Probabilities and Associations, Capacities and Causation
Types of Variables

• Discrete / Categorical
 – Only finitely many values

• Continuous / Real-valued
 – Infinitely many values
 • Despite the name, rarely continuum many values

• Variable type can be determined by…
 – Underlying objects (gender is discrete)
 – Measurement device (air pressure is continuous)
 – Pragmatics (height is sometimes just tall / short)
Changing Variable Types

• **Discretization: Continuous → Discrete**
 - Requires points of “meaningful difference” among the continuous values
 • Otherwise, very small differences (in continuous space) might translate into large differences (in discrete space)

• **Interpolation: Discrete → Continuous**
 - Requires a meaningful ordering of the values
 • Trivial for binary values (e.g., male / female)
 • Works for “really” continuous values that are discretized for measurement (e.g., high / medium / low)
 • But not for other sets of values (e.g., red / blue / green)
Frequency

• Given some (measured) population of individuals, the frequency of variable X having a particular value x is:
 – The number of individuals in the population with $X = x$; divided by
 – The number of individuals in the population
Frequency

• \{Rooster, Apple, Frog\}
 – Fr(Picture = Frog) = 1/2

• \{Plant, Animal\}
 – Fr(Picture = Plant) = 1/6

• \{Alive, Dead\}
 – Fr(Picture = Alive) = 1
Probability Distribution

- Observed frequency is a noisy measure of the “true” probability
- Discrete variable \Rightarrow Probability distribution
 - $P(X = x)$ is defined for all possible x
- Example:
 - $P(\text{Picture} = \text{Apple}) = 0.19$
 - $P(\text{Picture} = \text{Frog}) = 0.48$
 - $P(\text{Picture} = \text{Rooster}) = 0.33$
Probability Density

• Continuous variable \Rightarrow Probability density
 – Typically, $P(X = x) = 0$ for all particular x
 – $P(X \in [x, y]) = \int_x^y f(a)\,da$ for some function $f(a)$
 • f is called the probability density function

• Example:
 – Uniform in $[0,1] \Rightarrow f(a) = 1$ for $a \in [0,1]$, else 0
Probability Density

- Two common probability densities

Gaussian / Normal
- $\mu = 0, \sigma^2 = 0.2$
- $\mu = 0, \sigma^2 = 1.0$
- $\mu = 0, \sigma^2 = 5.0$
- $\mu = -2, \sigma^2 = 0.5$

Exponential
- $\lambda = 0.5$
- $\lambda = 1.0$
- $\lambda = 1.5$
Interpretations of Probability

• Frequentist
 – Probability is frequency in a (hypothetical) infinite pop.
 – But what is the relevant population?
• Propensity
 – Probability captures underlying randomness and symmetry in the world
 – Nice in theory, tough in practice
• Subjectivist
 – Probability statements are really claims about our beliefs about the world
 – But doesn’t seem to fit intuitions about basic cases
Conditional Probability

- (Or conditional frequency)
- $P(X = x \mid Y = y)$ is just $P(X = x)$ in the sub-population of individuals with $Y = y$
 - Conditional probabilities are still probabilities
Conditional Probability

• (Or conditional frequency)
• \(P(X = x \mid Y = y) \) is just \(P(X = x) \) in the sub-population of individuals with \(Y = y \)
 – Conditional probabilities are still probabilities

• Mathematically, \(P(X = x \mid Y = y) = \frac{P(X = x \& Y = y)}{P(Y = y)} \)
Conditional Probability

• Except in special cases,

\[P(X = x \mid Y = y) \neq P(Y = y \mid X = x) \]

– Specifically, they’re equal iff

\[P(X = x) = P(Y = y) \]

– Simple examples of the inequality:

• \(P(\text{Pregnant} \mid \text{Female}) \neq P(\text{Female} \mid \text{Pregnant}) \)
• \(P(\text{Over 6’} \mid \text{Male}) \neq P(\text{Male} \mid \text{Over 6’}) \)
Conditional Probability

- \{Rooster, Apple, Frog\}

\[P(P = F \mid P = F \text{ or } R) = \frac{3}{5} \]

\[P(P = F \text{ or } R \mid P = F) = 1 \]
Independence

- X and Y are independent iff learning the value of X provides no information about the value of Y
 - In particular, learning about one does not change the predictability of the other
- X and Y are associated iff they are not independent

- Independence/association are symmetric!
Independence

• Formally, \(X \) and \(Y \) are independent iff
 – For all \(x, y \), \(P(X = x) = P(X = x \mid Y = y) \)
 – For all \(x, y \), \(P(X=x \& Y=y) = P(X=x) \times P(Y=y) \)
 – For all \(x, y_1, y_2 \), \(P(X=x \mid Y=y_1) = P(X=x \mid Y=y_2) \)
 • For “typical” distributions, these are all equivalent
 • For continuous variables, only “almost all \(x, y \)”

• \(X \) and \(Y \) are associated iff
 – There exists \(x, y \) such that…
Independence

• For conditional independence, must be independent in every (relevant) population
 – X independent of Y given Z iff
 – For all x, y, z,
 \[P(X = x \mid Z = z) = P(X = x \mid Y = y \& Z = z) \]
 – and similarly for the other definitions…

• Note: Z can be more than one variable!

