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Among the theses that are characteristic of Ferdinand Gonseth’s philosophy

there is one which, at first glance, seems less specific than the others, but

which, on closer inspection, reveals itself to be especially important. It is

the claim that in our theoretical description of nature we do not arrive at an

adequate representation of reality, but only at a schematic correspondence.

Initially this statement is perhaps open to misunderstanding, and a de-

tailed discussion of its content may not be superfluous. What is definitely

not meant is that any kind of representation of an object or process in nature

as provided by the natural sciences is merely a schematic representation. In

fact, theoretical inquiry in science provides us with a variety of possibili-

ties for letting nature, as it were, work for us, and the depictions obtained

along these lines have a high degree of perfection and are far from schematic;

e.g., the depiction of objects by means of a good photographic image or the

rendering of a sound by means of a good radio reproduction.
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What is declared to be schematic is, instead, the representation of a

situation or process in a theoretical “description”. Here the schematic as-

pect comes into play from the very beginning insofar as the description is

always fitted to a certain scale of the investigation. It is, in particular, char-

acteristic that physics, in its continuing exploration of smaller and smaller

phenomena, is led successively to new kinds of objects and laws [neuartige

Gegenständlichkeiten und Gesetzlichkeiten].

In this development the old idea of atomism has been confirmed in an

impressive way, but not in the sense that with the atoms we have found

something so to speak final, indivisible, and unchangeable. The study of

aggregate states leads to the composition of matter out of molecules; the

study of chemical processes leads to the composition of molecules out of

atoms; and in microphysical research the atoms themselves reveal themselves

to be structured in a complex way, as complexes of even smaller parts which

can be separated if subjected to strong enough forces.

One consequence of discovering smaller and smaller components of physi-

cal entities [der physikalischen Gegenständlichkeiten] is that the majority of natu-

ral processes are to be conceived as mass phenomena and, hence, to take many

of the usual laws to have a schematic character insofar as they are based on

the explanation of processes as involving averages [als Durchschnittsphänomene].

Another schematic aspect of the laws of physics consists in the following:

During the development of our theories many of the initially formulated and

empirically confirmed laws come to be seen as mere approximations of more

complex, but also more comprehensive laws. Thus even Newton’s law of

gravitation, long regarded as a fundamental law of physics, is now derived
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from Einstein’s theory of gravitation as an approximate consequence.

In all these cases the schematic character of the representation does not

by any means signify a deficiency; rather, the realization that a certain more

complex structure can be replaced, to a degree that is perfectly adequate

for the given purposes, by a certain much simpler structure constitutes an

additional insight. The corresponding approximate representation is also

completely adequate with respect to the given realm of applications; it is

just not adequate absolutely, i.e., for every kind of application.

Let us look at this situation a bit more closely. Most scientific inves-

tigations concern only a limited space-time region, for which the effects of

its [further] environment are taken into account only as general boundary

conditions, so schematically, or they are neglected altogether. Cosmological

theories, on the other hand, aim at a mathematical-physical description of

nature as a whole; as such they are forced to schematize even more, since

here we are only dealing with global relations.

A kind of neglect that is, as it were, unintentional derives from the fact

that at every level of research only certain kinds of structures, processes, and

dependencies are known to science. Thus for the characterization of, say, a

certain condition only the known aspects can be taken into account.

In spite of the tremendous expansion of human knowledge concerning

law-governed structures and various forms of theoretically comprehensible

connections during the previous and the current century, there is no reason

to assume that we will soon come to an end in that regard.

The principle of the schematic limitation of theoretical description can be

applied especially to the idea of determinism, i.e., the idea that the totality
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of natural processes within a sufficiently closed domain is determined in its

development, uniquely and exhaustively, by mathematical laws, if we start

from any fixed momentary state. Organic processes are meant to be included

here as well, as are human life and human actions.

