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§ 1. The Problem of consistency in axiomatics as a logical deci-

sion problem.

The state of research in the field of foundations of mathematics, to

which our presentation is related, is characterized by three kinds of investi-

gations:

1. the development of the axiomatic method, especially with the help

of the foundations of geometry,

2. the founding of analysis by today’s rigorous methods through the re-

duction of the theory of magnitudes to the theory of numbers and

sets of numbers,

3. investigations in the foundations of number theory and set theory.
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A deeper set of tasks is linked to the standpoint reached through these

investigations, arisen on the base of methods [delete: are] subjected to

stricter demands; these problems involve a new kind of dealing with the

problem of the infinite. We will introduce these problems by considering

axiomatics.

The term ‘axiomatic’ is used partly in a wider, and partly a narrower

sense. We call the development of a theory axiomatic in the widest sense

of the word if the fundamental concepts and presuppositions as such are

put on top and marked as such and the further content of the theory is

logically derived from these with the help of definitions and proofs. In this

sense the geometry of [sc here and throughout] Euclid, the mechan-

ics of Newton, and the thermodynamics of Clausius were axiomatically

founded.

The axiomatic point of view was made more rigorous in Hilbert’s “Foun-

dations of Geometry”. The greater rigor consists in the fact that in the

axiomatic development of a theory one keeps of only that portion of the

objective material of intuition from which the fundamental concepts of

the theory are formed which is formulated as extraction in the axioms;

abstracting, however, from all remaining content. Another factor in ax-

iomatics in the narrowest sense coming along is the existential form. It

serves to distinguish the axiomatic method from the constructive or ge-

netic method of founding a theory.1 Whereas in the constructive method

|2the objects of a theory are introduced merely as a family [one has to

1See for this comparison Hilbert ’s Grundlagen der Geometrie: Über den

Zahlbegriff, 1900.
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obey the Gattung–Art (genus–species) distinction in German] of

things (Brouwer and his school use the word “species” in this sense.); [omit:

but] in an axiomatic theory one is concerned with a fixed system of things

(or several such systems) which constitutes a previously delimited domain

of subjects for all predicates from which the statements of the theory are

constituted.

Except in the trivial cases in which a theory has to do just with a finite,

fixed totality of things, the presupposition of such a totality, of a “domain of

individuals”, an idealizing assumption joining the assumptions formulated

in the axioms.

It is a characteristic of this tightened kind of axiomatics resulting

from abstraction from material content and also the existential form — we

will call it “formal axiomatics” for short — that it requires a proof

of consistency ; whereas contentual axiomatics introduces its fundamental

concepts by reference to known experiences and its basic principles either as

obvious facts which one can make clear to oneself or as extracts from com-

plexes of experiences; [footnote with alternative translation omitted]

thereby expressing the belief that one is on the track of laws of nature and

at the same time intending to support this belief through the success of the

theory.

[delete: However,] Formal axiomatics, as well, needs in any case cer-

tain [delete: a ... amount of] evidences in the performance of deductions

as well as in the proof of consistency; [delete: there is] however, with the

essential difference that this kind of evidence [delete: required] does not

depend on any special epistemological relation to special field, but rather it
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is one and the same for every axiomatization, namely that primitive kind of

knowledge which is the precondition of every exact theoretical investigation

whatsoever. We will consider this kind of evidence more closely.

The following aspects are especially important for a correct evaluation

of the significance for epistemology of the relationship between contentual

and formal axiomatics:

Formal axiomatics requires contentual axiomatics as a supplement, be-

cause only in terms of this supplement can one give instruction in the choice

of formalisms and, moreover, in the case of a given formal theory, give an

instruction of its applicability to some domain of reality.

On the other hand we cannot just stay at the level of contentual axiomat-

ics, since in science we are, if not always, so nevertheless predominantly

concerned with such theories |3 which get their significance from a simpli-

fying idealization of an actual state of affairs rather than from a complete

reproduction of it. A theory of this kind cannot get a foundation through

a reference to either the evident truth of its axioms or to experience; rather

such a foundation can only be given when the idealization performed, i.e.

the extrapolation through which the formations of concepts and the prin-

ciples of the theory come to overstep the reach either of intuitive evidence

or of data of experience, is understood to be consistent. Furthermore,

reference to the approximate validity of the principles is of no use for the

recognition of consistency; for an inconsistency could arise just because a

relationship which holds only in a restricted sense is taken to hold exactly.

We are therefore forced to investigate the consistency of theoretical

systems without considering matters of fact and, with this, we are already
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on the standpoint of formal axiomatics.

As to the treatment of this problem up until now, both in the case of

geometry and of branches of physics, this is done with the help of the

method of arithmetizing : one represents the objects of a theory through

numbers and systems of numbers and basic relations through equations and

inequalities in such a way that on the base of this translation the ax-

ioms of the theory become either arithmetic identities or provable assertions

(as in the case of geometry) or (as in physics) a system of conditions the

simultaneous satisfiability of which can be proved on the basis of certain

arithmetic existence assertions. In this procedure the validity of arith-

metic, i.e. the theory of real numbers (analysis) is presupposed; so we come

to the question of what kind this validity is.

