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Part I: The Nature of Mathematical Knowl-

edge

‖A17 When we read and hear today about the foundational crisis in mathe-
matics or the dispute between “formalism” and “intuitionism,” those unfa-
miliar with the activities of mathematical science may think that this sci-
ence is shaken to its very foundations. In reality, mathematics has long been
moving in such quiet waters that one notices instead the absence of stronger
impulses, although there has been no shortage of significant systematic ad-
vances and brilliant achievements.

In fact, the current discussion of the foundations of mathematics does
not spring at all from a predicament of mathematics itself. Mathematics is
in a completely satisfactory state of methodological certainty. In particular,
the concern raised by the set theoretic paradoxes has long been overcome,
since it was recognized that, to avoid the known contradictions, it suffices to
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impose restrictions that do not in the least impinge on the demands made
on set theory by mathematical theories.

The problems, the difficulties, and the differences of opinion really begin
only when one inquires not just about the mathematical facts, but about
the epistemological foundation and the demarcation of mathematics. These
philosophical questions have become particularly urgent since the transfor-
mation, which the methodological approach of mathematics underwent to-
wards the end of the nineteenth century.

The characteristic aspects of this transformation are: the emergence of
the concept of set, by means of which the rigorous foundation of the infinites-
imal calculus was achieved, and further the rise of existential axiomatics, that
is, the method of developing a mathematical discipline as the theory of a sys-
tem of things with certain relations whose properties constitute the content
of the axioms. To these we must add, as a consequence of the two aforemen-
tioned ‖A18 aspects, a closer connection between mathematics and logic is
established. ‖235

This development confronted the philosophy of mathematics with a com-
pletely new situation and entirely new insights and problems. Since then no
agreement has been reached in the discussion of the foundations of mathe-
matics. The present stage of this discussion is centered around the struggle
with the difficulties that are caused by the role of the infinite in mathematics.

The problem of the infinite, however, is neither the first nor the most
general question which one has to address in the philosophy of mathematics.
Here, the first task is to gain clarity about what constitutes the specific
nature of mathematical knowledge. We intend to address this question first,
and also to recall the development of the different points of view, but only
in a rough way and without their exact chronological order.

1. The Development of Conceptions of Mathematics

The older conception of mathematical knowledge proceeded from the division
of mathematics into arithmetic and geometry; according to it mathematics
was characterized as a theory of two particular kinds of domains, that of
numbers and that of geometric figures. This division could no longer be
maintained in the face of the rise to prominence of arithmetical methods
in geometry. Also geometry was not restricted to the study of the prop-
erties of figures but was broadened to a general theory of manifolds. The
completely changed situation of geometry found a particularly concise ex-
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pression in Klein’s Erlangen Program, which systematically summarized the
various branches of geometry from a group-theoretical point of view.

In the light of this situation the possibility arose to incorporate geome-
try into arithmetic. And since the rigorous foundations of the infinitesimal
calculus by Dedekind, Weierstrass, and Cantor reduced the more general
concepts of number—as required by the mathematical theory of quantities
(rational number, real number)—to the usual (“natural”) numbers 1, 2, . . . ,
the conception emerged that the natural numbers constitute the true object
of mathematics and that mathematics is precisely the theory of numbers.

‖A19 This conception has many supporters. In its favor is the fact that all
mathematical objects can be represented through numbers, or combinations
of numbers, or through higher set formations obtained from the number
sequence. From a foundational perspective the characterization of mathe-
matics as a theory of numbers is already unsatisfactory, because it remains
open what one considers here as essential to number. The question concern-
ing the nature of mathematical knowledge is thereby shifted to the question
concerning the nature of numbers.

