Ein Gültigkeitskriterium für die Sätze der klassischen Mathematik. Von Rudolf Carnap in Prag.

1. Unvollständige und vollständige Gültigkeitskriterien.

Es ist eine der Hauptaufgaben der logischen Grundlegung der Mathematik, ein formales Gültigkeitskriterium aufzustellen, d. h. hinreichende und notwendige Bedingungen dafür anzugeben, daß ein Satz im Sinn der klassischen Mathematik gültig (richtig, wahr) ist. Hierfür ist zunächst die Aufstellung eines Sprachsystems erforderlich, d. h. eines Systems von Zeichen mit bestimmten Regeln für ihre Verwendung. Dieses Sprachsystem muß so beschaffen sein, daß die klassische Mathematik in ihm formuliert werden kann. Dann besteht die Aufgabe darin, das Gültigkeitskriterium in bezug auf dieses System in formaler Weise anzugeben, d. b. ohne Bezugnahme auf die Bedeutung der Zeichen. Man kann drei Arten solcher Gültigkeitskriterien unterscheiden.

1. Man kann die Aufgabe stellen, ein definites Gültigkeitskriterium zu suchen, d. h. ein solches, über dessen Erfülltsein oder Nichterfülltsein in jedem Einzelfall nach festem Verfahren in endlich vielen Schritten entschieden werden könnte. Genauer kann 'definit' nur in bezug auf eine symbolisierte Sprache definiert werden, z. B. so: ein Zeichen (Prädikat oder Fanktor) beißt definit, wenn es entweder undefiniert ist oder so definiert, daß in seiner Definitionskette kein unbeschränkter Operator vorkommt. Würde ein solches Kriterium gefunden, so besässen wir ein Entscheidungsverfahren für die Mathematik; wir könnten dann jeden vorgelegten Satz, z. B. den großen Fermatschen Satz, als wahr oder falsch sozusagen ausrechnen. Schon früher hat Weyl¹), allerdings ohne Beweis, behauptet: "Ein solcher Stein der Weisen ist bisher nicht gefunden worden und wird niemals gefunden werden". Und nach den neueren Ergebnissen von

¹) H. Weyl, Philosophie der Mathematik und Naturwissenschaft. Sonderdruck aus: Handbuch der Philosophie. 1926. — Hierzu S. 20.

Gödel²) erscheint es als aussichtslos, ein definiten Gültigkeitskriterium für das Gesamtsystem der Mathematik zu suchen. Die Aufgabe, für bestimmte Klassen von Sätzen dieses sogenannte Entscheidungsproblem zu lösen, bleibt dabei jedoch wichtig und fruchtbar; in dieser Richtung sind schon bedeutsame Sehritte getan worden und weitere zu erwarten. Wenn wir aber ein Kriterium suchen, das nicht nur für engbegrenzte Teilgebiete gilt, so müssen wir auf Definitheit verzichten.

2. Man kann ein Gültigkeitskriterium aufstellen, das selbst indefinit ist, aber auf definiten Bestimmungen beruht. Von dieser Art ist das Verfahren, das in allen modernen Systemen angewendet wird, die eine logische Fundierung der Mathematik leisten wollen (z. B. bei Frege, Peano, Whitehead und Russell, Hilbert usw.). Wir wollen es als Ableitungsverfahren oder a-Verfahren bezeichnen. Es besteht in der Aufstellung von Grundsätzen und Schlußregeln. Die Grundsätze sind entweder in endlicher Anzahl vorhanden oder ergeben sich aus endlich vielen Grundsatzschemata durch Einsetzung. In den Schlußregeln treten stets nur endlich viele (gewöhnlich eine oder zwei) Prämissen auf. Die Aufstellung von Grundsätzen und Schlußregeln kann aufgefaßt werden als die Definition des Begriffs "unmittelbar ableitbar (aus einer Prämissenklasse)'; bei einem Grundsatz ist die Prämissenklasse leer. Man pflegt die Bestimmungen dabei stets so aufzustellen, daß der Begriff "unmittelbar ableitbar" definit wird; d. h. es kann in jedem Einzelfall entschieden werden, ob ein Grundsatz bzw. eine Anwendung einer Schlnßregel vorliegt oder nicht. Kann eine Satzklasse K₁ mit einem Satz S₁ durch eine endliche Kette von Sätzen so verbunden werden; daß jeder Satz der Kette unmittelbar ableitbar aus Sätzen ist, die in der Kette vorangehen, so heißt S₁ ableitbar aus K₁; ist dabei K₁ leer, so heißt S₁ beweisbar. S₁ heißt widerlegbar, wenn jeder Satz aus S₁ ableitbar ist. S₁ heißt entscheidbar, wenn S₁ entweder beweisbar oder widerlegbar ist; anderenfalls unentscheidbar. Da für die Länge der Kette keine obere Schranke bestimmt wird, sind die genannten Begriffe, obwohl beruhend auf dem definiten Begriff ,unmittelbar ableitbar', selbst indefinit. Man glaubte früher, mit Hilfe eines solchen Ableitungsverfahrens ein vollständiges Gültigkeitskriterium für die klassische Mathematik aufstellen zu können; d. h. man glaubte entweder, daß schon in einem bestimmten vorliegenden System sämtliche gültigen mathematischen Sätze beweisbar seien oder daß man wenigstens in Zukunft, falls sich eine Lücke

²) K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I. Monatsh. Math. Phys. 38, 173-198, 1931.

finden würde, das System durch Anfügung geeigneter weiterer Grundsätze und Schlußregeln in ein derartiges vollständiges umgestalten könne. Nun hat jedoch Gödel gezeigt, daß nicht nur alle bisherigen Systeme anvollständig sind, sondern überhaupt alle Systeme dieser Art; für jedes hinreichend reiche System, für das ein Ableitungsverfahren bestimmt wird, lassen sich Sätze angeben, die aus Zeichen des Systems bestehen, aber nach dem Verfahren des Systems nicht entscheidbar, d. h. weder beweisbar noch widerlegbar sind. Und insbesondere kann man für jedes System, in dem sich die Mathematik formulieren läßt, Sätze angeben, die im Sinn der klassischen Mathematik gültig, aber in dem System nicht beweisbar sind. Trotz dieser notwendigen Unvollständigkeit des Ableitungsverfahrens³) behält es seine grundlegende Bedeutung; denn jeder strenge Beweis irgend eines Satzes auf irgend einem Gebiet muß schließlich dieses Verfahren verwenden. Aber für unsere Aufgabe, ein vollständiges Gültigkeitskriterium der Mathematik aufzustellen, ist dieses bisher allein angewendete Verfahren unbrauchbar; wir müssen uns nach einem neuen Weg umsehen.

3. Um Vollständigkeit des Kriteriums zu erreichen, sind wir also genötigt, auf die Definitheit nicht nur des griteriums selbst, sondern auch der Einzelschritte des Deduktionsverfahrens zu verzichten. Wir werden aber sehen, daß es möglich ist, die Forderung der endlichen Anzahl der Schritte aufrecht zu erhalten. Ein Deduktionsverfahren, das auf indefiniten Einzelschritten beruht, bei denen die Anzahl der Prämissen nicht endlich zu sein braucht, wollen wir ein Folge-Verfahren oder f-Verfahren nennen. Bei einem solchen Verfahren. wird eine endliche Kette nicht von Sätzen, sondern von Satzklassen aufgestellt, die auch unendlich sein dürfen; die Regeln, nach denen sich die einzelnen Schritte richten, beziehen sich auf eine nicht notwendig endliche Prämissenklasse. Im Folgenden soll ein vollständiges Gültigkeitskriterium für die Mathematik angegeben werden,

³) Vgl. hierzu R. Carnap, Die antinomien und die Unvollständigkeit der Mathematik. Monatsh. Math. Phys. 41, 263-284, 1934. Im Folgenden zitiert als "[Antinomien]". — A. Taraki berichtet im Anzeiger der Wiener Akademie, 1932, Nr. 2 über die Ergebnisse einer (in polnischer Sprache erschienenen und mir nicht zugänglichen) Arbeit "Der Wahrheitsbegriff in den Sprachen der deduktiven Disziplinen" (Warschauer Gesellschaft der Wissenschaften). Seine Untersuchungen beziehen sich, ebenfalls in Anknüpfung an die von Gödel, auf die hier behandelten Probleme. Eine deutsche Übersetzung der Arbeit von Tarski, die sicherlich wichtige Ergebnisse bringen wird, soll demnächst in "Studia Philosophica" (Lemberg) erscheinen.

nämlich ein f-Verfahren mit einer stets endlichen, aber unbebeschränkten Anzahl indefiniter Schritte

Es wird zunächst ein Sprachsystem C angegeben, das hinreichend ist zur Formulierung der klassischen Mathematik; d. h. es können auf Grund der angegebenen undefinierten Grundzeichen durch explizite Definitionen Zeichen für alle in den Gebieten der klassischen Mathematik (Arithmetik, Algebra, Analysis, Funktionentheorie) vorkommenden Begriffe definiert und alle dort vorkommenden Sätze formuliert werden. Wir wollen jedoch im System C außer den logischen Zeichen, zu denen wir auch die mathematischen rechnen, noch deskriptive Zeichen (d. h. solche mit nicht-logischer Bedeutung, Zeichen für empirische Begriffe) zulassen. Nach Einführung geeigneter deskriptiver Grundzeichen können dann auch die Sätze der klassischen Physik formuliert werden. Einen Satz wollen wir logisch nennen, wenn er nur logische Zeichen enthält; anderenfalls deskriptiv. Wir wollen diejenigen Sätze des Systems C, die auf Grund der Logik und der klassischen Mathematik gültig (wahr, richtig) sind, analytisch nennen, und diejenigen, die logisch-mathematisch falsch sind, kontradiktorisch. S₁ heißt determiniert, wenn S₁ entweder analytisch oder kontradiktorisch ist; anderenfalls (indeterminiert oder) synthetisch. Die synthetischen Sätze sind die (wahren oder falschen) Sätze über Tatsachen; sie. gehören, sofern sie wahr sind, zur Realwissenschaft. Mit ihnen haben wir uns hier nicht zu befassen. Es ist aber doch wichtig, daß unser Sprachsystem auch deskriptive Zeichen und daher auch synthetische Sätze enthält; dadurch werden, wie wir sehen werden, gewisse Einzelheiten in der Form der Definition für 'analytisch' beeinflußt.

Die folgende Übersicht zeigt, welche Begriffe der beiden Verfahren einander entsprechen:

a-Begriffe (beruhend auf dem Ableitungsverfahren)
ableitbar (beruhend auf dem Folgeverfahren)
beweisbar analytisch
widerlegbar kontradiktorisch
entscheidbar determiniert
unentscheidbar synthetisch

In jedem dieser Begriffspaare mit Ausnahme des letzten ist der a Begriff enger als der entsprechende f-Begriff.

