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2. Elementary number theory.—Finite inferring and its limits.

The question raised at the end of the previous paragraph, whether we

couldn’t found arithmetic directly by a method independent of axiomatics

and make a special proof of consistency superfluous, gives us reason to re-

call that the method of rigorous axiomatics, especially existential inference,

presupposing a fixed domain of individuals, is by no means the original pro-

cedure of mathematics.

Geometry was indeed built up axiomatically from the beginning. But

Euclid’s axiomatic system is intended to be contentual and intuitive. There

is no abstraction from the intuitive meaning of figures in it. Moreover, the

axioms are not in existential form. Euclid does not presuppose that points

and lines constitute any fixed domain of individuals whatsoever. And that

is why he does not formulate any existence-axioms but only construction-

postulates.
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An example of such a postulate is: one can join two points with a straight

line; furthermore, one can draw a circle around a given point with a pre-

scribed radius.

This methodological standpoint can only be carried out if the postulates

are looked on as the expression of known facts or of immediate evidence.

As is well known, the question of the range of validity of the geometrical

axioms is a very awkward and controversial one; and it is indeed an essential

advantage of formal axiomatics that it makes the foundation of geometry

independent of deciding this question.

In the domain of arithmetic we are free of these problems which are

connected with the special character of geometrical knowledge; in fact we find

in this domain, as well as in the disciplines of elementary number theory and

algebra, the standpoint of direct contentual deliberation carried out without

axiomatic assumptions in its purest form. The mark of such a standpoint

is that the deliberation is carried out in the form of thought experiments

involving objects assumed to be concretely given. In number theory we are

concerned with numbers assumed to be given, in algebra with expressions

with letters with given number coefficients.

We wish to consider the procedure here more closely and make the prin-

ciples somewhat more precise in methodological respects. In number theory

we have an initial object and a process of progressing. We must determine

both intuitively in a certain way. The particular determination is inessential

here, but once the choice is made it must be maintained for the whole theory.

We choose the numeral 1 as the initial object and the addition of 1 as the

process of progressing.
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The things which we obtain by applying the process of progressing, be-

ginning from the numeral 1, for example,

1, 11, 1111

are figures of the following kind: they begin with 1 and end with 1; on

every 1 which is not already the end of the figure there follows an adjoined

1. They are obtained by applying the process of progressing and, i. e., by a

construction which concretely terminates; and this construction can therefore

be reversed in terms of a step-by-step decomposition.

These figures constitute a kind of numeral; we want to use the word

“numeral” here simply to designate these figures.

As is usual we imagine that a certain amount of latitude is allowed con-

cerning the exact shape of the numerals; that is, small differences in the

realization such as the shape of the 1 or its size or the distance at which the

1 is put on paper, will not be taken into consideration. What we require

as essential is only that we have both in 1 and the affixing of 1 an intuitive

object, which can always be recognized in an unambiguous way, and that we

can always survey the discrete parts from which a numeral is constructed.

In addition to numerals we introduce further signs, signs “for communica-

tion.” These signs have to be distinguished on principle from the numerals,

which constitute the objects of number theory.

In itself a sign for communication is also a figure; and we presuppose that

it can always be recognized in an unambiguous way and that small differences

in its realization are irrelevant. However, within the theory itself it is not

taken as an object of consideration; but it is only a means for formulating

facts, assertions, and assumptions concisely and clearly.
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In number theory we use the following kinds of signs for communication:

1. Small German letters to designate any indeterminate numeral;

2. the usual number-signs abbreviating definite numerals, e.g., 2 for 11, 3

for 111;

3. Signs for certain formation processes and calculating operations that we

perform to get from given numerals other ones. These can be applied

either to certain or to indeterminate numerals, like, e. g., in a + 11;

4. the sign = to indicate coincidence with respect to shape, the sign 6= to

indicate the difference between two figures: the signs <, > to indicate a

relation of magnitude between numbers which has still to be explained.

5. Parentheses as signs for the order of processes when there is a possibility

of ambiguity.

How the introduced signs are manipulated and how contentual deliber-

ations are carried out becomes clearest if we develop number theory in its

basic features to a small extent.

The first thing we determine for numerals is the relationship of magnitude.

Let a be a numeral different from a numeral b. Let us consider how this is

possible. Both begin with 1, and the construction continues in the same

way for both a and b, unless one of the numerals comes to an end while the

construction of the other continues. This case must occur at some time, and

so the one numeral coincides with a segment of the other; or, in more precise

terms: the construction of the one numeral coincides with an initial segment

of the construction of the other.
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If a numeral a coincides with a segment of b, we say that a is smaller

than b or that b is larger than a; and for this we apply the designation

a < b, b > a .

Our consideration shows that for a numeral a and a numeral b, one of the

relations

a = b, a < b, b < a

must always hold; and on the other hand it is obvious from the intuitive

meaning that these relations exclude one another. Similarly it is an immedi-

ate consequence that if a < b and b < c then a < c also always holds.

Addition is very closely bound up with the relationship of magnitude. If

a numeral b coincides with a segment of a, the remainder is again a numeral

c; one gets the numeral a by affixing c to b in such a way that the 1 with

which c begins is attached to the 1 with which b ends in conformity with

the process of continuing. This kind of concatenation of numerals we call

addition, and we use the sign + for it.

We conclude directly from this definition of addition: if b < a, then

from the comparison of b with a one gets a representation of a in the form

b + c, with c again a numeral. And if one starts on the other hand with any

numerals b, c, then addition produces another numeral a, such that

a = b + c ;

in this case we have

b < a.

In general

b < b + c
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holds as well.

The significance of numerical equalities and inequalities such as

2 < 3, 2 + 3 = 5

is clear from the above definitions. 2 < 3 says that the numeral 11 coincides

with a segment of 111;

2 + 3 = 5 says that the numeral 11111 results from the affixing of 111 to

11.

