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2. Elementary number theory.—Finite inferring and its limits.

[“finit” and “finitistisch” have to be distinguished. The second

is depreciatory, at least at that time] The question raised at the end

of the previous paragraph [delete “was”] whether we couldn’t found arith-

metic directly by a method independent of axiomatics and make a special

proof of consistency superfluous [delete “; this question”] gives us reason

to recall that the method of rigorous axiomatics, especially existen-

tial inference, presupposing a fixed domain of individuals is by no

means the original procedure of mathematics.

Geometry was indeed built up axiomatically from the beginning. But

Euclid’s [sc] axiomatic system is intended to be contentual and intuitive.

In this axiomatization there is no abstraction from the intuitive meaning

of figures. Moreover the axioms are not in existential form. Euclid does not
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presuppose that points and lines constitute any fixed domain of individuals

whatsoever. And that is why he does not formulate any existence-axioms

but only construction-postulates.

An example of such a postulate is: one can join two points with a straight

line; furthermore, one can draw a circle around a given point with a pre-

scribed radius.

This methodological standpoint [delete “involved here”] can only be

carried out if the postulates are looked on as the expression of known facts

or or an immediate evidence. As is well known the question about the

range of validity of the geometrical axioms is a very very awkward

and controversial one; and it is indeed an essential advantage of formal

axiomatics that it makes the foundation of geometry independent of deciding

this question.

In the domain of arithmetic we are free of these problems which are

connected with the special character of geometrical; in fact we find in

this domain, as well in the disciplines of elementary number theory and

algebra, the standpoint of direct contentual deliberation carried out

without axiomatic assumptions in its purest form. The mark of

such a standpoint is that the deliberation is carried out in the form of

thought experiments involving objects assumed to be concretely given [italics

added]. In number theory we are concerned with numbers assumed

to be given, in algebra with expressions with letters with given

number coefficients.

We wish to consider the procedure here more closely and make the

[“methodological” deleted] principles somewhat more precise. In number
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theory we have an initial object and a process of progress. We must

determine both intuitively in a certain way. The particular determination

is inessential here, but once the choice is made it must be maintained for

the whole theory. We choose the numeral 1 initial object and adding of 1 as

the process of progressing. The things which we obtain by applying the

process of progressing, beginning from the numeral 1 [“are” deleted],

for example,

1, 11, 1111;

[“what are obtained in this way” deleted] are figures of the following

kind: they begin with 1 and end with 1; on every 1 which is not already

the end of the figure there follows an adjoined 1. They are obtained by

applying the the process of progressing and, i. e. by an erection which

concretely terminates; and this erection can, therefore be reversed in

terms of a step-by-step decomposition.

These figures constitute a kind of numeral; we we want to to use the word

“numeral” [italics added] absolutely to designate these figures [“only”

deleted].

As is usual we imagine that a certain amount of latitude is allowed con-

cerning the exact shape of the numerals; that is, small differences in

the realization such as the shape of the 1 or its size or the distance in

which the 1 is put on paper, will not be taken into consideration. What

we only require as essential is [“(1)” deleted] that we have both in 1

and the affixing of 1 an intuitive object which can always be recognized in

an unambiguous way, and [“(2)” deleted] that we can always survey the

discrete parts from which a numeral is constructed.
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In addition to numerals we introduce further signs, signs “for com-

munication”. These signs have to be distinguished on principle from

numerals which constitute the objects of number theory.

In itself a the sign for communication is also a figure; and we presup-

pose that it can always be recognized in an unambiguous way and that small

differences in its realization are irrelevant. However, within the theory itself

it is not taken as an object of consideration; but it is only a means for

formulating facts, assertions, and assumptions briefly and clearly.

In number theory we use the following kinds of signs for communica-

tion:

1. Small German letters to designate any indeterminate numeral;

2. the usual number-signs abbreviating definite numerals, e.g. 2 for 11, 3

for 111;

3. Signs for certain formation processes and calculating operations

which we perform to get from given numerals other ones. These

can be applied either to certain or to indeterminate numerals,

like, e. g., in a + 11;

4. the sign = to indicate coincidence in respect to the shape, the sign

6= to indicate the difference between two figures: the signs <, > to

indicate a relation of magnitude between numbers which has still to

be explained explained.

5. Parentheses as signs for the order of processes when there is a pos-

sibility of ambiguity.
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How the signs introduced are manipulated and how contentual delib-

erations are carried out becomes clearest if we develop number theory in its

basic features to a small extend.

The first thing we determine for numerals is the relationship of magni-

tude. Let a [notation throughout] be a numeral different from a numeral

b. Let us consider how this is possible. Both begin with 1, and the errec-

tion continues in the same way for both, a and b, unless one of the numerals

comes to an end while the errection of the other continues. This case must

occur at some time, and so the one numeral coincides with a section of the

other; or, in more precise terms: the errection of the one numeral coincides

with an initial section of the errection of the other.

If a numeral a [notation throughout!] coincides with a section of b,

we say that a is smaller than b or that b is bigger than a; and for this we

apply the designation

a < b, b > a .

Our consideration shows that for a numeral a and a numeral b always

one of the relations

a = b, a < b, b < a

must hold; and on the other hand it is obvious from the intuitive mean-

ing that these relations exclude one another. Similarly it is an immediate

consequence that if a < b and b < c then also always a < c.

Addition is very closely bound up with the relationship of magnitude.

If a numeral b [notation throughout] coincides with a section of a, the

remainder is again a numeral c; one gets the numeral a by affixing c to

b in such a way that the 1 with which c begins is attached to the 1 with
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which b ends in conformity with the process of continuing. This kind of

concatenation of numerals we call addition; and we use the sign + for it.

We conclude directly from this definition of addition: if b < a [notation

throughout] then from the comparison of b with a one gets a representation

of a in the form b + c, with c again a numeral. And if one starts on the

other hand with any numerals b, c then addition produces another numeral

a, such that

a = b + c ;

in this case we have

b < a.