This view depends on the assumption that natural processes can be rep-

resented adequately by the solution to a system of differential equations. As

is well known, this assumption is dropped in contemporary quantum me-

chanics; according to that theory microscopic processes are not determined

uniquely by means of differential laws, these laws provide only determina-

tions of probabilities. But even if one argues that such indeterminacy only

concerns microscopic processes and that for macroscopic processes we never-

theless get deterministic laws as a result, those resulting laws still have the

feature of being schematic; and that feature already constitutes a sufficient

counter-argument against a strict form of determinism.

It should be emphasized here that the rejection of strict determinism does

not at all mean the abandonment of our usual causal thinking. After all, the

principle of causal investigation—which states that if we observe a deviation

from a steady state or from the normal development of a process we can

expect to find an explanatory cause for that deviation—does not in itself

include determinism.

Furthermore, the deterministic form of physical laws still remains crucial

for the application of these laws in deriving predictions. A rejection of de-

terminism is, thus, only justified with respect to determinism in the sense

mentioned above, i.e., determinism as an extreme philosophical doctrine.

This doctrine plays a role, in particular, in the longstanding debate about
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human freedom of the will.1

One can look at this question from many different perspectives. On the

one hand, from the point of view of experience one can point out that es-

pecially with respect to important human decisions, those with respect to

which one is more strongly engaged, emotional drives are usually so domi-

nant that there is no question of an arbitrary choice. The role of the will is

here comparable with that of the executive of a state who is given the more

discretion the less important the decision in question is.

On the other hand, if freedom of the will is called into question from the

point of view of determinism the case is quite different. In that case human

actions are viewed either in terms of physical or physiological laws, in the

sense of psycho-physics, or one imagines psychological research into the mind

to have been brought to such precision that it is capable of exact prediction.

However, an appeal to the principles and methods of psycho-physics or psy-

chology cannot ground a strict form of determinism with respect to human

freedom of the will; this becomes clear as soon as we remember the funda-

mental schematic limitation that is characteristic of the scientific description

of processes and states. Let us assume, e.g., that biology succeeds in deter-

mining the gene structure, thus also the hereditary disposition, of a human

being experimentally; then this determination can still hardly be of a kind in

which the observing researcher or, say, the registering apparatus has access to

all the abilities contained in the hereditary disposition of the corresponding

human being. In other words, the registered data can hardly be equivalent

1[Fns. 1 and 1* in the German original.] Gonseth has presented his thoughts on this

issue in the article “Déterminisme et libre arbitre, Editions du Griffon, Neuchâtel, 1944.
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to the potentialities contained in the hereditary disposition. But that would

be required if one wanted, just on the basis of determining the hereditary

disposition of each human being as well as the influence of environmental

factors, to give a detailed prognosis for someone’s attainments.

2

So far we have considered the schematic only in the sense of a limitation,

as the merely schematic and abstract as opposed to the richer concrete and

the living. But this is only one side of the story; and it would be an inad-

equate interpretation of schematic correspondence in the sense of Gonseth,

too, if one thought of the schematic eo ipso as a coarsening. Among the

schemata used in scientific description belong, after all, in particular, the

geometric figures, and they have a kind of perfection that can be attained

only approximately by concrete things. A concrete spatial object can only

roughly, but never precisely, have the form of a sphere; similarly, a concrete

length can only approximately be the middle proportional between two dif-

ferent lengths. Thus, there is a kind of reciprocity between the concrete and

the schemata: on the one hand, the schemata do in general represent the

concrete only approximately; on the other hand, the schemata can in general

be realized only approximately by concrete objects.

What reveals itself in this reciprocity is the fact that in the schemata we

are confronted with a kind of objectivity [eine Gegenständlichkeit] that is sui

generis; it is the objectivity [Gegenständlichkeit] of the mathematical.

Overall, mathematics can be understood as the science of schemata with

respect to their internal constitution. Seen as such, the essential role played
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by mathematics in the theoretical sciences has been acknowledged in terms

of the idea of schematic correspondence, while the fundamental difference

between mathematical objectivity [mathematische Gegenständlichkeit] and the

objectivity of nature [Naturgegenständlichkeit] has also been taken into account.

Mathematical objectivity [mathematische Gegenständlichkeit] arises, by means

of processes of idealization and abstraction, out of the phenomenal objectiv-

ity [phänomenale Gegenständlichkeit] of the structural.