In both of these cases we have the representation of a correct assertion,

whereas 2 + 3 = 4 is the representation of a false assertion.

We now have to determine that the calculational laws hold for addition

defined intuitively.

These laws will be here conceived as propositions about arbitrarily given

numerals and understood in terms of intuitive deliberation.

The associative law, according to which if a, b, c are any numerals,

a + (b + a) = (a + b) + c ,

is immediately inferred from the definition of addition. The commutative

law, which says that

a + b = b + a

always holds, is not so directly given. We need here the method of proof by

complete induction. We first make clear how this kind of inference is to be

understood from our elementary point of view: Consider any assertion about

a numeral which has an elementary intuitive content. The assertion holds

for 1, and one knows that if it holds for a numeral n then in every case it
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also holds for the numeral n+1. One infers that the assertion holds for every

given numeral a.

In fact the numeral a is constructed by applying the process of adjoining

1 beginning from 1. If one establishes that the assertion under consideration

holds for 1 and, according to the presupposition, for every adjoining of 1 for

the new numeral resulting, then, with the completion of the construction of

a one determines that the assertion holds for a.

We are then not dealing with an independent principle but with a conse-

quence taken from the concrete construction of numerals.

Using this method of inference we can now show in the usual way that

for every numeral

1 + a = a + 1 ,

and from this that one always has

a + b = b + a .

We will now sketch briefly the introduction of multiplication, division and

the concept formations connected with them.

Multiplication can be defined in the following way: a·b means the numeral

which one gets from the numeral b when one replaces in the construction

every 1 with a numeral a; thus one first constructs a and affixes a in every

case where 1 is affixed in the formation of b.

The associative law for multiplication as well as the distributive law ac-

cording to which

a · (b + c) = (a · b) + (a · c)

are immediate from the definition. The other distributive law according to
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which

(b + c) · a = (b · a) + (c · a)

is seen to hold based on the laws of addition with the help of complete

induction as described above. By this method of proof one also gets the

commutative law of multiplication.

In order to get at division we must first introduce some preliminary con-

siderations. The construction of a numeral is such that the adjunction of 1

always produces a new numeral. The formation of a numeral a then involves

the formation of a concrete row of numerals beginning with 1 and ending with

a in which every numeral arises from its predecessor through the adjoining

of l. One also sees immediately that this row contains except for a itself only

numerals which are < a and that a numeral which is < a must occur in this

row. We call this succession of numerals “the row of numerals from 1 to a”

for short.

Now let b be a numeral different from 1 which is < a. b has the form

1 + c; thus

b · a = (1 · a) + (c · a) = a + (c · a),

and therefore

a < b · a.

If we multiply b successively with the numerals in the row from 1 to a, in

the resulting row of numerals

b · 1, b · 11, . . . , b · a

the first of these is < a, and the last > a. Let us go now through this row

until we first come upon a numeral > a; its predecessor (call it b · q) is then
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either = a or < a, while

b · (q + 1) = (b · q) + b > a .

Therefore either

a = b · q

or we have a representation

a = (b · q) + r ,

with

(b · q) + r < (b · q) + b ,

and so

r < b .

In the first case a is “divisible by b” (“b divides a”), and in the second

case there is division with a remainder.

In general we say a is divisible by b if the numeral a occurs in the row

b · 1, b · 11, . . . , b · a .

This occurs if b = 1 or if b = a or in the first case just described.

From the definition of divisibility it follows immediately that if a is divis-

ible by b, the determination that it is yields a representation

a = b · q.

But the converse also holds; the divisibility of a by b (in the defined sense)

follows from an equation a = b · q since the numeral q must belong to the

row of numerals from 1 to a.
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If a 6= 1 and no divisor of a other than 1 and a occurs in the row of

numerals from 1 to a, then every product m · n in which m and n belong to

the row of numerals from 2 to a is distinct from a; in such a case we call a a

prime number.

If n is a numeral different from 1, then there is a first numeral in the row

from 1 to n with the property of being distinct from 1 and a divisor of n. It is

easy to show that this “least divisor of n distinct from 1” is a prime number.

Now we can also prove in the same way as Euclid did the theorem that

for any numeral a, a prime number > a can be determined: One multiplies

together the numbers from the row from 1 to a, adds 1, and then takes the

least divisor t distinct from 1 of the numeral thus obtained. This is a prime

number, and one sees easily that t cannot occur in the row of numbers from

1 to a and so is > a.

The further development of elementary number theory is clear; only one

point still requires fundamental discussion, the method of recursive defini-

tion. We recall the nature of this method: A new function-sign, say, ϕ, is

introduced, and the definition of the function takes place through two equa-

tions which in the simplest case have the form

ϕ(1) = a

ϕ(n + 1) = ψ(ϕ(n), n) .

Here a is a numeral and ψ is a function constructed from functions already

known so that ψ(b, c) can be calculated for given numerals b, c and again

provides a numeral as a value.
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For example the function

%(n) = 1 · 2 . . . n

can be defined by the equations

%(1) = 1

%(n + 1) = %(n) · (n + 1).

What sense this method of definition has is not self-evident. To explain it

we must first make precise the concept of function. We understand a function

to be an intuitive instruction on the basis of which a numeral can be assigned

to a given numeral, or a pair, a triple . . . of numerals. A pair of equations

of the above kind—we call it a “recursion”—, we interpret as an abbreviated

indication of the following instruction:

Let m be some numeral. If m = 1, then m is to be paired with the numeral

a. Otherwise m has the form b + 1. First one writes schematically

ψ(ϕ(b), b) .

If b = 1, then one replaces ϕ(b) here with a; otherwise b has the form c + 1

and one replaces ϕ(b) with

ψ(ϕ(c), c).

Again, either c = 1 or c is of the form d + 1. In the first case one replaces

ϕ(c) with a and in the second case with

ψ(ϕ(d), d) .