[Added:] In general

b < b + c

holds as well. [End of addition]

The significance of numerical equalities and inequalities such as [formula

displayed]

2 < 3, 2 + 3 = 5

is clear from the above definitions. 2 < 3 says that the numeral 11 coincides

with a section of 111; [paragraph added]

2 + 3 = 5 says that the numeral 11111 results from the affixing of 111

with 11.

In both of these cases we have the representation of a correct assertion,

whereas 2 + 3 = 4 is the representation of a false assertion.

We now have to determine that the computational laws hold for the

addition defined intuitively.
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These laws will be here conceived as propositions about arbitrarily given

numerals and understood in terms of intuitive deliberation.

The associative law, according to which if a, b, c are any numerals,

a + (b + a) = (a + b) + c ,

is immediately inferred from the definition of addition. The commutative

law, which says that [notation (operator) changed!]

a + b = b + a

always holds is not so directly given. We need here the method of proof by

complete induction. We first make clear how this kind of inference is to be

understood from our elementary point of view: Consider any assertion about

a numeral which has an elementary intuitive content. The assertion holds for

1, and one knows that if it holds for a numeral n then in every case it also

holds for the numeral n + 1. One infers that the assertion holds for every

given numeral a.

In fact the numeral a is constructed by applying the process of adjoining

1 beginning from 1. If one establishes that the assertion under consideration

holds for 1 and, according to he presupposition, for every adjoining

of 1 for the new numeral resulting, then, with the completion of the

construction of a one determines that the assertion holds for a.

We are then not dealing with an independent principle but with a

consequence derived from the concrete construction of numerals.

Using this method of inference we can now show in the usual way that

for every numeral

1 + a = a + 1 ,

7



and from this that one always has

a + b = b + a .

We will now sketch briefly the introduction of multiplication, [“and” deleted]

division and the concept formations connected with them.

Multiplication can be defined in the following way: a · b means the nu-

meral which one gets from the numeral b when one replaces in the con-

struction every 1 with a numeral a; thus one first constructs a and affixes

a in every case where 1 is affixed in the formation of b.

The associative law for multiplication as well as the distributive law ac-

cording to which

a · (b + c) = (a · b) + (a · c)

are immediate from the definition. The other distributive law

(b + c) · a = (b · a) + (c · a)

is seen to hold on the base of the laws of addition with the help of

complete induction described above. By this method of proof one also

gets the commutative law of multiplication.

In order to get at division we must first introduce some preliminary con-

siderations. The construction of a numeral is such that the adjunction of 1

always produces a new numeral. The formation of a numeral a then involves

the formation of a concrete row of numerals beginning with 1 and ending

with a in which every numeral arises from its predecessor through the ad-

joining of l. One also sees immediatelly that this row contains except for

a itself only numerals which are < a and that a numeral which is < a must
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occur in this row. We call this succession of numerals “the row of numerals

from 1 to a” for short.

Now let b be a numeral different from 1 which is < a. b has the form

1 + c; thus

b · a = (1 · a) + (c · a) = a + (c · a),

and therefore

a < b · a.

If we multiply b successively with the numerals in the row from 1 to a, in

the resulting row of numerals

b · 1, b · 11, . . . , b · a

the first of these is < a, and the last > a. Let us go now through this row

until we first come upon a numeral > a; its predecessor (call it b · q) is then

either = a or < a, while

b · (q + 1) = (b · q) + b > a .

Therefore either

a = b · q

or we have a representation

a = (b · q) + r ,

with

(b · q) + r < (b · q) + b ,

and so

r < b .
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In the first case a is “divisible by b” (“b divides a”), and in the second

case there is division with a remainder.

In general we say a is divisible by b if the numeral a occurs in the row

b · 1, b · 11, . . . , b · a .

This occurs if b = 1 or if b = a or in the first case just described.

From the definition of divisibility it follows immediately that if a is divis-

ible by b the determination that it is yields a representation

a = b · q.

But the converse also holds; the divisibility of a by b in the defined sense

follows from an equation a = b · q since the numeral q must belong to the

row of numerals from 1 to a.

If a 6= 1 and no divisor of a other than 1 and a occurs in the row of

numerals from 1 to a, then every product m · n in which m and n belong to

the row of numerals from 2 to a is distinct from a; in such a case we call a a

prime number.

If n [“a” replaced by “n”] is a numeral different from 1 then there is a

first numeral in the row from 1 to n with the property to be distinct from

1 and a divisor of n. It is easy to show that this “least divisor of n distinct

from 1” is a prime number.

Now we can also prove in the same way as Euclid [sc] did the theorem

that for any numeral a a prime number > a, can be determined: One multi-

plies together the numbers from the row from 1 to a, adds 1, and then takes

the least divisor t distinct from 1 of the numeral thus obtained. This is a
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prime number, and one sees easily that t cannot occur in the row of numbers

from 1 to a and so is > a.

The further development of elementary number theory is clear; only one

point still requires fundamental discussion, the method of recursive defini-

tion. We recall the nature of this method: A new function-symbol, say, ϕ,

[function-symbol changed] is introduced, and the definition of the func-

tion is done with two equations which in the simplest case have the form

ϕ(1) = a

ϕ(n + 1) = ψ(ϕ(n), n) .

Here a is a numeral and ψ is a function constructed from functions already

known so that ψ(b, c) can be computed for given numerals b, c and provides

as value again a numeral.

For example the function

%(n) = 1 · 2 . . . n

is defined by the equations

%(1) = 1

%(n + 1) = %(n) · (n + 1).

What sense this method of definition has is not self-evident. To explain

it we must first make precise the concept of function. We understand a

function to be an intuitive instruction on the basis of which a numeral can

be assigned to a given numeral, or a pair, a triple . . . of numerals. A

pair of equations of the above kind—we call it a “recursion”—, we interpret

as an abbreviated indication of the following instruction:
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Let m [notation throughout] be some numeral. If m = 1, then m is to

be paired with the numeral a. Otherwise m has the form b+1 [“l” replaced

by “1”]. First one writes schematically

ψ(ϕ(b), b) .

If b = 1 then one replaces ϕ(b) here with a; otherwise b has the form c + 1

and one replaces ϕ(b) with

ψ(ϕ(c), c).

