
Bernays Project: Text No. 13

Platonism in mathematics

(1935)

Paul Bernays
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With your permission, I shall now address you on the subject of the

present situation in research in the foundations of mathematics. Since there

remain open questions in this field, I am not in a position to paint a definitive

picture of it for you. But it must be pointed out that the situation is not so

critical as one could think from listening to those who speak of a foundational

crisis. From certain points of view, this expression can be justified; but it

could give rise to the opinion that mathematical science is shaken at its
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roots. The truth is that the mathematical sciences are growing in complete

security and harmony. The ideas of Dedekind, Poincaré, and Hilbert have

been systematically developed with great success, without any conflict in the

results. It is only from the philosophical point of view that objections have

been raised. They bear on certain ways of reasoning peculiar to analysis and

set theory. These modes of reasoning were first systematically applied in

giving a rigorous form to the methods of the calculus. [According to them,]

the objects of a theory are viewed as elements of a totality such that one

can reason as follows: For each property expressible using the notions of the

theory, it is [an] objectively determinate [fact] whether there is or there is not

an element of the totality which possesses this property. Similarly, it follows

from this point of view that either all the elements of a set possess a given

property, or there is at least one element which does not possess it.

An example of this way of setting up a theory can be found in Hilbert’s ax-

iomatization of geometry. If we compare Hilbert’s axiom system to Euclid’s,

ignoring the fact that the Greek geometer fails to include certain [necessary]

postulates, we notice that Euclid speaks of figures to be constructed1 whereas,

for Hilbert, system of points, straight lines, and planes exist from the outset.

Euclid postulates: One can join two points by a straight line; Hilbert states

the axiom: Given any two points, there exists a straight line on which both

are situated. “Exists” refers here to existence in the system of straight lines.

This example shows already that the tendency of which we are speaking

consists in viewing the objects as cut off from all links with the reflecting

subject.

1[Translator’s italics.]
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Since this tendency asserted itself especially in the philosophy of Plato,

allow me to call it “platonism.”

The value of platonistically inspired mathematical conceptions is that

they furnish models of abstract imagination. These stand out by their sim-

plicity and logical strength. They form representations which extrapolate

from certain regions of experience and intuition.

Nonetheless, we know that we can arithmetize the theoretical systems

of geometry and physics. For this reason, we shall direct our attention to

platonism in arithmetic. But I am referring to arithmetic in a very broad

sense, which includes analysis and set theory.

The weakest of the “platonistic” assumptions introduced by arithmetic is

that of the totality of integers. The tertium non datum for integers follows

from it; viz.: if P is a predicate of integers, either P is true of each number,

or there is at least one exception.

By the assumption mentioned, this disjunction is an immediate conse-

quence of the logical principle of the excluded middle; in analysis it is almost

continually applied.

For example, it is by means of it that one concludes that for two real

numbers a and b, given by convergent series, either a = b or a < b or b < a;

and likewise: a sequence of positive rational numbers either comes as close

as you please to zero or there is a positive rational number less than all the

members of the sequence.

At first sight, such disjunctions seem trivial, and we must be attentive

in order to notice that an assumption slips in. But analysis is not content

with this modest variety of platonism; it reflects it to a stronger degree
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with respect to the following notions: set of numbers, sequence of numbers,

and function. It abstracts from the possibility of giving definitions of sets,

sequences, and functions. These notions are used in a “quasi-combinatorial”

sense, by which I mean: in the sense of an analogy of the infinite to the finite.

Consider, for example, the different functions which assign to each mem-

ber of the finite series 1, 2, . . . , n a number of the same series. There are nn

functions of this sort, and each of them is obtained by n independent de-

terminations. Passing to the infinite case, we imagine functions engendered

by an infinity of independent determinations which assign to each integer an

integer, and we reason about the totality of these functions.

In the same way, one views a set of integers as the result of infinitely

many independent acts deciding for each number whether it should be in-

cluded or excluded. We add to this the idea of the totality of these sets.

Sequences of real numbers and sets of real numbers are envisaged in an anal-

ogous manner. From this point of view, constructive definitions of specific

functions, sequences, and sets arc only ways to pick out an object which

exists independently of, and prior to, the construction.

