is an elementary topos with dssi Z then, for any formula ¢(xq,...,xy), it holds that [[x1,...,xx | ¢1 =
Mx1, ..., x| o1

Proof. The proof is a straightforward induction on the structure of ¢. We present one illustrative case.
Assuming [[X, y | ¢ =X, y | ¢1, we show that:

x| 3y.¢1 = x| 3y.o1'". (34)

By the semantics of existential quantification in the internal logic of IdI(E), the ideal [[X | 3y.¢] is given by the following
image factorization in IdI(&).

[7,y | 6] — [7 | Fy. ¢]

T

U xU U*

To show the C inclusion of (34), suppose that T — X; x --- x Xj is contained in [[x | 3y.¢]l. Applying the characteriza-
tion of regular epis in IdI(£), as morphisms whose mapping part is surjective, to the above factorization, there exist Y and
S Xy x--xXgxY such that Se[[x,y| ¢ =[[X, y | ] and e(S) = T. Hence the epi es:S —» T together with the
projection S — Xq x ---x Xy x Y — Y are the data required by the forcing semantics for showing that T € [x|3y.¢]'.

For the converse inclusion, suppose that T —» X7 x --- x X is contained in [[X | 3y.¢]/’. Then, by the forcing semantics,
there exist maps U 5 T and U —% Y in & such that U IFpotiasy) @ (Where o is built from the evident projections).
Define S by taking the image factorization of the unique map U — X; x --- x X} x Y making the solid arrows in the
diagram below commute.

U Y

T ateesersninniasienscsissonanes S Ty (36)

X% x Xy,
X1 XX X = ! FXyx o xXpxY

Because the left edge of this diagram is the image factorization of the composite

U—>S— X1 XXX xY — X1 X+ x Xg

of the bottom projection with the diagonal, there exists an epi S —» T as indicated. Since U I-pot[a/y) ¢, it follows from
Lemma 4.2 that S IF, ¢, where p’ again consists of the evident projections away from § —— X; x --- x X x Y. Thus
Selx y|oll =[x y | ¢l. However, it follows from the bottom quadrilateral of (36) that the epi S —» T is a component
of the bottom-left composite of (35). So, by the definition of [X | 3y.¢] as the factorization of this composite, indeed
Te[x|3y.9]l. O
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We now have the promised second proof of the soundness direction of Theorem 4.6. Indeed the result is a consequence
of Theorem 9.1 together with the soundness direction of Theorem 7.1. Thus the direct proof of the soundness of the forcing
semantics in Section 4 has been rendered redundant.

At this point, we return to the issue of the conservativity of the forcing semantics over the internal logic of £, discussed
around Proposition 4.10. Using the tools we have now established, there is a much neater formulation of this. Since £ is a
topos, it can itself be considered as a category with basic class structure, and, as already discussed at the end of Section 6.1,
the embedding £ — IdI(€) is logical and reflects isomorphisms. This expresses in an elegant way that the first-order logic
of quantification over the elements of classes in the internal logic of IdI(£) is conservative over the internal logic of £.
By Theorem 9.1, the forcing semantics of BIST™ is equivalent to the semantics determined by class quantification over the
universal ideal in the internal logic of Idl(£). Hence the forcing semantics is in general conservative over the internal logic
of £. In particular, when £ has a natural numbers object N, the properties of first-order arithmetic valid in £ are the same
as those valid for [(N) in IdI(£) (it is irrelevant that | (N) is not a natural numbers object in IdI(£)). Proposition 4.10
follows.

We end the section by observing that, in the case of a topos with superdirected system of inclusions, the forcing seman-
tics of set theory also coincides with the interpretation in the category of superideals.

Theorem 9.3. If £ is an elementary topos with sdssi Z then the following are equivalent for a sentence ¢ in the first-order language of
Section 2.

1. sldI(€) = ¢, using the class category interpretation of Section 7.
2. (£,7) = ¢, using the forcing semantics of Section 3.

Proof. As the inclusion sIdl(£) — IdI(€) is logical (Theorem 8.13), the interpretation of the language of set theory in
sldl(£) coincides with the interpretation in Idl(£). The forcing semantics is anyway unchanged for a superdirected system
of inclusions. Thus the result is an immediate consequence of Theorem 9.1. O

Finally, we remark that since the interpretations of set theory in IdI(£) and sIdI(£) coincide, when £ carries an sdssi, it
holds that IdI(£) = Sep even though the Separation axiom for categories of classes does not hold in IdI(£). This justifies a
comment made after Proposition 7.10 above.

10. Ideal completeness

We have seen that every topos £ with dssi gives rise to a category of ideals IdlI(£) in which the universal object
models BIST™ + Coll. The aim of this section is to strengthen the completeness direction of Theorem 7.1 by showing that
completeness still holds if the quantification over categories of classes is restricted to categories of ideals. In particular,
BIST™ + Coll is a complete axiomatization of the sentences valid in all categories of ideals.

Theorem 10.1 (Ideal completeness). For any theory 7 and sentence ¢, if

IdI(&) &= T implies IdI(€) = ¢

for every topos £ with dssi, then

BIST™ + Coll + 7  &.

As an immediate consequence of the theorem, we finally obtain the missing implication of Theorem 4.6, the complete-
ness of the forcing semantics.

Corollary 10.2. The completeness implication of Theorem 4.6 holds.
Proof. Immediate from Theorems 9.1 and 10.1. O

The rest of this section is devoted to the proof of Theorem 10.1. The strategy is to derive Theorem 10.1 from the
completeness direction of Theorem 7.1, by showing that, for every category of classes C satisfying Collection, it is possible
to “conservatively” embed C in a category of ideals. Here, the conservativity of the embedding means that the category of
ideals does not validate any propositions in the internal logic of C that are not already valid in C. Clearly this is enough to
obtain completeness.

In order to construct the embedding, we start with a small category of classes C satisfying Collection, and we work in
ZFC as the meta-theory. The construction of the embedding of C into a category of ideals proceeds in two steps.
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Step 1:  Any small category of classes C satisfying the axiom of Collection has a conservative logical functor,

c—cC*

into another one C* that is “saturated” with small objects.
Step 2: The saturated class category C* has a conservative logical functor,

C* —1dI(€)

into the category of ideals in a topos £.

The topos £ in step 2 is equivalent to the subcategory of small objects in C*. Step 1 is required to ensure there are enough
such objects.

Before proceeding with the two steps, we prepare some necessary machinery from the general model theory of categories
of classes. First we define the required notion of conservative functor. As is standard, we say that a subobject X’ »— X is
proper if its representing mono is not an isomorphism.

Definition 10.3 (Conservative functor). A functor F : C — D, between categories of classes, is called conservative if it is both
logical and preserves proper subobjects.

Often we shall use the conservativity of a functor F:C — C’ as follows. Given a property ¢ expressed in the internal
logic of C, one obtains a translation F¢ in the internal logic of C’. When F is logical, it holds that C = ¢ implies C’ = F¢.
When F is conservative, it also holds that C [~ ¢ implies C’ [~ F.

By applying the above argument to suitable internal formulas, one sees that conservative functors are faithful and reflect
monos, epis and isos. Straightforwardly, a logical functor is conservative if and only if it reflects isos. We remark that we do
not know if faithful logical functors between categories of classes are automatically conservative.

Recall (see footnote 21) that an object X is said to have global support if the unique map X — 1 is a regular epi.

Lemma 104. If C is a category of classes and X has global support then the reindexing functor X* :C — C/X is conservative.

Proof. X* is logical by Proposition 5.16. That it preserves proper subobjects is an easy consequence of X having global
support. O

Because categories of classes have universal objects, we shall be interested in universe-preserving functors in the sense of
Section 6.5. As in the discussion there, all functors X*:C — C/X are indeed universe-preserving. The next lemma allows us
to build filtered colimits of universe-preserving conservative functors between class categories.

Lemma 10.5 (ZFC). If (C;)i¢; is a filtered diagram of universe-preserving logical functors between small categories of classes, then the
colimit category,

lim ¢,
i

is also a category of classes, and is a colimit in the large category of categories of classes and (universe-preserving) logical functors.
If each C; has Collection, then so does liﬂi Ci. Moreover, if each functor C; — C; is conservative, then so is each canonical inclusion

Ci — li@i Ci.

Proof. A routine verification. Note that the axiom of choice is required to define the class category structure on ligli Ci. Also,
universe preservation is required to define a universal object in ligli Ci. O

10.1. Saturating a category of classes
Definition 10.6 (Saturated category). A category of classes C is said to be saturated if it satisfies the following conditions:

Small covers: given any regular epi C —» A with A small, there is a small subobject B »— C such that the restriction
B »— C — A is still a regular epi.
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Small generators: given any subobject B = C, if every small subobject A = C factors through B, then B =C.

Recall that an object X of a regular category is said to be (regular) projective if, for every regular epi e:Y — Z and
map z: X — Z, there exists a map y:X — Y such that z=e o y. A straightforward pullback argument shows that X is
projective if and only if every regular epimorphism e:Y — X splits (i.e. there exists s: X — Y with eos=1y).