Again, either c = 1 or c is of the form d + 1. In the first case one replaces

ϕ(c) with a and in the second case with

ψ(ϕ(d), d) .

The continuation of this procedure terminates in every case. For the

numerals

b, c, d, . . . ,

which we obtain in sequence arise from the decomposition of the numeral

m; and this, like the construction of m must terminate. When the decom-

position reaches 1, ϕ(1) is replaced with a; the resulting configuration no

longer contains the sign ϕ; rather only ψ occurs as a function sign, perhaps

in a multiple overlapping, and the innermost arguments are numerals.

We have then obtained a computable expression; for ψ is supposed to be an

already known function. This computation has to be done from the inside

out; the numeral obtained is the numeral to be paired with the numeral m.

The content of this instruction shows us first that in principle they

can be carried out for any case for a given numeral m and that the result is
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unambiguously fixed. At the same time we see that for a given numeral n

the equation

ϕ(n + 1) = ψ(ϕ(n), n)

is satisfied if we replace in it ϕ(n) and ϕ(n + 1) with the numerals paired

with n, and n + 1 according to our instruction and then substitute for the

known function ψ its definition.

The somewhat more general case in which one or more undetermined

numerals occur as “parameters” [italics!] in the function being defined is

handled in much the same way. In the case where there is one parameter t

the recursion equations have the form

ϕ(t, 1) = α(t)

ϕ(t, n + 1) = ψ(ϕ(t, n), t, n);

here both α and ψ are known functions. For example, the function ϕ(t, n) =

tn is defined by the recursion

ϕ(t, 1) = t

ϕ(t, n + 1) = ϕ(t, n) · t .

Again, definition by recursion does not involve an independent principle

of definition; within the framework of elementary number theory recursion

has only the meaning of a convention for abbreviating the description of

certain formation-processes through which one gets from one or more given

numerals another numeral.—

We take as an example to indicate that we can carry out proofs of impos-

sibility in the framework of intuitive number theory the assertion expressing
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the irrationality of
√

2: There cannot be two numerals m, n such that1

m ·m = 2 · n · n .

As is well known, the proof proceeds as follows: One shows first that

every numeral is either divisible by 2 or of the form (2 · k) + 1; therefore a · a

is divisible by 2 only if a is divisible by 2.

If a pair of numbers m, n satisfying the above equation were given, we

could examine all number-pairs a, b with

a belonging to the row 1, . . . ,m ,

b belonging to the row 1, . . . , n ,

and then determine whether or not

a · a = 2 · b · b .

We choose from among the pairs of values satisfying the equation the one in

which b has the smallest value. There can only be one such; call it m′, n′.

In accordance with our previous remarks, it follows from the equation

m′ ·m′ = 2 · n′ · n′

that m′ is divisible by 2:

m′ = 2 · k′ ;

therefore we obtain

2 · k′ · 2 · k′ = 2 · n′ · n′ ,

2 · k′ · k′ = n′ · n′ .
1We use the customary procedure following the associative law of multiplication

in writing products involving several factors without parentheses.
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But then n′, k′, would be a pair of numbers satisfying our equation and

at the same time it would be k′ < n′. This however is inconsistent with

the way in which n′ was determined.

Of course, the sentence just proved can be expressed positively: If m and

n are any two numerals m ·m is different from 2 · n · n.

Let this much suffice as a characterization of the elementary treatment

of number theory. We have developed it as a theory of numerals, i.e. of a

certain kind of especially simple figure. The significance of this theory for

knowledge depends upon the relation of numerals to the ordinary concept

of cardinal number [Anzahl-Begriff ]. We obtain this relation in the following

way:

Imagine a concrete (and in any case finite) collection of things. One

considers the things in the collection successively and correlates them in a

row with the numerals 1, 11, 111, . . . as numbers. When no thing is left a

certain numeral n [math added] has been reached. This numeral is for the

time being determined as the ordinal number of the collection of things

taken in the sequence chosen.

But now we easily convince ourselves that the resulting numeral n is in

no way dependent on what sequence is chosen. For let

a1, a2, . . . , an

be the things of the collection in the sequence chosen,

b1, b2, . . . , bk

the things in some other sequence. We can then go from the first enumer-

ation to the second by a series of interchanges of numbers in the following
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manner: If a1, is different from b1, then we interchange the number r which

the thing b1 has in the first enumeration with 1, that is to say we correlate

the thing ar with the number 1, a1 with the number r. In the resulting

enumeration the thing b1, has the number 1; following it and correlated to

the number 2 is either the thing b2 unless this thing has here some other

number s which is in any case distinct from 1; in this case we then ex-

change this number s with 2 in the enumeration; the result is an enumeration

in which b1 has the number 1, b2 the number 2. b3 has either the number 3

or some other, t, in any case distinct from 1 and 2; we exchange the latter

with 3.

This procedure must terminate; for with every interchange the enumer-

ation of the collection considered is brought at least one step closer to

correspondence with the enumeration

b1, b2, . . . , bk ;

as a result one will eventually get the number 1 for b1, the number 2 for

b2, . . . , the number k for bk; and then there is no other thing left. On the

other hand the stock of numbers used remains exactly the same with every

interchange executed; for all that happens is that the number of one thing

is exchanged with that of another. Therefore in every case the enumeration

goes from 1 to n, and as a result we have

k = n .

Thus the numeral n is assigned to the collection under consideration indepen-

dently of any sequence; in this sense we can correlate n with the collection as
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its cardinal number [Anzahl] [If not simply “number” is used for “An-

zahl”, one uniform translation has to be chosen, not that mixture

of ordinal and cardinal numbers. Nevertheless it should be consid-

ered to use simply “number”].2 We say that the collection consists of n

things.

If a concrete collection has a common cardinal number with another

one, we get from an enumeration of each a one-one correlation of the things

in one collection with those in the other. On the other hand, if we have

such a correlation between two given collections of things the two have the

same cardinal number; this is an immediate consequence of our definition of

cardinal number.