Unsere Aufgabe besteht nun darin, ein Gültigkeitskriterium in Gestalt formaler Definitionen für 'analytisch' und 'kontradiktorisch' aufzustellen. Die Vollständigkeit dieses Kriteriums im Unterschied zu dem auf einem a-Verfahren beruhenden wird dann dadurch nachzuweisen sein, daß gezeigt wird, daß jeder logische Satz des Systems determiniert ist, während nach dem früher Gesagten kein a-Verfahren so aufgestellt werden kann, daß jeder logische Satz entscheidbar ist.

Wenn Wittgenstein⁴) sagt: "Es ist möglich, ... von vornherein eine Beschreibung aller "wahren" logischen Sätze zu geben. Darum kann es in der Logik nie Überraschungen geben. Ob ein Satz der Logik angehört, kann man berechnen", so scheint er den indefiniten Charakter des Begriffs 'analytisch' zu übersehen, vermutlich weil er 'analytisch' ('Tautologie') nur für den elementaren Bereich des Satzkalküls definiert hat, wo dieser Begriff tatsächlich definit ist. Der gleiche Irrtum scheint bei Schlick⁵) vorzuliegen, wenn er meint, sobald man einen Satz verstanden habe, wiese man auch, ob er analytisch ist oder nicht. "Seinen Sinn verstehen und seine apriorische Geltung einsehen, sind bei einem analytischen Urteil ein und derselbe Prozeß". Er begründet diese Meinung durch den richtigen Hinweis darauf, daß der analytische Charakter eines Satzes nur auf den Verwendungsregeln für die vorkommenden Wörter beruht und daß man einen Satz nur versteht, wenn man sich über diese Verwendungsregeln klar ist. Das Entscheidende ist jedoch, daß man eich über die Verwendungsregeln klar sein kann, ohne gleichzeitig alle ihre Konsequenzen und Zusammenhänge zu überblicken. Die Verwendungsregeln der im Formatschen Satz vorkommenden Symbole kann man jedem Anfänger leicht klar machen; also versteht er den Satz; ob dieser Satz analytisch oder kontradiktorisch ist, weiß trotzdem bis heute niemand.

2. Das Sprachsystem C.

Wir wollen jetzt eine symbolische Sprache C⁶) dadurch aufstellen, daß wir die in ihr vorkommenden Zeichen angeben und bestimmen, wie aus ihnen Ausdrücke und insbesondere Sätze zu bilden sind. Dabei werden wir die Bedeutung der Zeichen und Ausdrücke durch ungenaue Erläuterungen andeuten. Heuristisch und psychologisch beruht die später aufzustellende Definition für 'analytisch' auf diesen Bedeutungen der Zeichen. In systematischer Betrachtung aber ist es umgekehrt: durch die formale Definition für 'analytisch' sind die Bedeutungen der einzelnen Zeichen implizit bestimmt; sie können aus dieser Defini-

⁴) L. Wittgenstein, Tractatus Logico-Philosophicus. 1922. Hierzu S. 164. ⁵) M. Schlick, Über das Fundament der Erkenntnis. Erkenntnis 4, 79-99, 1934. Hierzu S.96.

⁶⁾ Vgl. R. Carnap, Logische Syntax der Sprache. (Schr.z, wiss. Weltauffass., Band 8) Wien, 1934. Im Folgenden mit "[Syntax]" bezeichnet. Sprache C stimmt überein mit Sprache II [Syntax], S. 74 ff. Der vorliegende Aufsatz bildet eine Ergänzung zu [Syntax] § 34.

tion ohne Hilfe der zunächst anzugebenden Erläuterungen entnommen werden.

Als Zeichen des Systeme C verwenden wir lateinische Buchstaben und Symbole, im Anschlaß an Russell. Dagegen verwenden wir als syntaktische Bezeichnungen für gewisse Arten von Zeichen und Ausdrücken von C außer den Wörtern der gewöhnlichen Sprache auch Frakturzeichen (als Abkürzungen für Wörter, z. B. ,Z' für ,Zahlausdruck'); durch Anhängung von Indizes bilden wir daraus Namen für bestimmte einzelne Zeichen oder Ausdrücke (z. B. ,Z₁'). ,A' bezeichnet Ausdrücke im Allgemeinen, ,a' Zeichen, ,K' Klassen von Ausdrücken, meist von Sätzen.

Als Individualausdrücke verwenden wir nicht Gegenstandsnamen, sondern Zahlausdrücke (syntaktische Bezeichnung: ,Z'). Die Z die Zeichen sind, heißen Zahlzeichen (zz). Die einfachsten Z sind die Strichausdrücke (St): ,0', ,0^l' (anstatt ,1'), ,0^{ll}' (anstatt ,2'), ,0^{lll}' usw. Als Zahlvariable (z) verwenden wir ,u', ,v', . . . ,z'. Als Operatoren mit z erwenden wir nicht nur die üblichen unbeschränkten: ,(x)' (,,für alle x") und ,($\exists x$)' (,,es gibt ein x"), sondern auch beschränkte: ,(x)3' (,,für alle x von 0 bis 3") und ,($\exists x$)5' (,,es gibt ein x in der Reihe von 0 bis 5"); ferner unbeschränkte und beschränkte K-Operatoren: ,(Kx)(P(x))' bzw. ,(Kx)5(P(x))' (,,das kleinste x (bis 5), das die Eigenschaft P hat, oder 0, falls keine Zahl die Eigenschaft P hat").

In dem Satz Gr(5, 3) (d. h. 5 > 3) heißt Gr ein Prädikat (pr), und zwar ein zweistelliges (pr²); 5, 3 heißt zweistelliger Argumentausdruck (Arg, Arg²) mit den Argumenten 5 und 3. In Gr wiederum (2, 3) = 5 (d. h. 2 + 3 = 5) heißt Gr wiederum Argumentausdruck und Gr wertausdruck. Bei Gr und Gr wiederum Argumentausdruck und Gr wertausdruck. Bei Gr und Gr wiederum Argumentausdruck nur Gr wir rechnen sie deshalb zur ersten Stufe (Gr bzw. Gr fu). Weiter kommen pr und fu höherer Stufen vor; das sind solche, bei denen auch pr oder fu im Argument- oder Wertausdruck vorkommen. Sind Gr und Gr pr, so können wir für ihre Vereinigung etwa Gr ver(Gr pr) schreiben; dies ist dann ein Ausdruck, der wie ein Prädikat verwendet wird, ein Prädikatausdruck (Pr und zwar Gr pr); ver ist ein Gr (Gr ver(Gr pr) ist gleichbedeutend mit Gr pr zu den Pr, die fu zu den Fu.

Wir teilen die Z, Pr und Fu in folgender Weise in Typen und Stufen ein. Die Z haben den Typns 0. Ein Argument- oder Wertausdruck A_1 , A_2 , ... A_n , dessen Glieder die Typen t_1 , t_2 , ... t_n haben, hat

den Typns $t_1, t_2, \dots t_n$. (Z. B. hat ,5, 3' in dem früheren Beispiel den Typus 0, 0).

Ein Pr, dessen Arg den Typns t_1 hat, hat den Typus (t_1) . Ein Fu, dessen Argumentausdruck den Typus t_1 und dessen Wertausdruck den Typns t_2 hat, hat den Typus $(t_1 : t_2)$. Durch den Typus eines Ausdrucks ist auch seine Stufenzahl bestimmt; den Z schreiben wir die Stufenzahl 0 zu, einem Arg (Argument- oder Wertausdruck) die höchste der Stufenzahlen seiner Glieder, einem Pr oder Fu, bei dem die Stufenzahl des Arg (bzw. die größte der Stufenzahlen des Argument- und des Wertausdrucks) s ist, die Stufenzahl s+1. Ein n-stelliges Pr oder Fu von der m-ten Stufe wird bezeichnet mit "mPr" bzw. "mFu". ["Gr" ist also ein mPr" vom Typus (0,0); "sum" ein mPr" vom Typus (0,0); "ver" ein mPr" vom Typus (0,0).]

Für jeden Pr- oder Fu-Typus gibt es auch Variable, nämlich Prädikatvariable (p; als solche verwenden wir F', G', ...) und Funktorvariable (f; f'', g', ...). Zum Wertbereich eines p oder f gehören die Pr bzw. Fu desselben Typus. Die p und f kommen auch in unbeschränkten All- und Existenzoperatoren vor.

Als Verknüpfungszeichen für Sätze werden verwendet: ,~' (Negation), , \vee ' (Disjunktion), , .' (Konjunktion), , \supset ' (Implikation), , = ' (Äquivalenz). , = ' kann auch zwischen zwei Z stehen, als Zeichen der Identität oder arithmetischen Gleichheit (z. B. ,sum (2, 3) = 5'). Ferner kommt , = ' auch zwischen zwei Pr oder zwischen zwei Fu vor; dabei soll , $P_1 = P_2$ ' gleichbedeutend sein mit , $(x)(P_1(x) = P_2(x))$ ' und , fu₁ = fu₂' gleichbedeutend mit , $(x)(fu_1(x) = fu_2(x))$ '. Die Nullgleichung ,0 = 0' bezeichnen wir mit ,0 = 0' bezeichnen wir mit ,0 = 0' bezeichnen verwendet: ,~' (Negation), ,0 = 0' bezeichnen verwendet: ,0 = 0'

Für Sätze (S) verwenden wir auch Satzvariable (f; p, q, ...), auch in All- und Existenzoperatoren. p ist gemeinsame Bezeichnung der Variablen aller Arten (z, p, f, s). Um unbeschränkte Allgemeinheit auszudrücken, kann man jede Variable entweder frei oder durch Alloperator gebunden verwenden. Ein Satz heißt offen, wenn er mindestens eine freie Variable enthält; andernfalls geschlossen. Sind $v_1, v_2, \dots v_n$ die in S_1 frei vorkommenden Variablen, so bezeichnen wir mit p()(p()) den geschlossenen Satz (p()(p()) dieser ist mit p() gleichbedeutend.

Als Grundzeichen (d. h. undefniert) werden verwendet: 1. Zwölf logische Konstanten, nämlich ,0°, ¹°, ,∃°, ,K°, die fünf genannten Verknüpfungszeichen, Anfangs- und Endklammer, Komma; 2. alle Variablen; 3. deskriptive pr und fu irgendwelcher Typen, die nach Bedarf

eingeführt werden mögen. Weitere Zeichen (zz, pr, fu, andere Verknüpfungszeichen, Satzzeichen) sind durch explizite Definitionen einzuführen. Ein Grundzeichen heißt deskriptiv, wenn es ein pr oder fu ist; andernfalls logisch. Ein definiertes Zeichen heißt deskriptiv, wenn in seiner Definitionenkette ein deskriptives Grundzeichen vorkommt; andernfalls logisch. Ein Ausdruck heißt deskriptiv, wenn in ihm ein deskriptives Zeichen vorkommt, andernfalls logisch.

Die syntaktische Bezeichnung eines zusammengesetzten Ausdrucks bilden wir durch Aneinanderreihen der Bezeichnungen für die vorkommenden Zeichen oder Teilausdrücke; dabei nehmen wir als Bezeichnungen für die genannten logischen Grundkonstanten diese selbst.