We require a strengthened notion of projectivity.

Definition 10.7 (Strong projectivity). An object X in a category of classes is said to be strongly projective if, for every reg-
ular epi e:Y — X and proper subobject Y’ —— Y, there exists a splitting X — Y of e that does not factor through
Y Y.

Classically, strong projectivity implies ordinary projectivity because, for any regular epi e:Y —> X, either 0 »— Y is
a proper subobject or 0 =Y = X. In the first case e splits by strong projectivity, in the second e is an iso.

The following important lemma is reminiscent of the early Freyd embedding theorems for toposes, see Section 3.2 of
[16].

Lemma 10.8 (ZFC). Every small category of classes C has a universe-preserving conservative functor C — C* into a category of classes
C* in which the terminal object 1 is strongly projective. Also, if C satisfies Collection, then so does C*.

Proof. First we observe the following fact. If m:C »— X is a proper subobject in a category of classes C, then there exists
amap x:1 — X*X in C/X (where X*X is the reindexing of X along X*:C — C/X) such that the property 3c: X*C.x =
(X*m)(c) does not hold in the internal logic of C/X. To see this, define x:1 — X*X to be the “generic point” of X*X
in C/X, given by diagonal A:1y — m (recall that X*X =m,:X x X — X). If the above property were valid in the
internal logic of C/X then, by the genericity of x, we would have C |=Vx: X.3c: C.x = m(c), which contradicts that m is a
proper subobject. So indeed it holds that C/X & 3c: X*C.x = (X*m)(c).

Now we turn to the construction of C* required by the lemma. This is done in two stages.

First, using the axiom of choice, let (Xy)y<« be a well-ordering of the objects of C that have global support, indexed
by ordinals < x. We construct a sequence {Cq}q< Of categories of classes together with conservative functors {Jy g :Co —
Cplagp<«, forming a filtered diagram, as follows.

Co =C Joo =1d
Cpr1 =Cg/JopXp  Japr1 =JosXp)" 0 Jup
G, =limCy Ja.n = colimit injection (A a limit ordinal).
a<i

Here, the functors Jy g1 are conservative by Lemma 10.4. Similarly, the functors J, ; are conservative by Lemma 10.5.
(The diagrams {Cy}o <y are always filtered by construction.) Moreover, as the Collection axiom is preserved by slicing and
by filtered colimits, if C satisfies Collection then so does every Cg.

Define C, =Cy and | = Jo« :C — C,. We claim that, for any X, with global support and proper subobject m:C »— X,
in C, there is an arrow d:1 — JXy in C, such that C, [~ 3c: JC.d = (Jm)(c). Indeed, since Jo o is conservative, Joom is
a proper subobject in Cy. Thus, by the observation at the start of the proof, there exists x:1 — Jo q+1Xy in Cyt1 =
Ca/Jo.aXa such that Cyi1 FE3c: Jo,a+1C.X = (Jo.a+1m)(C). Since Jy41, is conservative and | = Jy+1.4 © Jo.o X, defining
d = Ju+1.X, we obtain that indeed C, = 3c: JC.d = (Jm)(c).

For the second stage, define categories

¢’ =c
C"1 =(c"),  using the construction above
c* =lim C'.
i<w

Again by Lemma 10.5, these categories are all categories of classes with conservative functors between them, and they all
satisfy Collection whenever C does.

We show that 1 is strongly projective in C*. Suppose X has global support and m:C »— X is proper in C*. Then
the same is already the case in some C", whence by the argument above there is an arrow d:1 —» X in C"*! such
that Cyyq b~ 3c: C.d = m(c) (here omitting explicit mention of the mediating functors C" — C™t1 — C*). Since the functor
C"t1 — C* is conservative, also C* b~ 3c: C.d = m(c). It follows immediately that d does not factor through m in C*. O

Lemma 10.9. If 1 is strongly projective in a category of classes C, then C has small generators.
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Proof. Suppose we have any proper subobject B = C in C, and consider its image PB »— PC under the small power-
object functor. Since B »— C is proper, so is PB »— PC. Since PC — 1 and 1 is strongly projective, there is a
point a:1 — PC that does not factor through PB. Then a classifies a small subobject A = C that does not factor
through B. O

Lemma 10.10. If 1 is projective in a category of classes C with Collection, then C has small covers.

Proof. Suppose e:C — A is a regular epi with A small. By the Collection axiom e;: PC — PA is also a regular epi.
Since A is small, let [A]7:1 — PA be the set A € PA (as in the proof of Lemma 5.19). Because 1 is projective, there exists
b:1 — PC such that eob = [A]. Then letting B = C be the small subobject of C classified by b, we indeed have that
the composite B = C —= A is a regular epi. O

Combining Lemmas 10.8-10.10 yields the desired first step of the completeness proof.

Proposition 10.11 (ZFC). Every small category of classes C satisfying Collection has a universe-preserving conservative functor C — C*
into a saturated class category C*.

10.2. The derivative functor

Let C be a category of classes, with universal object U. We wish to map C to a category of ideals over the topos of small
objects in C. To do so, we require a system of inclusions on the topos. To obtain this, we define a category of classes C,
equivalent to C that itself has a system of inclusions defined upon it.

The objects of C, are subobjects A = U in C. Using choice, we assume that each object is represented by a chosen
representative mono A = U. Then the morphisms from A »— U to B »— U are just the morphisms from A to B in C.

By the defining property of a universal object, it is clear that C, is a category equivalent to C. In particular, using choice,
there is an equivalence functor C — C.,.

We say that a map A — B from A = U to B = U is an inclusion in C, if the triangle below commutes

A\ /B
U
in which case A — B is clearly a mono. It is easily seen that these inclusion maps have finite meets and joins, and thus
give rise to associated finite intersection and union operations on objects of C,.

Because C., is equivalent to C, it too is a category of classes. We define the required structure in a way that is compatible
with the inclusion maps. For this, we use a chosen subobject PU »— U to define natural products, coproducts, equalizers,
and small powerobjects in C,, using the same definitions used for the analogous constructions on classes in Section 2. As
is easily verified, all these constructions preserve inclusion maps in a sense identical to the “structural” property of dssi’s in
Section 3. We refrain from going into the, at this stage tedious, details.

We write £, for the full subcategory of small objects in C.,. We define the topos structure on £, using the class

structure described above. Then, as is easily verified, the inclusion maps in £, inherited from C.,, form a dssi on the
topos E,.

Definition 10.12. Let C be a category of classes. The derivative functor,

d:Ce, - IdI(E)

is defined as follows.

dC={A <~ C| A small}
df:dC — dD, given f:C — D, is defined by factoring, as indicated in the following diagram:

f

c D
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Lemma 10.13. For any category of classes C, the derivative functor,

d:C., — IdI(EL)
preserves the following structure.
1. finite limits and coproducts,
2. small maps,

3. powerobjects PC,
4. and the universal object U.

Proof. Routine verification. Briefly:
1. Given C x D in Ce,,

dCxD)={S—>CxD|Se&,)}
={S—CxD'|S,C',D'e&,, (" C, D' D}
=d(C) x d(D)

by factoring any small subobject S »— C x D into S »—» C’ x D’ »—» C x D with (' »— C and D »— D’ small
subobjects. The other cases are similar.

2. Let f:C — D be a small map. Since for any small subobject B = D, the pullback f~1(B) »— C is also a small
subobject, we can define an inverse image for df :dC — dD by setting:

@n=' @ =F'®.
It is easily checked this satisfies the required property.

3. For any C € C—, and small A = PC, the subobject | JA < C is also small, and it satisfies that A — PX
iff (JA < X for all X — C, cf. Proposition 3.13. Thus any small subobject A =~ PC can be factored as
A — PB — PC for some small B < C, namely B =|J A. We therefore have:

d(PC)={A > PC|Acé.}
={A——> PB|A,Beé&., B— (C}
={A <~ PB|Aeé&,,, Bed(}
=P(C).

4. For the universal object U, the ideal dU = £, is a universal object in IdI(£.). O

Lemma 10.14. Let C be a category of classes and d : C—, — Id1(E.,) the derivative functor.

1. If C has small covers, then d preserves regular epis.
2. If C has small generators, then d preserves dual images and proper subobjects.

Proof. To prove 1, suppose C has small covers. As C, is equivalent to C, it also has small covers. Take any regular epimor-
phism e:C — D in C.,. To show that the morphism de:dC — dD is a regular epi in Idl(£.,), we must show that
the mapping part A — (de)(A) is surjective. For this, take B € dD and pull back the inclusion B —— D along e as in the
right-hand square below.

A B’ < C
_

B~ D

Since B is small, by small covers, there exists a small subobject A —— B’ such that the composite A —» B’ —= B is a
regular epi. Thus we have A € dC with (de)(A) = B, as required.
For 2, suppose C, and hence C-,, has small generators. Consider the following situation in C, :
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S VS

o

We want to show:

D

d(VsS) =VqydsS.
While we know:
d(¥;S)={B<— D | f'B— S},
VafdS={B = D |¥small A =~ f~!B, itholds that A — S},

the latter by the explicit description of dual images in Idl(.,) given in the proof of Lemma 8.5. The inclusion d(V;S) C
VardS is easy. For the converse, suppose that B € VqsdS, i.e. every small subobject of f~1B is included in S. Using the
small generator property, it follows that (f"1B) NS =S, equivalently f~!B < S. Thus indeed B d(vsS).