This question, however, appears to be completely idle to the proponents
of the conception of mathematics as the science of numbers. They proceed
from the attitude common to mathematical thought, that numbers are a sort
of things, which by their nature are completely familiar to us, so much so
that an answer to the question concerning the nature of numbers could only
consist in reducing something familiar to something less familiar. From this
standpoint one sees the reason for the special status of numbers in the fact
that numbers make up an essential component of the world order. This order
is ‖236 comprehensible to us in a rigorous scientific way just to the extent to
which it is governed by the factor of number.

Opposing this view, according to which number is something completely
absolute and final, there emerged soon, in the aforementioned epoch of the
development of set theory and axiomatics, a completely different conception.
This conception denies that mathematical knowledge is of a particular and
characteristic kind and holds that mathematics is to be obtained from pure
logic. One was led naturally to this conception through axiomatics, on the
one hand, and through set theory, on the other.

The new methodological turn in axiomatics consisted in giving promi-
nence to the fact that for the development of an axiomatic theory the epis-
temic character of its axioms is irrelevant. Rigorous axiomatics demands
that in the proofs no other knowledge from the given subject be used than
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what is expressly formulated in the axioms. This was intended already by
Euclid in his axiomatics, even though at certain points the program is not
completely carried through.

According to this demand, the development of an axiomatic theory shows
the logical dependence of the theorems on the axioms. But for this logical de-
pendence it does not matter whether the axioms placed at the beginning are
true sentences or not. It represents a ‖A20 purely hypothetical connection:
If things are as the axioms say, then the theorems hold. Such a separation
of deduction from asserting the truth of the initial statements is in no way
idle hair splitting. On the contrary, an axiomatic development of theories,
without regard to the truth of the fundamental sentences taken as starting
points, can be of great value for our scientific knowledge: in this way, on
the one hand, it is possible to test, in relation to the facts, assumptions of
doubtful correctness by systematic development of their logical consequences;
furthermore, the possibilities of a priori theory construction can be investi-
gated mathematically from the point of view of systematic simplicity and, as
it were, to develop a supply. With the development of such theories, math-
ematics takes over the role of the discipline formerly called mathematical
natural philosophy.

By completely ignoring the truth of the axioms of an axiom system, the
content of the basic concepts also becomes irrelevant, and thus one is lead to
completely abstract from all intuitive content of the theory. This abstraction
is further supported by a second feature, which comes as an addition to the
newer axiomatics, as it was developed above all in Hilbert’s Foundations
of Geometry, and which is, in general, essential for the formation of recent
mathematics, namely, the existential conception of the theory.

Whereas Euclid always thinks of the figures under consideration as con-
structed ones, contemporary axiomatics proceeds from the idea of a system
of objects, which is fixed in advance. In geometry, for example, one conceives
of the points, lines, and planes in their totality as such a system of things.
Within this system one considers the relations of incidence (a point lies on
a line, or in a plane), of betweenness (a point lies between two others), and
of congruence as being determined from the outset. Now, regardless of their
intuitive meaning, these relations can be characterized purely abstractly as
certain basic predicates. (We will use the term “predicate” also in the case of
a relation between several objects, so that we also speak of predicates with
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several subjects.)1

‖A21 Thus, e.g., in Hilbert’s system the Euclidean construction postulate,
which demands the possibility of connecting two points with a line, is replaced
by the existence axiom: For any two points there is always a straight line
that belongs to each of the two points. “Belonging to” is here the abstract
expression of incidence.

According to this conception of axiomatics, the axioms as well as the the-
orems of an axiomatic theory are statements about one or several predicates,
which refer to the objects of an underlying system. And the knowledge pro-
vided to us by the proof of a theorem L, which is carried out by means of
the axioms A1 . . . Ak (for the sake of simplicity we will assume that we are
dealing here with only one predicate) consists in the realization that, if the
statements A1 . . . Ak hold of a predicate, then so does the statement L.

What we have before us is, however, a very general proposition about
predicates, that is, a proposition of pure logic. In this way, the results of
an axiomatic theory, according to the purely hypothetical and existential
understanding of axiomatics, present themselves as theorems of logic.