Auf Grund der gegebenen Erläuterungen können wir jetzt die genauen Definitionen für Z', P', P', P' und S' aufstellen, und zwar in einer gewissermaßen rekursiven Form: im Definiens verwenden wir diese syntaktischen Zeichen selbst wieder, aber jeweils nur in bezug auf einen echten Teilausdruck. Ein Ausdruck ist ein Z und hat den Typus 0, wenn er eine der folgenden Formen hat: $1 \cdot zz$; $2 \cdot Z^1$; $(Kz_1)Z_1(S)$ oder $(Kz_1)(S)$, wobei z_1 , in Z_1 nicht frei vorkommt; $4 \cdot A_2(A_1)$, wobei A_1 einen beliebigen Typus t_1 und A_2 den Typus t_1 und t_2 den Typus t_3 und t_3 heißt dann ein t_3 so hat t_4 den Typus t_4 in beliebiger Typus, so heißt ein Ausdruck vom Typus t_4 in t_4 ein Pr. Ein Ausdruck von der Form t_4 , t_4 , t_4 , wobei jedes t_4 ein t_4 oder ein Pr oder ein Fu vom Typus t_4 ist, heißt ein Arg t_4 vom Typus t_4 , t_4 , t_4 Ein Ausdruck heißt ein Satz t_4 oder Pr oder Fu von gleichem Typus sind; t_4 ein Satzzeichen; t_4 ein zweistelliges Verknüpfungszeichen ist; t_4 einen beliebigen Typus t_4 und t_4 den Typus t_4 hat (also ein Pr ist).

,
$$A_2 \begin{pmatrix} v_1 \\ A_1 \end{pmatrix}$$
 ' bezeichnet denjenigen Ausdruck, der aus A_2 dadurch entsteht, daß v_1 an allen

Stellen, an denen es in A_2 frei vorkommt, durch A_1 ersetzt wird. , $A_2 \begin{pmatrix} p_1(v_1, v_2, ... v_n) \\ S_1 \end{pmatrix}$ bezeichnet

denjenigen Ausdruck, der aus A_2 durch die sogenannte Einsetzung mit Argumenten von S_1 für $p_1(v_1, v_2, ..., v_n)$ entsteht:

Die ¹pr oder ¹fu können als Bezeichnungen reeller Zahlen genommen werden, die ²fu als Funktionen von solchen. Nähere Erlänterungen zur Formulierung der Mathematik und Physik in dem aufge-

stellten Sprachsystem sind an anderer Stelle gegeben worden ([Syntax] § 39, 40).

3. Reduktion.

Zur Vorbereitung der Definition für 'analytisch' stellen wir zunächst Regeln für die Reduktion von Sätzen auf. Durch die Reduktion wird jeder Satz von C eindeutig in eine gewisse (meist einfachere) Normalform umgeformt. Die Reduktionsregeln RR 1-9 sind so gemeint, daß auf den jeweils vorliegenden Satz die erste von ihnen, deren Anwendung möglich ist, angewendet werden muß. Es muß also auf die Reihenfolge der Regeln geachtet werden (besonders bei RR 9 e).

,S₁' bezeichnet den jeweils vorliegenden Satz. "Aus A₁ wird A₂" soll bedeuten: "S₁ wird dadurch umgeformt, daß der (echte oder unechte) Teilausdruck A₁ von S₁ durch A₂ ersetzt wird".

RR 1. Jedes definierte Zeichen wird mit Hilfe seiner Definition eliminiert.

RR 2. Herstellung der konjunktiven Normalform:

- **a.** Aus $S_2 = S_3$ wird $(S_2 \supset S_3)$. $(S_3 \supset S_2)$.
- **b**. Aus $S_2 \supset S_3$ wird $\sim S_2 \vee S_3$.
- c. Aus $\sim (S_2 \vee S_3)$ wird $\sim S_2 \cdot \sim S_3$.
- **d**. Aus \sim (S₂ · S₃) wird \sim S₂ $\vee \sim$ S₃.
- e. Aus $S_2 \vee (S_3 \vee S_4)$ oder $(S_3, S_4) \vee S_2$ wird $(S_2 \vee S_3)$, $(S_2 \vee S_4)$.
- **f**. Aus $\sim S_2$ wird S_2 .

RR 3. Disjunktion und Konjunktion.

- a. Sind zwei Glieder einer Disjunktion (oder einer Konjunktion) gleich, so wird das erste gestrichen.
- **b**. Ist S₂ eine Disjunktion (bzw. eine Konjunktion), von der zwei Glieder die Formen S₃ und $\sim S_3$ haben, so wird aus S_2 R (bzw. \sim R).
 - c. Ist S_2 eine Disjunktion, von der ein Glied $\sim R$ ist, so wird aus S_2 R.
 - **d**. Ein Disjunktionsglied ~R wird gestrichen.
 - e. Ein Konjunktionsglied R wird gestrichen.
 - **f**. Ist S_2 eine Konjunktion, von der ein Glied $\sim R$ ist, so wird aus $S_2 \sim R$.

RR 4. Elimination der beschränkten \exists -Operatoren: aus $(\exists z_1)Z_1(S_1)$ wird $\sim(z_1)Z_1(S_1)$

RR 5. Gleichungen.

- **a**. Aus $A_1 = A_1$ wird R. **b**. Aus $Z_1^{I} = Z_2^{I}$ wird $Z_1 = Z_2$. **c**. Aus $0 = Z_1^{I}$ oder $Z_1^{I} = 0$ wird $\sim R$.

RR 6. Elimination der Satzvariablen s.

a.
$$s_1$$
 sei das erste freie s in S_1 ; aus S_1 wird $S_1 \begin{pmatrix} s \\ R \end{pmatrix}$. $S_1 \begin{pmatrix} s \\ \sim R \end{pmatrix}$.

b. Aus
$$(s_1)(S_2)$$
 wird $S_2 \begin{pmatrix} s \\ R \end{pmatrix}$. $S_2 \begin{pmatrix} s \\ \sim R \end{pmatrix}$.

c. Aus
$$(\exists s_1)(S_2)$$
 wird $S_2 \binom{s}{R} \vee S_2 \binom{s}{\sim R}$.

RR 7. Elimination der K-Operatoren:

a. beschränkt: aus
$$S_2 \begin{pmatrix} z_1 \\ (Kz_1)Z_1(S_3) \end{pmatrix}$$
 wird $[\sim (\exists z_1)Z_1(S_3) \cdot S_2 \begin{pmatrix} z_2 \\ 0 \end{pmatrix}]$ $\vee (\exists z_1)Z_1[S_3 \cdot (z_3)z_1(\sim z_3 = z_1) \supset \sim S_3 \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \cdot S_2 \begin{pmatrix} z_2 \\ z_1 \end{pmatrix}].$

b. unbeschränkt: ebenso ohne Z_1 (die Schranke z_1 bleibt).

RR 8. S_2 sei ein Satz mit beschränktem Alloperator $(z_1)Z_1(S_3)$.

a. z_1 komme in S_3 nicht frei vor; aus S_2 wird S_3 .

b.
$$Z_1$$
 sei ,0°; aus S_2 wird $S_3 \begin{pmatrix} z_1 \\ 0 \end{pmatrix}$.

- **c**. Z_1 habe die Form Z_2^{l} ; aus S_2 wird $(z_1)Z_2(S_3)$. $S_3 \begin{pmatrix} z_1 \\ Z_2^{l} \end{pmatrix}$.
- **d**. Aus S_2 wird $(z_1)(z_2)(s_1)(\exists z_3)(\exists z_4)[\sim(s_1(0,z_4)=z_4)\vee\sim(s_1(z_3^1,z_4)=s_1(z_3,z_4)^1)\vee\sim(s_1(z_1,z_2)=Z_1)\vee S_3]$. [Dieser Satz ist gleichbedeutend mit $(z_1)[(z_1 \le Z_1) \supset S_3]$.]
- **RR** 9. Herstellung der sogenannten Normalform des Funktionenkalküls⁷). Als Operatoren kommen jetzt nur noch unbeschränkte Satzoperatoren vor. Ein solcher heißt Anfangsoperator von S₁ wenn vor ihm in S₁ entweder nichts oder (von Klammern abgesehen) nur unbeschränkte Satzoperatoren stehen und sein Operand (von Klammern abgesehen) bis zum Ende von S₁ reicht.
 - **a**. Aus $(v_1)(S_2)$ oder $(\exists v_1)(S_2)$, wo v_1 in S_2 nicht frei vorkommt, wird S_2 .
- ${f b}$. Die erste Operatorvariable in S_1 die mit einer anderen Operatorvariablen oder einer in S_1 frei vorkommenden Variablen gleich ist, sei v_1 . Diese Operatorvariable und alle durch sie gebundenen Variablen (d. h. alle in ihrem Operand frei vorkommenden Variablen v_1) werden durch Variable ersetzt, die mit einander gleich, aber mit den sonst in S_1 vorkommenden Variablen nicht gleich sind.
 - **c**. Aus \sim (v₁)(S₂) wird (\exists v₁)(\sim S₂).
 - **d**. Aus $\sim (\exists v_1)(S_2)$ wird $(v_1)(\sim S_2)$.
- e. Der erste Operator in S_1 der nicht Anfangsoperator ist, und die zugehörigen Operandklammern werden so versetzt, daß er letzter Anfangsoperator wird.

⁷⁾ Vgl. D. Hilbert und W. Ackermann. Grundzüge der theoretischen Logik, 1928. — Hierzu S. 63.

Ein Satz heißt reduziert, wenn keine der Reduktionsregeln auf ihn angewendet werden kann. Die Anwendung der Regeln auf einen beliebigen Satz S_1 führt stets in endlich vielen Schritten zum Endergebnis, zu einem reduzierten Satz; diesen nennen wir das Reduktnm von $S_1(^RS_1)$.

Satz 1. Iat S_1 reduziert, so gilt:

- A. S_1 hat eine der folgenden Formen: 1. $(v_1)(S_2)$ oder $(\exists v_1)(S_2)$, wo v_1 in S_2 frei vorkommt und S_2 eine der Formen 1 bis 8 hat. 2. $\sim S_2$, wo S_2 eine der Formen 5 bis 8 hat. 3. $S_2 \vee S_3$, wo jedes der beiden Glieder eine der Formen 2, 3, 5 bis 8 hat. 4. $S_2 \cdot S_3$, wo jedes der beiden Glieder eine der Formen 2 bis 8 hat. 5. $Z_1 = Z_2$. 6. $Pr_1 = Pr_2$. 7. $Fu_1 = Fu_2$. 8. Pr(Arg). 9. R. 10. $\sim R$; nur bei dieser Form kommt R als echter Teilsatz vor.
- **B**. Jedes Z in S_1 hat eine der folgenden Formen: a. ,0°. b. Z_1^{I} , wo Z_1 die Form a oder b hat. (a und b sind St). c. Z_1^{I} , wo Z_1 eine der Formen c, d, e hat. d. z. e. Fu(Arg).
 - C. Jedes Pr in S₁ ist entweder ein undefiniertes deskriptives pr oder ein p oder von der Form Fu(Arg).
 - **D**. Jedes Fu in S₁ ist entweder ein undefiniertes deskriptives fu oder ein f oder von der Form Fu(Arg).