Finally, to show that d preserves proper subobjects, suppose that i:C < D in C, is such that di is an isomorphism.
Then the inclusion

{A > C|Asmall} C{A < D | Asmall}

is an equality. So, by the small generator property, i is also an iso as required. O

Combining the last two lemmas, we have that if C is saturated then the derivative functor d:C—, — Idl(£-,) is logical,
universe-preserving and conservative. Thus, composing with the equivalence (obtained using choice) C — C-,, we have
completed the desired step 2.

Proposition 10.15 (ZFC). If C is saturated, then there is a universe-preserving conservative functor C — Id1(E,).

10.3. The ideal embedding theorem

Putting together the results of Sections 10.1 and 10.2, we have proved the following embedding theorem for categories
of classes with Collection.

Theorem 10.16 (ZFC). For any small category of classes C satisfying Collection, there exists a small topos £ and a universe-preserving
conservative functor C — IdI1(£).

Proof. Combine Propositions 10.11 and 10.15. O
As a corollary, finally, we have the proof of Theorem 10.1.

Proof of Theorem 10.1. Suppose that BIST~ + Coll + 7 ¥ ¢. By (the proof of) Theorem 7.1, there exists a (small) category of
classes C for which C =T but C }~ ¢. By the foregoing embedding theorem, there exists a small topos £ and a universe-
preserving conservative functor C — IdI(£). Then, as required, IdI() =7 but IdI(£) ¢ O

Part IV. CONSTRUCTING SYSTEMS OF INCLUSIONS
11. Elementary and cocomplete toposes

In this section we give the postponed proofs of Theorems 3.10 and 3.18.

For any locally small topos £, we need to construct an equivalent topos carrying a dssi. In fact, many different such
constructions are possible. (By Eq. (2), this corresponds to there being many different ways of modelling BIST™ in £.) We
take a two stage approach. First, in Section 11.1, we construct an equivalent topos carrying a directed system of inclusions.
Second, in Section 11.2, we use the new topos as a basis for the construction of another equivalent topos in which the
system of inclusions is also structural. The two steps are combined in Section 11.3 to yield the proof of Theorem 3.10.

Theorem 3.18 is proved simultaneously. For each step, we explain the minor modifications needed to obtain a superdi-
rected system of inclusions in the case that £ is a cocomplete topos.

Actually, in Section 11.2, we give two different constructions of dssi’s. Each validates, under the forcing interpretation,
additional set-theoretic axioms not included in BIST. In Section 11.4 we present the two set theories BIZFA (Basic Intuition-
istic Zermelo-Fraenkel with Atoms), and BINWFA (Basic Intuitionistic Non-Well-Founded set theory with Atoms) that are
modelled by the different constructions.
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11.1. Obtaining a (super)directed system of inclusions

The main goal of this section is to construct, for any locally small topos £, an equivalent topos £’ carrying a directed
system of inclusions. Intuitively, the objects of £ are finite families {P; = Aj}i<n of subobjects of objects of £, with the
morphisms {P; = Aj}i<n — {Qj »— Bj}jgm being arbitrary £ morphisms between the coproducts of the subobobjects
L Pi — ]_[j Q;. This category is easily seen to be equivalent to £, and it carries a system of inclusions determined by
“pointwise” subobject inclusions P; =— Q; when i = j and A; = Bj;. Since we perform this construction using BIST itself
as the meta-theory, however, some care is required in the treatment of the notion of a finite set. In particular, we require
one extra technical assumption on the topos £, which would be vacuous were a classical meta-theory used instead.

Because the meta-theory is intuitionistic, there are inequivalent notions of finiteness available. In order to ensure the
directedness of the system of inclusions we construct, we work with the standard notion of “Kuratowski finite”. Recall [24,
D1.17(k)] that a set X is said to be Kuratowski finite (henceforth K-finite) if there exists n € N and a surjection e:{x € N | x <
n} — X. Because equality on X need not be a decidable relation, it is not possible in general to assume that e is bijective.
Also, because subsets Y C X need not be decidable, it is not necessarily the case that a subset of a K-finite set is again
K-finite.

Let £ be a locally small topos. We say that £ interprets equality of objects if, for every X, Y € |£|, the category £ possesses
a chosen copower:

[
B1X=Y}

i.e. the copower of the terminal object 1 indexed by the subsingleton set {x | x =@ A X = Y}. Then, for any object Z of &,
the copower

I =

{PIX=Y}

exists, since it can be defined as Z x ]—[K@IX=Y} 1. We henceforth write Z[x—y for such a copower. By the universal property
of this object, X[x—y is always isomorphic to Y[x_y, and there are thus canonical maps X[x—y — X and X[x—y — Y.

The condition that £ interprets equality of objects may seem obscure. Fortunately, in many situations it is vacuous. For
example, if REM is assumed in the meta-theory, then every topos interprets equality of objects, since a case analysis on
X =Y yields that the required copower is either an initial or terminal object. (Readers who are happy to use a classical
meta-theory for the construction in this section are thus advised to simply ignore all further issues concerning interpreting
equality of objects.) More generally, whenever the class |£| has decidable equality, the topos £ interprets equality of objects.
Since the free elementary topos with natural numbers object has decidable equality between objects (it can be constructed
so that its set of objects is in bijection with the natural numbers), this gives an example topos that, provably in BIST,
interprets equality of objects. Observe also that any cocomplete topos trivially interprets equality of objects.

We can now formulate the main result of this section, which we shall prove in BIST.

Proposition 11.1. For any locally small topos £ interpreting equality of objects, there exists an equivalent topos £’ carrying a directed
system of inclusions.

To prove Proposition 11.1, we suppose, for the rest of Section 11.1, that £ is a locally small topos interpreting equality of
objects.
We first observe that, for any K-finite set X’ of objects of £, there exists a coproduct diagram

(A claex)

in £. Indeed, such a diagram can be constructed straightforwardly from any surjection A(_y:{x € N | x < n} - X’ witness-
ing the K-finiteness of X. For this, first take the coproduct ]_[0<i<n A;, which is easily defined using empty and binary
coproducts in £. Then consider the two maps:

[1 AiTa=a; = ] 4 (37)
0<i,j<n 0<i<n
whose components at i, j are respectively
in;
Ailpj=p; — Ai —> ]_[ A;

0<i<n

in;
Ailp=a; — Aj —> ]_[ A,

0<i<n
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defined using the canonical maps mentioned above. The desired coproduct object C is given by the coequalizer of the
parallel pair (37). Then for A € X, the injection ing : A — C is the composite:

Aiﬂ’ ]_[Ai—»C,

0<i<n

where i is such that A; = A. This injection is easily seen to be independent of the choice of i.

The above construction shows the existence of coproduct diagram for any K-finite set X' of objects of £. Note that the
coproduct diagram obtained depends upon the presentation of the K-finite set X by a finite enumeration. In general, in
BIST, there is no natural way to select a chosen coproduct for X.

We now define the topos £’. The objects are tuples

(X. {pataex. C. {ina}acx)

where:

1. X is a K-finite set of objects of &,

2. pa:A — §2 (we write P4 »— A for the associated subobject),
3. C is an object of £, and

4. {inp: P4 —> Cl}acx is a coproduct diagram in £.

The morphisms from (X, {pa}acx.C, {inalacx) to (Y, {ppl}sey. D, {inp}pcy) are simply the morphisms from C to D in £.

Proposition 11.2. £’ is equivalent to £ and hence an elementary topos.

Proof. The equivalence functor from £’ to £ maps (X, {pa}aex,C, {ina}acx) to C. That in the opposite direction takes C
to ({C},{x— T},C,{1c}H). O

It remains to define a directed system of inclusions on £’. In order to do this, given an object (X, {pa}acx,C, {ina}acx)
of £, it is necessary to extend the family {pa}acx to a family {pa:A — £2}a¢)g| indexed by the class of all objects
in £. In doing so, we make essential use of the requirement that £ interprets equality of objects. Given any object B € |£|
consider the composite

[ Patazs = ] Ala=s ~— B, (38)

AeXx AeXx

where the first map is the sum of the monos Ps[a—p — A[a—p, and the second has as components the canonical maps
Ala—p — B. As a sum of monos, the first map is a mono. (This holds in the context of our intuitionistic meta-theory for
the following reason. For any index set I in the meta-theory for which I-indexed coproducts exist in £, and for any family
{Ci}ier of objects of &, there is a bijection E[][;;Ci, 2] = [];; £1Ci, £2] between subobjects of [[;.; C; and I-indexed
families of subobjects of the respective C; objects. It then follows from the stability of I-indexed coproducts in £, which is
itself a consequence of local cartesian closure, that the subobject of [ [;; C; induced by a family {Q; »— Ci}ics is given by
the sum map [ [;.; Qi —> [l;; Ci.) The second map in (38) is also a mono because it factors as

[]Ara=s — ] Ala=s=B,
{B}

AeX AeXxU

where the first component is the evident mono, and the isomorphism exists as a consequence of the universal properties of
the coproducts involved. The subobject of B defined by (38) above is independent of the choice of coproduct in its definition,
and hence determines pp:B — £2, whence a canonical Pg »— B. There is also a canonical ing : P = C, given by:

Pg= ]_[ Pala=p »— ]_[ Pap=C.