From the definition of cardinal number we pass now through con-

tentual considerations to the principles of the theory of cardinal numbers,

e.g. to the theorem that the unification of two collections of cardinality

a and b and without a common element gives rise to a collection of a + b

things.—

After the presentation of elementary number theory we would like to

indicate briefly the character of the elementary contentual point of view in

algebra. We shall deal with the elementary theory of rational functions of

one or more variables with integers as coefficients.

The objects of the theory are again certain figures, “polynomials”; they

are constructed from a determinate stock of letters, x, y, z, . . ., called “vari-

2This consideration was put forward by von Helmholtz [sc] in his essay “Zählen

und Messen” (1887). [The following added] (Hermann v. Helmholtz, Schriften

zur Erkenntnistheorie. Berlin: Julius Springer 1921. See pp. 80–82.)
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ables” and the numerals with the help of the signs +,−, · and parentheses. In

this case then the signs +, · are not to be construed as communication-

signs as in elementary number theory, but as objects of the theory.

We again use small German letters as communication-signs, not just for

numerals but also for arbitrary polynomials.

The construction of polynomials out of the signs indicated above follows

the following formation rules:

A variable and also a numeral can be considered in itself a polynomial.

From two polynomials a, b the polynomials

a + b, a− b, a · b

can be formed; from a polynomial a (−a) can be formed. The usual rules

for setting parentheses hold here. As communication-signs we also introduce

[first item deleted]:

the numbers 2, 3, . . ., as in elementary number theory;

the sign 0 for 1− 1;

the usual signs for powers: for example [notation!], if z is a numeral

xz signifies the polynomial which results from z when x is put in place

of every 1 and the sign “·” is put between every two successive x’s;

the sign = indicates the mutual substitutability of two polynomials.

Substitutability is determined by the following contentual rules:

1. The associative and commutative laws for “+” and “·”.

18



2. The distributive law

a · (b + c) = (a · b) + (a · c) .

3. Rules for “−”:

a− b = a + (−b) ,

(a + b)− b = a .

4. 1 · a = a .

5. If two polynomials m, n are free of variables and of −, and if the

equality m = n holds in the sense of the interpretation of elementary

number theory, then m can be substituted by n.

These rules of substitutability relate to polynomials occurring as parts of

other polynomials. From them further assertions about substitutability are

derived, which constitute the “identities” and theorems of elementary al-

gebra. As examples some of the most simple provable identities we men-

tion:[math changed]

a + 0 = a −(a− b) = b− a ,

a− a = 0 −(−a) = a ,

a · 0 = 0 (−a) · (−b) = a · b .

Of the theorems which can be established from contentual considerations we

mention the following fundamental assertions:

a) If a, b are two mutually substitutable polynomials of which at least

one contains the variable x and if the polynomials a1, b1 result from a, b
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when the variable x is replaced at all places where it occurs with one

and the same polynomial c, then b1 is substitutable for a1.

b) Substitution of numerals for variables in a correct equation between

polynomials yields a correct numerical equation in the sense of number theory

(if we suppose that computation with negative numbers is introduced into

number theory).—The meaning of this assertion b) may be illustrated by

a simple example: The equation

(x+ y) · (x+ y) = x2 + 2 · x · y + y2

says for the time being nothing except that according to our determi-

nations x2 + 2 · x · y + y2 is substitutable for (x+ y) · (x+ y). On the basis

of the assertion b), however, we can infer from this that if m and n are

number signs (m + n) · (m + n) and m · m + 2 · m · n + n · n coincide in the

number-theoretic sense.

c) Every polynomial can be substituted for either by 0 or by a sum of

different powers of products [?] of variables—(the polynomial 1, as

well, counts as such in this case)—, each conjoined with a positive or

negative numerical factor.

Using this normal form we obtain a procedure for deciding for two

given polynomials whether or not they are mutually substitutable. For the

following assertion holds:

d) [duplicated sentence deleted] 0 is not substitutable for a polyno-

mial which is the sum of different products of powers with numerical fac-

tors, and two such polynomials are only mutually substitutable [“if and”

deleted] if they coincide in their products of powers and their numeri-

cal factors when the order of the summands and the order of the numerical
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factors are refrained from.

The second part of this assertion follows from the first; and the first can be

proved with the help of b) by considering suitable substitutions of numerals.

The following is a particular consequence of d):

e) if a numeral n is substitutable for a numeral m, conceived as a polyno-

mial, m and n coincide.

In methodological respects the following should be noted to these

assertions: The substitutability of polynomials assumed in a), e) is to be un-

derstood as the assumption that the substitutability of the one polynomial

by the other has been determined according to the rules. In sentence c)

the assertion of substitutability is more closely determined by giving a

procedure being described in the proof of the theorem.

And so we are here just as much as in elementary number theory

in the domain of elementary contentual inferences. And the same is true of

the other assertions and proofs of elementary algebra.—

The consideration of the elementary foundations of number theory

and algebra just presented has served to show us the application and use

of direct contentual inference carried out in thought experiments performed

on intuitively imagined objects and free from axiomatic assumptions. We

will call this kind of inference “finite” inference in order to have a short

expression; likewise we shall call the attitude underlying this kind of inference

the “finite” attitude or the “finite” point of view. We will speak of finite

concept formations and assertions in the same sense; in using the word

“finite” we convey the idea that the consideration, assertion or definition in

question remains within the limits of objects which it is in principle possible
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to imagine and of processes which it is in principle possible to realize; that

it is carried out in the framework of concrete consideration.

To characterize the finite point of view further we stress certain general

aspects relating to the use of the logical forms of judgment in finite thinking;

we consider assertions about numerals as examples.

A universal judgment about numerals can only finitely be interpreted in

a hypothetical sense; that is to say, as an assertion about any given numeral.

Such a judgment expresses a law which must be verified in every particular

case.

An existential sentence about numerals, i.e. a sentence of the form “there

is a numeral n with the property A(n)” is to be construed finitely as a “par-

tial judgment”, that is an incomplete communication of a more precisely

determined assertion, which consists either in a direct indication of a nu-

meral with the property A(n) or in the indication of a procedure to obtain

such a numeral,— it belongs to the indication of a procedure that

the series of operations to be executed has a definite bound.