The continuation of this procedure terminates in every case. For the

numerals

b, c, d, . . . ,
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which we obtain in sequence arise from the decomposition of the numeral m;

and this, like the construction of m, must terminate. When the decomposi-

tion reaches 1, ϕ(1) is replaced with a; the resulting configuration no longer

contains the sign ϕ; rather only ψ occurs as a function sign, perhaps with

multiple overlapping occurrences, and the innermost arguments are numer-

als. We have then obtained a calculable expression; for ψ is supposed to be

an already known function. This calculation has to be done from the inside

out; the numeral obtained is the numeral to be paired with the numeral m.

The content of this instruction shows us first that in principle it can

be carried out for any case for a given numeral m and that the result is

unambiguously fixed. At the same time we see that for a given numeral n

the equation

ϕ(n + 1) = ψ(ϕ(n), n)

is satisfied, if we replace in it ϕ(n) and ϕ(n + 1) with the numerals paired

with n, and n + 1 according to our instruction and then substitute for the

known function ψ its definition.

The somewhat more general case in which one or more undetermined

numerals occur as “parameters” in the function being defined is handled in

much the same way. In the case where there is one parameter t the recursion

equations have the form

ϕ(t, 1) = α(t)

ϕ(t, n + 1) = ψ(ϕ(t, n), t, n);

here both α and ψ are known functions. For example, the function ϕ(t, n) =
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tn is defined by the recursion

ϕ(t, 1) = t

ϕ(t, n + 1) = ϕ(t, n) · t .

With definition by recursion one is again not dealing with an independent

principle of definition; within the framework of elementary number theory,

recursion has only the meaning of a convention for abbreviating the descrip-

tion of certain formation-processes through which one gets from one or more

given numerals another numeral.—

We take as an example to indicate that we can carry out proofs of impos-

sibility in the framework of intuitive number theory the assertion expressing

the irrationality of
√

2: There cannot be two numerals m, n such that1

m ·m = 2 · n · n .

As is well known, the proof proceeds as follows: One shows first that every

numeral is either divisible by 2 or of the form (2 · k) + 1; therefore a · a is

divisible by 2 only if a is divisible by 2.

If a pair of numbers m, n satisfying the above equation were given, we

could examine all number-pairs a, b with

a belonging to the row 1, . . . ,m ,

b belonging to the row 1, . . . , n ,

and then determine whether or not

a · a = 2 · b · b .
1We use the customary procedure following the associative law of multiplication in

writing products involving several factors without parentheses.
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We choose from among the pairs of values satisfying the equation the one in

which b has the smallest value. There can only be one such; call it m′, n′.

In accordance with our previous remarks, it follows from the equation

m′ ·m′ = 2 · n′ · n′

that m′ is divisible by 2:

m′ = 2 · k′ ;

therefore we obtain

2 · k′ · 2 · k′ = 2 · n′ · n′ ,

2 · k′ · k′ = n′ · n′ .

But then n′, k′, would be a pair of numbers satisfying our equation, and at

the same time it would be the case that k′ < n′. This however is inconsistent

with the way in which n′ was determined.

Of course, the sentence just proved can be expressed positively: If m and

n are any two numerals, m ·m is different from 2 · n · n.

Let this much suffice as a characterization of the elementary treatment

of number theory. We have developed it as a theory of numerals, i.e., of a

certain kind of especially simple figure. The significance of this theory for

knowledge depends upon the relation of numerals to the ordinary concept of

cardinal number [Anzahl-Begriff ]. We obtain this relation in the following way:

Imagine a concrete (i.e., in any case finite) collection of things. One

considers the things in the collection successively and correlates them in a row

with the numerals 1, 11, 111, . . . as numbers. When no thing is left a certain

numeral n has been reached. This numeral is for the time being assigned as

the ordinal number of the collection of things taken in the sequence chosen.
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But now we easily convince ourselves that the resulting numeral n is in

no way dependent on what sequence is chosen. For let

a1, a2, . . . , an

be the things of the collection in the sequence chosen,

b1, b2, . . . , bk

the things in some other sequence. We can then go from the first enumeration

to the second by a series of interchanges of numbers in the following manner:

If a1, is different from b1, then we interchange the number r which the thing

b1 has in the first enumeration with 1, that is to say we correlate the thing

ar with the number 1, the thing a1 with the number r. In the resulting

enumeration the thing b1, has the number 1; following it and correlated to

the number 2 is the thing b2 unless this thing has here some other number

s which is in any case distinct from 1; in this case we then exchange this

number s with 2 in the enumeration; the result is an enumeration in which

the thing b1 has the number 1, b2 the number 2. b3 has either the number 3

or some other, t, in any case distinct from 1 and 2; we exchange the latter

with 3.

This procedure must terminate; for with every interchange the enumer-

ation of the collection considered is brought at least one step closer to a

correspondence with the enumeration

b1, b2, . . . , bk ;

as a result one will eventually get the number 1 for b1, the number 2 for

b2, . . . , the number k for bk; and then there is no other thing left. On the

15



other hand the stock of numbers used remains exactly the same with every

interchange executed; for all that happens is that the number of one thing

is exchanged with that of another. Therefore in every case the enumeration

goes from 1 to n, and as a result we have

k = n .

Thus the numeral n is assigned to the collection under consideration indepen-

dently of any sequence; in this sense we can correlate n with the collection as

its cardinal number [Anzahl].2 We say that the collection consists of n things.

If a concrete collection has a common cardinal number with another one,

we get from an enumeration of each a one-one correlation of the things in

one collection with those in the other. On the other hand, if we have such a

correlation between two given collections of things the two have the same car-

dinal number; this is an immediate consequence of our definition of cardinal

number.