These theorems, though, are only significant if the conditions formulated
in the axioms can be satisfied at all by a system of objects together with
certain predicates concerning them. If such a satisfaction is inconceivable,
that is, logically impossible, then the axiom system does not lead to a the-
ory at all, and the only logically important statement about the system is
then the observation that a contradiction results from the axioms. For this
reason every axiomatic theory requires a proof of the satisfiability, that is,
consistency, of its axioms.

Unless one can make do with direct finite model constructions, this proof
is accomplished in general by means of the method of reduction to arithmetic,
that is, by exhibiting objects and relations within the realm of arithmetic that
satisfy the axioms to be investigated. As a result, one is again faced with
the question of the epistemic character of arithmetic.

Even before this question became acute in connection with ‖A22 axiomat-
ics, as just described, set theory and logistics had already taken a position
on it in a novel way. Cantor showed that the number concept, both in the
sense of cardinal number and in the sense of ordinal number, can be extended

1This terminology follows a suggestion of Hilbert. It has certain advantages over the
usual distinction between “predicates” and “relations” for the conception of what is logical
in principle and also agrees with the usual meaning of the word “predicate.”
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to infinite sets. The theory of natural numbers and the theory of positive
real numbers (analysis) were subsumed as parts under general set theory.
Even if natural numbers lost an essential aspect of their distinguished role,
nonetheless, from Cantor’s standpoint, the number sequence still constitutes
something immediately given, the examination of which was the starting
point of set theory.

This was not the end of the matter; rather, the logicians soon adopted the
stronger claim: sets are nothing but extensions of concepts and set theory
is synonymous with the logic of extensions, and,in particular, the theory of
numbers is to be derived from pure logic. With this thesis, that mathematics
is to be obtained from pure logic, an old and favorite idea of rational philos-
ophy, which had been opposed by the Kantian theory of pure intuition, was
revived.

Now the development of mathematics and theoretical physics had already
shown that the Kantian theory of experience, in any case, was in need of
a fundamental revision. As to the radical opponents of Kant’s philosophy
the moment seemed to have arrived for refuting this philosophy in its very
starting point, namely the claim that mathematics is synthetic in character.

This [refutation], however, was not completely successful. A first symp-
tom that the situation was more difficult and complicated than the leaders
of the logistic movement had thought became apparent in the discovery of
the famous set-theoretic paradoxes. Historically, this discovery was the signal
for the beginning of the critique. If today we want to discuss the situation
philosophically it is more satisfactory to consider the matter directly without
bringing in the dialectical argument involving the paradoxes.

2. The mathematical element in logic. Frege’s defini-
tions of number

In fact in order to see what is essential we need only to consider the new
discipline of theoretical logic itself, the intellectual achievement of the great
logicians Frege, Schröder, Peano, and Russell, ‖A23 and see what it teaches
us about the relation of the mathematical to the logical.

One sees immediately a peculiar two-sidedness in this relation which
shows itself in a varying conception of the task of theoretical logic: Frege
strives to subordinate mathematical concepts to the concept formations of
logic, but Schröder, on the other hand, tries to bring to prominence the math-
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ematical character of logical relations and develops his theory as an “algebra
of logic.”

But the difference here is only a matter of emphasis. In the various
systems of logistic one never finds the specifically logical point of view dom-
inating by itself; rather, in each case, it is imbued from the outset with the
mathematical perspective. Just as in the area of theoretical physics, the
mathematical formalism and mathematical concept formation prove here to
be the appropriate means of representing interconnections and of gaining a
systematic overview.

To be sure, it is not the usual formalism of algebra and analysis that is
applied here, but a newly created calculus developed by theoretical logic on
the basis of the formula language used to represent the logical connectives.
No one familiar with this calculus and its theory will doubt its explicitly
mathematical character.