The axiom of choice is an immediate application of the quasi-combinatorial

concepts in question. It is generally employed in the theory of real numbers

in the following special form. Let

M1,M2 . . .

be a sequence of non-empty sets of real numbers, then there is a sequence

a1, a2 . . .

. such that for every index n, an is an element of Mn.
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The principle becomes subject to objections if the effective construction

of the sequence of numbers is demanded.

A similar case is that of Poincaré’s impredicative definitions. An impred-

icative definition of a real number appeals to the hypothesis that all real

numbers have a certain property P , or the hypothesis that there exists a real

number with the property T .

This kind of definition depends on the assumption of [the existence of]

the totality of sequences of integers, because a real number is represented by

a decimal fraction, that is to say, by a special kind of sequence of integers.

It is used in particular to prove the fundamental theorem that a bounded

set of real numbers always has a least upper bound.

In Cantor’s theories, platonistic conceptions extend far beyond those of

the theory of real numbers. This is done by iterating the use of the quasi-

combinatorial concept of a function and adding methods of collection. This

is the well-known method of set theory.

The platonistic conceptions of analysis and set theory have also been

applied in modern theories of algebra and topology, where they have proved

very fertile.

This brief summary will suffice to characterize platonism and its appli-

cation to mathematics. This application is so widespread that it is not an

exaggeration to say that platonism reigns today in mathematics.

But on the other hand, we see that this tendency has been criticized in

principle since its first appearance and has given rise to many discussions.

This criticism was reinforced by the paradoxes discovered in set theory, even

though these antinomies refute only extreme platonism.
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We have set forth only a restricted platonism which does not claim to

be more than, so to speak, an ideal projection of a domain of thought. But

the matter has not rested there. Several mathematicians and philosophers

interpret the methods of platonism in the sense of conceptual realism, pos-

tulating the existence of a world of ideal objects containing all the objects

and relations of mathematics. It is this absolute platonism which has been

shown untenable by the antinomies, particularly by those surrounding the

Russell-Zermelo paradox.

If one hears them for the first time, these paradoxes in their purely logical

form can seem to be plays on words without serious significance. Nonetheless

one must consider that these abbreviated forms of the paradoxes are obtained

by following out the consequences of the various requirements of absolute

platonism.

The essential importance of these antinomies is to bring out the impos-

sibility of combining the following two things: the idea of the totality of all

mathematical objects and the general concepts of set and function; for the

totality itself would form a domain of elements for sets, and arguments and

values for functions. We must therefore give up absolute platonism. But it

must be observed that this is almost the only injunction which follows from

the paradoxes. Some will think that this is regrettable, since the paradoxes

are appealed to on every side. But avoiding the paradoxes does not consti-

tute a univocal program. In particular, restricted platonism is not touched

at all by the antinomies.

Still, the critique of the foundations of analysis receives new impetus

from this source, and among the different possible ways of escaping from the
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paradoxes, eliminating platonism offered itself as the most radical.

Let us look and see how this elimination can be brought about. It is done

in two steps, corresponding to the two essential assumptions introduced by

platonism. The first step is to replace by constructive concepts the concepts

of a set, a sequence, or a function, which I have called quasi-combinatorial.

The idea of an infinity of independent determinations is rejected. One em-

phasizes that an infinite sequence or a decimal fraction can be given only

by an arithmetical law, and one regards the continuum as a set of elements

defined by such laws.

This procedure is adapted to the tendency toward a complete arithmeti-

zation of analysis. Indeed, it must be conceded that the arithmetization of

analysis is not carried through to the end by the usual method. The concep-

tions which are applied there are not completely reducible, as we have seen,

to the notion of integer and logical concepts.

Nonetheless, if we pursue the thought that each real number is defined

by an arithmetical law, the idea of the totality of real numbers is no longer

indispensable, and the axiom of choice is not at all evident. Also, unless we

introduce auxiliary assumptions—as Russell and Whitehead do—we must do

without various usual conclusions. Weyl has made these consequences very

clear in his book Das Kontinuum.

Let us proceed to the second step of the elimination. It consists in re-

nouncing the idea of the totality of integers. This point of view was first

defended by Kronecker and then developed systematically by Brouwer.