However, before we concern ourselves with this question we want to see

whether there isn’t a direct way of attacking the problem of consistency. We

want to get the structure of this problem clearly before our minds, anyway.

At the same time we already want to take the advantage to familiarize

ourselves a bit with logical symbolism, which proves to be very useful for

the given purpose and which we will have to consider more deeply in the

sequel.

As an example of axiomatics we take the geometry of the plane; and for

the sake of simplicity we will consider only [delete: the parallel axiom

plus] the axioms of the geometry of position (the axioms which are presented

as “axioms of connection” and “axioms of order” in Hilbert’s “Grundlagen

der Geometrie”) together with the parallel axiom. For our purpose it

suggests itself to diverge from Hilbert’s axiom system by not taking points
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and lines |4 as two basic systems of things but rather to take only points as

individuals. Instead of the relation “points x and y determine the line g”

we use the relation between three points “x, y, z [“and” deleted] lie on

one line” for which we use the designation Gr(x, y, z) [Expression

in brackets deleted and formula changed]. Betweenness comes as a

second fundamental relation to this relation: “x lies between y and z”,

which we designate with Zw(x, y, z) [formula changed].2 Moreover,

identity of x and y appears in the axioms as a notion belonging to

logic, for which we use the usual equality sign x = y [quotation marks

omitted].

[From here translation of the introduction of symbolism added.

End will be indicated]

In addition we only need the logical signs for the symbolic presentation

of the axioms, namely first the signs for generality and existence: if P (x)

is a predicate referring to the object x then (x)P (x) means: “All x have

the property P (x).” (x) is named the “for-all-sign”, (Ex) the “there-is-

sign”. For-all-sign and there-is-sign can refer to any other variable y, z, u

in the same way it refers to x. The variable belonging to such a sign is

“bound” by this sign, in the same way an integration variable is bound by

the integration sign, so that the whole statement does not depend on the

value of the variables.

Signs for negation and the junction of sentences are added as further

2The method of taking only points as individuals is particularly executed

in the axiomatics of Oswald Veblen “A system of axioms for geometry”. Here are

furthermore all geometrical relations defined in terms of the relation “between”.
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logical signs. We designate the negation of a statement by overstriking. In

the case of a preceding for-all-sign or there-is-sign the negation stroke is

to be set only above this sign, and instead of x = y it should be written

in a shorter way x 6= y. The sign & (“and”) between two statements

means that both statements hold. The sign ∨ (“or” in the sense of “vel”)

between two statements means that at least one of the two statements holds

(“disjunction”).

The sign → between two statements means that the holding of the first

entails the holding of the second, or with other words, that the first state-

ment does not hold, without the second holding as well (“implication”). An

implication A → B between two statements A and B is according to that

only then wrong, if A is true and B is false. In all other cases it is true.

The junction of the sign of implication with the for-all-sign results in the

presentation of general hypothetical statements. For example, the formula

(x)(y) (A(x, y)→ B(x, y)) ,

with A(x, y), B(x, y) standing for the presentation of certain relations be-

tween x and y represents the statement “If A(x, y) holds, then B(x, y)”, or

also: “for every pair of individuals x, y for which A(x, y) holds, B(x, y) holds

as well.”3

We use brackets in the usual way for linking together parts of formulas.

For saving brackets we stipulate that for the separation of symbolic expres-

sions → takes precedence over & and ∨, & over ∨, and that →, & , ∨

all have precedence over the for-all-sign and the there-is-sign. Brackets are

3The relation between disjunction and implication defined here and disjunctive and

hypothetical junctions of statements in the usual sense will be discussed in § 3.
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omitted if no ambiguities are possible. We write, for example, instead of the

expression

(x) ((Ey)R(x, y)) ,

in which R(x, y) designates an arbitrary relation between x and y, simply

(x)(Ey)R(x, y) because in this case only one way of reading is possible: “for

every x there is a y for which the relation R(x, y) exists.”—

We are non in the position to write down the axiom system considered.

To make it easier the first axioms are accompanied by a linguistic version.

[End of the translation added.]

The demarcation of the axioms does not correspond completely to that

in Hilbert’s “Grundlagen der Geometrie”. We therefore give for each group

of axioms the relationship of the axioms here presented as formulas to those

of Hilbert.4

I. Axioms of connection [notation changed]

1. (x)(y)Gr(x, x, y).

“x, x, y always lie on one line.”

2. (x)(y)(z)(Gr(x, y, z)→ Gr(y, x, z) & Gr(x, z, y)).

“If x, y, z lie on a line, then so do y, x, z as well as x, z, y lie on a line.”