Satz 2. Ist S_1 logisch, reduziert und geschlossen, so hat S_1 eine der folgenden Formen: 1. $A_1, A_2, \ldots A_n(S_2)$, wo $n \ge 1$ ist, A_i (i = 1 bis n) entweder (v_i) oder ($\exists v_i$) ist und S_2 keine Operatoren, aber die freien Variablen $v_1, v_2, \ldots v_n$ enthält; 2. R; 3. \sim R.

4. Auswertung.

Prädikat- oder Funktorvariablen führt aber das analoge Verfahren nicht zum Ziel; Gödel hat hierauf aufmerksam gemacht. S_1 sei etwa M(F) (in Worten: "für alle Eigenschaften gilt M"). Wenn wir nun von S_1 zurückverweisen auf die Sätze $M(P_1)$, $M(P_2)$ usw., die aus S_1 dadurch entstehen, daß für F' je eines der in der Sprache C definierbaren Prädikate des betreffenden Typus eingesetzt wird, so kann es vorkommen, daß alle diese Sätze zutreffen, trotzdem aber M(F) insofern falsch ist, als M für eine gewisse Eigenschaft nicht zutrifft, für die in C kein Prädikat definiert werden kann. Auf Grund der Untersuchungen von Gödel ist es sicher, daß es z. B. für jedes System der Arithmetik nicht-definierbare Zahleigenschaften, in anderer Ausdrucksweise: nicht-definierbare reelle Zahlen gibt (vgl. [Antinomien] Satz 3, S. 273). Es würde offenbar nicht in Einklang stehen mit dem Gültigkeitsbegriff der klassischen Mathematik, wenn wir den Satz "alle reellen Zahlen haben die Eigenschaft M" analytisch nennen würden, obwohl sich eine reelle Zahl angeben läßt (allerdings nicht in dem betreffenden Sprachsystem selbst, sondern nur in einer reicheren Sprache), die diese Eigenschaft nicht besitzt. Wir werden vielmehr — der Anregung von Gödel folgend — "analytisch" so definieren, daß "M(F)" nur dann analytisch heißt, wenn M für jede Zahleigenschaft zutrifft, ohne Rücksicht auf den beschränkten Bereich der in C möglichen Definitionen.

Wir können also im Fall eines p nicht auf Einsetzungen verweisen, sondern müssen anders verfahren. In S_1 komme als einzige freie Variable ${}_{r}F'$ vor, etwa ein ${}^{1}p^{1}$. Dann betrachten wir nicht die definierten pr dieses Typus, sondern alle möglichen Bewertungen für ${}_{r}F'$. Dabei wollen wir unter einer möglichen Bewertung (B) für ${}_{r}F'$ eine Klasse (d. h. syntaktische Eigenschaft) von Strichausdrücken verstehen. Ist nun B_1 eine bestimmte derartige Bewertung für ${}_{r}F'$ und steht an irgend einer Stelle in S_1 ${}_{r}F'$ mit S_1 als Argument (z. B. in dem Teilsatz ${}_{r}F(0^{II})'$), so ist dieser Teilsatz gewissermaßen auf Grund von B_1 wahr, falle S_1 Element von B_1 ist, und anderenfalls falsch. Wir wollen nun unter der Auswertung von S_1 auf Grund von S_1 eine Umformung von S_1 verstehen, bei der jener Teilsatz, falls S_1 Element von S_1 ist, durch S_1 eine Umformung von dann analytisch heißt, wenn jeder S_1 analytisch ist, der aus S_1 durch Auswertung auf Grund einer beliebigen Bewertung für ${}_{r}F'$ entsteht. Und S_1 wird kontradiktorisch heißen, wenn mindestens einer der entstehenden S_1 atze kontradiktorisch ist. Für die anderen S_1 werden wir analoge Bestimmungen treffen.

Die Bewertung für ein freies $^lf_1^l$ wird in einer Zuordnung bestehen, durch die jedem St eindeutig ein St zugeordnet wird. Bei der Auswertung eines Satzes auf Grund einer bestimmten Bewertung B_1 für f_1 werden wir einen Teilausdruck $f_1(St_1)$ durch dasjenige St_2 ersetzen, das dem St_1 durch B_1 zugeordnet ist. Analoge Bestimmungen werden wir für die anderen f-Typen treffen. pr_1 sei deskriptiv; hier kommt eine Bewertung derselben Art in Betracht wie für ein pr_1 . Auch hier wird r_1 in dem r_2 vorkommt, analytisch heißen, wenn die Auswertung auf Grund jeder beliebigen Bewertung für r_2 zu einem analytischen Satz führt. Im Unterschied zum Fall eines r_2 wird aber r_3 hier nur dann kontradiktorisch heißen, wenn die Auswertung auf Grund jeder beliebigen Bewertung für r_2 zu einem kontradiktorischen Satz führt. Denn im Falle eines r_3 besagt r_4 : "Für jede Eigenschaft gilt das und das", und dies ist schon falsch, wenn es für mindestens einen Fall nicht zutrifft; hier im Falle des r_3 aber besagt r_4 : "Für die bestimmte, durch r_4 ausgedrückte Eigenschaft gilt das und das", wobei es sich um eine empirisch, nicht logisch feststellbare Eigenschaft handelt; und dieser Satz ist nur dann kontradiktorisch, r_4 . r_5 schon aus rein logischen Gründen falsch, wenn es keine Eigenschaft gibt, für die r_5 zutrifft.

Auf Grund dieser Überlegungen stellen wir im Folgenden die **Bewertungsregeln BR** und die Auswertungsregeln AR auf und später im Anschluß daran die Definition für 'analytisch' und 'kontradiktorisch'. Bewertbare Zeichen (b) in S_1 sind alle deskriptiven pr und fu, ferner die z, p und f an den Stellen, an denen sie in S_1 frei vorkommen.

- **BR 1**. Als Bewertung für ein bewertbares Zeichen b kann eine beliebige Bewertung gewählt werden, die nach den folgenden Bestimmungen denselben Typus hat wie b.
 - a. Eine Bewertung vom Typus 0 ist ein St.
 - **b**. Eine Bewertung vom Typus $t_1, t_2, \dots t_n$ ist ein geordnetes n-tupel von Bewertungen, die der Reihe nach den Typus t_1 bis t_n haben.
 - **c**. Eine Bewertung vom Typus (t_1) ist eine Klasse von Bewertungen vom Typus t_1 .
 - **d**. Eine Bewertung vom Typus $(t_1: t_2)$ ist eine mehreindeutige Zuordnung, durch die jeder Bewertung vom Typus t_1 genau eine Bewertung vom Typus t_2 zugeordnet wird.
- **BR 2**. S_1 sei ein reduzierter Satz ohne Operatoren; für alle b von S_1 seien nach BR 1 Bewertungen gewählt, und zwar für gleiche

Zeichen gleiche Bewertungen. Dann ergibt sich durch die folgenden Bestimmungen eindeutig eine Bewertung für jeden Teilausdruck in S₁ von der Form Z, Arg, Pr oder Fu.

- **a**. Als Bewertung für ,0' soll ,0' selbst genommen werden.
- **b**. St₁ sei Bewertung für Z₁; dann soll als Bewertung für Z₁ St₁ genommen werden. (Also ist als Bewertung für ein St stets dieses selbst zu nehmen.)
- **c**. Für die Glieder A_1 , bis A_n von Arg_1 seien die Bewertungen B_1 bis B_n bestimmt. Dann soll als Bewertung für Arg_1 das geordnete n-tnpel $B_1, B_2, \ldots B_n$ genommen werden.
- **d**. A_1 sei ein Ausdruck von der Form $Fu_2(Arg_1)$; für Arg_1 und Fu_2 seien die Bewertungen B_1 bzw. B_2 bestimmt. Dann soll als Bewertung für A_1 diejenige Bewertung genommen werden, die durch B_2 der Bewertung B_1 zugeordnet ist.

Hiernach hat die Bewertung eines Ausdruckes A_1 stets denselben Typus wie A_1 . Beispiel zu BR 1d. Ein B für ein 1 fu 2 , z. B. für, ${}_1f$ in ${}_1f$ ${}_1f$ hat den Typus ${}_1f$ ${}_1f$ in ${}_1f$ ${}_1f$ ${}_1f$ hat den Typus ${}_1f$ ${}_$

0), ist also eine Zuordnung, durch die jedem geordneten Paar von St eindeutig ein St zugeordnet wird.

S₁ sei ein reduzierter Satz ohne Operatoren; es seien Bewertungen für alle b in S₁ nach BR 1 gewählt und für weitere Ausdrücke nach BR 2 bestimmt. Dann besteht die Auswertung von S₁ auf Grund der gewählten Bewertungen in der Umformung nach den folgenden Auswertnugsregeln AR 1, 2. Entsteht durch eine Umformung ein nicht-reduzierter Satz, so ist er zunächst zu reduzieren und erst dann weiter umzuformen.

- **AR 1**. Ein Teilsatz S_2 habe die Form $Pr_2(Arg_1)$; die Bewertungen für Arg_1 und Pr_2 seien B_1 bzw. B_2 . S_2 wird, falls B_1 Element von B_2 ist, durch R und anderenfalls durch \sim R ersetzt.
- **AR 2**. Ein Teilsatz S_2 habe die Form $A_1 = A_2$, aber nicht R; die Bewertungen für A_1 und A_2 seien B_1 bzw. B_2 . S_2 wird, falls B_1 und B_2 identisch sind, durch R und anderenfalls durch \sim R ersetzt.
- **Satz 3**. S_1 sei ein reduzierter Satz ohne Operatoren. Die Auswertung von S_1 auf Grund irgend einer Bewertung für die vorkommenden b führt in jedem Falle in endlich vielen Schritten zum Endergebnis ; dieses ist entweder R oder \sim R. Für jedes in S_1 vorkommende deskriptive Zeichen und v liegt eine Bewertung vor. Daraus ergibt sich eine Bewertung für jedes Z, Arg, Pr und Fu. Daher wird jeder Teilsatz von der Form Pr(Arg)entweder durch R oder durch \sim R ersetzt; ebenso jeder Teilsatz von der Form $A_1 = A_2$, da A_1 und

A₂ die Form Z, Pr oder Fu haben. Es ergibt sich somit eine Verknüpfung von Sätzen R durch Negations-, Disjunktions- und Konjunktionszeichen. Durch Anwendung von RR 2 und 3 ergibt eich hieraus R oder ~R.

5. Definition für 'analytisch' und 'kontradiktorisch'.

Die Definitionen für 'analytisch' und 'kontradiktorisch' können jetzt auf Grund der vorangegungenen Festsetzungen über Reduktion und Auswertung durch die folgenden Bestimmungen DA 1-3 gegeben werden. ['A' und 'K' sind hier Abkürzungen für: "hinreichende und notwendige Bedingung dafür, daß K¹ oder S¹ analytisch ist" bzw. ". . . kontradiktorisch ist".