From the definition of cardinal number we pass now through contentual

considerations to the principles of the theory of cardinal numbers, e.g., to

the theorem that the unification of two collections of cardinality a and b and

without a common element gives rise to a collection of a + b things.—

After the presentation of elementary number theory we would like to

indicate briefly the character of the elementary contentual point of view in

algebra. We shall deal with the elementary theory of rational functions of

one or more variables with integers as coefficients.

2This consideration was put forward by von Helmholtz in his essay “Zählen und

Messen” (1887). (Hermann v. Helmholtz, Schriften zur Erkenntnistheorie. Berlin:

Julius Springer 1921. See pp. 80–82.)

16



The objects of the theory are again certain figures, “polynomials;” they

are constructed from a determinate stock of letters, x, y, z, . . ., called “vari-

ables” and the numerals with the help of the signs +,−, · and parentheses. In

this case then the signs +, · are not to be construed as communication-signs

as in elementary number theory, but as objects of the theory.

We again use small German letters as communication-signs, not just for

numerals but also for arbitrary polynomials.

The construction of polynomials out of the signs indicated above follows

the following formation rules:

A variable and also a numeral can be considered in itself a polynomial.

From two polynomials a, b the polynomials

a + b, a− b, a · b

can be formed; from a polynomial a (−a) can be formed. The usual rules for

setting parentheses hold here. As communication-signs we also introduce:

the numbers 2, 3, . . ., as in elementary number theory;

the sign 0 for 1− 1;

the usual signs for powers: for example, if z is a numeral xz signifies

the polynomial which results from z when x is put in place of every 1

and the sign “·” is put between every two successive x’s;

the sign = indicates the mutual substitutability of two polynomials.

Substitutability is determined by the following contentual rules:

1. The associative and commutative laws for “+” and “·”.
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2. The distributive law

a · (b + c) = (a · b) + (a · c) .

3. Rules for “−”:

a− b = a + (−b) ,

(a + b)− b = a .

4. 1 · a = a .

5. If two polynomials m, n are free of variables and of −, and if the

equality m = n holds in the sense of the interpretation of elementary

number theory, then m can be substituted by n.

These rules of substitutability relate to polynomials occurring as parts of

other polynomials. From them further assertions about substitutability are

derived, which constitute the “identities” and theorems of elementary alge-

bra. As examples some of the most simple provable identities we mention:

a + 0 = a −(a− b) = b− a ,

a− a = 0 −(−a) = a ,

a · 0 = 0 (−a) · (−b) = a · b .

Of the theorems which can be established from contentual considerations

we mention the following fundamental assertions:

a) If a, b are two mutually substitutable polynomials of which at least

one contains the variable x and if the polynomials a1, b1 result from a, b

when the variable x is replaced at all places where it occurs with one and the

same polynomial c, then b1 is substitutable for a1.
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b) Substitution of numerals for variables in a correct equation between

polynomials yields a correct numerical equation in the sense of number theory

(if we suppose that calculation with negative numbers is introduced into

number theory).—The meaning of this assertion b) may be illustrated by a

simple example: The equation

(x+ y) · (x+ y) = x2 + 2 · x · y + y2

says for the time being nothing except that according to our determinations

x2 + 2 · x · y + y2 is substitutable for (x + y) · (x + y). On the basis of the

assertion b), however, we can infer from this that if m and n are number signs

(m + n) · (m + n) and m ·m + 2 ·m · n + n · n coincide in the number-theoretic

sense.

c) Every polynomial can be substituted for either by 0 or by a sum of

different powers of products of variables—(the polynomial 1, as well, counts

as such in this case)—, each conjoined with a positive or negative numerical

factor.

Using this normal form we obtain a procedure for deciding for two given

polynomials whether or not they are mutually substitutable. For the follow-

ing assertion holds:

d) 0 is not substitutable for a polynomial which is the sum of different

products of powers with numerical factors, and two such polynomials are

only mutually substitutable if they coincide in their products of powers and

their numerical factors when the order of the summands and the order of the

numerical factors are disregarded.

The second part of this assertion follows from the first; and the first can be

proved with the help of b) by considering suitable substitutions of numerals.

19



The following is a particular consequence of d):

e) if a numeral n is substitutable for a numeral m, conceived as a polyno-

mial, m and n coincide.

In methodological respects the following should be noted concerning these

assertions: The substitutability of polynomials assumed in a), e) is to be

understood as the assumption that the substitutability of the one polynomial

by the other has been determined according to the rules. In sentence c) the

assertion of substitutability is more closely determined by giving a procedure

being described in the proof of the theorem.

And so we are here just as much as in elementary number theory in the

domain of elementary contentual inferences. And the same is true of the

other assertions and proofs of elementary algebra.—

The consideration of the elementary foundations of number theory and

algebra just presented has served to show us the application and use of di-

rect contentual inference carried out in thought experiments performed on

intuitively imagined objects and free from axiomatic assumptions. We will

call this kind of inference “finite” inference in order to have a short expres-

sion; likewise we shall call the attitude underlying this kind of inference the

“finite” attitude or the “finite” point of view. We will speak of finite concept

formations and assertions in the same sense; in using the word “finite” we

convey the idea that the consideration, assertion or definition in question

remains within the limits of objects that it is in principle possible to imag-

ine and of processes that it is in principle possible to realize; thus that it is

carried out in the framework of concrete consideration.

To characterize the finite point of view further we stress certain general
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aspects relating to the use of the logical forms of judgment in finite thinking;

we consider assertions about numerals as examples.

A universal judgment about numerals can only finitely be interpreted in

a hypothetical sense; that is to say, as an assertion about any given numeral.

Such a judgment expresses a law which must be verified in every particular

case.

An existential sentence about numerals, i.e., a sentence of the form “there

is a numeral n with the property A(n)” is to be construed finitely as a “par-

tial judgment,” that is, an incomplete communication of a more precisely

determined assertion, which consists either in a direct indication of a nu-

meral with the property A(n) or in the indication of a procedure to obtain

such a numeral — it belongs to the indication of a procedure that the series

of operations to be executed has a definite bound.