Although several of you heard in March [1934] an authentic exposition of

this method by Professor Brouwer himself, I shall allow myself a few words
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of explanation.

A misunderstanding about Kronecker must first be dissipated, which

could arise from his often-cited aphorism that the integers were created by

God, whereas everything else in mathematics is the work of man. If that were

really Kronecker’s opinion, he ought to admit the concept of the totality of

integers.

In fact, Kronecker’s method, as well as that of Brouwer, is characterized

by the fact that it avoids the supposition that there exists a series of natural

numbers forming a determinate ideal object.

According to Kronecker and Brouwer, one can speak of the series of num-

bers only in the sense of a process that is never finished, surpassing each

limit which it reaches.

This point of departure carries with it the other divergences, in particular

those concerning the application and interpretation of logical forms: Neither

a general judgment about integers nor a judgment of existence can be inter-

preted as expressing a property of the series of numbers. A general theorem

about numbers is to be regarded as a sort of prediction that a property will

present itself for each construction of a number; and the affirmation of the

existence of a number with a certain property is interpreted as an incomplete

communication of a more precise proposition indicating a [particular] number

having the property in question or a method for obtaining such a number;

Hilbert calls it a “partial judgment.”

For the same reasons the negation of a general or existential proposition

about integers does not have precise sense. One must strengthen the nega-

tion to arrive at a mathematical proposition. For example, it is to give a
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strengthened negation of a proposition affirming the existence of a number

with a property P to say that a number with the property P cannot be given,

or further, that the assumption of a number with this property leads to a

contradiction. But for such strengthened negations the law of the excluded

middle is no longer applicable.

The characteristic complications to be met with in Brouwer’s “intuition-

istic” method come from this.

For example, one may not generally make use of disjunctions like these:

a series of positive terms is either convergent or divergent; two convergent

sums represent either the same real number or different ones.

In the theory of integers and of algebraic numbers, we can avoid these

difficulties and manage to preserve all the essential theorems and arguments.

In fact, Kronecker has already shown that the core of the theory of alge-

braic fields can be developed from his methodological point of view without

appeal to the totality of integers.2

As for analysis, you know that Brouwer has developed it in accord with

the requirements of intuitionism. But here one must abandon a number of the

usual theorems, for example, the fundamental theorem that every continuous

2To this end, Kronecker set forth in his lectures a manner of introducing the notion of

algebraic number which has been almost totally forgotten, although it is the most elemen-

tary way of defining this notion. This method consists in representing algebraic numbers

by the changes of sign of irreducible polynomials in one variable with rational integers as

coefficients; starting from that definition, one introduces the elementary operations and

relations of magnitude for algebraic numbers and proves that the ordinary laws of calcu-

lation hold; finally one shows that a polynomial with algebraic coefficients having values

with different signs for two algebraic arguments a and b has a zero between a and b.
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function has a maximum in a closed interval. Very few things in set theory

remain valid in intuitionist mathematics.

We would say, roughly, that intuitionism is adapted to the theory of

numbers; the semiplatonistic method, which makes use of the idea of the

totality of integers but avoids quasi-combinatorial concepts, is adapted to

the arithmetic theory of functions, and the usual platonism is adequate for

the geometric theory of the continuum.

There is nothing astonishing about this situation, for it is a familiar proce-

dure of the contemporary mathematician to restrict his assumptions in each

domain of the science to those which are essential. By this restriction, a the-

ory gains methodological clarity, and it is in this direction that intuitionism

proves fruitful.

But as you know, intuitionism is not at all content with such a role; it

opposes the usual mathematics and claims to represent the only true math-

ematics.

On the other hand, mathematicians generally are not at all ready to ex-

change the well-tested and elegant methods of analysis for more complicated

methods unless there is an overriding necessity for it.

We must discuss the question more deeply. Let us try to portray more

distinctly the assumptions and philosophic character of the intuitionistic

method.

What Brouwer appeals to is evidence. He claims that the basic ideas

of intuitionism are given to us in an evident manner by pure intuition. In

relying on this, he reveals his partial agreement with Kant. But whereas for

Kant there exists a pure intuition with respect to space and time, Brouwer
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acknowledges only the intuition of time, from which, like Kant, he derives

the intuition of number.