AeXx AeXx

One easily shows that, for B € X', the map pp defined above is equal to that originally specified by the family {pa}acx,
hence the defined Pp also coincides with the corresponding Pj4. Also, the canonical ing: Pg = C defined above is equal
to the coproduct injection specified in the diagram {ing}acx. Thus there is no ambiguity in the notation. Furthermore, for
any K-finite Z D X, it holds that {ing}scz is a coproduct diagram with vertex C. This is a straightforward consequence of
the definition of P4 as a coproduct, as in (38) above.

A morphism f from (X, {pa}acx.C, {inatacx) to (V.{qp}secy. D, {in'g}pcy) is defined to be an inclusion if, for every
A € X there exists a (necessarily monomorphic) map is: P4 = Q4 fitting into the diagram below.
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Py 24 o
in f (39)
i
A QA —— D
m A

where Q4 is obtained by extending the family {qp}pcy to {qB}pc|g|, as above. When f is an inclusion, then, for arbitrary
A € |&|, there in fact exists ig:Pa = Q4 fitting into the diagram above (where, now, P4 is also from the extended
family). This follows easily from the definition of P4 as a coproduct in (38) above. Since {ina}acxuy and {in'g}gecryy are
coproduct diagrams with vertices C and D respectively, it follows that f =]],. xuy ia; hence, by stability of coproducts,
the square in (39) above is always a pullback.

Proposition 11.3. The inclusion maps defined above provide a directed system of inclusions on £'.

Proof. For (si1), we have observed above that, any inclusion map f is a coproduct [],, xuyia of monomorphisms, and
hence itself a monomorphism.

For (si2), we must show that there is at most one inclusion between any two objects. But, given objects (X, {pa}acx,C,
{ina}acx) and (I, {qg}pecy. D, {in'p}pcy), each mono iy, for A € X, in diagram (39), is uniquely determined by the left-
hand triangle. The inclusion f can thus exist only in the case that all the uniquely determined i4 maps exist, in which case
f is itself uniquely determined by the C being the vertex of the coproduct diagram {ing}acx.

For (si3), consider any monomorphism m into (X, {pa}acx, C,{ina}acx) given by a monomorphism m:P »— C in &.
For each A € X define p/,: A — 2 to be the characteristic map for the top edge of the diagram below, constructed by
pullback.

P Py A
_
in’y ing
P C
m

Then, as is easily seen, the mono m is an inclusion map from the object (X, {p/}acx, P, {iNa}acx) to (X, {pa}acx.C,

{ina}acx)-
For (si4), suppose we have

fi(X Apatacx, C {inadacx) — (V. {da}pey Do AN 4} 4cy)
g: (V. antney. D AN ar} 4 0y) —> (2. {rardarez, E{in"ar} pic 2)s
with go f and g inclusions. Thus, for every A € |£|, there exist maps k4 and ja fitting into the diagrams below.

ing in’ 4

Py C Qa D
_ |
ka gof Jja g
A RA ) F A RA T E
m” 4 m- A

By the pullback on the right, each k4 is of the form js oia for a unique ig: P4 = Q4. These i, are easily seen to have
the required properties to show that f is an inclusion.

Finally, we show directedness. Consider objects (X, {pa}aex,C,{ina}acx) and (¥, {qp}gey. D, {in'p}pey). The required
upper bound (in fact the union) is given simply by (X U Y, {ra}acxuy. E, {in”alacxuy), where: r4: A — £2 is the char-
acteristic map for the subobject P4 U Qa — A (where, of course, P4 and Q4 are taken from the extended families
{Pa}acig|- {Qa}acie)); and E and {in”a}acxuy is a coproduct cocone for the family {Ra}acxuy. It is easy to see that both
(X, {pataex.C, {inatacxr) and (Y, {qg}pecy, D,{in'g}pey) are included in this object. There is one remaining niggle. We
have been assuming throughout the paper that directedness should supply a specified upper bound for any two objects.
Thus we have to specify a canonical coproduct (E, {in” a}acxuy). This is achieved as follows. Any coproduct E induces an
obvious canonical epi C +D — E; so simply take E to be the canonical quotient in |£| of the unique equivalence relation
on C + D induced by such quotients. O
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This completes the proof of Proposition 11.1.
To end this section, we turn to the special case of cocomplete toposes.

Proposition 11.4. For any locally small cocomplete topos £, there exists an equivalent topos £ carrying a superdirected system of
inclusions.

Perhaps surprisingly, even in this case only BIST itself is required as the meta-theory for this result.

Proof. To avoid unnecessary repetition, we simply indicate the modifications required to the proof of Proposition 11.1 above.
The first main change is to the construction of £’, where objects are now tuples

(X7 {pA}AEX’ C5 {inA}AEX)

where X is an arbitrary set of objects of £, and conditions (2)-(4) on objects remain as before. The definition of the
inclusion maps also remains unaltered, as does the proof that inclusion maps form a system of inclusions. It remains to
prove superdirectedness. Suppose then that {(X, {p';}acx;, Ci. {in}acx;)}ier is a family of objects of £’. The required upper
bound is then:

(U ‘X.D {rA}AEUieI X E5 {inA}AEUiel X,’) s

iel
where rg : A — 2 is the characteristic map for the subobject (|_;, Pfq) — A, obtained using the cocompleteness of £, and
where E = ]_[AeU- X R4, with {inA}AGUie: x; the corresponding coproduct diagram, again obtained using cocompleteness.

Note that, this time, there is no difficulty in obtaining a canonical E since it can simply be taken to be the specified
coproduct available via cocompleteness. O

11.2. Implementing the structural property

In this section, we prove the proposition below.

Proposition 11.5. For any locally small topos £ with directed system of inclusions Z, there exists an equivalent topos Enws carrying a
directed structural system of inclusions L. Moreover, if Z is superdirected and £ is cocomplete then L is also superdirected.

For the remainder of Section 11.2, let £ be an elementary topos with directed system of inclusions Z.

A membership graph is a structure G = (|G|, Ag,rc) where |G| and A are objects of £ and r¢: |G| — Ag + P|G]| is a
morphism in £. One thinks of |G| as a set of vertices with each vertex x € |G| being either, in the case that r¢(x) = inl(a),
an atom a: Ag, or, in the case that rg(x) = inr(d), a branching vertex with adjacency set d C |G|.

The relation of bisimilarity between two membership graphs G, H is defined, internally in &, as the greatest element
~¢.H :P(|G| x |H|) satisfying:

x~cnuy iff (3a:Ac,b:An.rc(x) =inl@ Ary(y) =inl(h) Aa=ag,a, D)
v (3d:PIG|. e: P|H|.rc(x) = inr(d) ATH(y) = inr(e) A
(V' ed3y eex ~cny)A
(Vy eedx’ edx ~cny)).

making use of the heterogeneous equality on &, supplied by its directed system of inclusions, as defined above Lemma 3.7.
As is standard, ~¢ p is in fact the largest relation satisfying just the left-to-right implication of the above equivalence.
Using this fact, and Lemma 3.7, one easily proves the lemma below.

Lemma 11.6. For membership graphs G, H, I, the following hold internally in £.

1. x~ccx
2. X~¢,u y implies y ~y ¢ X.
3.ifx~cuyandy ~yzthenx~¢z.

One might say that the family of ~ relations is a heterogeneous equivalence relation over membership graphs. In particular,
each ~¢ ¢ is an equivalence relation, which we henceforth write more simply as ~¢.

We now define the topos s over which we shall construct a directed structural system of inclusions. An object of Eqwe
is a triple (D, m, G) where G is a membership graph, D is an object of £, and m:D »— |G| is a monomorphism in .
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Since D is a subobject of |G|, the equivalence relation ~¢ restricts to an equivalence relation on D, and we write simply
d ~¢ d’ rather than m(d) ~g m(d’). Similarly, for notational simplicity, we usually write (D, G) for an object, leaving the
monomorphism m implicit. Of course, rather than resorting to such notational devices, an alternative would be to simply
require D — |G|, so that D determines m. However, since this does not lead to any real simplification, we find it clearer
to restrict usage of the inclusion maps in £ to the one place where they are really essential: the definition of bisimilarity
above.

A morphism from (D, G) to (E, H) is given by a binary relation F between D and E satisfying, internally in &:

(F1) ifd~gd', e~y e’ and F(d,e) then F(d’,e’); and
(F2) for all d: D there exists e: E such that F(d,e);
(F3) if F(d,e) and F(d, e’) then e ~y ¢’

The first condition says that F is saturated under the equivalence relation; the second that F is a total relation; and the
third that F is single-valued up to equivalence. Such relations are easily seen to be closed under relational composition, and
this defines composition in the category Epwt.