- **DA 1**. Definition von ,analytisch' und ,kontradiktorisch' für eine Satzklasse K₁.
- **A**. Nicht alle Sätze von K₁ seien reduziert. A (bzw. K): Die Klasse der Redukta der Sätze von K₁ ist analytisch (bzw. kontradiktorisch).
- **B**. Alle Sätze von K₁ seien reduziert und logisch. A: jeder Satz von K₁ ist analytisch; K: mindestens ein Satz von K₁ ist kontradiktorisch.
- \mathbb{C} . Die Sätze von K_1 seien reduziert, und mindestens einer von ihnen sei deskriptiv.

 $K): K_2$

- a. In K_1 komme ein offener Satz vor. K_2 sei die Klasse, die aus K_1 dadurch entsteht, daß jeder Satz S_i durch ()(S_i) (s. S. 169) ersetzt wird. A (bzw. ist analytisch (bzw. kontradiktorisch).
- **b.** Die Sätze von K₁ seien geschlossen. A: für jeden Satz S_i von K₁ ist derjenige logische Satz analytisch, der aus S_i dadurch entsteht, daß jedes deskriptive Zeichen durch eine Variable desselben Typus, deren Gestalt in S_i nicht vorkommt, ersetzt wird, wobei gleiche Zeichen durch gleiche Variable, ungleiche Zeichen durch ungleiche Variable ersetzt werden. K: bei beliebiger Wahl je einer Bewertung für jedes in K₁ vorkommende deskriptive Zeichen (wobei für gleiche Zeichen dieselbe Bewertung genommen wird) gibt es mindestens einen Satz in K₁ der kontradiktorisch in bezug auf diese Bewertung ist (siehe DA 3).
- **DA 2**. Definition von 'analytisch' und 'kontradiktorisch' für einen Satz S_1 . **A**. S_1 sei nicht reduziert. A (bzw. K): RS_1 ist analytisch (bzw. kontradiktorisch).

- **B**. S_1 sei reduziert und offen. A (bzw. K) : ()(S_1) ist analytisch (bzw. kontradiktorisch). **C**. S_1 sei reduziert, geschlossen und logisch.
 - a. S_1 habe die Form $(v_1)(S_2)$. A: S_2 ist analytisch in bezug auf jede Bewertung für v_1 ; . K: S_2 ist kontradiktorisch in bezug auf mindestens eine Bewertung für v_1 .
 - b. S₁ habe die Form (∃ v₁)(S₂). A: S₂ ist analytisch in bezug auf mindestens eine Bewertung für v₁; K: S₂ ist kontradiktorisch in bezug auf jede Bewertung für v₁.
 - c. S_1 habe die Form R oder \sim R. A: Form R; K: Form \sim R.
- **D**. S_1 seï reduziert, geschlossen und deskriptiv. A: (bzw. K): die Klasse $\{S_1\}$ (s. S.181) ist analytisch (bzw. kontradiktorisch).
- **DA 3**. Definition von 'analytisch (bzw. kontradiktorisch) in bezug auf bestimmte Bewertungen' für einen reduzierten Satz S_1 . [Diese Begriffe dienen nur als Hilfsbegriffe für DA 1, 2. 'A— B_1 ' bzw. 'K— B_1 ' bedeuten hier: "hinreichende und notwendige Bedingung dafür, daß S_1 analytisch (bzw. kontradiktorisch) in bezug auf B_1 ist"; hierbei ist B_1 eine Reihe von Bewertungen, nämlich von je einer Bewertung für jede in S_1 vorkommende Zeichengestalt b (also nicht für die gebundenen Variablen).]
 - A. S₁ habe die Form (v₂)(S₂). A—B₁: bei jeder Bewertung B₂ für v₂ ist S₂ analytisch in bezug auf B₁ und B₂. K—B₁: bei mindestens einer Bewertung B₂ für v₂ ist S₂ kontradiktorisch in bezug auf B₁ und B₂.
- **B**. S_1 habe die Form $(\exists v_2)(S_2)$. $A B_1$: bei mindestens einer Bewertung B_2 für v_2 ist S_2 analytisch in bezug auf B_1 und B_2 . $K B_1$: bei jeder Bewertung B_2 für v_2 ist S_2 kontradiktorisch in bezug auf B_1 und B_2 .
- C. S_1 enthält keinen Operator. A— B_1 (bzw. K— B_1) : die Auswertung von S_1 auf Grund von B_1 ergibt R (bzw. \sim R).
- S_1 (oder K_1) sei beliebig gegeben; es sei die Frage gestellt, ob S_1 (bzw. K_1) analytisch oder kontradiktorisch oder keines von beiden, also synthetisch ist. Dann ist zunächst eindeutig eine der Bestimmungen DA anwendbar (für DA 2 Ca—c ergibt sich dies aus Satz 2, S. 173). Ist diese Bestimmung DA 2 C c oder DA 3 C, so wird darch sie jene Frage entschieden. Dagegen wird durch jede der übrigen Bestimmungen eindeutig auf eine zweite Frage verwiesen, die sich auf ein oder mehrere andere S oder ein K bezieht. So ergibt sich für S_1 oder K_1

eindeutig eine Reihe von Fragen, die stets endlich ist und mit einer jener beiden Schlußbestimmungen endet. Für einen beliebig gegebenen Satz oder eine Satzklasse kann auf Grund dieser Fragenreihe ein hinreichendes und notwendiges Kriterium für 'analytisch' formuliert werden, und ebenso für 'kontradiktorisch'. (Ein Beispiel hierfür siehe im Beweis zu Satz 14, S. 183.) Diese Begriffe sind daher durch die Bestimmungen DA für alle Fälle eindeutig definiert. Aber es gibt kein allgemeines Entscheidungsverfahren für die einzelnen Fragen, geschweige denn für das Gesamtkriterium. Die Begriffe 'analytisch' und 'kontradiktorisch' sind indefinit.

Wir haben die Definition für 'analytisch' in einer Wortsprache formuliert, die keine scharf bestimmte Syntax besitzt. Es erheben sich nun die Fragen: 1. Kann diese Definition in eine streng formalisierte Syntaxsprache S_1 übersetzt werden? 2. Kann hierzu auch Sprache C selbst als Syntaxsprache verwendet werden? An anderer Stelle ([Antinomien], Satz 1, S. 271) ist gezeigt worden, daß für keine (widerspruchsfreie) Sprache S die Definition für 'analytisch in S' in S selbst als Syntaxsprache formuliert werden kann. Daher ist Frage (2) zu verneinen. Dagegen kann Frage (1) bejaht werden, sofern S_1 über hinreichende Mittel verfügt, insbesondere über Variable p und f gewisser Typen, die in C nicht vorkommen.

Ein gewisser Punkt in der angegebenen Definition für 'analytisch' kann zu Bedenken Anlaß geben. Als formalisierte Syntaxsprache werde eine Sprache S verwendet, die eine ähnliche; Symbolik wiel C hat, aber über reichere Ausdrucksmittel verfügt. Die Definition für 'analytisch in C' enthält (in DA 1 C b, 2 C a). Wendungen wie "für jede Bewertung für ein ¹p¹ …"; dies besagt nach BR 1 a, c soviel wie "für alle syntaktischen Eigenschaften von Strichausdrücken . . .". Was ist mit dieser Wendung gemeint und wie ist sie in der symbolischen Sprache S zu formulieren?

Würde nur gesagt "für alle in S definierbaren syntaktischen Eigenschaften . . . ", so würde die Definition für 'analytisch in C' nicht das treffen, was sie treffen soll. Denn wie es für jede Sprache Zahleigenschaften gibt, die in ihr nicht definierbar sind (vgl. S. 174), so gibt es auch syntaktische Eigenschaften, die in S nicht definierbar sind. Es könnte dann vorkommen, daß der Satz 'S¹ ist analytisch in C' in der Syntaxsprache S wahr (analytisch) wäre, in einer noch reicheren Syntaxsprache S' dagegen falsch (kontradiktorisch), nämlich dann, wenn die in dem Kriterium für jenen Satz enthaltene Wendung "für alle definierbaren syntaktischen Eigenschaften . . . " zwar zutrifft für alle in

S definierbaren Eigenschaften, nicht aber für eine bestimmte Eigenschaft, die erst in S' definierbar ist. Die Definition darf sich also nicht auf die in S definierbaren syntaktischen Eigenschaften beschränken, sondern muß sich auf alle syntaktischen Eigenschaften schlechthin beziehen. Geraten wir aber dadurch nicht in einen platonistischen Ideen-Absolutismus, nämlich in die Auffassung, daß die überabzählbare und daher niemals durch Definitionen erschöpfbare Gesamtheit aller Eigenschaften etwas an sich Bestehendes sei, unabhängig von allem Konstruieren und Definieren? Diese metaphysische Auffassung — wie sie etwa von Ramsey vertreten worden ist⁸) — lehnen wir ab. Wir haben es hier überhaupt nicht zu tun mit der metaphysischen Frage, ob die Eigenschaften für sich bestehen oder erst durch Definitionen erschaffen werden. Die Frage ist vielmehr so zu stellen: Kann die Wendung "für alle Eigenschaften . . . " (mit der Deutung "für alle Eigenschaften schlechthin", nicht aber "für alle in S definierbaren Eigenschaften") in der symbolischen Syntazsprache S formuliert werden? Diese Frage ist zu bejahen. Die Formulierung geschieht nämlich mit Hilfe eines Alloperators mit einer Variablen p, also etwa durch $(F)(\ldots)$ '. [Daß diese Wendung in der Sprache S die beabsichtigte Deutung hat, wird formal dadurch festgelegt, daß die Definition für ,analytisch in S' in der weiteren Syntaxsprache S₂ auch wieder gemäß der früheren Überlegung (S. 174) aufgestelltwird, nämlich nicht mit Hilfe von Einsetzungen der pr von S, sondern mit Hilfe von Bewertungen.]

6. Über analytische und kontradiktorische Sätze.

Wir haben früher gesehen, daß die Begriffe 'beweisbar' und 'widerlegbar' nicht die Forderung erfüllen, eine vollständige und überdeckungafreie Einteilung aller logischen Sätze (zu denen auch die mathematischen gehören) zu bilden. Dieser Umstand gab den Anlaß zur Einführung der Begriffe 'analytisch' und 'kontradiktorisch'. Wir müssen nun prüfen, ob durch diese neuen Begriffe eine solche Einteilung hergestellt wird (Sätze 4 und 5).

Satz 4. Kein Satz (und keine Satzklasse) ist zugleich analytisch und kontradiktorisch. — Die Durchprüfung der einzelnen Bestimmungen DA zeigt, daß in jedem Fall die Bedingungen für 'analytisch' und die für 'kontradiktorisch' sich ausschließen, falls sie sich für den Fall ausschließen, auf den weiter verwiesen wird. Beim letzten Schritt, nämlich DA 2 Cc oder 3 C, schließen sie sich sicher aus; also allgemein.