3. (x)(y)(z)(u)(Gr(x, y, z) & Gr(x, y, u) & x 6= y → Gr(x, z, u)).

“If x, y are different points and if x, y, z as well as x, y, u lie on a line

then also x, z, u lie on a line.”

4This information is especially meant for those familiar with Hilbert’s “Grundla-

gen der Geometrie”. All references are to the seventh edition.[Footnote created, type-

setting changed (sc, style of quotation)].
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4. (Ex)(Ey)(Ez)Gr(x, y, z).

“There are points x, y, z which do not lie on a line.”

Of these axioms, 1) and 2) replace the axioms I 1,—because of the changed

concept of line; 3) corresponds to the axiom I 2; and 4) corresponds to the

second part of I 3 [notation of references changed].

II. Axioms of order [Notation changed]

1. (x)(y)(z)(Zw(x, y, z)→ Gr(x, y, z))

2. (x)(y)Zw(x, y, y) .

3. (x)(y)(z)(Zw(x, y, z)→ Zw(x, z, y) & Zw(y, x, z)) .

4. (x)(y)(x 6= y → (Ez)Zw(x, y, z)) .

“If x and y are different points, there is always a point z such that x

lies between y and z.”

5. (x)(y)(z)(u)(v)
(
Gr(x, y, z) & Zw(u, x, y) & Gr(v, x, y) & Gr(z, u, v)

→ (Ew){Gr(u, v, w) & (Zw(w, x, z) ∨ Zw(w, y, z)}) .

1) and 2) together constitute the first part of [here and throughout:

names in sc] Hilbert’s axioms II 1; 3) unites the last part of Hilbert’s

axioms II 1 with II 3; 4) is the axiom II 2; and 5) is the axiom of plane order

II 4. [Notation of references changed]

III. Parallel axiom
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Since we are not including congruence axioms, we must take the parallel

axiom in the following broader sense: “For every straight line there is exactly

one line through a point outside it which does not intersect it.”5

To make symbolic formulation easier the symbol [here and throughout

the section symbolism is changed]

Par(x, y;u, v)

will be used as an abbreviation for the expression

(Ew)(Gr(x, y, w) & Gr(u, v, w))

“There is no point w which lies on a line both with x and y and with u and

v.”

The axioms is then

(x)(y)(z)
(
Gr(x, y, z)→ (Eu){Par(x, y; z, u) & (v)(Par(x, y; z, v)→ Gr(z, u, v))}

)
.

If we imagine the axioms here enumerated and unite them, we get a

single logical formula which represents an assertion about the predicates ‘Gr’,

‘Zw’ and which we designate as

A(Gr, Zw) .

In the same way we could represent a theorem of plane geometry involving

only position and order relations as a formula

S(Gr, Zw).

5Cf. p. 83 of Hilbert’s “Grundlagen der Geometrie”. [Footnote created, notation

changed.]
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This representation still accords with contentual axiomatics in which the

fundamental relations are viewed as definite in content which can be shown

in experience or in intuitive imagination, about which the statements of

the theory make assertions.

On the other hand, in formal axiomatics the fundamental relations are not

conceived as from the beginning determined in content; rather they receive

their determination implicitly [italics added] through the axioms; and in

any consideration of an axiomatic theory only what is expressly formulated

in the axioms [“is” omitted] about the fundamental relations is used.

As a result, if in axiomatic geometry the respective names for

relations in intuitive geometry like “lie on” or “between” are used this

is only a concession to custom and a means of simplifying the connection of

the theory with intuitive facts. In fact, however, in formal axiomatics the

fundamental relations play the role of variable predicates.

Here and in the sequel we understand “predicate” in the wider sense

so that it also applies to predicates with two or more subjects. We speak

of “one-place”, “two-place”,. . . predicates according to the number of sub-

jects.

In the part of axiomatic geometry considered by us there are two variable

three-place predicates [notation!]:

R(x, y, z), S(x, y, z) .

The axiom system consists of a demand on two such predicates expressed

[notations!] in the logical formula A(R, S), which we get from A(Gr, Zw)

when we replace Gr(x, y, z) with R(x, y, z), Zw(x, y, z) with S(x, y, z). The

identity relation x = y which is to be interpreted contentually appears in this
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formula along with the variable predicates [order of sentence changed].

The acceptance of this predicate as contentually determinate is no viola-

tion of our methodological standpoint. For the contentual determination of

identity—which is no relation at all in the true sense— [dashes for brack-

ets] does not depend on the particular range of imaginations of the field

being investigated axiomatically; rather it is only related to a question of

distinguishing individuals which must be taken as already given when the

domain of individuals is laid down.