Judgments in which a universal assertion is conjoined with an existential

one are to be interpreted in a corresponding way. So, for example, a sentence

of the form “for every numeral k with the property A(k) there is a numeral

l such that B(k, )” is constructed finitely as an incomplete communication

of a procedure which for any given numeral k of the property A(k) makes

possible the finding of a numeral l which stands to k in the relation B(k, l).

The application of negation demands special attention.

Negation is unproblematic in the case of “elementary” judgments, which

involve a question decidable by a direct intuitive determination (a “finding”).
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For example, if k, l are particular numerals it can be directly determined

whether or not

k + k = l,

i.e. whether or not k + k coincides with l or is different from l.

The negation of such an elementary judgment says simply that the re-

sult of the respective intuitive decision diverges from the state of affairs

asserted to obtain in the judgment; and without hesitation there is for

an elementary judgment the alternative that either it or its negation is

correct.

By contrast it is not immediately clear what should count as the nega-

tion of a universal or existential judgment in the finite sense.

As a result, we consider first existential assertions. The assertion that

there is no numeral n with the property A(n) might mean in an imprecise

sense [no brackets] that one has no numeral with this property at

one’s disposal for indication. But such an assertion has no objective

meaning because of its connection to an accidental epistemological con-

dition. If, however, one wishes to maintain the unavailability of a numeral n

with the property A(n) independently of epistemological conditions, he can

do it in a finite sense only with an assertion of impossibility, which says

that a numeral n can not have the property A(n).

In this way we arrive at a sharpened negation; however, it is not exactly

the contradictory opposite of an existential assertion, “there is a numeral

n with the property A(n)”, which (as a partial judgment) points to a known

numeral with this property or to a procedure which we possess for ob-

taining such a numeral.
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Unlike an elementary assertion and its negation, an existential assertion

and its sharpened negation are not assertions about the only two possible

results of one and the same decision , but they correspond to two distinct

epistemological possibilities, namely on the one hand the finding of a nu-

meral with a given property, on the other the discernment of a general law

about numerals.

It is not logically obvious that one of these two possibilities must come

up. From the finite point of view then we cannot use the alternative, that

there is either a numeral n such that A(n) or the holding of A(n) for a

numeral is precluded.

The case of a universal judgment of the form “for every numeral n, A(n)

holds” with respect to finite negation is similar to that of existential

judgements. The negation of the validity of such a judgment does not

have a direct finite sense; however, if it is sharpened as the assertion that

the logical validity of A(n) can be refuted by a counterexample, then this

sharpened negation no longer constitutes the contradictory opposite of a

universal judgment; for again it is not logically obvious that either a universal

judgment or the sharpened negation must hold, i.e. that either A(n) holds

for every given numeral n or that a numeral can be given for which A(n) does

not hold.

It must be added that the finding of a counterexample is not the only

possibility for refuting a universal judgment. Pursuing the consequences of

a universal judgment can lead to a contradiction in other ways. This cir-

cumstance, however, does not eliminate the difficulty but only increases

the complication. Namely, neither the alternative is logically obvious
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that a universal judgment about numerals must either hold or lead to a con-

tradiction in its consequences and therefore be refutable, nor it is obvious

that such a judgment if refutable is refutable through a counterexample.

The complicated situation that we find here with respect to the negation

of judgments from the finite point of view corresponds to Brouwer’s thesis

that the law of the excluded middle does not hold for infinite totalities.

This invalidity exists indeed from the finite point of view insofar as we

are unable to find a negation with finite content which satisfies the law of

the excluded middle for existential and universal judgments.

These considerations may suffice as an indication of the finite point of

view. If we look at arithmetic in its customary treatment checking

whether it corresponds to this methodological point of view we realize

that this is not the case; arithmetic inferences and concept formations

often go beyond the limits of the finite way of reflection in many ways.

The inferences of number theory already go beyond the finite point of

view; for here existential assertions about integers—in ordinary mathe-

matics we speak of “integers” (more exactly “positive integers” or

“numbers” for short) instead of “numerals”—are permitted, regard-

less of the possibility of actually determining the number in question; and

also use is made of the alternative that an assertion about integers either

holds for all integers or there is a number for which it does not hold.

This alternative, the “tertium non datur” for integers is implicitly ap-

plied in “least number principle” which says: “If an assertion about integers

holds for at least one number, there is a least number for which it holds”.

In its elementary applications the least number principle has a finite
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character. Indeed, if A(n) [math changed] is the respective assertion

about a number n and m is a definite number for which A(m) holds, then

one may go through the numbers from 1 to m; then one must once come

to a number k for which A(k) is correct since m is such a number at the

latest. The number k is then the least number with the property A.

But these considerations depend on two presuppositions which are not

always fulfilled in non-elementary applications of the least number principle.

In the first place it is presupposed that A holds of a number in the sense that

a number m with the property A(m) is actually given, while in applications

the existence of a number with the property A is often only derived using

the “tertium non datur” so that we do not get to the actual determination

of such a number. The second presupposition is that it can be decided for

any number k in the row from 1 to m whether or not A(k) holds; of course, it

is possible to decide this for elementary assertions A(n), whilst for a non-

elementary expression A(n) [variables changed] the question whether it

holds for a given number k may constitute an unsolved problem.

For example, let ψ(a) be a function defined by a sequence of recursions

and substitutions, and so admissible in finite number theory; and let A(n)

[variables changed] stand for the assertion that there is a number a for

which ψ(a) = n. Then, for a given number k, the question whether A(k) holds

is not in general (i.e. when the function ψ is not especially simple) decidable

by direct inspection; rather it has the character of a mathematical problem.

For the recursions which enter into the definition of ψ give the values of

the function only for given arguments ; but the question whether there is a

number a for which ψ(a) has the value k involves the whole value-range of
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the function ψ.