Judgments in which a universal assertion is conjoined with an existential

one are to be interpreted in a corresponding way. So, for example, a sentence

of the form “for every numeral k with the property A(k) there is a numeral

l such that B(k, l)” is constructed finitely as an incomplete communication

of a procedure which for any given numeral k with the property A(k) makes

possible the finding of a numeral l which stands to k in the relation B(k, l).

The application of negation demands special attention.

Negation is unproblematic in the case of “elementary” judgments, which

involve a question decidable by a direct intuitive determination (a “finding”).

For example, if k, l are particular numerals it can be directly determined

whether or not

k + k = l,
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i.e., whether or not k + k coincides with l or is different from l.

The negation of such an elementary judgment says simply that the result

of the respective intuitive decision diverges from the state of affairs asserted

to obtain in the judgment; and without hesitation there is for an elementary

judgment the alternative that either it or its negation is correct.

By contrast it is not immediately clear what should count as the negation

of a universal or existential judgment in the finite sense.

As a result, we consider first existential assertions. The assertion that

there is no numeral n with the property A(n) might mean in an imprecise

sense that one has no numeral with this property at one’s disposal for indi-

cation. But such an assertion has no objective meaning because of its con-

nection to an accidental epistemological condition. If, however, one wishes

to maintain the unavailability of a numeral n with the property A(n) inde-

pendently of epistemological conditions, he can do it in a finite sense only

with an assertion of impossibility, which says that a numeral n can not have

the property A(n).

In this way we arrive at a sharpened negation; however, it is not exactly

the contradictory opposite of an existential assertion, “there is a numeral n

with the property A(n)”, which (as a partial judgment) points to a known

numeral with this property or to a procedure which we possess for obtaining

such a numeral.

Unlike an elementary assertion and its negation, an existential assertion

and its sharpened negation are not assertions about the only two possible

results of one and the same decision, but they correspond to two distinct

epistemological possibilities, namely on the one hand the finding of a numeral
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with a given property, and on the other the discernment of a general law

about numerals.

It is not logically obvious that one of these two possibilities must come up.

From the finite point of view then we cannot use the alternative, that there

is either a numeral n such that A(n) or the holding of A(n) for a numeral is

precluded.

The case of a universal judgment of the form “for every numeral n, A(n)

holds” with respect to finite negation is similar to that of existential judge-

ments. The negation of the validity of such a judgment does not have a

direct finite sense; however, if it is sharpened as the assertion that the logi-

cal validity of A(n) can be refuted by a counterexample, then this sharpened

negation no longer constitutes the contradictory opposite of a universal judg-

ment; for again it is not logically obvious that either a universal judgment or

the sharpened negation must hold, i.e., that either A(n) holds for every given

numeral n or that a numeral can be given for which A(n) does not hold.

It must be added that the finding of a counterexample is not the only

possibility for refuting a universal judgment. Pursuing the consequences of

a universal judgment can lead to a contradiction in other ways. This cir-

cumstance, however, does not eliminate the difficulty but only increases the

complication. Namely, neither the alternative is logically obvious that a uni-

versal judgment about numerals must either hold or lead to a contradiction

in its consequences and therefore be refutable, nor it is obvious that such a

judgment if refutable is refutable through a counterexample.

The complicated situation that we find here with respect to the negation

of judgments from the finite point of view corresponds to Brouwer’s thesis
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that the law of the excluded middle does not hold for infinite totalities. This

invalidity exists indeed from the finite point of view insofar as we are unable

to find a negation with finite content which satisfies the law of the excluded

middle for existential and universal judgments.

These considerations may suffice as an indication of the finite point of

view. If we look at arithmetic in its customary treatment, checking whether

it corresponds to this methodological point of view, we realize that this is

not the case; arithmetic inferences and concept formations often go beyond

the limits of the finite way of reflection in many ways.

The inferences of number theory already go beyond the finite point of

view; for here existential assertions about integers—in ordinary mathematics

we speak of “integers” (more exactly “positive integers” or “numbers” for

short) instead of “numerals”—are permitted, regardless of the possibility of

actually determining the number in question; and also use is made of the

alternative that an assertion about integers either holds for all integers or

there is a number for which it does not hold.

This alternative, the “tertium non datur” for integers is implicitly applied

in “least number principle” which says: “If an assertion about integers holds

for at least one number, there is a least number for which it holds.”

In its elementary applications the least number principle has a finite

character. Indeed, if A(n) is the respective assertion about a number n and

m is a definite number for which A(m) holds, then one may go through the

numbers from 1 to m; then one must once come to a number k for which A(k)

is correct since m is such a number at the latest. The number k is then the

least number with the property A.
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But these considerations depend on two presuppositions which are not

always fulfilled in non-elementary applications of the least number principle.

In the first place it is presupposed that A holds of a number in the sense that

a number m with the property A(m) is actually given, while in applications

the existence of a number with the property A is often only derived using

the “tertium non datur” so that we do not get to the actual determination

of such a number. The second presupposition is that it can be decided for

any number k in the row from 1 to m whether or not A(k) holds; of course,

it is possible to decide this for elementary assertions A(n), whilst for a non-

elementary expression A(n) the question whether it holds for a given number

k may constitute an unsolved problem.

For example, let ψ(a) be a function defined by a sequence of recursions

and substitutions, and so admissible in finite number theory; and let A(n)

stand for the assertion that there is a number a for which ψ(a) = n. Then,

for a given number k, the question whether A(k) holds is not in general (i.e.,

when the function ψ is not especially simple) decidable by direct inspection;

rather it has the character of a mathematical problem. For the recursions

which enter into the definition of ψ give the values of the function only for

given arguments ; but the question whether there is a number a for which

ψ(a) has the value k involves the whole value-range of the function ψ.