From this point of view a sentence of the form S(Gr, Zw) [notation

changed throughout!] corresponds to the logical statement that for any

predicates R(x, y, z), S(x, y, z) satisfying the demand A(R, S) the relation

S(R, S) also holds; in other words, for any two predicatesR(x, y, z), S(x, y, z)

the formula

A(R, S)→ S(R, S)

represents a true statement. In this way a geometrical sentence is trans-

formed into a sentence of pure predicate logic.|8

From this point of view the problem of consistency presents itself in

a corresponding way as a problem of pure predicate logic. In fact it is

a question of whether two three-place predicates [notation throughout!]

R(x, y, z), S(x, y, z) can satisfy the conditions expressed in the formula A(R, S)6

or whether, on the contrary the assumption that the formula A(R, S) is satis-

fied for a certain pair of predicates leads to a contradiction so that in general

for every pair of predicates R, S the formula A(R, S) represents a correct

6This imprecise way of putting the question will be sharpened in the sequel. [Footnote

placed and order changed]
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assertion.

A question like the one given here is part of the “decision problem”.

In newer logic this problem is understood to be that of discovering general

methods for deciding the “validity” or “satisfiability” of logical formulas.7

In this connection the formulas investigated are composed of predicate

variables and equalities—together with variables in subject positions which

we call “individual variables”—, and is is assumed that every variable is

bound by a for-all sign or there-is sign.

A formula of this kind is called logically valid when it represents a true

assertion for every determination of the variable predicates; it is called satis-

fiable when it represents a true assertion for some appropriate [changed to

italics] determination of the predicate variables.

[The following translated has been added.]

Simple examples for logically valid formulas are the following:

(x)F (x) & (x)G(x)→ (x)(F (x) & G(x))

(x)P (x, x)→ (x)(Ey)P (x, y))

(x)(y)(z)(P (x, y) & y = z → P (x, z)).

Examples for satisfiable formulas are:

(Ex)F (x) & (Ex)F (x)

(x)(y)(P (x, y) & P (y, x)→ x = y)

(x)(Ey)P (x, y) & (Ey)(x)P (x, y) .

These formulas result, e. g., in true assertions for the domain of individuals

of the numbers 1, 2, if in the first formula is set for F (x) ”‘x is even”’, in the
7This explanation is correct only for the decision problem in its narrower sense. We

have no need here to consider the broader conception of this decision problem.
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second formula for P (x, y) the predicate x 5 y, in third formula form P (x, y)

the predicate x 5 & y 6= 1. [End of new translation]

It is to be observed that along with the determination of the predicates

the domain of individuals over which the variables x, y, . . . range has to

be fixed. This enters into a logical formula as a kind of hidden variable.

However, the logial formula in respect to satisfiability is invariant with

respect to a one-one mapping of a domain of individuals onto another, since

the individuals enter into the formulas only as variable subjects; as a result

the only essential determination for a domain of individuals is the number of

individuals.

Accordingly, we have to distinguish the following questions in relation to

logical] validity and satisfiability:

1. The question of logical validity for every domain of individuals, and

also of satisfiability for any domain of individuals respectively.

2. The question of logical validity or satisfiability for a given number of

individuals.

3. The question for which numbers of individuals is a formula logically

valid or satisfiable.

It should be noted that it is best to leave out of consideration the domain

of 0 individuals on principle, since formally zero-numbered domains

of individuals have a special status, and on the other hand consid-

eration of them is trivial and worthless for applications.8

8The stipulation that every domain of individuals should contain at least one thing so

that a true general judgement must hold of at least one thing ought not to be confused
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Furthermore one should take into account that only the “value range”

of a predicate is relevant to its determination; that is to say, all that is relevant

is for which values of the variables in subject positions the predicate holds

or does not hold (is “true” or “false”).

This circumstance has as a consequence that for a given finite number of

individuals the logical validity or satisfiability of a specific given logical for-

mula represents a pure combinatorial fact which one can determine through

elementary testing of all cases.

To be specific, if n is the number of individuals and k the number of

subjects (“places”) of a predicate, then nk is the number of different systems

of values for the variables; and since for every one of these systems of values

the predicate is either true or false, there are

2(nk)

different possible value-ranges for a k-place predicate.

If then

R1, . . . , Rt

with the convention prominent in Aristotelean [small caps] logic that a judgment of

the form “all S are P” counts as true only if there are in fact things with the property S.

This convention has been dropped in newer logic. A judgment of this kind is represented

symbolically in the form (x)(S(x)→ P (x)) [notation changed throughout!]; it counts

as true if a thing x, insofar as it has the property S(x), always has the property P (x)

as well—independently of whether there is anything with the property Sx at all. We

will take up this topic again in connection with the deductive construction of

predicate logic. (See § 4 pp. 106–107.)
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are the distinct predicate variables occurring in a given formula, and

k1, . . . , kt

the number of their places, then

2(nk1+nk2+...+nkt )

is the number of systems of value-ranges to be considered, or the number

of different possible predicate systems for short.