In any case then where these presuppositions of the finite founding

[“Begründung” (founding, foundation) and “Rechtfertigung” (jus-

tification) have to be distinguished] of the least number principle are not

fulfilled, the founding of the principle requires reference to the “tertium

non datur” for integers.[footnote added]3

We give some examples of number-theoretic alternatives which result

from the tertium non datur for integers but which are not provable in a

finite way, given our present state of knowledge:

“Either every even number [math changed] > 2 is representable as

the sum of two prime numbers or there is an even number > 2 and not

representable as the sum of two prime numbers.”

“Either every integer of the form 2(2k) + 1 with k > 4 is divisible into two

factors > 1, or there is a prime number of the form 2(2k) + 1 with k > 4.”

“Either every sufficiently great integer is representable as the sum of less

than 8 cubes, or for every integer n there is an integer m greater than n

which is not representable as the sum of less than 8 cubes.”

“Either there are arbitrarily great prime numbers p with the property

that p+ 2 is also a prime number, or there is a greatest prime number with

this property.”

“Either for every integer n > 2 and arbitrary positive integers a, b, c

the inequality an + bn 6= cn holds, or there is a least such integer n > 2 for

which the equation an+bn = cn has a solution in the positive integers.” This

3We will later present the proof of the principle of least number in the

framework of formalism. See § 6, pp. 284–285.
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kind of example from number theory is appropriate for making clear the

simplest forms of non-finite argumentation. However, we will not really feel

the need to go beyond the finite point of view in number theory; for there

is hardly any proof using number-theoretic means in which the non-finite

kinds of inference that happen to be made can not be circumvented with

rather [“easy” deleted] simple modifications.

It is quite different in the case of analysis (infinitesimal calculus); here

non-finite kinds of concept formation and proving are really belong-

ing to the method of the theory.

We briefly recall the fundamental concept of analysis, the concept of a

real number. The real numbers are defined either as a strictly increasing

sequence of rational numbers

r1 < r2 < r3 < . . .

which are all less than a given bound (“fundamental sequence”), or as an

infinite decimal fraction, or binary fraction, or as a partition of the rational

numbers into two classes, every member of the first class being smaller than

every member of the second (“Dedekind cut”).[sc!]

In doing so the view is fundamental that rational numbers form an

enclosed totality which can be considered as a domain of individuals. In

analysis the totality of possible sequences of rational numbers or of possible

partitions of all rational numbers is also conceived as a domain of individuals.

However, it is sufficient to to take as a basis the totality of integers

instead of the totality of rational numbers and the totality of all partitions

of integers instead of that of all rational numbers. For in fact every positive

rational number is given by a pair of numbersm, n and every rational number
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whatever can be represented as the difference between two positive rational

numbers, i.e. as a pair of pairs of numbers (m, n; p, q). Also every binary

fraction of the form

0.a1a2a3 . . .

with a1, a2, a3, . . . all either = 0 or = 1 can be interpreted as a partition of all

integers, namely the partition into those numbers k for which ak = 0 [math

changed] and into those for which ak = 1. In this way there is a one-one

correspondence between the partitions of the positive integers and the binary

fractions of the above form; and on the other hand every real number can

be represented as the sum of a positive integer and a binary fraction of this

form.

It is possible to consider sets of integers instead of partitions; for every

set of integers determines the partition into the numbers which belong to the

set and those which do not; and equally every set of integers is completely

determined by such a partition.—The same remark holds for the Dedekind

cut; it likewise can be represented by a set of rational numbers, namely the

set containing the smaller rational numbers. Such a set is characterized by

the following properties: 1. it contains at least one and not every rational

numbers; 2. together with a rational number it contains all smaller and

at least one bigger rational number.

By these transformations, however, the existential presupposition which

we had to take as the basis of analysis is weakened in an unessential way

only. It is still required to construe the manifold of the integers and also

that of the sets of integers as a fixed domain of individuals; the “tertium non

datur” is taken to hold for this domain, and with reference to which an
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assertion of the existence of an integer or set of integers with a property E

[math changed] is taken to be meaningful independently of its possible

interpretation as a partial judgment. So even though the infinitely large

and the infinitely small in any genuine sense are excluded by this theory of

real numbers and remains only as a mode of expression, still the infinite

as a totality is retained. One can even say that here for the first time the

idea of infinite totalities is introduced and validated in the rigorous

foundation of analysis.

In order to to convince ourselves really that the presupposition of the

totality of the domain of integers or rational numbers and moreover of the

domain of sets (partitions) of integers or rational numbers has an essential

application in the founding of analysis [“; for this purpose” deleted] we

only need to introduce some of the fundamental concept formations and

thoughts.

If the reals are defined as a sequence of increasing rational numbers

r1 < r2 < r3 < . . . ,

the concept of equality for real numbers is already non-finite. For whether

or not two such sequences of rational numbers define the same real number

depends upon whether or not for every number in one of the sequences there

is a larger in the other and vice-versa. But we do not have a general procedure

for deciding this question.

If, however, we begin with the definition of the real number via a

Dedekind cut, we have to prove that every bounded sequence of increas-

ing rational numbers gives rise to a cut representing the upper bound of the

sequence. One gets this cut by partitioning the rational numbers into those
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which are less than at least one number of the sequence and those which are

not. That is to say: a rational number r is said to be in the first or second

class according to whether there is among the numbers of the sequence

a number > r or whether all numbers in the sequence are 5 r. This again

is no finite distinction.

The case is similar if real numbers are defined via infinite decimal or

binary fractions. Again it must be shown that a bounded sequence of rational

numbers

r1 < r2 < r3 < . . . ,

determines a decimal or binary [parentheses deleted] fraction. For simplic-

ity let us suppose we are dealing with a sequence of positive proper fractions:

0 < b1 < b2 < . . . < 1 ,

and we wish to determine the binary fraction [math added]

0.a1a2a3 . . .

[end of addition] which represents the upper bound of the sequence of

fractions. This is done as follows:

a1 is = 0 or = 1 [math changed] depending on whether or not for all

fractions holds bn <
1
2
;

am+1 = 0 or = 1 [math changed] depending on whether or not all

fractions bn are less than

a1

2
+
a2

4
+ . . .+

am
2m

+
1

2m+1
.
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In each of these cases one considers the alternatives whether all ra-

tional numbers in a given sequence

r1, r2, r3, . . .

satisfy a certain inequality or whether there is at least one exception to this

inequality. Such alternative makes use of the “tertium non datur” for

integers; for it is presupposed that either for every integer n the rational

number rn [comma deleted] satisfies the inequality in question, or there is

at least one integer n such that rn fails to satisfy it.