In any case then where these presuppositions of the finite founding of the

least number principle are not fulfilled, the founding of the principle requires

reference to the “tertium non datur” for integers.3

3We will later present the proof of the principle of least number in the framework of

the formalism. See § 6, pp. 284–285.
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We give some examples of number-theoretic alternatives which result from

the tertium non datur for integers, but which are not provable in a finite way,

given our present state of knowledge:

“Either every even number > 2 is representable as the sum of two prime

numbers or there is an even number > 2 and not representable as the sum

of two prime numbers.”

“Either every integer of the form 2(2k) + 1 with k > 4 is divisible into two

factors > 1, or there is a prime number of the form 2(2k) + 1 with k > 4.”

“Either every sufficiently great integer is representable as the sum of less

than 8 cubes, or for every integer n there is an integer m greater than n

which is not representable as the sum of less than 8 cubes.”

“Either there are arbitrarily great prime numbers p with the property

that p+ 2 is also a prime number, or there is a greatest prime number with

this property.”

“Either for every integer n > 2 and arbitrary positive integers a, b, c the

inequality an + bn 6= cn holds, or there is a least such integer n > 2 for which

the equation an + bn = cn has a solution in the positive integers.”

This kind of example from number theory is appropriate for making clear

the simplest forms of non-finite argumentation. However, we will not really

feel the need to go beyond the finite point of view in number theory; for

there is hardly any proof using number-theoretic means in which the non-

finite kinds of inference that happen to be made can not be circumvented

with rather simple modifications.

It is quite different in the case of analysis (infinitesimal calculus); here

non-finite kinds of concept formation and proof really belong to the methods
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of the theory.

We briefly recall the fundamental concept of analysis, the concept of a

real number. The real numbers are defined either as a strictly increasing

sequence of rational numbers

r1 < r2 < r3 < . . . ,

which are all less than a given bound (“fundamental sequence”), or as an

infinite decimal fraction, or binary fraction, or as a partition of the rational

numbers into two classes, every member of the first class being smaller than

every member of the second (“Dedekind cut”).

In doing so the view is fundamental that rational numbers form an en-

closed totality which can be considered as a domain of individuals. In analysis

the totality of possible sequences of rational numbers or of possible partitions

of all rational numbers is also conceived of as a domain of individuals.

However, it is sufficient to take as a basis the totality of integers instead of

the totality of rational numbers and the totality of all partitions of integers

instead of that of all rational numbers. For in fact every positive ratio-

nal number is given by a pair of numbers m, n and every rational number

whatever can be represented as the difference between two positive rational

numbers, i.e., as a pair of pairs of numbers (m, n; p, q). Also every binary

fraction of the form

0.a1a2a3 . . .

with a1, a2, a3, . . . are all either = 0 or = 1 can be interpreted as a partition of

all integers, namely the partition into those numbers k for which ak = 0 and

into those for which ak = 1. In this way there is a one-one correspondence
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between the partitions of the positive integers and the binary fractions of the

above form; and on the other hand every real number can be represented as

the sum of a positive integer and a binary fraction of this form.

It is possible to consider sets of integers instead of partitions; for every

set of integers determines the partition of the numbers that belong to the

set and those that do not; and equally every set of integers is completely

determined by such a partition.—The same remark holds for the Dedekind

cut; it likewise can be represented by a set of rational numbers, namely the

set containing the smaller rational numbers. Such a set is characterized by

the following properties: 1. it contains at least one and not every rational

number; 2. together with a rational number it contains all smaller and at

least one bigger rational number.

By these transformations, however, the existential presupposition which

we had to take as the basis of analysis is weakened in an unessential way

only. It is still required to construe the manifold of the integers and also

that of the sets of integers as a fixed domain of individuals; the “tertium

non datur” is taken to hold for this domain, and with reference to which

an assertion of the existence of an integer or set of integers with a property

E is taken to be meaningful independently of its possible interpretation as

a partial judgment. So even though the infinitely large and the infinitely

small in any genuine sense are excluded by this theory of real numbers and

remain only as a mode of expression, still the infinite as a totality is retained.

One can even say that here for the first time the idea of infinite totalities is

introduced and validated in the rigorous foundation of analysis.

In order to to convince ourselves really that the presupposition of the
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totality of the domain of integers or rational numbers and moreover of the

domain of sets (partitions) of integers or rational numbers has an essential

application in the founding of analysis we only need to introduce some of the

fundamental concept formations and thoughts.

If the reals are defined as a sequence of increasing rational numbers

r1 < r2 < r3 < . . . ,

the concept of equality for real numbers is already non-finite. For whether

or not two such sequences of rational numbers define the same real number

depends upon whether or not for every number in one of the sequences there

is a larger in the other and vice-versa. But we do not have a general procedure

for deciding this question.

If, however, we begin with the definition of the real number via a Dedekind

cut, we have to prove that every bounded sequence of increasing rational

numbers gives rise to a cut representing the upper bound of the sequence.

One gets this cut by partitioning the rational numbers into those which are

less than at least one number of the sequence and those which are not. That

is to say: a rational number r is said to be in the first or second class ac-

cording to whether there is among the numbers of the sequence a number

> r or whether all numbers in the sequence are 5 r. This again is no finite

distinction.

The case is similar if real numbers are defined via infinite decimal or

binary fractions. Again it must be shown that a bounded sequence of rational

numbers

r1 < r2 < r3 < . . . ,
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determines a decimal or binary fraction. For simplicity let us suppose we are

dealing with a sequence of positive proper fractions:

0 < b1 < b2 < . . . < 1 ,

and we wish to determine the binary fraction

0.a1a2a3 . . .

which represents the upper bound of the sequence of fractions. This is done

as follows:

a1 is = 0 or = 1 depending on whether or not for all fractions bn <
1
2

holds;

am+1 = 0 or = 1 depending on whether or not all fractions bn are less

than
a1

2
+
a2

4
+ . . .+

am
2m

+
1

2m+1
.