Accordingly logical validity of the formula means that for all of these

2(nk1+nk2+...+nkt )

explicitly enumerable predicate systems the formula represents a true asser-

tion; and its satisfiability means that the formula represents a true assertion

for one of these predicate systems. Moreover, for a fixed predicate system

the truth or falsity of the assertion represented by the formula is again de-

cidable by a finite testing of cases; the reason is that only n values come into

consideration for a variable bound by a for-all sign or there-is sign so that

‘all’ has the same meaning as a conjunction with n members and ‘there

is’ a disjunction with n members.

For example, consider the formulas mentioned above [notation changed

throughout]

(x)P (x, x)→ (x)(Ey)P (x, y)

(x)(y)(P (x, y) & P (y, x)→ x = y)

of which the first is has been referred to as logically valid, the sec-

ond as satisfiable formula. We refer these formulas to a domain of two

individuals.
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We can indicate both individuals with the numerals 1, 2. In this case we

have t = 1, n = 2, k1 = 2; therefore the number of different predicate systems

is

2(22) = 24 = 16.

In place of (x)P (x, x) [notation changed throughout!] we can put

P (l, l) & P (2, 2), and in place of (x)(Ey)P (x, y)

P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2) ,

so that the first of the two formulas becomes

P (1, 1) & P (2, 2)→ P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2) .

This implication is true for those predicates P for which P (1, 1) & P (2, 2)

is false, as well as for those for which

P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2)

is true. One can now verify that for each of the 16 value-ranges that one

gets when one assigns one of the truth values “true” or “false” to each of the

pairs of values

(1, 1), (1, 2), (2, 1), (2, 2)

one of the two conditions is satisfied; thus the whole expression always

receives the value “true” [Verification is simplified in this example because

already the determination of the values of P (1, 1) and P (2, 2) [notation!]

suffices to fix the correctness of the expression.] In this way the validity of

our first formula for domains of two individuals can be determined through

directly trying out.
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For domains of two individuals the second formula signifies has the same

meaning as the conjunction [notation!]

(P (1, 1) & P (1, 1)→ 1 = 1) & (P (2, 2) & P (2, 2)→ 2 = 2)

& (P (1, 2) & P (2, 1)→ 1 = 2) & (P (2, 1) & P (1, 2)→ 2 = 1) .

Since 1 = 1 and 2 = 2 are true the first two members of the conjunction

are always true assertions. The last two members are true if and only if

[notation!]

P (1, 2) & P (2, 1)

is false.

Therefore, to satisfy the formula under consideration one has only to

eliminate those determinations of value for P in which the pairs (1, 2) and

(2, 1) are both assigned the value “true”. Every other determination of value

produces a true assertion. The formula is therefore satisfiable in a domain

of two elements.

These examples should make clear the purely combinatorial character of

the decision problem in the case of a given finite number of individuals. One

result of this combinatorial character is that for a prescribed finite number

of individuals the logical validity of a formula [notation!] F has the same

meaning as the unsatisfiability of the formula F; likewise the satisfiability

of [one “of” omitted] a formula F [B. uses in this section F for P

throughout] has the same meaningas that F is not valid. Indeed F

represents a true assertion for those predicate systems for which F represents

a false assertion and vice-versa.
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Let us return to the question of the consistency of an axiom system. Let

us consider an axiom system written down symbolically and combined into

one formula like our example.

The question of the satisfiability of this formula for a prescribed finite

number of individuals can be decided, in principle at least, through trying

out. Suppose then the satisfiability of the formula is determined for a definite

finite number of individuals. The result is a proof of the consistency of the

axiom system; namely a proof by the method of exhibition since the finite

domain of individuals together with the value-ranges chosen for the predicates

(to satisfy the formula) constitutes a model in which we can show concretely

that the axioms are satisfied.

We give an example of such an exhibition from geometrical axiomatics.

We start from from the axiom system presented in the beginning but

replace the axiom I 4), which postulates the existence of three points not

lying on a line, with the weaker axiom [notation! real primes added in

items]

I 4′) (Ex)(Ey)(x 6= y) .

“There are two distinct points.”

Furthermore we drop the axiom of plane order II 5); in its place we add

to the axioms9 two sentences which can be proved using II 5) by, firstly,

expanding II 4) to [notation!]

9Both of these sentences were introduced as axioms in earlier editions of Hilbert’s

“Grundlagen der Geometrie”. It turned out that they are provable using the axioms of

plane order. See pp. 5–6 of the seventh edition. [Footnote added and replaced. Style

of typesetting changed.]
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II 4′) (x)(y){x 6= y → (Ez)Zw(z, x, y) & (Ez)Zw(x, y, z)} ,

and, secondly, add

II 5) (x)(y)(z){x 6= y & x 6= z & y 6= z → Zw(x, y, z) ∨ Zw(y, z, x) ∨

Zw(z, x, y)}

We keep the parallel axiom. The resulting axiom system corresponds

to a formula A′(R, S) instead of the earlier A(R, S); it is satisfiable in a

domain of individuals 5 things, as Veblen remarked.10 [“First of all”

replaced] The value-ranges for the predicates R, S are so chosen that first

of all the predicate [notation!] Gr is determined to be true for every value

triple x, y, z—we can here use the symbols ‘Gr’, ‘Zw’ with no danger of

misunderstanding. One sees immediately that then all axioms I as well as

II 1) and III are satisfied. In order that the axioms II 2), 3), 5′), and 4′) be

satisfied it is necessary and also sufficient that the following three conditions

be placed on the predicate Zw:

1. Zw is always false for a triple x,y, z in which two elements coincide.

2. For any combination of three different of the 5 individuals,

Zw is true for 2 orderings with a common first element (of 6

possible orderings of the elements), false for the remaining 4

orderings.