Recently the topic of structure has been discussed by Mr. Gonseth with

regard to “structuralism”, namely in connection with the methodological

issues of axiomatization and formalization.2 Let me add a few remarks about

these topics.

a) To begin with, as far as the role of structure in general is concerned

structure can be regarded as that in the phenomena which goes beyond their

qualities. The common opposition between quality and quantity may be

adequate for some purposes in ordinary life, but that between the qualitative

and the structural is certainly more fundamental. Assessing the quantitative

comes down to processes of joining together and of observations [such] as that

one object extends beyond another; both of these have a structural character.

In contrast, a general reduction of the structural to the quantitative can

hardly succeed in a phenomenological sense, i.e., by way of direct description,

but at best in a theoretical sense, say that of Pythagoreanism, whereby

qualitative differences are, however, also reduced to quantitative ones.

2[Fn. 2* in the German original] Ferdinand Gonseth: “La philosophie ouverte, terrain

d’accueil du structuralisme”, Cahiers Internationaux de Symbolisme, Bruxelles, 1968, pp.

39-71.
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In mathematics we are usually not dealing with structures that are given

directly in a phenomenal sense; rather, we are dealing with idealized struc-

tures, where the idealization consists in an adaptation to the conceptual, a

compromise between the intuitive and the conceptual, as it were.

We should note here that in the enterprise of constructive mathematics

the goal is to restrict idealization as much as possible. But this does not

succeed completely; in particular, even constructive mathematics cannot do

without the idea of the unlimited applicability of arithmetic operations (sum,

product, exponentiation, etc.).

b) Mathematical idealization becomes especially pertinent through the

axiomatic treatment of theories. As is well known, there are two different

kinds of axiomatics. Mr. Gonseth, in his book Le Problème du Temps,3

calls them axiomatisation schématisante and axiomatisation structurante.

With respect to the first, one relies on an already given language, a lan-

guage in which the objects and relations under consideration have names;

here the axiomatic aspect consists, on the one hand, in sharpening this lan-

guage in the sense of a schematization of the relevant objects [der betreffenden

Gegenständlichkeiten] and, on the other hand, in adopting certain claims about

these objects that are assumed to hold as the starting points for logical deduc-

tions. With respect to the second kind of axiomatization, the original objects

and relations do not occur independently any more, but only as links in an

overall structure—they occur merely in their grammatical role, as it were—,

and the axiomatic system makes assertions about this overall structure.

3[Fn. 3* in the German original] Ferdinand Gonseth: Le Problème du Temps.–Essays

sur la Méthodologie de la Recherche, Editions du Griffon, Neuchâtel, 1964.
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For a number of axiomatic systems of this second kind, a definitional

formulation is the most common, e.g., for the axiomatic system for groups.

Thus one says: a domain of objects for which a composition ab = c is defined

is called a group with respect to this composition if 1. the composition is

associative and 2. the composition is invertible on both sides, i.e., for any

two objects a, b (in the domain of objects) there exists an object x in the

domain such that ax = b, as well as an object x such that xa = b.

These conditions can also be formulated as “the group axioms”. It is clear,

then, that we are confronted with a definition, and not an implicit, but an

explicit definition. Of course, what is defined is neither the domain of objects

nor the composition. Those two occur only implicitly in the definition. What

is defined, instead, is what a group is, or better, the condition under which a

domain of objects together with a composition operation defined on it forms

a group.

There are, however, groups with very different structures. Thus what is

characterized by the group axioms is not a determinate structure, but a kind

of structures. The case of an axiomatic system that characterizes a structure

uniquely is only a special case. Such an axiomatic system, one for which

any two realizations (“models”) are structurally identical (“isomorphic”), is

called “categorical”.

On the other hand, one and the same species of structures can in gen-

eral be defined by means of several different axiomatic systems: which of

the theorems holding in the structure are adopted as axioms is not deter-

mined by the structure itself; also, the choice of the basic predicates or basic

operations, respectively, is not determined by the structure: what is a ba-
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sic predicate with respect to one axiomatic system can be a (definitionally)

derived predicate for another system that defines the same kind of structures.