Concerning this situation there arises first of all the requirement to de-
limit the concept of the mathematical, independently of the actual situation
in the mathematical disciplines by means of a principled characterization of
the nature of mathematical knowledge. If we examine what is meant by the
mathematical character of a deliberation, it becomes apparent that the dis-
tinctive feature lies in a certain kind of abstraction that is involved. This
abstraction, which may be called formal or mathematical abstraction, consists
in emphasizing and taking exclusively into account the structural aspects of
an object, that is, the manner of its composition from parts; “object” is un-
derstood here in its widest sense. One can, accordingly, define mathematical
knowledge as that which rests on the structural consideration of objects.

The study of theoretical logic teaches us, furthermore, that in the rela-
tionship between mathematics and logic, the mathematical point of view, in
contrast to the contentual logical one, is ‖A24 under certain circumstances
the more abstract one. The aforementioned analogy between theoretical
logic and theoretical physics extends as follows: just as the mathematical
laws of theoretical physics are contentually specialized by their physical in-
terpretation, so the mathematical relationships of theoretical logic are also
specialized through their contentual logical interpretation. The laws of the
logical relations appear here as a special model for a mathematical formalism.

This distinctive relation between logic and mathematics—not only can
mathematical judgments and inferences be subjected to logical abstraction,
but also logical relationships can be subjected to mathematical abstraction—
is based on the special role of the formal realm with respect to logic. Namely,
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whereas in logic one can otherwise abstract from the specifics of a given
subject, this is not possible in the formal realm, because formal elements
enter essentially into logic itself.

This holds in particular for logical inference. Theoretical logic teaches
that logical proofs can be “formalized.” The method of formalization consists
first of all in representing the premises of the proof by specific formulas in the
logical formula language, and furthermore in the replacement of the principles
of logical inference by rules that specify determinate procedures, according
to which one proceeds from given formulas to other formulas. The result
of the proof is represented by an end formula, which, on the basis of the
interpretation of the logical formula language, presents the proposition to be
proved.

Here we use that all logical inference, considered as a process, is reducible
to a limited number of logical elementary processes that can be exactly and
completely enumerated. In this way it becomes possible to pursue questions
of provability systematically. The result is a field of theoretical inquiry within
which the theory of the different possible forms of categorical inference put
forward in traditional logic deals with only a very specific special problem.

The typically mathematical character of the theory of provability reveals
itself especially clearly, through the role of the logical symbolism. The sym-
bolism is here the means for carrying out the formal abstraction. The tran-
sition from the point of view of logical content to the ‖A25 formal one takes
place when one ignores the original meaning of the logical symbols and makes
the symbols themselves representatives of formal objects and connections.

For example, if the hypothetical relation

“if A then B”

is represented symbolically by

A → B,

then the transition to the formal standpoint consists in abstracting from all
meaning of the symbol → and taking the connection by means of the “sign”
→ itself as the object to be considered. To be sure one has here a specification
in terms of figures instead of the original specification of the connection in
terms of content; this, however, is harmless insofar as it is easily recognized
as an accidental ‖334 feature. Mathematical thought uses the symbolic figure
to carry out the formal abstraction.
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The method of formal consideration is not introduced here at all artifi-
cially; rather it is almost forced upon us when we inquire more closely into
the effects of logical inference.

If we now consider why the investigation of logical inference is so much in
need of the mathematical method, we discover the following fact. In proofs
there are two essential features which work together: the elucidation of con-
cepts, the feature of reflection, and the mathematical feature of combination.

Insofar as inference rests only on elucidation of meanings, it is analytic
in the narrowest sense; progress to something new comes about only through
mathematical combination.