3. [dot deleted] Each pair of different elements occurs as an initial as

well as a final pair in one of the triples for which Zw is true.

10In the investigation already mentioned ‘. . . ’, Trans. Amer. Math. Soc. vol. 5, p. 350.
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The first demand can be directly fulfilled by stipulation. The joint sat-

isfaction of the other two conditions is accomplished as follows: We designate

the 5 elements with the numerals 1, 2, 3, 4, 5. The number of value-triples

of three distinct elements for which Zw still has to be defined is [formula

changed] 5 · 4 · 3 = 60 Every six [?; “Je sechs”] of these belong to a

[“given” deleted] combination; for two of these Zw should be true and

false for the rest. We must therefore indicate those 20 of the 60 triples for

which Zw will be defined as true. They are those which one obtains from

the four triples [notation!]

(1 2 5), (1 5 2), (1 3 4), (1 4 3)

by applying the cyclical permutation (1 2 3 4 5).

It is easy to verify that this procedure satisfies all the conditions. Thus

the axiom system is recognized as consistent by the method of exhibition.11

The method of exhibition presented in this example has very many dif-

ferent applications in newer axiomatic investigations. It is especially used

for proofs of independence. The assertion that a sentence S is independent

of an axiom system A has the same meaning as the assertion of the

consistency of the axiom system as the claim that the axiom system

[notation!]

A & S

which we get when we add the negation of the sentence S as an

axiom to A. The consistency can be determined by the method of
11It follows immediately from the fact that the modified axiom system A′ is satisfiable

in a domain of 5 individuals that the axioms of this system do not completely determine

linear ordering. Footnote added.
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exihibition if this axiom system is satisfiable in a finite domain domain

of individuals.12 Thus this method provides a sufficient extension of the

method of progressive inferences for many fundamental investigations in

the sense that the unprovability of a sentence from certain axioms can be

proved through exhibition, its provability through inference.

But is the application of the method of exhibition is restricted in its

application to finite domains of individuals? This cannot be derived

from what we have said up until now. However, we do see immediately

that in the case of an infinite domain of individuals the possible systems of

predicates no longer constitute a surveyable multitude and there can be no

talk of testing all value-ranges . Nevertheless in the case of given axioms we

might be in a position to show their satisfiability by given predicates. And

this is actually the case. Consider for example the system of three axioms

[notation! typesetting changed]

(x)R(x, x) ,

(x)(y)(z)(R(x, y) & R(y, z)→ R(x, z)

(x)(Ey)R(x, y).

Let us clarify what these say: We start with an object a in the domain of

individuals. According to the third axiom there must be a thing b for which

R(a, b) [notation throughout]is true; and because of the first axiom b must

be different from a. For b there must further be a thing c for which R(b, c)
12A great number of examples of this procedure can be found in the works on linear

and cyclical order by E. V. Huntington and his collaborators. See especially “A new

set of postulates for betweenness with proof of complete independence”, Trans. Amer.

Math. Soc. vol. 26 (1924) pp. 257–282. Here one also finds references to previous

works.
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is true, and because of the second axiom Rac is also true; according to the

third axiom c is distinct from a and b. For c there must again be a thing d

for which R(c, d) is true. For this thing R(a, d) and Rbd are also true, and d

is distinct from a, b, c. The method of this consideration here has no

end; and it shows us we cannot satisfy the axioms with a finite domain of

individuals. On the other hand we can easily show satisfaction by an infinite

domain of individuals: We take the integers as individuals and substitute the

relation “x is less than y” for R(x, y) [notation!]; one sees immediately that

all three axioms are satisfied.

It is the same with the axioms [notation! typesetting changed]

(Ex)(y)S(y, x) ,

(x)(y)(u)(v)(S(x, u) & S(y, u) & S(v, x)→ S(v, y)) ,

(x)(Ey)S(x, y) .

One can easily ascertain that these cannot be satisfied with a finite domain

of individuals. On the other hand they are satisfied in the domain of positive

integers if we replace S(x, y) [notation!] with the relation “y immediately

follows x”.