In this way there exist equivalence relations between axiomatic systems.

A different relation between such systems that is important methodologically

is that in which one axiomatic system forms an extension of another. Here we

have to distinguish two possibilities: One is that the basic domain remains

the same, but new axioms are added; in this case the characterized kind of

structure is (in general) restricted. The other consists in adding new basic

predicates or operations, in addition to corresponding new axioms; in that

case one moves over to a richer structure. The linear continuum, e.g., if

assumed to be endowed with a measure, is a richer structure than the linear

continuum considered only as an ordered manifold.

c) It is by means of logical inference that axiomatic systems are intended

to be used. The methods of proving things logically have been analyzed by

mathematical logic. The result of this analysis is that for proofs in elemen-

tary theories the predicate logic of “first-order” is sufficient. It consists of

sentential logic, i.e., the rules concerning the sentential connectives “and”,

“or”, “not”, “if, then”, as well as the rules for the universal form and the

existential form [Allform und Existenzform], and the rules for equality. Logical

inference within this framework can be schematized so precisely that, by us-

ing symbols for the sentential connectives and for “all” and “there exists”,

all contentual proofs can be translated into the combined application of a

few schematic rules.

This leads to a new kind of structures: the structures of formal deduc-

tions. Between the theorems of an axiomatic theory that can be formulated
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within the logical framework mentioned and the sentence-formulas that are

deducible according to the rules of the theory formalized as a calculus there

is a complete correspondence. This harmony between the “semantics” and

the “syntax” of the theory is established by Gödel’s Completeness Theorem,

which says: A sentence of the theory is deducible by means of the formal

rules if and only if it cannot be refuted by means of a “model”.

We are already led beyond the framework of logical deduction described so

far wherever the general concept [Allgemeinbegriff ] of a finite number is used.

This happens—just to mention a few elementary examples—in geometry

when statements about arbitrary polygons or arbitrary polyhedra are made,

furthermore in connection with general theorems in formal algebra and in

the theory of finite groups. In all these cases the principle of mathematical

induction is used.

More far reaching than such an arithmetic extension of first-order logic

is the logic of “second-order”. In it general concepts [Allgemeinbegriffe] such

as those of (one- or many-place) predicate, function (operation, mapping, se-

quence), and set are used, and the rules for universal and existential forms are

applied to such concepts. The inference rules for second-order logic include,

among others, the axiom of choice.

This logic of second order is first used in classical analysis, more exten-

sively in set theory, and then in every domain where the set-theoretic way

of thinking is employed, thus in particular in semantics, i.e., in those inves-

tigations that concern the satisfiability of axiomatic systems by models. In

fact, the concept [Begriff ] of satisfiability of an axiomatic system belongs al-

ready to second-order logic, as does the notion of semantic consequence (the
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semantic notion of implication). One says that a sentence is implied by an

axiomatic system (in the semantic sense) if it is satisfied in every model of

the axioms. The definition of the concept [Begriff ] of “categoricity” requires

second-order logic as well.

d) Second-order logic, i.e., the concepts [Begriffe] of set, function, etc. that

are essential for it, has in turn been subjected to analysis; and for a while

it may have looked as if second-order logic could be reduced to first-order

logic, by treating sets as mathematical objects and the element relation (“a

is element of m”) as a basic axiomatic relation, analogously to the incidence

relation in geometry.

To be sure, in the corresponding axiomatic system formulated by Zermelo

an axiomatic rule (the “Axiom of Separation”) occurs in which, as in the case

of the principle of mathematical induction, there is reference to an arbitrary

predicate (“definite property”). But the employment of this concept of pred-

icate [Prädikatsbegriff ] can again be made more precise axiomatically, so that

one arrives at an axiomatization within the framework of first-order logic.