However, this use of the totality of integers as a domain of individuals

is not sufficient for analysis; we need in addition the totality of real numbers

as domain of individuals. As we saw, this totality is essentially equivalent

to that of the sets of integers.

The need for domain of individuals of real numbers is already nec-

essary in connection with the proof of the theorem of the upper bound

of a bounded set of real numbers. In order to prove of the existence of

the upper bound of a bounded set of real numbers, e.g. reals in the interval

between 0 and 1, [“for real numbers” deleted] defined on the basis of

Dedekind cuts [“; in this proof” deleted] one considers the partition of

the rational numbers into those which are and those which are not exceeded

by a real number in the set. Thus one counts a rational number r as being

in the first class if and only if there is a real number a > r in the set.

Now one has to realize that in analysis a set is in general given to

us only by a defining property; that is to say, the set is introduced as the

totality of those real numbers which satisfy a certain condition B. Therefore

the question whether there is a real number a > r [math changed] in a set
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under consideration amounts to the question whether there is a real number

greater than r and at the same time satisfying a certain condition B.

In this formulation it becomes clear that we take the totality of real

numbers as a domain of individuals as basis.[Footnote added]4

It should also be remarked that the process just described for obtaining

an upper bound amounts to forming a union set. In fact every real number

is defined by a partition of the rational numbers into larger and smaller ones

or by the set of the smaller rational numbers). The given set of real numbers

is therefore represented as a set M of sets of rational numbers. And the

upper bound of the set M is formed from the set of those rational numbers

which belong to at least one of the sets in M. The totality of these rational

numbers is, however, exactly the union set of M.

Defining the real numbers by means of a fundamental sequence or a

binary fraction instead of using Dedekind’s [sc] definition does not make

it possible to circumvent the the use of the domain of individuals of real

numbers. By this the process will rather become even more compli-

cated because an additional recursive procedure comes along. It may

briefly be indicated what is involved in the case of the definition of real

numbers via binary fractions. We are then concerned with a set of binary

fractions

0.a1a2a3 . . .

which is again determined by a certain criterion B; and the upper bound is

4
Weyl [sc] has pointed to the state of affairs given here in a particular

explicit way in his monograph “Das Kontinuum” (Leipzig 1918).
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represented by a binary fraction

0.b1b2 . . .

defined in the following way:

b1 = 0 if 0 stands in the first binary position in all binary fractions

satisfying the condition B; otherwise b1 = 1;

bn+1 = 0 if 0 stands in the (n + 1)th position in all binary fractions

satisfying the condition B and having the first n binary numerals coincident

or with b1, b2, . . . , bn respectively; otherwise bn+1 = 1.

Here the totality of the real numbers occurs as the totality of all binary

fractions; and we make use of the assumption that the “tertium non datur”

holds for infinite sequences formed of zeros and ones.[“; otherwise bn+1 =

1” deleted]

Now this presupposition of the totality of all real numbers or all binary

fractions, however, is not sufficient. This can be seen in the following simple

case: Let a be the upper bound of a set of real numbers. We want to show

that there is a sequence of real numbers from the set which converges toward

a. To do this we make the following inferences:

It follows from the property of an upper bound that for every integer n

there is a number cn in the set such that [math changed]

a− 1

n
< cn 5 a ,

and so

|a− cn| <
1

n
.

The numbers cn constitute therefore a sequence which converges toward a,

and they all belong to the set under consideration.
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When we argue in this way our manner of expression hides fundamental

point in the proof. For when we use the notation cn we presuppose that

[“a” deleted] for each number n among those real numbers c belonging

to the set under consideration and satisfying the inequality

a− 1

n
< c 5 a

a certain one is distinguished.

There is a presupposition involved here. All we can immediately infer

is only this: for every number n there is a subset Mn of our set under

consideration which consists of those numbers satisfying the above inequality;

and for every n this subset has at least one element. Now what is assumed

is that in each of these sets

M1,M2,M3, . . .

we can distinguish an element c1, in M1, c2 in M2, . . . cn in Mn and thereby

get a determinate infinite sequence of real numbers.

We have here a special case of the principle of choice; its general for-

mulation is the following: “If for every thing x of type [one has to obey

the “Gattung”–“Art” distinction in German. If we stick to the bi-

ological metaphor we would have to use “genus” or “family” which

seem to be rather unconventional. I would prefer a non-biological

term] G1 there is at least one thing y of type G2 which stands to x in the

relation B(x, y), then there is a function ϕ which correlates each thing x of

type G1 unambiguously with one thing ϕ(x) of type G2 which stands to x

in the relation B(x, ϕ(x)).”
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In the case at hand the type G1 is that of the positive integers, G2 that

of the real numbers; the relation B(x, y) is the inequality

a− 1

x
< y 5 a ,

and the function ϕ the existence of which is derived from the axiom of choice,

correlates the real number cx with its number x.

Zermelo [sc] was the first to recognize the principle of choice as a spe-

cial presupposition and to formulate it set-theoretically; its use involves

a further overstepping of the finite point of view which goes even beyond

the application of the “tertium non datur”. The above consideration of

methodological examples teaches us that the foundations of the infinitesimal

calculus [“founding of analysis” deleted], as they have been given since

the discovery of rigorous methods, does not involve a reduction to finite

number-theoretic thought. The arithmetizing of the theory of magni-

tudes carried out here is in so far not a complete one as it involves

certain systematic and fundamental conceptions which do not belong to the

domain of intuitive arithmetic thinking. The insight which the rigorous foun-

dation of analysis has brought us is that these few fundamental assumptions

already suffice to build up the theory of magnitudes as a theory of sets

of numbers.