However, we notice in these examples that exhibiting in these cases does

by no means conclusively settle the question of consistency; rather the

question is reduced to that of the consistency of number theory. In the ear-

lier example of finite exhibition we took integers as individuals. There,

however, this was only for the purpose of having a simple way to designate

individuals. Instead of numbers we could have taken other things, letters for

example. And also the properties of numbers which were used could have

been established by a concrete exhibition.
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In the case now before us, however, a concrete idea of number is

not enough; for we need essentially the assumption that the integers

constitute a domain of individuals and therefore a finished totality.

We are, of course, quite familiar with this assumption since in newer

mathematics we are constantly working with it; one is inclined to consider it

perfectly natural. It was Frege [sc!] who with a sharp and witty critique

first established insistently that the idea of the sequence of integers as a

complete totality must be justified by a proof of consistency.13 According

to Frege [sc] such a proof, had to be carried out in the sense of an

exhibition, as existence proof ; and he believed to find the objects for such

an exhibition in the domain of logic. His method of exhibition amounts

to defining the totality of integers with the help of the totality (presupposed

to exist) of all conceivable one-place predicates. However, the underlying

assumption, which under impartial consideration seems very suspect anyway,

was shown to be untenable by the famous logical and set-theoretic paradoxes

discovered by Russell and Zermelo. And the failure of Frege’s [sc]

undertaking has made us even more conscious of the problematic character

of assuming the totality of the sequence of integers than did his dialectic.

[NB: here and at other places. Is “Zahlenreihe” really “sequence

of integers”? I would write more generally “number sequence”.]

In the light of this difficulty we might try to use some other infinite do-

main of individuals instead of the sequence of integers for the purpose of

proving consistency; a domain taken from the realm of sense perception or

13
Gottlob Frege, “Grundlagen der Arithmetik”, Breslau 1884, and “Grundgesetze

der Arithmetik”, Jena 1893.
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physical reality rather than being a pure product of thought like the sequence

of integers. However, if we look more closely we will realize that wherever

we think we encounter infinite manifolds in the realm of sensible qualities or

in physical reality there can be no talk of the actual presence of such a man-

ifold; rather the conviction that such a manifold is present rests on a mental

extrapolation, the justification of which is as much in need of investigation

as the conception of of the totality of the sequence of integers.

A typical example in this connection are those cases of the infinite which

gave rise to the well-known paradox of Zeno. Suppose some distance is

traversed in a finite time; the traversal includes infinitely many successive

subprocesses: the traversal of the first half, then of the next quarter, then

the next eighth, and so on. If we are considering an actual motion, then

these subtraversals must be real processes succeeding one another.

People have tried to refute this paradox with the argument that the

sum of infinitely many time intervals may converge producing a finite dura-

tion. However, this reply does not come to grips with an essential point of

the paradox, namely the paradoxical aspect that lies in the fact that an

infinite succession, the completion of which we could not accomplish in the

imagination either actually or in principle, should be accomplished in reality.

Actually there is much more radical solution of the paradox. It consists

in considering that that we are by no means forced to believe that

the mathematical space-time representation of movement remains physically

meaningful for arbitrarily small segments of space and time; rather there is

every reason to assume that a mathematical model extrapolates the facts

of a certain domain of experience, e.g. just the movements, within the
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range of magnitudes accessible to our observation up to now for

the purpose of a simple conceptual structure; this is similar to contin-

uum mechanics which carries out an extrapolation in taking as a

basis the idea of space as filled with matter ; it is no more the case that

unbounded division of a movement always produces something characteri-

zable as movement than that unbounded spatial division of water always

produces quantities of water. When this is accepted the paradox van-

ishes. [delete “/conceptual”]

Notwithstanding, the mathematical model of movement has, as

a idealizing concept formation, its value for the purpose of simplified

representation. For this purpose it must not only coincide approximately

with reality but it has to meet the condtion that also the extrapolation

it involves must be consistent in itself. From this point of view the math-

ematical conception of movement is not in the least shaken by Zeno’s [sc]

paradox; the mathematical counterargument just referred to has in this case

complete validity. It is another question however, whether we possess a real

proof of the consistency of the mathematical theory of motion. This theory

depends essentially on the mathematical theory of the continuum; this in

turn depend essentially on the idea of the set of all integers as a finished

totality. We therefore come back by a roundabout way [full stop deleted]

to the problem we tried to avoid by referring to the facts about motion.

It is much the same in every case in which a person thinks he can show

directly that some infinity is given in experience or intuition for example the

infinity of the tone row extending from octave to octave to infinity, or the

continuous infinite manifold involved in the passage from one color quality
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to another. Closer consideration shows in every case that in fact no

infinity is given at all; rather it is interpolated or extrapolated through

some mental process.