As for this philosophic position, it seems to me that one must concede

to Brouwer two essential points: first, that the concept of integer is of in-

tuitive origin. In this respect nothing is changed by the investigations of

the logicists,3 to which I shall return later. Second, one ought not to make

arithmetic and geometry correspond in the manner in which Kant did. The

concept of number is more elementary than the concepts of geometry.

Still it seems a bit hasty to deny completely the existence of a geometrical

intuition. But let us leave that question aside here; there are other, more

urgent ones. Is it really certain that the evidence given by arithmetical

intuition extends exactly as far as the boundaries of intuitionist arithmetic

would require? And finally: Is it possible to draw an exact boundary between

what is evident and what is only plausible?

I believe that one must answer these two questions negatively. To begin

with, you know that men and even scholars do not agree about evidence

in general. Also, the same man sometimes rejects suppositions which he

previously regarded as evident.

An example of a much-discussed question of evidence, about which there

has been controversy up to the present, is that of the axiom of parallels. I

think that the criticism which has been directed against that axiom is partly

explained by the special place which it has in Euclid’s system. Various other

axioms had been omitted, so that the parallels axiom stood out from the

others by its complexity.

3[I have rendered ’logiciens’ throughout as ’logicists’.—Trans.]
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In this matter I shall be content to point out the following: One can

have doubts concerning the evidence of geometry, holding that it extends

only to topological facts or to the facts expressed by the projective axioms.

One can, on the other hand, claim that geometric intuition is not exact.

These opinions. are self-consistent, and all have arguments in their favor.

But to claim that metric geometry has an evidence restricted to the laws

common to Euclidean and Bolyai-Lobachevskian geometry, an exact metrical

evidence which yet would not guarantee the existence of a perfect square,

seems to me rather artificial. And yet it was the point of view of a number

of mathematicians.

Our concern here has been to underline the difficulties to be encountered

in trying to describe the limits of evidence.

Nevertheless, these difficulties do not make it impossible that there should

be anything evident beyond question, and certainly intuitionism offers some

such. But does it confine itself completely within the region of this elementary

evidence? This is not completely indubitable, for the following reason: Intu-

itionism makes no allowance for the possibility that, for very large numbers,

the operations required by the recursive method of constructing numbers can

cease to have a concrete meaning. From two integers k, l one passes immedi-

ately to kl; this process leads in a few steps to numbers which are far larger

than any occurring in experience, e.g., 67(257729)).

Intuitionism, like ordinary mathematics, claims that this number can be

represented by an Arabic numeral. Could not one press further the criticism

which intuitionism makes of existential assertions and raise the question:

What does it mean to claim the existence of an Arabic numeral for the
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foregoing number, since in practice we are not in a position to obtain it?

Brouwer appeals to intuition, but one can doubt that the evidence for it

really is intuitive. Isn’t this rather an application of the general method of

analogy, consisting in extending to inaccessible numbers the relations which

we can concretely verify for accessible numbers? As a matter of fact, the

reason for applying this analogy is strengthened by the fact that there is no

precise boundary between the numbers which are accessible and those which

are not. One could introduce the notion of a “practicable” procedure, and

implicitly restrict the import of recursive definitions to practicable opera-

tions. To avoid contradictions, it would suffice to abstain from applying the

principle of the excluded middle to the notion of practicability. But such

abstention goes without saying for intuitionism.

I hope I shall not be misunderstood: I am far from recommending that

arithmetic be done with this restriction. I am concerned only to show that

intuitionism takes as its basis propositions which one can doubt and in prin-

ciple do without, although the resulting theory would be rather meager.

It is therefore not absolutely indubitable that the domain of complete

evidence extends to all of intuitionism. On the other hand, several math-

ematicians recognize the complete evidence of intuitionistic arithmetic and

moreover maintain that the concept of the series of numbers is evident in

the following sense: The affirmation of the existence of a number does not

require that one must, directly or recursively, give a bound for this number.

Besides, we have just seen how far beyond a really concrete presentation such

a limitation would be.