Proposition 11.7. &, is equivalent to £ and hence an elementary topos.

Proof. The equivalence functor from &y to € maps (D, m, G) to the quotient D/~¢. The functor in the opposite direction
maps an object A of £ to (A, 14, Aa) where Ay, is the “discrete” membership graph (A, A,inl). O

Next we define the inclusion maps Zyyf in Eqyws. A morphism F from (D, G) to (E, H) is defined to be an inclusion if,
internally in &:

(I) F(d,e) implies d ~¢ p e.

In fact, if F is an inclusion then also d ~¢ y e implies F(d, e), by a straightforward argument combining (F1), (F2), (I) and
Lemma 11.6.

Proposition 11.8. Z,,,s is a system of inclusions on Epwg.

Proof. For (si1), one notes that, in general, a morphism F from (D, G) to (E, H) is a mono if and only if F(d,e), F(d',e’)
and e ~p €’ together imply that d ~¢ d’. This holds for inclusions by Lemma 11.6.

For (si2), for any inclusion F, we have F(d, e) if and only if d ~¢ p e. Obviously this determines F uniquely.

For (si3), suppose that F from (D, G) to (E, H) is a monomorphism. Let E’ be the subobject of E defined internally as
{e:E | 3d:D.F(d,e)}. Easily, the identity relation on E’ is an inclusion from (E’, H) to (E, H), and F factors through this
inclusion. The inverse map from (E’, H) to (D, G) is given by the relation {(e,d):E’ x D | F(d, e)}, which has the required
properties by the characterization of monomorphisms in the proof of (si1) above.

For (si4), suppose we have F:(D,G) — (D’,G’) and I:(D’,G’) — (D”,G”) with I and I o F inclusions. To show
that F is an inclusion, suppose that F(d,d’). By (F2), there exists d” with I(d’,d”), so also (I o F)(d,d”). Then d’ ~¢/ v d”
and d ~¢ ¢ d” because I and I o F are inclusions. Thus indeed d ~¢ ¢ d’, by Lemma 11.6. O

Proposition 11.9. The system of inclusions Ly is directed. Moreover, if Z is superdirected and £ is cocomplete then it is superdirected.

Proof. Consider any two objects (D, G) and (D', G’). Take B to be the specified upper bound for Ag and Ag/, using the
directedness of Z; so we have inclusions i: A¢ — B and i’: A; — B. Define a membership graph H as follows.

|H| =G|+ |G|
Ay =B
i =[(i+P(nD) org, (i’ + P(inr)) org/]: |G| + |G'| — B+ P(IG| +|G'|).

Then (D + D’, H) is easily seen to be an upper bound for (D, G) and (D’, G').

The construction in the case that Z is superdirected and £ is cocomplete is similar. Specifically, superdirectedness is
required to find an object of atoms containing all objects of atoms of the component graphs, and cocompleteness is used to
construct the required membership graph as a coproduct of the original graphs. O

It remains to implement the structural property of inclusions. For this, we define an appropriate powerobject functor on
Enwf such that property (ssi4) of Definition 3.8 is satisfied. Given a membership graph, G, we define its powergraph Pg:G
by:
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[PgrG| = Ac + PG|
Apyc = Ac
PuG = lac + P(r): Ag + PIG| — Ag + P(Ac + PIG)).
Thus:
rpgc (inl(a)) = inl(a)
rpgc (inr(d)) = inr({r¢ (x) | x € d}).

Lemma 11.10. Given graphs G, H, then for any p : |Pg:G| and q: |PgH|,

P ~Puc.PeHq Iff (3a:Ac,b:Ay.p=inl(a) Aq=inl(b) Aa=a; a,b)
Vv (3d:P|G|,e:P|H|.p = inr(d) A q = inr(e) A
(V¥ ed3y eex' ~cuy)A
(Vy' eedx’ edx' ~cn y)).

Proof. Straightforward. O

Given an object (D,m,G) in Enwf, we specify its powerobject Phwi(D,m,G) to be (PD,inr o P(m), PgG). By
Lemma 11.10, one sees that PD/ ~p,c =P(D/ ~¢), thus Pawi(D,m, G) is indeed a carrier for the powerobject on Eqwf.
To specify the membership relation, one first needs to define a binary product in &,y The easiest way to do this is to go
via the equivalence with £ of Proposition 11.7. Thus (D, G) x (E, H) is defined to be the discrete object over the product
(D/ ~¢) x (E/ ~y) in £. The membership relation between (D, m, G) and Ppws(D, m, G) is then given by:

3(j~g) = P(D/~¢) x (D] ~c) = (PD/~pyc) x (D) ~¢).

Although it may seem unnatural to use the “discrete” product above, doing so avoids having to use any of the alternative
more “set-theoretic” products on membership graphs, such as one based on Kuratowski pairing, all of which are more
complex. Although, ultimately, we also shall need such a set-theoretic product in order for inclusions to be structural, we
use Lemma 3.9 to produce it for us, and thus do not need to consider it explicitly.

Proposition 11.11. With powerobjects specified as above, L satisfies property (ssi4) of Definition 3.8.

Proof. Given arbitrary F:(D,G) — (E,H) in &, the action of the covariant powerobject functor produces that
PowtE : Pawe(D, G) — Ppwi(E, H), defined as follows.

(PawfF)(X,Y) iff Vde X.3eeY.F(d,e) AVeeY.ad e X.F(d,e).
Suppose now that F is an inclusion and (PpwiF)(X,Y). Then Vd € X.3e € Y.d ~g,y e and Ve € Y.3d € X.d ~¢ K e, because F
is an inclusion. Thus X ~PyG PgH Y by Lemma 11.10, This shows that Pp¢F is indeed an inclusion, as required. O
Corollary 11.12. [t is possible to specify topos structure on Enr Such that the directed system of inclusions Ty is structural.

Proof. Apply Lemma 3.9. O

The above corollary finally completes the proof of Proposition 11.5.

The topos Enws represents sets using membership graphs without any well-foundedness assumption. As one might ex-
pect, when the forcing interpretation is considered over &, a non-well-founded set theory results; see Section 11.4 below
for details. We end this section with a straightforward variation on the construction of &, that instead gives rise to a set
theory of well-founded sets.

A membership graphs G is said to be well-founded if, internally in &,

VX :P|G|.[(Vx:]G|.((3a: Ag.rc(x) =inl(@)) — x € X) A
(@Y :PIGl.r¢(x) =inr(Y) AY € X) > x € X)]
— X=]G|.

The topos & is defined to be the full subcategory of &, of objects (D, m, G) where G is well-founded. Similarly, define
Zwf to be the restriction of Z,s to objects of Eyy.
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DS S(x) v —=S(x)
TC ZdyxeyaAVzeyVwezwey
Re-Ind  (Vx.!¢) — (Vx.(Vy € x.¢[y]) — ¢[x]) = Vx.¢[x]
MC Sx) ATeU*ANyexSr(y)—ry)x)A
VX' Cx.(Vy ex.(SC(y) > Vver(y).vex)—>yex)—>x =x)
—Ac e UXVy €x.(=Sr(y)) = c(y) =r(y) A
SeW) = cy)={cv)|very}h
AFA  S(X) ATeU*A(Vy ex.S(r(y)) = r(y) Cx)
— Alce UXVy € x.(=Sr(y)) = c(y) =r(y)) A
Se) = c(y)={cv)[very}h

Fig. 7. Additional axioms for BIZFA and BINWFA.

Proposition 11.13.

1. The equivalence between £ and Ens cuts down to an equivalence between £ and Eys.
2. The specified powerobject structure on Epys restricts to Es.

3. Zwt is a directed structural system of inclusions on Ey.

4. If T is superdirected and £ is cocomplete then Z,y¢ is superdirected.

We omit the proof, which is a routine verification that the various constructions all preserve well-foundedness.
11.3. Proofs of Theorems 3.10 and 3.18

Theorems 3.10 and 3.18 are finally proved by a simple combination of the results of the previous two sections.
The following proposition is the sharper version of Theorems 3.10 referred to below the statement of the theorem.

Proposition 11.14. Given a topos £ that interprets equality of objects, there exists an equivalent category £’ carrying a dssi Z' relative
to specified topos structure on £'.

Proof. Combine Propositions 11.1 and 11.5. O
The proposition below simply restates Theorem 3.18.

Proposition 11.15. For any cocomplete topos £, there is an equivalent category &' carrying an sdssi T’ relative to specified topos
structure on £'.

Proof. Combine Propositions 11.4 and 11.5. O
11.4. The set theories BIZFA and BINWFA

As discussed in Section 2, the axioms comprising BIST formalize the constructions on sets that are useful in everyday
mathematical practice. Nevertheless, there are many standard set-theoretic principles not present in BIST. In this section,
we define two further set theories: BIZFA (Basic Intuitionistic Zermelo-Fraenkel set theory with Atoms) and BINWFA (Basic
Intuitionistic Non-Well-Founded set theory with Atoms), which are obtained by extending BIST with just such principles. The
rationale for introducing these theories at this point is that BIZFA and BINWFA are validated by the forcing interpretation
in the categories &yf and Enyf, constructed in Section 11.2, respectively. Thus both set theories are compatible with the
internal logic of every elementary topos, and hence conservative over HAH.