⁸) Vgl. R. Carnap, Die logizistische Grundlegung der Mathematik, Erkenntnis 2, 91-105, 1931. — Hierzu S. 102.

[Satz 4 benötigt nicht die Voraussetzung der Widerspruchsfreiheit, im Unterschied zu dem analogen Satz über 'beweisbar' und 'widerlegbar'.]

Satz 5. Jeder logische Satz ist entweder analytisch oder kontradiktorisch. (Es gibt jedoch kein allgemeines Entscheidungsverfahren.) — Zum Zweck des indirekten Beweises nehmen wir an, S_1 wäre logisch und synthetisch. Dann wäre nach DA 2 A auch RS_1 logisch und synthetisch; ferner nach DA 2 B auch ()(RS_1). Dies sei S_2 . S_2 wäre logisch, reduziert und geschlossen, hätte also nach Satz 2 (S. 173) eine der folgenden Formen: 1. $A_1 A_2 ... A_n$ (S_3), wo $n \ge 1$ ist, A_i (i = 1 bis n) entweder (v_i) oder ($\exists v_i$) ist und S_3 keine Operatoren enthält; 2. R; 3. \sim R. Die Formen R und \sim R sind hier nach DA 2 Cc ausgeschlossen, da S_2 synthetisch sein soll. S_2 hätte also die erstgenannte Form. Dann müßte nach DA 2 Ca, b S_3 in bezug auf mindestens eine Reihe von Bewertungen für $v_1, v_2 ... v_n$ weder analytisch noch kontradiktorisch sein. Die Auswertung von S_3 auf Grund einer solchen Reihe von Bewertungen müßte dann nach DA 3 C zu einem Satz führen, der weder R noch \sim R wäre. Das aber ist nach Satz 3 (S. 176) ausgeschlossen.

Nach Satz 5 gibt es synthetische Sätze nur unter den deskriptiven.

Satz 6. a. Ist S_1 analytisch, so ist $\sim S_1$ kontradiktorisch. — b. Ist S_1 kontradiktorisch und geschlossen, so ist $\sim S_1$ analytisch.

Satz 7. Ist eine Teilklasse von K_1 kontradiktorisch, so auch K_1 . Die Klasse der Sätze S_1 , S_2 , ... S_n bezeichnen wir mit $\{S_1, S_2, \ldots S_n\}$ ', die Vereinigung von K_1 und K_2 mit $\{K_1 + K_2\}$ '. **Satz 8**. Ist $K_1 + K_2$ kontradiktorisch und K_1 analytisch, K_2 so ist kontradiktorisch.

7. Folge.

Zwei oder mehrere Sätze heißen unverträglich mit einander, wenn ihre Klasse kontradiktorisch ist; anderenfalls verträglich.

Ein Satz ist (bei inhaltlicher Deutung) dann und nur dann eine logische Folge aus bestimmten anderen Sätzen, wenn sein Gegenteil mit diesen Sätzen unverträglich ist. Wir definieren deshalb: S_1 heißt eine Folge von K_1 wenn $K_1+\{\sim(\)(S_1)\}$ kontradiktorisch ist. S_1 heißt unabhängig von K_1 , wenn S_1 weder Folge von K_1 noch unverträglich mit K_1 ist. Die definierten Termini wollen wir nicht nur im Fall einer Satzklasse K_1 , sondern auch im Fall eines oder mehrerer Sätze (als Prämissen) anwenden. Wir nennen z. B. S_3 eine Folge von S_1 und S_2 , wenn S_3 Folge von S_1 ist.

Der Begriff 'Folge' verhält sich zum Begriff 'ableitbar' so wie 'analytisch' zu 'beweisbar'; d. h. er ist umfassender, hat dafür aber den Nachteil der weit komplizierteren Definition und des höheren Grades der Indefinitheit. 'Ableitbar' wird definiert als eine endliche Kette der Beziehung 'unmittelbar ableitbar'. Analog könnte man 'Folge' definieren als eine Kette einer einfacheren Beziehung 'unmittelbare Folge'. Danach würde man dann 'analytisch' definieren als 'Folge der leeren Satzklasse' und 'kontradiktorisch' als 'Satz, von dem jeder Satz Folge ist'9). Im Vorstehenden sind wir nicht so verfahren, sondern haben aus Gründen der technisch einfacheren Durchführung zuerst 'analytisch' und 'kontradiktorisch' definiert, und dann daraus 'Folge'. Wir wollen nun nachprüfen, ob der so definierte Begriff 'Folge' auch die genannten Eigenschaften hat (Satz 10 und 11). Ferner muß gezeigt werden, daß die Beziehung 'Folge' eine gewisse Art von Transitivität besitzt, die bei der ersten Definitionsmethode trivial sein würde, während hier der Beweis nicht so einfach ist (Satz 12).

Satz 9. Ist S_1 kontradiktorisch und Folge von K_1 , so ist auch kontradiktorisch. — Nach Satz 6 b ist \sim ()(S_1) analytisch, also nach Satz 8 K_1 kontradiktorisch.

Satz 10. Ist S₁ Folge der leeren Satzklasse, so ist S₁ analytisch; und umgekehrt. — Ergibt sich aus Satz 6.

Satz 11. Ist K_1 (oder S_1) kontradiktorisch, so ist jeder Satz Folge von K_1 (bzw. S_1); und umgekehrt. — Nach Satz 7; Umkehrung nach Satz 9.

Satz 12. Ist S_3 Folge von K_2 und jeder Satz von K_2 Folge von K_1 , so ist S_3 Folge von K_1 . Beweis. K_4 sei die Klasse der Sätze ()(RS_i) für jedes S_i von K_1 ; ebenso K_5 von K_2 ; S_6 sei ()(RS_3). Dann sind S_6 und alle Sätze von K_4 und K_5 reduziert und geschlossen. Eine Reihe von Bewertungen für die bewertbaren Zeichen (es sind hier deskriptive Zeichen) eines Satzes oder einer Satzklasse werde bezeichnet durch ,B' mit dem entsprechenden Index. Voraussetzungen : 1. $K_2 + \{\sim()(S_3)\}$ ist kontradiktorisch; also auch $K_5 + \{\sim S_6\}$. 2. Für jedes S_i von K_2 ist $K_1 + \{\sim()(S_i)\}$ kontradiktorisch; also ist für jedes S_i von K_5 $K_4 + \{\sim S_i\}$ kontradiktorisch. Behauptung : $K_1 + \{\sim()(S_3)\}$ ist kontradiktorisch; d. h. $K_4 + \{\sim S_6\}$ ist kontradiktorisch. Dies besagt nach DA 1 C b : bei beliebiger Wahl von B_4 und B_6 ist $\sim S_6$ oder ein Satz

⁹) In dieser Weise werden z. B. in [Syntax] § 14 die genannten Begriffe für Sprache I definiert.

von K_4 kontradiktorisch in bezug auf B_4 bzw. B_6 . Zum Zweck des indirekten Beweises nehmen wir das Gegenteil an: B_4 und B_6 seien derart gegeben, daß weder $\sim S_6$ noch irgend ein Satz von K_4 kontradiktorisch in bezug auf $B_4 + B_6$ wäre. Voraussetzung (1) besagt: für beliebige B_5 und B_6 ist $\sim S_6$ oder ein Satz von K_5 kontradiktorisch in bezug auf B_5 bzw. B_6 . Voraussetzung (2) besagt: für jedes S_j von K_5 ist bei beliebiger Wahl von B_4 und $B_j \sim S_j$ oder ein Satz von K_4 kontradiktorisch in bezug auf B_j bzw. B_6 . Auf Grund unserer Annahme wäre also einerseits für beliebiges B_5 ein Satz von K_5 , etwa S_7 , kontradiktorisch in bezug auf B_5 , andererseits wäre, wie für jedes S_j von K_5 , auch für S_7 bei beliebigem B_7 (das in B_5 enthalten ist) $\sim S_7$ kontradiktorisch in bezug auf B_7 . Dies ist aber unmöglich; da S_7 geschlossen ist, kann nicht sowohl S_7 als auch $\sim S_7$ kontradiktorisch in bezug auf dieselbe Bewertung sein (vgl. Satz 6 b).

Satz 13. a. Ist $S_1 \supset S_2$ analytisch, so ist S_2 Folge von S_1 . — b. Ist S_1 geschlossen und ist S_2 Folge von S_1 , so ist $S_1 \supset S_2$ analytisch.

Beweis für 13a. Für geschlossenes S_1 ist der Beweis einfach. Für offenes S_1 geht man in folgender Weise vor. Da $S_1 \supset S_2$ analytisch ist, ist auch ()($\sim S_1 \vee S_2$) analytisch; ferner auch \sim ()(S_1) \vee ()(S_2) (Beweis umständlich). Nach Satz 6b ist die Negation des letztgenannten Satzes kontradiktorisch, daher auch ()(S_1). \sim ()(S_2), daher auch die Klasse {()(S_1), \sim ()(S_2)}, also auch {(S_1), \sim ()(S_2)}, Also ist S_2 Folge von S_1 . — Beweis für 13b. {(S_1), \sim ()(S_2)} ist kontradiktorisch, also auch S_1 . \sim ()(S_2). Da dieser Satz geschlossen ist, so ist nach Satz S_1 0 seine Negation analytisch, also auch S_1 1 \sim ()(S_2 2). Daher ist, weil S_1 1 geschlossen ist, auch $\sim S_1 \vee S_2$ 2 analytisch, also auch S_1 1 \supset S_2 2.

8. Nachweis des analytischen Charakters einiger logischer Prinzipien.

Satz 14. Das Prinzip der vollständigen Induktion , $[F(0) \cdot (x)(F(x) \supset F(x^{l}))] \supset (x)(F(x))$ ' ist analytisch.

Aufstellung des Kriteriums. Der genannte Satz sei S_1 . Das notwendige und hinreichende griterinm dafür, daß S_1 analytisch ist, wird in folgender Weise umgeformt, wobei jeder Schritt durch die DA-Bestimmungen eindeutig festgelegt ist. Kriterium nach DA 2A: RS_1 muß analytisch sein ; dies sei S_2 . Wir finden durch Reduktion S_2 :

$$(\exists x)(y)[(\sim F(0) \lor F(x) \lor F(y)) \cdot (\sim F(0) \lor \sim F(x^{1}) \lor F(y))]'$$

Weiter nach DA 2 B: $_{,}(F)(\exists x)(y)[...]$ ' muß analytisch sein; dies sei S3. Hierfür nach DA 2 Ca: S2 muß analytisch sein in bezug auf jede Bewertung für $_{,}F$ '. Nach DA 3 B: bei jeder Bewertung B1 für $_{,}F$ ' muß bei mindestens einer Bewertung B2 für $_{,}x$ ' $_{,}(y)[...]$ ' analytisch in bezug auf B1 und B2 sein. Nach DA 3 A: es muß bei jedem B1 für $_{,}F$ ' bei mindestens einem B2 für $_{,}x$ ' bei jedem B3 für $_{,}y$ ' der in eckigen Klammern stehende Operand — er sei S4 — analytisch in bezug auf B1, B2, B3 sein. Nach DA 3 C: es muß bei jedem B1 für $_{,}F$ ' bei mindestens einem B2 für $_{,}x$ ' bei jedem B3 für $_{,}y$ ' die Auswertung von S4 auf Grund von B1, B2, B3 auf R führen. Damit ist das Kriterium aufgestellt.