In short, the point of view of intuitive evidence does not decide uniquely
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in favor of intuitionism.

In addition, one must observe that the evidence which intuitionism uses in

its arguments is not always of an immediate character. Abstract reflections

are also included. In fact, intuitionists often use statements, containing a

general hypothesis, of the form ‘if every number n has the property A(n),

then B holds’.

Such a statement is interpreted intuitionistically in the following manner:

‘If it is proved that every number n possesses the property A(n), then B.’

Here we have a hypothesis of an abstract kind, because since the methods of

demonstration are not fixed in intuitionism, the condition that something is

proved is not intuitively determined.

It is true that one can also interpret the given statement by viewing it

as a partial judgment, i.e., as the claim that there exists a proof of B from

the given hypothesis, a proof which would be effectively given.4 (This is

approximately the sense of Kolmogorov’s interpretation of intuitionism.) In

any case, the argument must start from the general hypothesis, which cannot

be intuitively fixed. It is therefore an abstract reflection.

In the example just considered, the abstract part is rather limited. The

abstract character becomes more pronounced if one superposes hypotheses;

i.e., when one formulates propositions like the following: ‘if from the hypoth-

esis that A(n) is valid for every n, one can infer B, then C holds’, or ‘If from

the hypothesis that A leads to a contradiction, a contradiction follows, then

B’, or briefly ‘If the absurdity of A is absurd, then B’. This abstractness of

4[“. . . c’est à dire comme une indication d’un raisonnement conduisant de la dite hy-

pothèse à la conclusion B, raisonnement qu’on présente effectivement.”]
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statements can be still further increased.

It is by the systematic application of these forms of abstract reasoning

that Brouwer has gone beyond Kronecker’s methods and succeeded in estab-

lishing a general intuitionistic logic, which has been systematized by Heyting.

If we consider this intuitionistic logic, in which the notions of consequence

are applied without reservation, and we compare the method used here with

the usual one, we notice that the characteristic general feature of intuitionism

is not that of being founded on pure intuition, but rather [that of being

founded] on the relation of the reflecting and acting subject to the whole

development of science.

This is an extreme methodological position. It is contrary to the cus-

tomary manner of doing mathematics, which consists in establishing theories

detached as much as possible from the thinking subject.

This realization leads us to doubt that intuitionism is the sole legitimate

method of mathematical reasoning. For even if we admit that the tendency

away from the [thinking] subject has been pressed too far under the reign of

platonism, this does not lead us to believe that the truth lies in the opposite

extreme. Keeping both possibilities in mind, we shall rather aim to bring

about in each branch of science, an adaptation of method to the character

of the object investigated.

For example, for number theory the use of the intuitive concept of a

number is the most natural. In fact, one can thus establish the theory of

numbers without introducing an axiom, such as that of complete induction,

or axioms of infinity like those of Dedekind and Russell.

Moreover, in order to avoid the intuitive concept of number, one is led to
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introduce a more general concept, like that of a proposition, a function, or

an arbitrary correspondence, concepts which are in general not objectively

defined. It is true that such a concept can be made more definite by the

axiomatic method, as in axiomatic set theory, but then the system of axioms

is quite complicated.

You know that Frege tried to deduce arithmetic from pure logic by view-

ing the latter as the general theory of the universe of mathematical objects.

Although the foundation of this absolutely platonistic enterprise was under-

mined by the Russell-Zermelo paradox, the school of logicists has not given

up the idea of incorporating arithmetic in a system of logic. In place of abso-

lute platonism, they have introduced some initial assumptions. But because

of these, the system loses the character of pure logic.

In the system of Principia Mathematica, it is not only the axioms of infin-

ity and reducibility which go beyond pure logic, but also the initial conception

of a universal domain of individuals and of a domain of predicates. It is re-

ally an ad hoc assumption to suppose that we have before us the universe

of things divided into subjects and predicates, ready-made for theoretical

treatment.

But even with such auxiliary assumptions, one cannot successfully incor-

porate the whole of arithmetic into the system of logic. For, since this system

is developed according to fixed rules, one would have to be able to obtain by

means of a fixed series of rules all the theorems of arithmetic. But this is not

the case; as Gödel has shown, arithmetic goes beyond each given formalism.