In each of these cases one considers the alternatives according to whether

all rational numbers in a given sequence

r1, r2, r3, . . .

satisfy a certain inequality or whether there is at least one exception to this

inequality. Such an alternative makes use of the “tertium non datur” for

integers; for it is presupposed that either for every integer n the rational

number rn satisfies the inequality in question, or there is at least one integer

n such that rn fails to satisfy it.

However, this use of the totality of integers as a domain of individuals is

not sufficient for analysis; we need in addition the totality of real numbers
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as domain of individuals. As we saw, this totality is essentially equivalent to

that of the sets of integers.

The need for domain of individuals of real numbers is already necessary

in connection with the proof of the theorem of the upper bound of a bounded

set of real numbers. In order to prove the existence of the upper bound of

a bounded set of real numbers, e.g., reals in the interval between 0 and 1,

defined on the basis of Dedekind cuts, one considers the partition of the

rational numbers into those which are and those which are not exceeded by

a real number in the set. Thus one counts a rational number r as being in

the first class if and only if there is a real number a > r in the set.

Now one has to realize that in analysis a set is in general given to us only

by a defining property; that is to say, the set is introduced as the totality

of those real numbers which satisfy a certain condition B. Therefore the

question whether there is a real number a > r in a set under consideration

amounts to the question whether there is a real number greater than r and at

the same time satisfying a certain condition B. In this formulation it becomes

clear that we take the totality of real numbers as a domain of individuals as

a basis.4

It should also be remarked that the process just described for obtaining

an upper bound amounts to forming a union set. In fact every real number

is defined by a partition of the rational numbers into larger and smaller ones

or by the set of the smaller rational numbers. The given set of real numbers

is therefore represented as a set M of sets of rational numbers. And the

4
Weyl has pointed to the state of affairs given here in a particular explicit way in his

monograph “Das Kontinuum” (Leipzig 1918).
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upper bound of the set M is formed from the set of those rational numbers

which belong to at least one of the sets in M. The totality of these rational

numbers is, however, exactly the union set of M.

Defining the real numbers by means of a fundamental sequence or a binary

fraction instead of using Dedekind’s definition does not make it possible to

circumvent the the use of the domain of individuals of real numbers. By this

the process will rather become even more complicated because an additional

recursive procedure enters. It may briefly be indicated what is involved in

the case of the definition of real numbers via binary fractions. We are then

concerned with a set of binary fractions

0.a1a2a3 . . .

which is again determined by a certain criterion B; and the upper bound is

represented by a binary fraction

0.b1b2 . . .

defined in the following way:

b1 = 0, if 0 stands in the first binary position in all binary fractions

satisfying the condition B; otherwise b1 = 1;

bn+1 = 0, if 0 stands in the (n + 1)st position in all binary fractions

satisfying the condition B and having the first n binary numerals coincident

or with b1, b2, . . . , bn respectively; otherwise bn+1 = 1.

Here the totality of the real numbers occurs as the totality of all binary

fractions; and we make use of the assumption that the “tertium non datur”

holds for infinite sequences formed of zeros and ones.—
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Now this presupposition of the totality of all real numbers or all binary

fractions, however, is not sufficient. This can be seen in the following simple

case: Let a be the upper bound of a set of real numbers. We want to show

that there is a sequence of real numbers from the set which converges toward

a. To do this we make the following inferences:

It follows from the property of an upper bound that for every integer n

there is a number cn in the set such that

a− 1

n
< cn 5 a ,

and so

|a− cn| <
1

n
.

The numbers cn constitute therefore a sequence which converges toward a,

and they all belong to the set under consideration.

When we argue in this way our manner of expression hides a fundamental

point in the proof. For when we use the notation cn we presuppose that

for each number n among those real numbers c belonging to the set under

consideration and satisfying the inequality

a− 1

n
< c 5 a,

a certain one is distinguished.

There is a presupposition involved here. All we can immediately infer

is only this: for every number n there is a subset Mn of our set under

consideration which consists of those numbers satisfying the above inequality;

and for every n this subset has at least one element. Now what is assumed

is that in each of these sets

M1,M2,M3, . . .
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we can distinguish an element c1, in M1, c2 in M2, . . . cn in Mn and thereby

get a determinate infinite sequence of real numbers.

We have here a special case of the principle of choice; its general formu-

lation is the following: “If for every thing x of type G1 there is at least one

thing y of type G2 which stands to x in the relation B(x, y), then there is a

function ϕ which correlates each thing x of type G1 unambiguously with one

thing ϕ(x) of type G2 which stands to x in the relation B(x, ϕ(x)).”

In the case at hand the type G1 is that of the positive integers, G2 that

of the real numbers; the relation B(x, y) is the inequality

a− 1

x
< y 5 a ,

and the function ϕ, the existence of which is derived from the axiom of choice,

correlates the real number cx with its number x.

Zermelo was the first to recognize the principle of choice as a special

presupposition and to formulate it set-theoretically; its use involves a further

overstepping of the finite point of view, which goes even beyond the applica-

tion of the “tertium non datur.” The above consideration of methodological

examples teaches us that the foundations of the infinitesimal calculus, as

they have been given since the discovery of rigorous methods, does not in-

volve a reduction to finite number-theoretic thought. The arithmetizing of

the theory of magnitudes carried out here is in so far not a complete one

as it involves certain systematic and fundamental conceptions that do not

belong to the domain of intuitive arithmetic thinking. The insight that the

rigorous foundation of analysis has brought us is that these few fundamental

assumptions already suffice to build up the theory of magnitudes as a theory

of sets of numbers.
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Large areas of mathematics, such as function theory, differential geome-

try, and topology (analysis situs) are governed by the methods of analysis.