Nachweis, daß das Kriterium erfüllt ist. S₅ sei , $\sim F(0) \vee F(x) \vee F(y)$ 'S₆ sei , $\sim F(0) \vee$ $\sim F(x^1) \vee F(y)$; S₄ ist dann S₅. S₆. B₁ hat denselben Typus wie \mathcal{F} , also (0), ist also nach BR 1 a, c eine Klasse von St. Wir wollen hierfür 3 Fälle unterscheiden: 1. Das St ,0' gehört nicht zu B₁; 2.,0' und jedes andere St gehört zu B₁; , 3.,0' gehört zu B₁, es gibt aber ein St, das nicht zu B₁ gehört, etwa St₁. — 1. Im Fall (1) führt die Auswertung von S₄ unabhängig von B₂ und B₃ stets zu R. Hier wird nämlich nach BR 2 a und AR 1 F(0) durch \sim R ersetzt; \sim F(0) wird also zu ~~R, woraus durch Reduktion nach RR 2 f R wird. Dann wird aus S₅ und aus S₆ nach RR 3 c R, also aus S₄ nach RR 3 a R. — 2. Im Fall (2) wird S₄ unabhängig von B₂ bei beliebigem B₃ zu R. Denn da jedes St zu B₁ gehört, so auch die Bewertung B₃ für ,y'. Also führt die Auswertung von F(y) nach AR 1 zu R. Daher werden wie vorher S_5 , S_6 , S_4 zu R. — 3. Im Fall (3) kann man zu beliebigem B₁ ein B₂ derart angeben, daß die Auswertung von S₄ unabhängig von B₃ zu R führt. Da nämlich ,0° zu B₁ gehört, St₁ aber nicht, erhalten wir, indem wir von St₁ schrittweise je einen Strich, ¹ fortstreichen, ein St₂ derart, daß St₂ zu B₁ gehört; St₂ aber nicht. (Bei diesem Schluß wird die vollständige Induktion in der Syntagsprache angewendet; hierzu vgl. S. 189.) Als B₂ (das nach BR 1 a ein St ist) nehmen wir nun St₂. Dann wird nach AR 1 aus F(x) R. Nach BR 2 b wird St₂¹ Bewertung für x^{1} . Daher wird aus $F(x^{1})$ nach AR 1 ~R; aus $F(x^{1})$ wird somit ~R, und hieraus R. Daher werden wie vorhin S₅, S₆ und S₄ zu R. — Das Kriterium ist in allen drei Fällen erfüllt. S₁ ist somit analytisch.

Satz 15. Alle im üblichen Satzkalkül beweisbaren Sätze, also z. B. auch das Prinzip des ausgeschlossenen Dritten, das des Widerspruchs und das der doppelten Negation, sind analytisch. — Folgt aus RR 2, 3,

Satz 16. Jeder Satz von der Form A₁= A₁ (Reflexivität der Identität) ist analytisch. — Aus RR 5a.

- **Satz 17**. Jeder Satz von der Form $(v_1 = v_2) \supset [S_1 \supset S_1 \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}]$ (Vertauschbarkeit auf Grund der Identität) ist analytisch. Beweis ist einfach, auf Grund einer Fallunterscheidung: v_1 und v_2 haben entweder dieselbe Bewertung oder nicht.
- **Satz 18**. Jeder Satz von der Form $(v_l)(S_1) \supset S_1 \binom{v_1}{A_1}$ (Prinzip der einfachen Einsetzung, Subalternationsprinzip, dictum de omni et nullo) ist analytisch.

Beweis. Durch (teilweise) Reduktion ergibt sich: $(\exists \ v_l)[\ S_1 \lor \ S_1 {v_l \choose A_i}]$ Dies ist analytisch, da der Operand in bezug auf mindestens eine Bewertung B_1 für v_l analytisch ist; als B_1 kann nämlich A_1 bzw. eine beliebige Bewertung für A_1 genommen werden.

Satz 19. Jeder Satz von der Form $(p_1)(S_1) \supset S_1 \binom{p_1(Arg_1)}{S_2}$ (prinzip der Einsetzung mit

Argumenten) ist analytisch. — Dieses Prinzip stellt einen der kritischen Punkte des logischmathematischen Systems dar, besonders für den Fall, daß S_2 überschießende freie Variable enthält, d. h. solche, die in Arg₁ nicht vorkommen.

Beweis. S_3 sei ein Satz der genannten Form. Wir setzen S_3 als logisch voraus; nachträglich kann die Erweiterung für den Fall eines deskriptiven Satzes leicht vorgenommen werden. Arg₁ sei $v_1, v_2, ... v_k$. S_2 enthalte außer diesen Variablen (die nicht notwendig vorkommen müssen) die überschießenden freien Variablen $v_{k+1}, ... v_m$. Die in S_1 frei vorkommenden Variablen außer p_1 seien $v_{m+1}, ... v_p$. Um zu zeigen, daß S_3 analytisch ist, wollen wir zeigen, daß S_3 in bezug auf eine beliebig vorgegebene Reihe \overline{B} von Bewertungen für die Variablen $v_{k+1}, ... v_m, v_{m+1}, ... v_p$ analytisch ist. Durch teilweise Reduktion erhalten wir für RS_3

 $^{R}[S_{4}\lor\ S_{5}]$, wobei $S_{4}(\exists\ p_{1})(\sim S_{1})$ und $S_{5}S_{1}igg(rac{p_{1}(Arg_{1})}{S_{2}}igg)$ ist. Wir unterscheiden zwei Fälle. 1. Es

gebe eine Bewertung B_1 für p_1 derart, daß in bezug auf B_1 und \overline{B} analytisch ist. Dann ist nach DA 3 B $(\exists \, p_1)^R (\sim S_1)$ analytisch in bezug auf \overline{B} , also RS_4 , also auch RS_3 . — 2. Es gebe keine Bewertung der

genannten Art für p_l . Dann ist für jede beliebige Bewertung B_i für $p_l^R(\sim S_1)$ in bezug auf B_i und \overline{B} nicht analytisch, also, weil logisch, nach Satz 5 kontradiktorisch. Also ist RS_1 in bezug auf B_i und \overline{B} analytisch. Wir wählen nun auf Grund der gegebenen Bewertungen \overline{B} eine bestimmte Bewertung B_l für p_l in folgender Weise. Eine mögliche Bewertung für p_l ist nach BR 1 c eine Klasse möglicher Bewertungen für Arg_l ; B_l sei nun dadurch bestimmt, daß eine mögliche Bewertung B_j für Arg_l dann und nur dann Element von B_l sein soll, wenn RS_2 analytisch in bezug auf B_j und \overline{B} ist. p_l hat in S_l stets einen Argumentausdruck hinter sich. Ein bestimmter Teilsatz mit p_l in S_l sei p_l (A_1 , A_2 , ... A_k). B' sei die Reihe der Bewertungen für A_1 , ... A_k die sich nach BR 2 auf Grund der Bewertungen \overline{B} (von denen hier nur die Bewertungen für die in A_1 , ... A_k etwa frei vorkommenden Variablen in Betracht kommen) ergeben ; dabei betrachten wir, falls in diesen Ausdrücken Teilsätze vorkommen, R als Bewertung für einen analytischen Teilsatz, R0 für einen kontradiktorischen. Dann ist R1 (A_1 , ... A_k), weil logisch, in bezug auf R1 und R2 entweder analytisch (Fall a) oder kontradiktorisch (Fall b). Wegen R1 ist im Fall a R2 Element von R3, im Fall b Nicht-Element. Nun ist R3 auch eine mögliche Bewertung für Arg1. Im Fall a ist gemäß unserer Bestimmung von R3 auch eine mögliche Bewertung für Arg1. Im Fall a ist gemäß unserer Bestimmung von R3 auch eine mögliche Bewertung für Arg1. Im Fall a ist

 \overline{B} ; im Fall b kontradiktorisch. Daher ist im Fall a RS_2 analytisch in bezug auf \overline{B} im Fall b kontradiktorisch. — S_5 entsteht nun aus S_1 dadurch, daß an den Einsetzungsstellen jeweils ein Teilsatz von der Form $p_1(A_1, ... A_k)$ durch den zugehörigen Teilsatz $S_2 {V_1 \choose A_1} ... {V_k \choose A_k}$ ersetzt wird.

Wie wir gesehen haben, sind je zwei derartig zusammengehörige Teilsätze in bezug auf B_1 und \overline{B} entweder beide analytisch oder beide kontradiktorisch. Wenn daher RS_1 in bezug auf B_1 und \overline{B} analytisch ist, so ist auch RS_5 analytisch in bezug auf \overline{B} . Wie wir früher gesehen haben, ist RS_1 in bezug auf \overline{B} und jede beliebige Bewertung für p_1 analytisch, also auch in bezug auf \overline{B} und B_1 . Also ist RS_5 analytisch in bezug auf \overline{B} , also auch RS_3 .

Satz 20. Jeder Satz von der Form $(\exists v_1)(S_1) = \sim(v_1)(\sim S_1)$ (Prinzip des Existenzoperators; Prinzip des ausgeschlossenen Dritten im Prädikatenkalkül) ist analytisch. — Anwendung von RR 9c, 2f, 5a führt auf R.

Satz 21. Jeder Satz von der Form (v_1) $(s_1 \lor S_1) \supset [s_1 \lor (v_1)(S_1)]$

(Prinzip der Operatorverschiebung) ist analytisch. — Teilweise Reduktion ergibt $(\exists v_1)(v_2)[\sim S_1 \vee S_1 \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}]$; weiter analog Satz 18.

Satz 22. Jeder Satz von der Form $(v_3)(p_1(v_3) = p_2(v_3)) \supset (p_1 = p_2)$ (Extensionalitätsprinzip in bezug auf Prädikate) ist analytisch. — S_1 habe die genannte Form. RS_1 ist

$$(\exists v_3)[p_1(v_3) \lor p_2(v_3) \lor (p_1 = p_2)) \cdot (\sim p_2(v_3) \lor \sim p_1(v_3) \lor (p_1 = p_2))].$$

Damit dies analytisch ist, muß es für beliebige Bewertungen B_1 und B_2 für \sim_1 bzw. p_l eine Bewertung B_3 für v_3 geben derart, daß die Auswertung des Operanden auf Grund dieser Bewertungen auf R führt. Durch Fallunterscheidung läßt sich leicht zeigen, daß diese Bedingung erfüllt ist.