In fact, by means of such an axiomatization all the proofs of classical anal-

ysis and of Cantorian set theory can be carried through, as well as formalized

in logical symbolism. However, there is no longer a harmony between syntax

and semantics here. The concept of predicate [Prädikatsbegriff ] has been re-

stricted by giving it a precise axiomatic formalization. This does not affect

the usual proofs in number theory, analysis, or set theory; these proofs can,

as indicated, be carried out within the framework of the axiomatic system;

also, every sentence that is deducible within the axiomatic framework is true

in the usual (classical) sense. But with respect to applying the Completeness
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Theorem we now have the complication that the concepts [Begriffe] of “satis-

fiability” and “refutability” have a different sense depending on whether they

are used in accordance with the axiomatic system or from the viewpoint of

the semantics.

Any model of axiomatic set theory or, more generally, any model of a

theory axiomatized first within the framework of second-order logic, but then

reduced to first-order logic by axiomatically restricting the notion of predicate

[Prädikatsbegriff ] or, respectively, the notion of set or function, is called a

“non-standard” model, at least if the restriction of the concept [Begriff ] of

predicate (or, respectively, of the concepts [Begriffe] of set or function) makes

a difference; otherwise it is called a standard model.

One obtains a corresponding non-standard model for axiomatic set theory

or analysis by means of Löwenheim’s Theorem, which says that any axiomatic

system that is formalizable in first-order logic and that is consistent has a

model whose elements (individuals) are the natural numbers. Such a model

can certainly not be a standard model, since it is provable in set theory, as

already in analysis, that the number-theoretic functions (i.e., functions with

numbers as arguments and as values)—which here count as individuals—are

not enumerable (by the natural numbers). Thus one obtains a model that

contradicts a theorem provable in the theory as interpreted externally.

In may seem now that such difficulties arise only in the case where we

are dealing with uncountable manifolds; but in fact such difficulties can al-

ready be found in connection with number theory. Here, too, the restriction

of the principle of mathematical induction to sentences of a certain form

has non-standard models as a result. Here, once more, a number theoretic
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sentence that holds in terms of its content can contradict a sentence that

holds in a model (externally). In any case, a non-standard model of number

theory contains, besides the numbers 0, 1, 2, 3, . . ., also infinitely many other

elements that function as “natural numbers” in it.

Then again, these remarks do not refute the view that the presence of

non-standard models has to do with the uncountable: to be sure, the set of

natural numbers is countable, in fact it is the prototype of the countable;

but the properties (sets) of numbers that play a role in the principle of

mathematical induction form an uncountable totality.

It should be noted, by the way, that the number-theoretic non-standard

models cannot be eliminated by integrating number theory into a wider for-

malizable and axiomatic framework. Rather, because of Gödel’s Incomplete-

ness Theorems the following is the case: for any axiomatization of analysis

or set theory that is consistent and can be formalized faithfully, there exist

non-standard models which are already non-standard with respect to number

theory.

e) The difficulties just considered attach to axiomatic mathematics, more

precisely to any axiomatization within the framework of first-order logic that

is of a stronger kind and allows for formalization. By making the deduc-

tive structure of a formalized theory one’s object of study, as suggested by

Hilbert, that theory is, as it were, projected into number theory. The result-

ing number-theoretic structure is, in general, essentially different from the

structure intended by the theory; nevertheless, it can serve to recognize the

consistency of the theory, from a viewpoint that is more elementary than the

assumption of the intended structure.
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Hilbert’s idea was to obtain, along such lines, an elementary consistency

proof for all of classical mathematics, thus to resolve the problem of the

foundations of mathematics once and for all.

This program had to be revised in two respects. On the one hand, ex-

pectations with respect to how elementary the proof-theoretic considerations

could be had to be lowered. The “finitist stance” envisioned by Hilbert proved

to be insufficient for the purpose at hand; at the same time, it also became

clear that this stance is more restrictive than that of Brouwer’s intuitionism.4

The other way in which Hilbert’s program needed to be revised concerns

the idea of a definitive resolution of the foundational problems of mathemat-

ics. So far consistency proofs for formal systems of number theory and for

fragments of analysis have been provided by a variety of methods, methods

that all lie within the scope of intuitionist mathematics. Let us assume we

succeeded in giving, within a suitably extended framework of constructive

mathematics, consistency proofs for formal systems of classical analysis and

for formalized axiomatic set theory; then this would still not provide final clo-

sure. Since, as mentioned above, the semantics of set theory goes essentially

beyond set theory as made precise axiomatically. Moreover, the totality of

4[Fn. 2 in the German original] With regard to evaluating methodological stances in

terms of their evidence it is important to realize the following: We cannot talk about “evi-

dent” or “not evident” simpliciter—even if we disregard individual conditions of evidence.