General set theory, the methods of which have penetrated the newer abstract

algebra and topology, makes the most extensive use of non-finite assumptions

going well beyond the presuppositions of analysis.

Arithmetic in its usual treatment is by no means an expression of the finite

point of view, but depends essentially upon additional principles of inference.

We see us therefore confronted with the task of justifying the application of

those principles which transcend finite thinking by means of a consistency

proof, if we want to keep arithmetic in its current form while acknowledging

the demands of the finite point of view with respect to evidence. If such a

proof of the consistency of customary ways of inference in arithmetic would

be successful, we would also have the guarantee that the results of these

ways of inference could never be refuted by a finite determination or finite

reflection; for finite methods are included in ordinary arithmetic, and a finite

refutation of an assertion proved by ordinary means of arithmetic would

therefore indicate a contradiction within ordinary arithmetic.

We return then to the problem raised in § 1. It remains to answer the

question from which the considerations of this chapter began: whether in-

stead of using the formalization of inferences to prove the impossibility of

a contradiction arising in arithmetic, we couldn’t more easily found all of

arithmetic directly without additional assumptions and make that proof of

impossibility superfluous.

The answer to this is for one part positive, for the other negative. The

investigations of Kronecker and Brouwer have shown what is involved
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in the possibility of a direct finite founding arithmetic to an extent sufficient

for practical applications.

Kronecker was the first to insist on the requirements of the finite point

of view; he intended to eliminate completely non-finite modes of inference

from mathematics. He reached his aim in the theory of algebraic numbers

and number fields.5 Sticking to the finite point of view is possible in this case

in such a way that nothing essential of theorems or methods of proof has to

be given up.

Kronecker’s presentation of the problem was completely rejected for a

long time. In more recent times Brouwer set himself the task of founding

arithmetic independently of the law of the excluded middle and developed

considerable parts of analysis and set theory in terms of this program.6 Of

course, in using this procedure essential theorems have to be given up and

considerable complications in the forming of concepts have to be accepted.

The methodological standpoint of “Intuitionism,” which Brouwer makes

fundamental constitutes, a certain extension of the finite position insofar as

Brouwer permits the introduction of the assumption that an inference or a

proof is given even though the intuitive nature of the inference or proof is not

determined. For example, from Brouwer’s point of view assertions of the

following forms are permissible: “if on the assumption that A, the sentence

B holds, then C holds too” or also “the assumption that A is refutable leads

to a contradiction” or in Brouwer’s words: “the absurdity of A is absurd.”

5
Kronecker did not systematically publish the results of these investigations, but

only presented them in lecture courses.
6A detailed list of Brouwer’s publications in this area is found in A. Fraenkel’s

“Einleitung in die Mengenlehre,” third edition. Berlin: Julius Springer 1928.
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An extended version of the finite point of view of this kind turns out to be

necessary if one is going to go beyond a certain elementary domain using finite

considerations; from an epistemological point of view this version amounts to

adding considerations of a general logical character to the intuitive insights.

We will be led to the requirement of this extension at an advanced stage of

our considerations.

Although the above-mentioned investigations indicate a way by which

one can get by in mathematics without using non-finite ways of inference, a

proof of the consistency of the ordinary methods of arithmetic is by no means

superfluous. For the avoidance of non-finite methods of inference does not

work in the sense of completely replacing these methods with other consider-

ations; it rather succeeds in analysis and related areas of mathematics only

at the cost of an essential loss in systematization and proof-technique.

A mathematician, however, cannot be expected to accept such a loss

without compelling reasons. The methods of analysis have been tested to

a greater extent than hardly any other scientific presupposition, and they

most brilliantly proved a success. If we criticize these methods from the

point of view of evidence, then we face the task of tracing the reason of their

applicability, just as we do everywhere in mathematics where a successful

procedure is applied on the basis of conceptions which, in terms of evidence,

leave much to be desired.

Insofar as we accept the finite point of view we cannot escape the prob-

lem of obtaining a clear understanding about the applicability of non-finite

methods, and this understanding, insofar as our trust in these methods is

not misleading, can only consist in our gaining certainty that these ordinary
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arithmetical methods can never lead to a provably false result, that is to say,

that the results of their application are compatible with each other and with

any fact evident from the finite point of view.

This problem is, however, the very same as that of the proof of consistency

of our ordinary arithmetic.

For dealing with this problem we have already considered in § 1 the

method of formalizing logical inference as developed in formal logic.7 In any

case this method satisfies the condition of making the demanded task of a

consistency proof a finite problem—provided that the complete formalization

of ordinary arithmetic succeeds. For if ordinary arithmetic is formalized, i. e.,

if its presuppositions and ways of inference are translated into initial formulas

and rules of deduction, an arithmetical proof presents itself as a succession of

intuitively surveyable processes each of which belongs to a stock of relevant

actions specified in advance. So we have in principle the same methodological

state of affairs as in elementary number theory; and to the same extent as it

is successful there to make impossibility proofs in a finite sense, e. g., for the

fact that there are no two numerals m, n with

m ·m = 2 · n · n ,

it is a finite problem as well to show that there is in finite arithmetic no two

proofs such that the end-formula of the first is identical with the negation of

the end-formula of the second.

However, we are still far away from a solution of this problem. But in

pursuing this goal many rewarding results have already been gained; and

7Cf. p. 18.
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in this way a new field of research has been opened by making use of the

formalization of logical inference for a systematic proof theory which deals

with the question of the significance of logical ways of inference in systematic

generality, a question which was posed and solved in traditional logic only

in a very special form. By its methods of investigation, the problems of the

foundations of mathematics are directly connected with logical problems.

This proof theory, also called “metamathematics,” will be developed in

the following. We start with the formalization of inference which we will

present in the beginning independently of its application to proof theory.
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