Satz 23. Jeder Satz von der Form

$$(v_1)(v_2) \dots (v_n)(s_1(v_1, \dots v_n) = s_2(v_1, \dots v_n)) \supset (s_1 = s_2)$$

(Extensionalitätsprinzip in bezug auf Funktoren) ist analytisch. — Die Reduktion führt auf

$$(\exists v_1)...(\exists v_n)[\sim(s_1(v_1, ... v_n) = s_2(v_1, ... v_n)) \lor (s_1 = s_2)].$$

Damit dies analytisch ist, muß es für beliebige Bewertungen für s_1 und s_2 eine Reihe von Bewertungen für v_1 , ... v_n geben derart, daß die Auswertung des Operanden auf R führt. Das ist leicht zu zeigen. Sind beliebige Bewertungen für s_1 und s_2 gegeben, so stimmen sie entweder überein oder nicht. Im ersten Fall wird das zweite Disjunktionsglied R, also der ganze Operand. Im zweiten Fall nimmt man als Reihe der Bewertungen für v_1 , ... v_n eine solche, der durch die Bewertungen für s_1 und s_2 zwei nicht übereinstimmende Bewertungen zugeordnet werden. Dann wird das erste Disjunktionsglied R, also der ganze Operand.

Satz 24. Der Satz ,~ $(0 = x^{l})$ ' (Prinzip der Anfangszahl Null) ist analytisch. — Folgt aus RR 5c, 2f.

Satz 25. Der Satz $(x' = y^{l}) \supset (x = y)^{c}$ (prinzip der Einzigkeit des Zahlvorgängers) ist analytisch. — Folgt aus RR 2b, 5b, 3b.

Satz 26. Jeder Satz von der Form $((p_2)[p_1(p_2)\supset (\,\exists\,v_1)[p_2(v_1)]]$

- . $(p_2)(p_3)[(p_1(p_2) \cdot p_1(p_3) \cdot (\exists v_1)[p_2(v_1) \cdot p_3(v_1)]) \supset (p_2 = p_3)])$
- $\supset (\exists p_4)(p_2)(p_1(p_2) \supset [(\exists v_1)[p_2(v_1) \cdot p_4(v_1)] \cdot (v_1)(v_2)([p_2(v_1) \cdot p_4(v_1)]$
- . $p_2(v_2)$. $p_4(v_2)$] \supset $(v_1 = v_2)$]), wobei v_1 (und daher auch v_2) ein p oder s ist, (Auswahlprinzip von Zermelo) ist analytisch.

Der Beweis ist leicht, aber umständlich. Wegen einer grundsätzlichen Frage sei seine Form wenigstens angedeutet. S₁ sei ein Satz der genannten Form. ^RS₁ ist dann

$$(\exists p_2)(v_7)(\exists p_3)(\exists p_4)(\exists v_8)(\exists p_5)(p_6)(\exists v_9)(v_{10})(v_{11})[S_2];$$

hierbei ist S₂:

$$(p_1(p_2) \lor p_1(p_3) \lor \sim p_1(p_6) \lor p_6(v_9)) \cdot (...) \cdot ... \cdot (\sim p_2(v_7) \lor \sim (p_3 = p_4) \lor \sim p_1(p_6) \lor \sim p_6(v_{10}) \lor \sim p_5(v_{10}) \lor \sim p_6(v_{11}) \lor \sim p_5(v_{11}) \lor (v_{10} = v_{11})).$$

S2 ist eine 30-gliedrige Konjunktion, jedes Glied ist eine Disjunktion mit 4 oder 8 Gliedern. Bi (i = 1 bis 11) sei Bewertung für vi bzw. pi. S1 ist nach DA analytisch, wenn folgende Bedingung erfüllt ist: für jedes B1 gibt es ein B2 derart, daß es für jedes B7 ein B3, B4, B8, B5 gibt derart, daß es für jedes B6 ein B9 gibt derart, daß für jedes B10 und B11 die Auswertung von S1 auf Grund von B1 bis B11 zu R führt. B1 sei beliebig gegeben. Wir machen eine Falleinteilung in bezug auf B1: B1 ist leer oder nicht; B1 enthält eine leere Elementklasse oder nicht; es gibt zwei Elementklassen von B1 mit gemeinsamem Element oder nicht. Dann läßt sich leicht zeigen, daß in jedem dieser Fälle das genannte Kriterium erfüllt ist. Hier wollen wir nur den wichtigsten Fall betrachten, nämlich den letzten: B1 und die Elementklassen von B1 seien nicht leer, je zwei verschiedene Elementklassen von B1 seien elementfremd. Dann gibt es — vorausgesetzt, daß in der Syntaxsprache das Auswahlprinzip gilt — eine Auswahlklasse von B1, d. h. eine solche, die mit jeder Elementklasse von B1 genau ein Element gemein hat. Diese Auswahlklasse nehmen wir als B5. Dann kann, wie sich leicht zeigen läßt (Falleinteilung: B6 ist Element von B1 oder nicht), das angegebene Kriterium in jedem Fall erfüllt werden.

In dem vorstehenden Beweis wird das Auswahlprinzip verwendet. Es ist aber zu beachten, daß dieses Prinzip hier nicht als Satz der Objektsprache auftritt, sondern als ein Satz der Syntaxsprache, den wir in unserer syntaktischen Überlegung anwenden. Es ist klar, daß die Möglichkeit, einen bestimmten syntaktischen Satz nachzuweisen, mit davon abhängt, wie reichhaltig die jeweils verwendete Syntaxsprache ist und was in ihr als gültig angenommen wird. Im vorliegenden Fall liegt nun die Sache so: den Nachweis dafür, daß ein gewisser Satz S_1 der Objektsprache C analytisch ist, können wir in unserer Syntaxsprache S (für die wir hier eine nicht genauer

fixierte Wortsprache genommen haben) dann führen, wenn wir in S einen gewissen Satz zur Verfügung haben, und zwar gerade den Satz von S, der (bei üblicher Übersetzung) in den Satz S₁ von C übersetzbar ist. Hieraus geht hervor, daß unser Beweis nicht etwa zirkelhaft ist. Genau Analoges gilt für die Verwendung des Induktionsprinzip der Syntaxsprache im Beweis für Satz 14. Die Beweise für die Sätze 14 und 26 dürfen nicht so gedeutet werden, als sei durch sie gezeigt, daß das Induktionsprinzip und das Auswahlprinzip inhaltlich richtig sind. Vielmehr ist nur gezeigt, daß unsere Definition für 'analytisch' in diesen Punkten das trifft, was sie treffen soll: sie soll einen Satz als analytisch ergeben, wenn er bei inhaltlicher Deutung als logischgültig angesehen wird.

Die Frage, ob man in die Gesamtsprache der Wissenschaft (und damit auch der syntaktischen Untersuchungen) das Auswahlprinzip als logisch-gültig aufnehmen soll oder nicht, ist hiermit nicht entschieden. Dies ist eine Sache des Entschlusses, wie alle Fragen inbezug auf die zu wählende Sprachform (vgl. das Toleranzprinzip, [Syntax] § 17). Auf Grund der gegenwärtigen Kenntnis des syntaktischen Charakters des Auswahlprinzips dürfte seine Aufstellung als zweckmäßig anzusehen sein. Für die Aufstellung spricht, daß durch sie der Aufbau des mathematischen Kalküls bekanntlich erheblich vereinfacht wird; dagegen spricht kaum etwas, solange nicht die Entstehung eines Widerspruches erwiesen ist (und eher das Gegenteil plausibel erscheint).

An anderer Stelle ([Syntax] § 30, 31) sind für Sprache C (dort Sprache II genannt) Umformungsbestimmungen anderer Art als hier aufgestellt worden; dort werden auf Grund des üblichen Ableitungsverfahrens, also des zweiten der oben (S. 164) genannten Verfahren, Grundsätze GII 1-23 und Schlnßregeln RII 1, 2 aufgestellt. Über den Zusammenhang der dadurch definierten Begriffe 'ableitbar' und 'beweisbar' mit den hier definierten Begriffen 'Folge' und 'analytisch', also den entsprechenden f-Begriffen, gilt das Folgende. Es läßt sich zeigen, daß jeder logische Grundsatz analytisch ist. Für GII 1-6, 10-13, 16-23 ist das durch die Sätze 15-17, 24, 25, 18-21, 14, 26, 22, 23 gezeigt. Für die übrigen Grundsätze kann es in einfacher Weise nachgewiesen werden; für GII 7-9 (beschränkte Operatoren) auf Grund von RR 8 b, c, 4; für GII 14, 15 (K-Operatoren) auf Grund von RR 7a, b. Ist nun ein Satz analytisch, so auch jeder, der aus ihm durch Einsetzung eines deskriptiven Zeichens für irgend eine Variable hervorgeht. Daher sind alle Grundsätze GII analytisch.

Die Schlußregeln RII bestimmen: 1. S_2 ist unmittelbar ableitbar aus S_1 und $S_1 \supset S_2$; 2. $(v)(S_1)$ ist unmittelbar ableitbar aus S₁. Es läßt sich (mit Hilfe von Satz 13, S. 183) zeigen, daß in diesen beiden Fällen auch die Folgebeziehung besteht. Da nun auch jede Definition analytisch ist (auf Grund von RR 1), so gilt: ist S_1 ableitbar aus K_1 , so auch Folge von K_1 ; ist S_1 beweisbar, so auch analytisch. In beiden Fällen ist die Umkehrung nicht gültig; die f-Begriffe Folge' und analytisch' sind umfassender als die a-Begriffe ableitbar' und beweisbar'. Gerade um dieses umfassenderen Charakters willen haben wir sie ja trotz ihrer weit verwickelteren Definitionen eingeführt. Wir nennen eine Sprache widerspruchsfrei, wenn nicht jeder Satz beweisbar ist. Da ~R nach DA 2 Cc nicht analytisch ist, so auch nicht beweisbar. Also ist die durch GII 1-23 und RII 1, 2 bestimmte Sprache II widerspruchsfrei. Der hiermit geführte Beweis der Widerspruchsfreiheit für eine Sprache, die die klassische Mathematik enthält, beruht wesentlich auf den Sätzen 14-26 und auf der Verwendung des in hohem Grad indefiniten Begriffs 'analytisch'. Er stellt also keineswegs eine Lösung der Aufgabe dar, die Hilbert sich gestellt hat, nämlich einen derartigen Beweis mit "finiten Mitteln" zu führen. Es ist aber nach den Ergebnissen von Gödel¹⁰) zweifelhaft, ob diese Aufgabe überhaupt lösbar ist. Die von Hilbert gestellte Aufgabe ist allerdings noch nicht scharf formuliert, solange Hilbert den Bereich der Mittel, die er als finit ansehen will, nicht genau abgegrenzt hat. Die Bedeutung des hier angeführten Widerspruchsfreiheitsbeweises darf nicht überschätzt werden. Er gibt uns, auch wenn er keinen Fehler enthält, keine absolute Sicherheit, daß in der Objektsprache II keine Widersprüche auftreten können. Denn der Beweis wird ja in einer Syntaxsprache geführt, die noch reichere Mittel enthält als Sprache II und in der wir daher gegen das Auftreten von Widersprüchen keineswegs gesichert sind.

(Eingegangen: 19. XII. 1934.)

¹⁰) Gödel, a. a. O., s.196f.