This combinatorial element can easily appear to be so obvious that it is
not viewed as a separate factor at all. With regard to deductively obtained
knowledge, philosophers especially were in the habit of considering only what
is the precondition of proof as epistemologically problematic and in need of
discussion, namely fundamental assumptions and rules of inference. This
standpoint is, however, insufficient for the philosophical understanding of
mathematics: for the typical effect of a mathematical proof is achieved only
after the fundamental assumptions and rules of inference have been fixed.
The remarkable character of mathematical results is not diminished when
we modify the provable statements contentually by introducing the ultimate
assumptions of thetheory as premises and in addition explicitly state the
rules of inference (in the sense of the formal standpoint).

To clarify the situation we can make-use of Weyl’s comparison of a proof
conducted in a purely formal way with a game of chess; the fundamental
assumptions correspond to the initial position in the game, the rules of infer-
ence to the rules of the game. Let us assume that a bright chess master has
for a certain initial position A discovered the possibility of checkmating his
opponent in 10 moves. From the usual point of view we must then say that
this possibility is logically determined by the initial position and the rules of
the game. On the other hand, one can not maintain that the assertion of the
possibility of a checkmate in 10 moves is implied by the specification of the
initial position A and the rules of the game. The appearance of a contradic-
tion between these claims disappears ‖335 if we see clearly that the “logical”
effect of the rules of the game depends upon combination and therefore does
not come about just through analysis of meaning but only through genuine
presentation.

Every mathematical proof is in this sense a presentation. We will show
here by a simple special case how the combinatorial element comes into play
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in a proof.
We have the rule of inference: “if A and if A implies B, then B.” In a

formal translation of a proof this inference principle corresponds to the rule
that the formula B can be obtained from the two formulas A and A → B.
Now let us apply this rule in a formal derivation, and we furthermore assume
that A and A → B do not belong to the initial assumptions. Then we have
a sequence of inferences S leading to A and a sequence T leading to A → B
and according to the rule described the formulas A and A → B yield the
formula B.

If we want to analyze what is going on here, we must not prejudge the
decisive point by the mode of presentation. The endformula of the sequence
of inferences T is initially only given as such, and it is epistemologically a
new step to recognize that this formula coincides with the one which arises
by connecting with a “→” the formula A obtained in some other way and
the formula B to be derived.

The determination of an identity is by no means always an identical or
tautological determination. The coincidence to be noted in the present case
can not be read off directly from the content of the formal rules of inference
and the structure of the initial formulas; rather, it can be ‖A27 read off only
from the structure that is obtained by application of the rules of inference,
that is to say by the carrying out of the inferences. Thus, a combinatorial
element is here present in fact.2

If in this way we become clear about the role of the mathematical in
logic, then it will not seem astonishing that arithmetic can be subsumed
within the system of theoretical logic. But also from the standpoint we have
now reached this subsumption loses its epistemological significance. For we
know in advance that the formal element is not eliminated by the inclusion of
arithmetic in the logical system. ‖336 But with respect to the formal we have
found that the mathematical considerations represent a standpoint of higher
abstraction than the conceptual logical ones. We therefore achieve no greater
generality at all for mathematical knowledge as a result of its subsumption
under logic; rather we achieve just the opposite; a specialization by logical
interpretation, a kind of logical clothing.

A typical example of such logical clothing is the method by which Frege

2P. Hertz defended the claim that logical inference contains “synthetic elements” in his
essay “Über das Denken” (1923). His grounds for this claim will be explained in an essay
on the nature of logic, to appear shortly; they include the point developed here but rest
in addition on still other considerations.
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and, following him but with a certain modification, Russell defined the nat-
ural numbers.

Let us briefly recall the idea underlying Frege’s theory. Frege introduces
the numbers as cardinal numbers. His premises are as follows:

A cardinal number applies to a predicate. The concept of cardinal num-
ber arises from the concept of equinumerosity. Two predicates are called
equinumerous if the things of which the one predicate holds can be corre-
lated one-one with the things of which the other predicate holds.

If the predicates are divided into classes by reference to equinumerosity
in such a way that all the predicates of a class are equinumerous with one
another and predicates of different classes are not equinumerous, then every
class represents the cardinal number which applies to the predicates belonging
to it.