The theories BIZFA and BINWFA are defined as follows

BIZFA™ = BIST™ + DS + TC 4+ Re-Ind 4+ MC BIZFA =BIZFA™ + Inf
BINWFA™ =BIST™ + DS + TC + AFA BINWFA = BINWFA™ + Inf,

where the new axioms are listed in Fig. 7. We now examine these axioms in more detail.
The axiom DS (Decidable Sethood) makes a clean division of the universe into sets and atoms (i.e. non-sets). By
Lemma 2.2 and Corollary 2.6, bounded Separation, bSep, is derivable in BIZFA™ + DS, hence in both BIZFA™ and BINWFA™.
The axiom TC (Transitive Containment) simply states, in the obvious way, that every element of the universe (whether a
set or not) is a member of a transitive set.
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The schema Re-Ind (Restricted Membership Induction) is an intuitionistically acceptable formulation of the axiom of
Foundation.?” The axiom is formulated for restricted properties only. As a special case, one obtains membership induction
for bounded formulas. Also of interest is the full membership induction principle:

e-Ind  (Vx.(Vy € x.¢[y]) > ¢[x]) — Vx.4[x].
Proposition 11.16. BIZFA™ + Sep I e-Ind.
Proof. Immediate. O

The final axiom of BIZFA is MC (Mostowski Collapse). In this axiom, the function r represents a directed graph structure
on a set x of vertices. For each vertex y € x, either r(y) is an atom (i.e. =S(y)), in which case y is a leaf vertex and r(y)
is its labelling; or, if r(y) is a set, then r(y) C x gives the adjacency set of y. The second line of the axiom imposes, by
way of stating the appropriate induction principle, the requirement that, as a relation, r is co-well-founded. The axiom then
states that any vertex in such a co-well-founded graph collapses to an element of the universe by way of a function c that
preserves the atoms in x and maps the graph relation on x to the membership relation. One can prove in BIZFA that c is
unique.

In spite of its complexity, MC is a natural axiom to consider together with DS, TC and Re-Ind. Indeed, TC and Re-Ind
imply that the membership relation on the transitive closure of any set x yields a co-well-founded graph, as above. MC is
a kind of ontological completeness axiom, expressing that every such graph is represented by a set. Note also that DS is
used implicitly in the formulation of MC, where the requirements on the function ¢ make a case distinction on the basis of
whether r(y) is a set or not.

The set theory BINWFA replaces the two axioms Re-Ind and MC with AFA, which is a straightforward adaptation, to
a universe with atoms, of Honsell and Forti's Anti-Foundation Axiom, as popularized by Aczel [2]. Formally, the axiom
AFA is simply a strengthening of MC with the well-foundedness assumption on the membership graph dropped. Because
well-foundedness is no longer assumed, in the case of AFA it is necessary to assert the uniqueness of the function c.

As stated earlier, the reason for introducing the set theories BIZFA and BINWFA is because they are validated by forcing
interpretations in the toposes with systems of inclusions constructed in Section 11.2. We assert this formally here, but omit
the lengthy (though routine) verification entirely.

Proposition 11.17. Let Eqwr, Znwe, Ews and s be as constructed in Section 11.2. Then:

1. (Ews, Zws) = BIZFA™.
2. (Enwt, Inwr) = BINWFA™.

Since, by Sections 11.1 and 11.2, every elementary topos (interpreting equality of objects) is equivalent both to toposes
of the form &,f and to toposes of the form &y, it follows that any topos can be construed both as a model of BIZFA™
and as a model of BINWFA™. It seems plausible that the theories BIZFA~ and BINWFA™ are actually complete relative to
interpretations in toposes with sdsi’s of the form (Ewf, Zwr) and (Enws, Znws) respectively. However, we have not investigated
this possibility in detail.

We end the section with some simple observations about BIZFA™ and BINWFA™.

Lemma 11.18.

1. BIZFA + vN-Inf.
2. BINWFA I vN-Inf.

Proof. For statement 1, one verifies that, for each n € N, the class {x € N | x <n} is a set. Define r e UN by r(n) ={xe N |
x < n}. One verifies that this relation is co-well-founded (this amounts to deriving “course of values” induction for restricted
properties on N). Thus MC gives a unique c € UV satisfying the specified conditions. One verifies that the image of c, which
is a set by Replacement, satisfies the properties required by vN-Inf.

Statement 2 is proved identically, using AFA rather than MC, thus there is no need to verify that the relation is co-well-
founded. O

The above is a typical, though very simple, application of collapsing a relation to a set. In [32], Mathias makes a strong
case for the general usefulness of such constructions. Indeed, the axiom MC (there formulated as a classically equivalent
axiom called H) plays a central role in his paper.

22 As has been frequently observed (see e.g. [47]), many classical formulations of Foundation imply unwanted cases of excluded middle.
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We end our discussion by showing that the restrictedness condition on the membership induction axiom of BIZFA is
essential. As happens also for the Separation, Induction and Excluded Middle axioms, if the restrictedness condition on
membership induction is dropped, then the proof-theoretic strength of the set theory goes beyond that compatible with
every elementary topos.

Proposition 11.19. BIZFA + e-Ind - Ind.

Proof. Working in BIZFA, by Lemma 11.18, let Nyn be the smallest set containing ¢ and closed under the operation y —
y U {y}. One easily shows that Nyy is isomorphic to the N already constructed. Now assume €-Ind. By the above, it suffices
to prove Ind for Nyy rather than N. For any formula ¢[x], consider v [x]-€-Ind, where v is the formula x € Nyy — ¢[x].
Then ¢[x]-e-Ind simplifies to

(Vx € Nun.(Yy € x.6[y]) = ¢[x]) = Vx € Nyn.p[x].

But the membership relation on the (transitive) set Nyy agrees with the arithmetic relation <. So the above states

(Vx € Nun.(Yy < x.8[y]) — ¢[x]) — Vx € Nyn.p[x].

This is “course of values” induction, which directly implies the simple induction of ¢[x]-Ind. O
Corollary 11.20. BIZFA + e-Ind - Con(HAH).

Proof. By Proposition 2.18. O

12. Realizability toposes

In this section, we finally prove Theorem 3.19. For any realizability topos, we construct an equivalent category carrying
a superdirected structural system of inclusions with respect to specified topos structure on the category. Throughout this
section, our meta-theory is ZFC.

We briefly recall the construction of realizability toposes. The reader is referred to any of [21,23,39] for the omitted de-
tails. Throughout this section, let (A, -) be an arbitrary but fixed partial combinatory algebra (pca). A non-standard predicate
on a set X is given by a function from X to P(A). Kleene’s realizability interpretation of the propositional connectives (gen-
eralised to the pca A) defines an implication preorder on non-standard predicates and a Heyting (pre)algebra structure over
this order. Also, non-standard predicates support universal and existential quantification satisfying the usual intuitionistic
laws. Thus, we can use first-order intuitionistic logic to define and manipulate non-standard predicates. For a first-order
formula ¢, defining a non-standard predicate, we write a |- ¢ to mean that the element a € A realizes ¢.

The realizability topos RT(A) is constructed as follows. Objects X are pairs (|X|,=x), where |X| is a set, and =x is a
non-standard relation (i.e., a function from |X| x |X| to P(A)) such that the formulas below are realized.

X=xYy—>Jy=xX
X=XYANY=XZ—>X=x2Z.

A functional relation F from X to Y is given by a function F:|X| x |Y| — P(A) such that the formulas below are realized.

x=xX AFx,y)Ay=yy — F(x.y) (40)
Fx,y) > x=xx (41)
FR)AF(xY)—>y=yy (42)
Xx=xx—3Jy.Fx,y). (43)

Two functional relations F, G from X to Y are considered equivalent if the formula below is realized.

F(x,y) < G(x, y).

Morphisms from X to Y are equivalence classes of functional relations. A functional relation F represents a monomorphism
in RT(A) if and only if (44) below is realized, and an epimorphism if and only if (45) is realized.

Fx, ) AF(X,y) > x=x X (44)
y=yy— Ix.F(x,y). (45)

Note that the strictness requirement of functionality (41) is implied by (44).
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The topos structure on RT(A) is described explicitly in [21,23,39]. For later use, we recall a characterization of subobjects,
and the construction of the powerobject P(X) of an object X. A non-standard predicate P on |X| is said to be strict if

P(x) > x=xx
is realized, and extensional if
P(x) Ax=x X — P(X)
is realized. Each non-standard predicate P defines a subobject m: Q »— X where |Q | = |X|,*3

x=q X & P(X) Ax=xX,

and the monomorphism m is given by the non-standard relation

M(x,x') & P(x) Ax=xX.
Up to isomorphism, every subobject of X arises as m: Q »— X for some strict extensional predicate P.
To describe the powerobject P(X), the underlying set |P(X)| is the set of all non-standard predicates on |X|. The equality
relation q =p(x) ¢’ is given by the formula
Epx)(@) AVX.q(x) < q'(%),

where Ep(x)(q) is the formula:

(Vx.q(x) = x=x %) A (VXX .q(x) Ax=x X' — q(x')),

expressing the strictness and extensionality properties.