(In fact, the same is true of axiomatic set theory.)

Besides, the desire to deduce arithmetic from logic derives from the tra-
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ditional opinion that the relation of logic to arithmetic is that of general

to particular. The truth, it seems to me, is that mathematical abstraction

does not have a lesser degree than logical abstraction, but rather another

direction.

These considerations do not detract at all from the intrinsic value of that

research of logicists which aims at developing logic systematically and formal-

izing mathematical proofs. We were concerned here only with defending the

thesis that for the theory of numbers, the intuitive method is more suitable.

On the other hand, for the theory of the continuum, given by analysis,

the intuitionist method seems rather artificial. The idea of the continuum is

a geometrical idea which analysis expresses in terms of arithmetic.

Is the intuitionist method of representing the continuum better adapted

to the idea of the continuum than the usual one?

Weyl would have us believe this. He reproaches ordinary analysis for de-

composing the continuum into single points. But isn’t this reproach better

addressed to semiplatonism, which views the continuum as a set of arith-

metical laws? The fact is that for the usual method there is a completely

satisfying analogy between the manner in which a particular point stands out

from the continuum and the manner in which a real number defined by an

arithmetical law stands out from the set of all real numbers, whose elements

are in general only implicitly involved, by virtue of the quasi-combinatorial

concept of a sequence.

This analogy seems to me to agree better with the nature of the continuum

than that which intuitionism establishes between the fuzzy character of the

continuum and the uncertainties arising from unsolved arithmetical problems.
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It is true that in the usual analysis the notion of a continuous function,

and also that of a differentiable function, have a generality going far beyond

our intuitive representation of a curve. Nevertheless in this analysis, we can

establish the theorem of the maximum of a continuous function and Rolle’s

theorem, thus rejoining the intuitive conception.

Intuitionist analysis, even though it begins with a much more restricted

notion of a function, does not arrive at such simple theorems; they must

instead be replaced by more complex ones. This stems from the fact that on

the intuitionistic conception, the continuum does not have the character of

a totality, which undeniably belongs to the geometric idea of the continuum.

And it is this characteristic of the continuum which would resist perfect

arithmetization.

These considerations lead us to notice that the duality of arithmetic and

geometry is not unrelated to the opposition between intuitionism and platon-

ism. The concept of number appears in arithmetic. It is of intuitive origin,

but then the idea of the totality of numbers is superimposed. On the other

hand, in geometry the platonistic idea of space is primordial, and it is against

this background that the intuitionist procedures of constructing figures take

place.

This suffices to show that the two tendencies, intuitionist and platonist,

are both necessary; they complement each other, and it would be doing

oneself violence to renounce one or the other.

But the duality of these two tendencies, like that of arithmetic and geom-

etry, is not a perfect symmetry. As we have noted, it is not proper to make

arithmetic and geometry correspond completely: the idea of number is more
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immediate to the mind than the idea of space. Likewise, we must recognize

that the assumptions of platonism have a transcendent character which is

not found in intuitionism.

It is also this transcendent character which requires us to take certain

precautions in regard to each platonistic assumption. For even when such a

supposition is not at all arbitrary and presents itself naturally to the mind, it

can still be that the principle from which it proceeds permits only a restricted

application, outside of which one would fall into contradiction. We must be

all the more careful in the face of this possibility, since the drive for simplicity

leads us to make our principles as broad as possible. And the need for a

restriction is often not noticed. This was the case, as we have seen, for the

principle of totality, which was pressed too far by absolute platonism. Here

it was only the discovery of the Russell-Zermelo paradox which showed that

a restriction was necessary.

Thus it is desirable to find a method to make sure that the platonistic

assumptions on which mathematics is based do not go beyond permissible

limits. The assumptions in question reduce to various forms of the principle

of totality and of the principle of analogy or of the permanence of laws. And

the condition restricting the application of these principles is none other

than that of the consistency of the consequences which are deduced from the

fundamental assumptions.

As you know, Hilbert is trying to find ways of giving us such assurances

of consistency, and his proof theory has this as its goal.