In the sense of this general definition of cardinal number, the particular
finite numbers like 0, 1, 2, 3 are defined as follows: ‖A28

0 is the class of predicates which hold of no thing. 1 is the class of “one-
numbered” predicates; and a predicate P is called one-numbered if there is
a thing x of which P holds and no other thing different from x of which P
holds. Similarly, a predicate P is called two-numbered if there is a thing x
and a thing y different from it such that P holds of x and y and if there is no
thing different from x and y of which P holds. 2 is the class of two-numbered
predicates. The numbers 3, 4, 5 etc. are to be explained as classes in an
analogous way.

After he has introduced the concept of a number immediately following
a number, Frege defines the general concept of finite number in the following
way: a number n is called finite if every predicate holds of n, which holds
of 0 and which, if it holds of a number a holds of the immediately following
number.

‖337 The concept of a number belonging to the series of numbers from 0 to
n is explained in a similar way. The formulation of these concepts is followed
by the derivation of the principles of number theory from the concept of finite
number.

We now want to consider in particular Frege’s definition of the individual
finite numbers. Let us take the definition of the number 2, which is explained
as the class of two-numbered predicates. It may be objected to this explana-
tion that the belonging of a predicate to the class of two-numbered predicates
depends upon extralogical conditions and the class therefore constitutes no
logical object whatsoever.
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This objection is, however, eliminated if we adopt the standpoint of Rus-
sell’s theory with respect to the understanding of classes (sets or extensions
of concepts). According to it classes (extensions of concepts) are not actual
objects at all; rather they function only as dependent terms within a reformu-
lated sentence. If, for example, K is the class of things with the property E,
i.e. the extension of the concept E, then, according to Russell, the assertion
that an thing a belongs to the class K is to be viewed only as a reformulation
of the assertion that the thing a has the property E.

If we combine this conception with Frege’s definition of cardinal number,
we arrive at the idea that the number 2 is to be defined not in terms of the
class of two-numbered predicates but in terms of the concept the extension
of which constitutes this class. The number 2 is then identified with the
property of two-numberedness for predicates, i.e. with the ‖A29 property of
a predicate of holding of an thing x and of an thing y different3 from x but
of no thing different fromx and y.

For the evaluation of this definition it is essential to know how the process
of defining is understood here and what claims are involved in it. What will
be shown here is that this definition is not a correct reproduction of the
true meaning of the cardinal number concept “two” by means of which this
concept is revealed in its logical purity freed from all inessential features.
Rather it will be shown that it is exactly the specifically logical element in
the definition that is an inessential addition.

The two-numberedness of a predicate P means nothing else but that there
are two things of which the predicate P holds. Here three distinct conceptual
features are present: the concept “two things,” the existential feature, and
the fact that the predicate P holds. The content ‖338 of the concept “two
things” here does not depend on the meaning of either of the other two
concepts. “Two things” means something already without the assertion of
the existence of two things and also without reference to a predicate which
holds of two things; it means simply: “one thing and one more thing.”

In this simple definition the concept of cardinal number shows itself to
be an elementary structural concept. The appearance that this concept is
reached from the elements of logic results, in the case of the logical definition
of cardinal number under consideration, only from the fact that the concept is
conjoined with logical elements, namely the existential form and the subject-

3For the sake of simplicity we shall skip the considerations regarding the concept of
difference, resp. its contradictory concept of identity.
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predicate relation, which are in themselves inessential for the concept of
cardinal number. We thus indeed have before us here a formal concept in
logical clothing.