There are, after all, both degrees and different kinds of evidence. Thus a gain in terms of

being more elementary can be offset by a cost in terms of the degree of evidence; there is

no dearth of examples here. It is hardly adequate, then, to declare any one methodological

stance to be the stance of mathematical evidence absolutely. Of course, the possibility of

justifying the methods of classical analysis (in the sense of establishing consistency) by

elementary considerations is still important.

15



mathematics can certainly not be represented exhaustively by one formally

restricted theory. Mathematics as a whole—this is the lesson of the set theo-

retic antinomies—is not a structure in itself, i.e., an object of mathematical

investigation, nor is it isomorphic to one.

Proof-theoretic considerations can, consequently, not encompass mathe-

matics as a whole, but only particular restricted mathematical theories.

Even if the original goals of Hilbert’s proof theory require modification

in the two respects mentioned, this Hilbertian project has still proved very

fruitful. Proof-theoretic investigations form a vibrant area of mathematical

research today. In connection with these investigations, too, we are dealing

with idealized structures, although people like to talk about the “concrete”

in this connection in order to emphasize the difference to those considerations

that lead further away from the concrete.

f) The task here cannot be to discuss and to evaluate all the different

foundational programs that play a role today. Some of them, in particular

Brouwer’s intuitionism, tend towards replacing ordinary mathematics by a

more restricted methodology, one that, compared to analysis, amounts to

a stricter arithmetization. The fruitfulness of such investigations consists

mostly in the fact that in them a number of new, mathematically valuable

concepts and methods have been developed. Results obtained along those

lines are to be valued even if one does not share the opinion that the usual

methods of classical analysis should be replaced by others. It also has to

be granted that the classical foundations of the theory of real numbers by

Cantor and Dedekind do not constitute a complete arithmetization. But it

is very doubtful whether a complete arithmetization can do justice to the
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idea of the continuum. The idea of the continuum is, originally at least, a

geometric idea.

The monism of arithmetization in mathematics is an arbitrary thesis.

It is by no means clear that mathematical objectivity [die mathematische

Gegenständlichkeit] grows only out of the idea of number. Instead, concepts

[Begriffe] such as those of a continuous curve and of a surface, as developed

especially in topology, can probably not be reduced to the idea of number.

This does not mean that we shouldn’t try to make the idea of number as

fruitful as possible for the study of geometric figures, as is of course already

done in analysis.

Based on the conception laid out above, according to which mathematics

is the science of idealized structures, we have a viewpoint on the foundations

of mathematics that saves us from exaggerated perplexities [Aporien] and

from forced constructions, one that will also not be undermined if founda-

tional research comes up with various new, surprising results.

This conception requires, however, that we accept another kind of objec-

tivity [Objektivität] besides the objectivity of natural reality [der Objektivität

des Naturwirklichen]. For Gonseth’s philosophy this presents no difficulty. In

this philosophy it is acknowledged from the beginning that the totality of

what is objective [die Gesamtheit des uns Gegenständlichen] divides up into dif-

ferent “horizons”, which, at the same time, enter into relations to each other,

relations such as those between concrete and idealized structures.

On the other hand, this philosophy provides us with an alternative to

the apriorist view of mathematics, a view for which the following paradox

presents itself: mathematical facts reveal themselves to us only gradually,
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in the process of doing research; and concepts appropriate for them are also

only found gradually in that process, in such a way that completely new

constellations occur again and again.

Gonseth proclaims ouverture à l’expérience as a general method; and

as a requirement it is not restricted to research into nature, but is equally

important in the field of intellectual experience.
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