This theory relies in part on the results of the logicists. They have shown

that the arguments applied in arithmetic, analysis, and set theory can be for-
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malized. That is, they can be expressed in symbols and as symbolic processes

which unfold according to fixed rules. To primitive propositions correspond

initial formulae, and to each logical deduction corresponds a sequence of for-

mulae derivable from one another according to given rules. In this formalism,

a platonistic assumption is represented by an initial formula or by a rule es-

tablishing a way of passing from formulae already obtained to others. In

this way, the investigation of the possibilities of proof reduces to problems

like those which are found in elementary number theory. In particular, the

consistency of the theory will be proved if one succeeds in proving that it is

impossible to deduce two mutually contradictory formulae A and Ā (with the

bar representing negation). This statement which is to be proved is of the

same structure as that, for example, asserting the impossibility of satisfying

the equation a2 = 2b2 by two integers a and b.

Thus by symbolic reduction, the question of the consistency of a theory

reduces to a problem of an elementary arithmetical character.

Starting from this fundamental idea, Hilbert has sketched a detailed pro-

gram of a theory of proof, indicating the leading ideas of the arguments (for

the main consistency proofs). His intention was to confine himself to intuitive

and combinatorial considerations; his “finitary point of view” was restricted

to these methods.

In this framework, the theory was developed up to a certain point. Several

mathematicians have contributed to it: Ackermann, von Neumann, Skolem,

Herbrand, Gödel, Gentzen. Nonetheless, these investigations have remained

within a relatively restricted domain. In fact, they did not even reach a proof

of the consistency of the axiomatic theory of integers. It is known that the
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symbolic representation of this theory is obtained by adding to the ordinary

logical calculus formalizations of Peano’s axioms and the recursive definitions

of sum (a+ b) and product (a · b).

Light was shed on this situation by a general theorem of Gödel, accord-

ing to which a proof of the consistency of a formalized theory cannot be

represented by means of the formalism considered. From this theorem, the

following more special proposition follows: It is impossible to prove by ele-

mentary combinatorial methods the consistency of a formalized theory which

can express every elementary combinatorial proof of an arithmetical propo-

sition.

Now it seems that this proposition applies to the formalism of the ax-

iomatic theory of numbers. At least, no attempt made up to now has given

us any example of an elementary combinatorial proof which cannot be ex-

pressed in this formalism, and the methods by which one can, in the cases

considered, translate a proof into the aforementioned formalism, seem to

suffice in general.

Assuming that this is so,5 we arrive at the conclusion that means more

powerful than elementary combinatorial methods are necessary to prove the

consistency of the axiomatic theory of numbers. A new discovery of Gödel

and Gentzen leads us to such a more powerful method. They have shown

(independently of one another) that the consistency of intuitionist arithmetic

implies the consistency of the axiomatic theory of numbers. This result

5In trying to demonstrate the possibility of translating each elementary combinatorial

proof of an arithmetical proposition into the formalism of the axiomatic theory of numbers,

we are confronted with the difficulty of delimiting precisely the domain of elementary

combinatorial methods.
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was obtained by using Heyting’s formalization of intuitionist arithmetic and

logic. The argument is conducted by elementary methods, in a rather simple

manner. In order to conclude from this result that the axiomatic theory of

numbers is consistent, it suffices to assume the consistency of intuitionist

arithmetic.

This proof of the consistency of axiomatic number theory shows us, among

other things, that intuitionism, by its abstract arguments, goes essentially

beyond elementary combinatorial methods.

The question which now arises is whether the strengthening of the method

of proof theory obtained by admitting the abstract arguments of intuitionism

would put us into a position to prove the consistency of analysis. The answer

would be very important and even decisive for proof theory, and even, it seems

to me, for the role which is to be attributed to intuitionistic methods.

Research in the foundations of mathematics is still developing. Several

basic questions are open, and we do not know what we shall discover in

this domain. But these investigations excite our curiosity by their changing

perspectives, and that is a sentiment which is not aroused to the same degree

by the more classical parts of science, which have attained greater perfection.

I wish to thank Professor Wavre, who was kind enough to help me improve

the text of this lecture for publication. I also thank M. Rueff, who was good

enough to look over the first draft to improve the French.
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