The result of these considerations is that the claim of the logicists that
mathematics is a purely logical field of knowledge shows itself to be imprecise
and misleading when theoretical logic is examined more closely. That claim
is sound only if the concept of the mathematical is taken in the sense of its
historical demarcation and the concept of the logical is systematically broad-
ened. But such a determination of concepts hides what is epistemologically
essential and ignores the special nature of mathematics. ‖A30

3. Formal abstraction

We have determined that formal abstraction, i.e. the focusing on the struc-
tural side of objects, is the characteristic feature of mathematical reasoning
and have thus demarcated the field of the mathematical in a fundamental
way. If we want likewise to gain an epistemological understanding of the
concept of the logical, then we are led to separate from the entire domain
of the theory of concepts, judgments, and inferences, which is commonly
called logic, a narrower subdomain, that of reflective or philosophical logic.
This is the domain of knowledge which is analytic in the genuine sense and
which stems from a pure awareness of meaning. This philosophical logic is
the starting point of systematic logic, which takes its initial elements and
its principles from the results of philosophical logic and, using mathematical
methods, develops from them a theory.

In this way the extent of genuinely analytic knowledge is separated clearly
from that of mathematical knowledge, and what is justified in Kant’s theory
of pure intuition on the one hand, and in the claim ‖339 of the logicists
on the other, comes into play. We can distinguish Kant’s fundamental idea
that mathematical knowledge and also the successful application of logical
inference rest on an intuitive evidence from the particular form that Kant
gave to this idea in his theory of space and time. By doing so we also arrive
at the possibility of doing justice to both the very elementary character of
mathematical evidence and to the high degree of abstraction of the mathe-
matical point of view, emphasized in the claim about the logical character of
mathematics.

Our conception also gives a simple account of the role of number in math-
ematics: we have explained mathematics as the knowledge which rests upon
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the formal (structural) consideration of objects. However, the numbers con-
stitute as cardinal numbers the simplest formal determinates and as ordinal
numbers the simplest formal objects.

Cardinality concepts present a special difficulty for philosophical explica-
tion because of their special categorial position, which also makes itself felt in
language in the need for a unique species of number words. We do not have
to bother here with more detailed explication, but we do have to observe that
the determination of cardinal number involves the putting together of a given
or imagined complex out of components, which is just what constitutes the
structural side of an object. And indeed it is the most elementary structural
characteristics that are conveyed by cardinal numbers. Thus cardinal num-
bers play a role in all domains to which formal considerations are applicable;
in particular we encounter cardinal number within theoretical logic in a wide
variety of ways: for example, as cardinal number of the subjects of a predicate
(or as one says, as cardinal number of the arguments of a logical function);
as cardinal number of the variable predicates involved in a logical sentence;
as cardinal number of the applications of a logical operation involved in the
construciton of a concept or sentence; as cardinal number of the sentences
involved in a mode of inference; as the type-number of a logical expression,
i.e. the highest number of successive subject-predicate relations involved in
the expression (in the sense of the ascent from the objects of a theory to
the predicates, from the predicates to the predicates of the predicates, from
these latter to their predicates, and so on).

Cardinal numbers, however, provide us only with formal determinations
and not yet with formal objects. For example, in the conception of the car-
dinality three there ‖340 is still no unification of three things into one object.
The bringing together of several things into one object requires some kind of
ordering. The simplest kind of order is that of mere succession, which leads
to the concept of ordinal number. An ordinal number in itself is also not
determined as an object; it is merely a place marker. We can, however, stan-
dardize it as an object, by choosing as place markers the simplest structures
deriving from the form of succession. Corresponding to the two possibilities
of beginning the sequence of numbers with 1 or with 0, two kinds of stan-
dardization can be considered. The first is based on a sort of things and a
form of adjoining a thing; the objects are figures which begin and end with
a thing of the sort under consideration, and each thing, which is not yet the
end of the figure, is followed by an adjoined thing of that sort. In the second
kind of standardization we have an initial thing and a process; the objects
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are then the initial thing itself and in addition the figures that are obtained
by beginning with the initial thing and applying the process one or more
times.