We next construct the equivalent category that will carry the superdirected structural system of inclusions. This category
is based on McCarty’s realizability interpretation of IZF [33], which is defined over a realizability-based version of the
cumulative hierarchy. For ordinals o, we define sets V (A)y of names of sets by:

V(Aa+1=P(A x V(A)y)
V(A);, = U V(A), X alimitordinal.

a<i

Note that we have V(A)g =¥ and « < B implies V (A)y € V(A)g. Also, up to isomorphism, V (A)y4+1 may be identified with
P(A)Y Pe, Define:

V(A):UV(A)O,.

We may identify a € V (A) with the class function mapping each b € V(A) to {e | (e, b) € a} € P(A). For notational simplicity,
we write simply a(b) for this set of realizers, treating a as a function whenever convenient. Define non-standard predicates
=y (a) and €y ) on V(A) x V(A) by (implicit) transfinite recursion:

X=y@y < VZ.(X(Z) —> ZEy(a) y) A (y(z) — ZEy(a) X)

Xeyp Yy zz=ya xAYyQ2).

Using the two non-standard predicates above as interpretations for = and €, McCarty showed that the usual equality axioms
and all axioms of IZF are realized over the class V(A) of names [33]. As a simple instance of this, the reflexivity property
X =y (a) X has a uniform realizer, i.e., there exists e, € A such that e, I-a =y ) a, for all a € A.

For later use, we single out some of the structure of the universe V (A). We define the domain of a name a € V (A), by:

dom(a) = {b € V(A) | a(b) # ¥}.
One obtains a name for the powerset of a € V (A), by:

Pyay(@ = {(e,c) | c € A x dom(a) and e |- VX.c(x) — X €y (a) a},

where, for convenience, c is treated as a function from dom(a) to P(A).
For any a € V(A), we define an object I(a) of RT(A) as follows.

23 We use < as notation for defining non-standard relations. The expression on the left is defined to have the same realizers as the formula on the right.
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|I(@)| = dom(a)
X=l Y < XEVv@A) ANX=V(@) Y-

We write Mc(A) for the category whose objects are names in V (A), and whose morphisms and composition are inherited
from RT(A) by the definition Mc(A)[a, b] = RT(A)[I(a), I(b)]. Thus I is, by definition, a full and faithful functor from Mc(A)
to RT(A).

Lemma 12.1. For all a € V (A), it holds that I(Py (a)(a)) = P(I(a)) in RT(A).

Proof. By the definitions above, we have that [P (I(a))| consists of all functions from dom(a) to P(A), and [I(Pya)(a))] is
the set

{c € A x dom(a) | Fe.elF Vx.c(x) > X €y (a) a}.

The required isomorphism from I(Pya)(a)) to P(I(a)) is given by the non-standard relation

R(c,q) & Vx.(q(x) < Ty.x=y(@a) ¥ AC(})).

where the quantifiers range over dom(a).
As an example, we verify just one of the conditions, (40)-(45), required to show that R is an isomorphism: the single-

valuedness property (40):

R(c,q) AR(c.q') = q=pu@) q-
To avoid explicitly carrying around realizers, we reason in the intuitionistic logic of non-standard predicates. Suppose R(c, q)
and R(c, q') hold. We need to show that g =p(;(q) ¢, i.e., that:

Epi(@) (@) AVXG(X) < q' (%),
using the description of powerobjects in RT(A) given above. The existence predicate Ep(jq)) (q) expands as:

(Vx.q(x) > X €Ev(ay A AX=y(a) X) A

(VX X'.q(x) Ax €vay anx =y X — q(X)),

which simplifies to the equivalent:

(Vx.q(x) = x €y (a) a) A (Vx, X.q(x) Ax =y a) ¥ — q(X)),

because =y 4) has a uniform realizer for reflexivity (as discussed above), and a realizer for x €y 4) a in the extensionality
clause can be obtained from one for q(x) using the strictness clause.

To show strictness, Vx.q(x) — x €y (a) a, assume q(x). Then, because R(c, q), there exists y € dom(a) such that x =y 4) y
and c(y). But c(y) implies y €ya) a, by the definition of |I(Pya)(a))|. So we have x =y(4) y and y €y (a) a. Thus indeed
X €y a.

To show extensionality, Vx, x".q(x) A x =y ) X' — q(x), suppose that q(x) and x =y ) X’ hold for x, X' € dom(a). Because
R(c, q), there exists y € dom(a) such that x =y 4y y and c(y). Then y is such that X' =y (4) ¥ and c(y). So, by definition of
R(c, q), indeed q(x').

Finally, for the equality condition, Vx.q(x) <> q’(x), because R(c,q) and R(c,q’) hold, both g(x) and q’(x) are equivalent
to Jy.x=y@y yAcy). O

Lemma 12.2. For any subquotient X <«—— - »— I(a) in RT(A), wherea € V (A), there exists b € V (A) such that I(b) = X in RT(A).

Proof. We first prove the case for a subobject m:Q »— I(a). We can assume this is in the canonical form described
earlier, determined by a strict extensional non-standard predicate P on I(a). Define c € V(A) by:

c={(e,b) | b edom(a) and el Po (b) Ab €y (a) a}.
Then, it is easily seen that the formula
Zeyup c< Po@ Azeyu)a,
has a uniform realizer, for all z € dom(a). Using this, one shows that the non-standard relation

]z, x) & zey@m CAZ=y @)X,

defines a monomorphic functional relation from I(c) to I(a). Also, the non-standard relation
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R(z,y) & zeyacAz=yn Y,

defines an isomorphism from I(c) to Q. (We note, for later reference, that this is an isomorphism of subobjects of I(a).)
It remains to show the closure under quotients. If g: I(c) — X is a quotient, then we have:

X e Py e P(160) Z 1(Py (4 (©).

using Lemma 12.1 for the isomorphism. Hence, by closure under subobjects, there exists b with I(b) = X. O
Lemma 12.3. For every X in RT(A), there exists a € V (A) with X = I(a).

Proof. Recall from [21,23,39] that the global elements functor I" : RT(A) — Set has a full and faithful right adjoint V sending
a set S to the object V(S) in RT(A) with underlying set S and with i =y(s) j defined to be the set {e € A|i = j}. In RT(A)
every object X appears as a subquotient of some V(S), cf. [21, Proposition 2.2]. Thus, by Lemma 12.2, it suffices to show
that all objects of the form V(S) are isomorphic to some object in the image of I. Since V preserves monos and every set
S is contained in some V, (in Set) it suffices to show that every V(V) is isomorphic to some object in the image of I.
Again, by Lemma 12.2, it suffices to show that V(Vy) appears as a subobject of some object in the image of I. For every «
define v, to be the name A x V (A)y. We show that V(Vy) »—— I(vy).

First we construct set-theoretic functions n:V — V(A) and g:V(A) — V by recursion on the membership relation so
that:

nx) =Ax{ny)|yex} gl ={gb)|3e.(e,b) ca}.

One easily shows that: (i) g(n(x)) = x; (ii) if a =y (a) b is realized then g(a) = g(b); (iii) if x € Vy then n(x) € V(A)y; and
(iv) if ae V(A)y then g(a) € V.
Define the non-standard relation

Ny (x,0) & acy@ Vo Aa=ya) nx),

where x ranges over V, and a ranges over dom(vy) = V(A),. We show that this represents the required mononorphism
V(Vg) = [(vy). Thus we must verify (40), (42), (43), and (44).

We consider just two cases. For the totality property (43), the assumption that x =vyy, x just means x =X, so gives
no information. We must thus find ay such that Ny (x,ay) has a uniform realizer for all x. We observe this holds for
ax =n(x). On the one hand reflexivity n(x) =y ) n(x) is realized uniformly (by e, as observed when we introduced the
McCarty model). On the other hand, for any a € V(A), and realizer e, we have that e € v, (a), so the pair (e, e,) realizes
V(@) Aa=y)a. That is, (e, ey) is a uniform realizer for a ey a) vq, for all a € V(A)q. In particular, it is a uniform realizer
for every n(x).

For the injectivity property (44), suppose Nq(x,a) and Nq(x',a) hold. Then n(x) =y ) a =v(a) n(x’). So, by observations
(i) and (ii) above, x = g(n(x)) = gn(x))=x". O

Proposition 12.4. The functor I : Mc(A) — RT(A) is an equivalence of categories. Hence Mc(A) is a topos.

Proof. The functor I is full and faithful by definition, and essentially surjective by Lemma 12.3. Using choice, it is thus an
equivalence. O

Definition 12.5. A functional relation I from I(a) to I(b) is said to be an inclusion from a to b in Mc(A) if:

I(x,y) <> Xx€y@ayanx=yvay

is realized uniformly for x € dom(a) and y € dom(b).