Large areas of mathematics, such as function theory, differential geom-

etry, and topology (analysis situs) are governed [“dominated” deleted]

by the methods of analysis. General set theory, the methods of which have

penetrated the newer abstract algebra and topology makes the most exten-

sive use of non-finite assumptions going well beyond the presuppositions of

analysis. [the last two subordinate clauses transposed]
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Arithmetic in its usual treatment is by no means an expression of the

finite point of view but depends essentially upon additional principles of

inference. We see us therefore confronted with the task of justifying the

application of those principles which transcend finite thinking by means of

a consistency proof if we want to keep arithmetic in its current form while

acknowledging the demands of the finite point of view with respect to evi-

dence. [order of subclauses changed] If such a proof of the consistency

of customary ways of inference in arithmetic would be successful we

would also have the guarantee that the results of these ways of inference

could never be refuted by a finite determination or finite reflection; for fi-

nite methods are included in ordinary arithmetic, and a finite refutation

of an assertion proved by ordinary means of arithmetic would therefore

indicate a contradiction within ordinary arithmetic.

We return then to the problem raised in § 1. It remains to answer the

question from which the considerations of this paragraph began: whether

instead of using the formalization of inferences to prove the impossibility

of a contradiction arising in arithmetic, we couldn’t more easily found all

of arithmetic directly without additional assumptions and make that proof

of impossibility superfluous.

The answer to this [“question” deleted] is for one part positive, for

the other negative. The investigations of Kronecker and Brouwer [sc]

have shown what is involved in the possibility of a direct finite founding

arithmetic to an extend sufficient for practical applications.

Kronecker [sc] was the first to insist on the requirements of the finite

point of view; he intended to eliminate completely non-finite modes of in-
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ference from mathematics. He reached his aim in the theory of algebraic

numbers and number fields.[Footnote added]5 Sticking to the finite point

of view is possible in this case in such a way that nothing essential of

theorems or methods of proof has to be given up.

As Kronecker’s [sc] presentation of the problem was completely

rejected for a long time. In more recent times Brouwer [sc] set himself

the task of founding arithmetic independently of the law of the excluded

middle and developed considerable parts of analysis and set theory in terms

of this program.[Footnote added]6 Of course, in using this procedure

essential theorems have to be given up and considerable complications in

the forming of concepts have to be accepted.

The methodological standpoint of “Intuitionism” which Brouwer [sc

for names] makes fundamental constitutes a certain extension of the fi-

nite position insofar as Brouwer permits the introduction of the assump-

tion that an inference or a proof is given even though the intuitive nature

of the inference or proof is not determined. For example, from Brouwer’s

point of view assertions of the following forms are permissible: “if on the

assumption that A the sentence B holds, then C holds too” or also “the

assumption that A is refutable leads to a contradiction” or in Brouwer’s

words: “the absurdity of A is absurd”).

An extended version of the finite point of view of this kind turns out to

5
Kronecker [sc] did not systematically publish the results of these investigations but

only presented them in lecture courses.
6A detailed list of Brouwer’s [sc] publications in this area is found in A. Fraenkel’s

[sc; “textbook” deleted, quotation marks] “Einleitung in die Mengenlehre”, third

[emph added] edition. Berlin: Julius Springer 1928.
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be necessary if one is going to go beyond a certain elementary domain using

finite considerations; from an epistemological point of view this version

amounts to adding considerations of a general logical character to the

intuitive insights. We will be led to the requirement of this extension at

an advanced stage of our considerations.

Although the above-mentioned investigations indicate a way by which

one can gets by in mathematics without using non-finite ways of inference,

a proof of the consistency of the ordinary methods of arithmetic is by no

means superfluous. For the avoidance of non-finite methods of inference in

the sense of completely replacing these methods with other considerations;

it rather succeeds in analysis and related areas of mathematics only at the

cost of an essential loss in systematization and proof-technique.

A mathematician, however, cannot be expected to accept such a loss

without compelling reasons. The methods of analysis have been tested to

an extent than hardly any other scientific presupposition, and they most

brilliantly proved a success. If we criticize these methods from the point

of view of evidence, then we face the task of tracing the reason of their

applicability, just as we do everywhere in mathematics where a successful

procedure is applied on the basis of conceptions which, in terms of evidence,

leave much to be desired.

Insofar as we accept the finite point of view we cannot escape the prob-

lem of obtaining a clear understanding about the applicability of non-[Ian

Mueller’s translation ends here. New translation added]finite meth-

ods, and this understanding, insofar our trust in these methods is not mis-

leading, can only consist in gaining certainty that these ordinary arithmetical
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methods can never lead to a result provably false, that is to say, that the re-

sults of its application are compatible either with each other or with any fact

evident from the finite point of view.

This problem is, however, the very same as that of the proof of consistency

of our ordinary arithmetic.

For dealing with this problem we had already considered in § 1 the method

of formalizing logical inference as developed in formal logic.7 In any case this

method satisfies the condition to make the demanded task of a consistency

proof a finite problem—provided that the complete formalization of ordinary

arithmetic succeeded. For if ordinary arithmetic is formalized, i. e. if its

presuppositions and ways of inference are translated into initial formulas

and rules of deduction, an arithmetical proof presents itself as a succession

of processes intuitively surveyable each of which belongs to a stock of relevant

actions given in advance. So we have in principle the same methodological

state of affairs as in elementary number theory; and to the same extend as

it is successful there to make impossibility proofs in a finite sense, e. g., for

the fact that there are no two numerals m, n with

m ·m = 2 · n · n ,

it is a finite problem as well to show that there are in finite arithmetic no two

proofs such that the end-formula of the first is identical with the negation of

the end-formula of the second.

However, we are still far away from a solution of this problem. But in

pursuing this goal many rewarding results have already been gained; and

7Cf. p. 18.
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on this way a new field of research has been opened by making use of the

formalization of logical inferring for a systematic proof theory which deals

with the question of the significance of logical ways of inference in systematic

generality, a question which was posed and solved in traditional logic only

in a very special form. By its method of investigation, the problems of the

foundation of mathematics are directly connected with the logical problems.

This proof theory, also called “metamathematics”, will be developed in

the following. We start with the formalization of inferring which we will

present in the beginning independently of its application to proof theory.

[End of additional translation]
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