• Conditional association is analogous
Independence

- Simple notation:
 - X independent of Y \Rightarrow $X \perp \perp Y$
 - X independent of Y given Z \Rightarrow $X \perp \perp Y | Z$
 - X associated with Y \Rightarrow $X \not\perp \perp Y$
 - X associated with Y given Z \Rightarrow $X \not\perp \perp Y | Z$
Independence

• And all of these notions extend to sets

 – Set X is independent of set Y given Z iff

 For all $X \in X$, $Y \in Y$, $X \perp Y | Z$

 • I.e., for every possible setting of variables in Z, each X is independent of each Y

 – Note: Might require a large number of tests!
Bayes (and Bayesianism)

• Bayes’ Theorem: \(P(T \mid D) = \frac{P(D \mid T)P(T)}{P(D)} \)
 – proof is trivial...

• General strategy:
 – Let \(D \) be the data and \(T \) be the theory
 – \(\Rightarrow \) Bayes’ theorem says how to update beliefs about the probability of various theories
Bayes (and Bayesianism)

- Terminology:

\[P(T \mid D) = \frac{P(D \mid T)P(T)}{P(D)} \]
Bayes (and Bayesianism)

• Terminology:

\[P(T \mid D) = \frac{P(D \mid T) \cdot P(T)}{P(D)} \]
Bayes (and Bayesianism)

• Terminology:

\[P(T \mid D) = \frac{P(D \mid T)P(T)}{P(D)} \]
Bayes (and Bayesianism)

- Terminology:

\[P(T \mid D) = \frac{P(D \mid T)P(T)}{P(D)} \]
Bayes (and Bayesianism)

• Terminology:

\[P(T \mid D) = \frac{P(D \mid T)P(T)}{P(D)} \]

Data distribution
Bayes (and Bayesianism)

• Terminology:

\[P(T | D) = \frac{P(D | T) P(T)}{P(D)} \]

- Posterior distribution
- Likelihood function
- Prior distribution
- Data distribution
Linear Models

• For continuous variables, the relationship between two variables is often expressed in terms of a linear model:

\[X = aY + \varepsilon_X \]

- \(a \) is some real-valued coefficient
- \(\varepsilon_X \) is a “noise” term

- Obvious multi-variate generalization…
- Use regression to find the best-fitting models
Nature of Causation

• Token causal claims: Claims about causation between particular tokens, not populations
 – Event A caused event B
 • “This light switch flip caused the lights to turn on”
 – Having property A caused X to have property B
 • “The glass broke because it was brittle”
 – Thing 1 having property A caused Thing 2 to have property B
 • “I went to comfort my daughter because she was crying.”
Nature of Causation

• Type causal claims: About causation that occurs “in general”, or “in the population”
 – Events of type A cause events of type B
 • “Light switches turn on lights”
 – Having property A causes things of type X to have property B
 • “Some glasses break because they are brittle”
 – Thing 1 having property A caused Thing 2 to have property B
 • “Parents frequently go to comfort their children when the children cry.”
Nature of Causation

- Metaphysical primacy is ambiguous
 - Token-causation is primary, and type-level claims hold because of causation in the individuals
 OR
 - Type-causation is primary, and token-level claims (sometimes) hold for members of that population

- In general, we will focus on type causal claims
 - Token causal inference is much harder, and frequently dependent on type-causal prior knowledge
Nature of Causation

• What *is* causation? Is it based on:
 – Possible worlds?
 – Conservation of physical quantities?
 – Hypothetical experiments?
 – Purely pragmatic conventions?

• We’ll talk more tomorrow afternoon…
Association vs. Causation

“Association is symmetric; Causation is asymmetric”

• X associated w/ $Y \Rightarrow Y$ associated w/ X
 X causes $Y \nRightarrow Y$ causes X

 – In fact, for token-causation, we think we have:
 – X causes $Y \Rightarrow Y$ does not cause X
Association *and* Causation

- Although different, they are connected
 - In general,
 - If X causes Y, then X will be associated with Y
 - If X and Y are associated, then there is some sort of causal connection between them
 - Statistics is relevant to science precisely because the two are connected
 - Causal inference is really the problem of moving between these two types of claims
Causation and Intervention

• Causal claims support counterfactuals
 – In particular, those about interventions
 • “If I had flipped the switch, the light would have turned on.”
 • “If she hadn’t dropped the plate, then it wouldn’t have broken.”
 • Etc.
Causation and Intervention

• One of the central causal asymmetries
 – Interventions on cause lead to changes in the effect
 • Flipping the switch turns off the light
 – Interventions on the effect do not lead to changes in the cause
 • Breaking the light bulb doesn’t flip the switch

• Some have argued that this is the paradigmatic feature of causation (Woodward, Hausman)
Observation vs. Intervention

- Association vs. Causation distinction maps onto Observation vs. Intervention
 - Symmetry of observation: If observing X tells us about Y, then observing Y tells us about X
 - Asymmetry of intervention: If intervening on X affects Y, then intervening on Y might not affect X

- So which is better for learning the true causal structure? It depends…
Observation vs. Intervention

• Observations give you information about the causal structure in its “natural state”
 – **Benefit**: All of the causal relationships are (potentially) active, and so you can (i) try to learn the full causal structure; and (ii) draw more inferences from partial observations
 – **Drawback**: Hard (but not impossible!) to determine the directionality of a particular causal connection (e.g., does X cause Y? Does Y cause X? Is there a common cause?)
Observation vs. Intervention

• Manipulations give you information about an altered causal structure
 – In particular, the “normal” causes of the manipulated variable are no longer causes
 – Benefit: More information (locally) about causal structure; in particular, directionality is often clear
 – Drawback: Information is not about the full “normal” causal structure; also, manipulations can be costly on many different dimensions