If a functional relation I is an inclusion from a to b then the formula

X€y@a)ad—>XEy (@A) b

has a uniform realizer for all x € V(A). Moreover, if the above formula is uniformly realized then the relation x ey,
a A Xx =y y is functional and hence an inclusion. Thus there is an inclusion from a to b if and only if a € b holds in
McCarty’s realizability interpretation of IZF, for which we write a Cy 4 b. It is furthermore easily verified that an inclusion
is a mononomorphism in RT(A) hence in Mc(A), and that there is at most one inclusion between any a and b.

Proposition 12.6. The inclusions defined above form a superdirected system of inclusions on Mc(A).
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Proof. We first show that Z, is a system of inclusions on Mc(A). Conditions (si1), that every inclusion is monic, and (si2),
that there is at most one inclusion between a and b, have already been observed above.

For (si3), suppose I(b) »— I(a) is a mono in Mc(A). Then there is an isomorphic mono Q »— I(a) in RT(A) of
the standard form, determined by a strict extensional non-standard predicate P on I(a). Construct c¢ as in the proof of
Lemma 12.2. The functional relation J from I(c) to I(a), defined there, is an inclusion by definition, and it was noted that
the subobject it defines is isomorphic to Q =— I(a) hence to I(b) = I(a), as required.

For (si4), suppose we have inclusions i:I(b) — I(a) and j:I(c) = I(a) and a map m:I(c) — I(b) such that io
m = j. We must show that m is an inclusion. Let I, J, M be functional relations representing i, j, m respectively. Let x, y, z
range over dom(a), dom(b), dom(c) respectively. We must show that

M(z,y) < zev@ayCAZ=yv@n) Y

is realized uniformly in z, y. We work in the logic of non-standard predicates. For the left-to-right implication, suppose
M(z, y). Because I is total, there exists x with I(y,x). Since M(z,y) and I(y,x) and j=1iom, we have J(z, x). Hence
Z €ya) ¢ and z =y (a) X because J is an inclusion. But also x =y (4) y because I(y,x) and [ is an inclusion. Thus indeed
Z ey(a) ¢ and z =y(a) y. Conversely, suppose z €y ) ¢ and z =y ) y. Since J is an inclusion, ¢ Cy4) a, hence z ey ) a;
that is, there exists x € dom(a) with x =y (a) z. Since z eya) ¢ and z=y ) x and ] is an inclusion, we have J(z, x). So,
because j =iom, there exists y’ € dom(b) with M(z, y’) and I(y’, x). Because I is an inclusion, y’ €y )b and y' =y x.
But also x =y (a) ¥, 0 ¥’ =v(a) ¥ and ¥’ €y(a) b. Thus, by the extensionality of M, it indeed holds that M(z, y).

Superdirectedness can be seen as follows. Suppose A is a subset of V (A). Then its union b :=|J.A is also an element of
V(A) and for every a € A we have a Cy ) b, so indeed there is an inclusion a — b. O

To verify the structural property of the inclusions, we use Lemma 12.1 to specify powerobjects on Mc(A). For an object
a, the carrier of the specified powerobject is Py a)(a), with the membership relation induced via the isomorphism of
Lemma 12.1. The covariant powerobject functor is then described explicitly as mapping a functional relation F from I(a) to
I(b) to the functional relation F, from I(Py4)(a)) to I(Pya)(b)) defined by:

Fi(z, w) & (VX.z(x) > 3y.y €vay w A F(x, )
AVYYy.w(y) = Ixx ey zAFx,y)), (46)

where the x and y quantifiers range over dom(a) and dom(b) respectively.
Proposition 12.7. With powerobjects specified as above, the inclusions on Mc(A) satisfy property (ssi4) of Definition 3.8.

Proof. Let I represent an inclusion from a to b. We must show that I,, as defined in (46), represents an inclusion from
Py (ay(a) to Pyay(b). We must show that

I(z,w) < zey@a Pvay(@ Az=yayw

holds uniformly for z € dom(Py 4)(a)) and w € dom(Py (a)(b)).

For the left-to-right implication, suppose that I,(z, w). Trivially z €y (a) Pv(a)(a), because z =yp, 4 @) Z since I, is a
functional relation. To verify z =y ) w, we show that w(y) — y €y (a) z for all y € dom(b). The proof that z(x) — x ey a) w
for all x € dom(a) is similar. If w(y), then, by definition of Py )(b), we have that y ey b. Because I,(z, w), we have by
(46) that there exists x € dom(a) with x ey (a) z and I(x, y). Since [ is an inclusion x =y (4) y, thus y €y (a) z as required.

For the right-to-left implication, suppose that z ey ) Pya)(a) and z =y ) w hold. We must show that I,(z, w). We
show the second conjunct of (46), namely:

Vy.w(y) — dx.x EVA)ZNXEYA) ANX=yA) Y,

where the definition of I(x, y) has been expanded. The first conjunct can then be shown in a similar manner. Suppose
then that w(y) holds for y € dom(b). Since z =y ) w, we have that y €y ) z. Thus, by definition of €y 4), there exists
x € dom(a) with x =y(4) y and z(x). Whence: x €y (a) z, because X =y ) ¥ €v(a) Z; and X €y(a) a, because z(x) by the
definition of Pya)(a); and x =y (4) y is already established. O

Taken together, Propositions 12.4, 12.6 and 12.7 complete the proof of Theorem 3.19: Mc(A) is a topos equivalent to
RT(A) that carries a superdirected system of inclusions which, by Lemma 3.9, is structural relative to suitably specified
structure on Mc(A).

We make one final remark on the contents of this section. Our definition of the category Mc(A), specifies its hom-sets
in terms of those of RT(A) via the functor I. An alternative, but more complex approach would be to give an intrinsic
definition of the hom-sets of Mc(A) using set-theoretic function spaces in V(A), defined via McCarty’s interpretation of IZF.
The advantage of the second approach is that, when Mc(A) is defined intrinsically, its equivalence with RT(A) amounts to
an equivalence between McCarty’s model of IZF and the associated realizability topos. It would be interesting to compare
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this equivalence with the result of Kouwenhoven-Gentil and van Oosten [27] (see also [39, §3.5.1]), where McCarty’s inter-
pretation of IZF is shown to coincide with the interpretation of IZF given by an initial “ZF-algebra”, in the sense of [25], in
RT(A) (assuming an inaccessible cardinal).

13. Related work

The research presented in this paper was carried out in a three year period from 2000 to 2003, and the results of Parts I
and II of the paper were announced without proof in [5]. The completion of the paper was delayed by various circumstances
and, meanwhile, there have been several further developments in algebraic set theory, some of which build on the approach
presented here.

In [6], Awodey and Forssell have given an account of the ideals construction avoiding the need for a system of inclusions.
For an arbitrary I7-pretopos £ they consider the category Sh(€) of coherent sheaves over £ which serves as a category of
classes inside which sets are identified as the representable objects and families of sets are identified as the representable
morphisms. In general equality on an object of Sh(£) need not be a representable monomorphism, a property needed for
Axiom (S3). In loc.cit. they characterise those objects A in Sh(£) for which equality is representable as those presheaves over
& which can be obtained as directed colimits of monos of representable objects, so-called ideals in £, generalising the ideals
of inclusions in the present paper. This more general approach was applied by Awodey and Warren [7] to obtain results
analogous to those in this paper for more general classes of pretoposes, relating these to “predicative” (or “constructive”)
versions of BIST, via axioms for small maps generalising those of the present paper.

A parallel project, starting with [35,36], has generalised the original axioms for small maps from Joyal and Moerdijk [25]
to the “predicative” (“constructive”) case, focusing in particular on incorporating well-founded trees (W-types) in the theory.
This programme has recently culminated in a series of papers by van den Berg and Moerdijk [10,9,11,12], which provides
a general axiomatization encompassing also the categories of ideals. One characteristic of these papers is a focus on more
familiar intuitionistic set theories (IZF, CZF) rather than the non-standard set theories we consider.

Introductions to the developments mentioned in the previous two paragraphs can be found in [4] and [10] respectively.

In a recent preprint [42], Shulman has given an interpretation of a first-order logic allowing quantification over both
elements and objects of a pretopos. His interpretation is closely related to the forcing semantics we give for unbounded
quantification, although an important difference is that his logic does not express equality between objects. Not only is
this a very reasonable omission from a category-theoretic perspective, but it also allows the forcing relation to be defined
directly over the pretopos, without requiring further structure on it (such as our notion of dssi). Shulman calls his logic
“structural” set theory and shows that he can recover within it standard membership-based “material” set theories, using
an adaptation of the transitive-object-based construction of Cole, Mitchell and Osius [34,14,40]. Nevertheless, arguably, it
is structural set theory itself which provides the more natural language for mathematics, and Shulman shows that many
set-theoretic principles can be formulated in this setting. For example, full Separation is naturally a structural principle, in
which guise it defines the notion of autological topos, capturing exactly those elementary toposes in which (structural) full
Separation holds. Given Proposition 4.9 of the present paper, we expect that the existence of an sdssi in an elementary
topos is a sufficient condition for the topos to be autological.
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