These considerations make us realize that reference to non-mathematical

objects can not settle the question whether an infinite manifold exists; the

question must be solved within mathematics itself. But how should one

make a start with such a solution? At first glance it seems that something

impossible is being demanded here: to present infinitely many individuals

is impossible in principle; therefore an infinite domain of individuals as such

can only be indicated through its structure, i. e., through relations holding

among its elements. In other words: a proof must be given that for this

domain certain formal relations can be satisfied. The existence of an infinite

domain of individuals can not be represented in any other way than through

the satisfiability of certain logical formulas ; but these are exactly the kind of

formulas we were led led to through investigating the question about the

existence of an infinite domain of individuals; and the satisfiability of these

formulas was to have been demonstrated by the exhibition of an infinite

domain of individuals. The attempt to apply the method of exhibition to

the formulas under consideration leads then to a vicious circle.

But exhibition should serve only as a means in proofs of the consistency

of axiom systems. We were led to this procedure through consider-

ing domains with a given finite number of individuals, and just through

recognizing that in such domains the consistency of a formula has the same

significance as its satisfiability.

The situation is more complicated in the case of infinite domains of in-
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dividuals. It is true in this case also that an axiom system represented by a

formula A is inconsistent if and only if the formula A [notation!] is valid.

But since we are no longer dealing with a surveyable supply of value-ranges

for the variable predicates, we can no longer conclude that if A [notation!]

is not logically valid there is some model for satisfying the axiom system A

at our disposal.

Accordingly, when an infinite domain of individuals is under con-

sideration, the satisfiability of an axiom system is a sufficient con-

dition for its consistency, but it is not proved to be a necessary

condition. We cannot therefore expect that in general a proof of consis-

tency can be accomplished by means of a proof of satisfiability. On the other

hand we are not forced to prove consistency by establishing satisfiability;

we can just hold to the original negative sense of inconsistency. That is to

say—if we again imagine an axiom system [“. again” deleted] represented

by a formula A—we do not have to show that satisfiability of the formula A,

but only need to prove that the assumption that A [“,” deleted] is satisfied

by certain predicates cannot lead to a logical contradiction.

To attack the problem in these terms we must first aim at an overview

of the possible logical inferences that can be made from an axiom system.

The formalization of logical inference as developed by Frege, Schröder,

Peano, and Russell [names in sc] presents itself as an appropriate means

to this end.

We have thus arrived at the following tasks: 1. to formalize rigorously

the principles of logical inference and by this turn them into a completely

surveyable system of rules; 2. to show for a given axiom system A, (which is

28



to be proved consistent) that starting with this system A no contradiction

can arise via logical deductions, that is to say, no two formulas of which one

is the negation of the other can be proved.

However, we do not have to carry out this proof for each axiom system

individually; for we can make use of the method of arithmetizing to which

we referred at the beginning. From the point of view we have reached now

this procedure can be characterized as follows: we chose an axiom system A

which on the one hand has a structure surveyable to such an extend

that we can give a proof of consistency (in the sense of the second task);

which is, on the other hand, so rich that we can derive the satisfiability

of axiom systems for the branches of geometry and physics from the

presupposition that A is satisfied by a system S of things and relations; in

such a way that we represent the objects of such an axiom system

B by individuals or complexes of individuals from S and put as

fundamental relations such predicates which can be formed from

the fundamental relations of S using logical operations.

This suffices to show that the axiom system B is in fact consistent; for

any contradiction arising from this axiom system as conclusion [“-”

deleted] would represent a contradiction derivable from the axiom system

A even though the axiom system A is known to be consistent.

Arithmetic (axiomatically constructed) presents itself as such an A.

The “method of reduction” of axiomatic theories to arithmetic does

not depend upon arithmetic being a set of facts presentable to the intuition;

arithmetic need rather be no more than a formation of ideas which we can

prove consistent and which provides a systematic framework encompassing
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the axiom systems of the theoretical sciences; because they are encompassed

in this framework the idealizations of what is actually given which executed

in them will also be proved consistent.

We now summarize the results of our latest considerations: The problem

of the satisfiability of an axiom system (or a logical formula) can be posi-

tively solved in the case of a finite domain of individuals by exhibition; but

in the case where the satisfaction of the axioms requires an infinite domain

of individuals this method is no longer applicable because it is not deter-

mined whether an infinite domain of individuals cannot be considered as

settled; rather, the introduction of such infinite domains is only

justified by a a proof of the consistency of an axiom system characterizing

the infinite.

Because of the failure of a positive decision method, there remains

only one possibility: there is only the way of proving consistency in

the negative sense, i.e. a proof of impossibility ; such a proof requiring a

formalization of logical inference.

If we are going to approach the task of giving such a proof of impossibility

we must be clear that it cannot be carried out using axiomatic-existential

methods [full stop deleted] of inference. Rather we may use only those

kinds of inferences which are free from idealizing assumptions of existence.

As a result of these considerations the following thought comes at once

to mind: If this proof of impossibility can be carried out without axiomatic-

existential assumptions, shouldn’t it also be possible to found all of arith-

metic directly in the same way thereby making the proof of impossibility

completely superfluous? We will consider this question in the following para-
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graph.
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