If we want to have the ordinal numbers, according to either standardiza-
tion, as unique objects free from all inessential features, then we must take as
object in each case the bare schema of the respective figures obtained by rep-
etition; this requires a very high degree of abstraction. ‖A32 However, we are
free to represent these purely formal objects by concrete objects (“number
signs” or “numerals”); these then possess inessential arbitrarily added char-
acteristics, which, however, can be immediately recognized as such. This
procedure is based on a certain agreement, which must be kept throughout
one and the same deliberation.4 Such an agreement, according to the first
standardization, is the representation of the first ordinal numbers by the fig-
ures 1, 11, 111, 1111. According to an agreement corresponding to the second
standardization, the first ordinal numbers are represented by the figures 0,
0′, 0′′, 0′′′, 0′′′′.

Having found a simple access to the numbers in this way by regarding
them structurally, our conception of the ‖341 character of mathematical
knowledge receives a new confirmation. For, the dominant role of number in
mathematics becomes clear on the basis of this conception; and our character-
ization of mathematics as a theory of structures seems to be an appropriate
extension of the view mentioned at the beginning of this essay that numbers
constitute the real object of mathematics.

The satisfactory features of the standpoint we have reached must not
mislead us into thinking that we have already obtained all the fundamental
insights required for the problem of the grounding of mathematics. In fact,
until now we have only dealt with the preliminary question that we wanted
to clarify first, namely, what is the specific character of mathematical knowl-
edge? Now, however, we must turn to the problem that raises the main
difficulties in grounding mathematics, the problem of the infinite.

4Philosophers are inclined to treat this relation of representation as a connection of
meaning. One must notice, however, that there is an essential difference here from the usual
relation of word and meaning; namely the representing thing contains in its constitution the
essential properties of the object represented, so that the relationships to be investigated
among the represented objects can also be found among the representatives and can be
determined by consideration of the latter.
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Part II: The problem of the infinite and the

formation of mathematical concepts

1. The postulates of the theory of the infinite. The im-
possibility of a basis in intuition. The finitist standpoint

The mathematical theory of the infinite is analysis (infinitesimal calculus)
and its extension by general set theory. We can restrict ourselves here to
consideration of the infinitesimal calculus because the step from it to general
set theory requires only additional assumptions, but no fundamental change
of philosophical conception.

The foundation given to the infinitesimal calculus by Cantor, Dedekind,
and Weierstraß shows that a rigorous development of this theory succeeds if
two things are added to the elementary inferences of mathematics:

1. the application of the method of existential inference to the integers,
i.e. the assumption of the system of integers in the manner of a domain
of objects of an axiomatic theory, as is explicitly done in Peano’s axioms
for number theory.

2. the conception of the totality of all sets of integers as a combinatorially
surveyable manifold. A set of integers is determined by a distribution
of the values 0 and 1 to ‖342 the positions in the number series. The
number n belongs to the set or not depending on whether the nth
position in the distribution is 1 or 0. Just as the totality of possible
distributions of the values 0, 1 over a finite number of positions, e.g. over
five positions, is completely surveyable, by analogy the same is assumed
also for the entire number series.

From this analogy follows in particular also the validity of Zermelo’s
principle of choice for collections of sets of numbers. However, for the time
being we will put aside the discussion of this principle, it will fit in naturally
at a later point.

If we now consider these requirements from the standpoint of our gen-
eral characterization of mathematical knowledge, it seems at first that there
is no fundamental difficulty in justifying them on that basis. For both in
the case of the number series and in that of the sets derived from it, one
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deals with structures, which differ from those treated in elementary mathe-
matics only in being structures of infinite manifolds [Mannigfaltigkeiten]. The
existential inference applied to numbers also seems to be justified by their
objective character as formal objects the existence of which can not depend
on accidental facts about people’s conceptions of numbers.

Against this argumentation it is to be remarked, however, that it is pre-
mature to conclude from the character of formal objects, i.e. from their being
free of accidental empirical features, that formal entities must be related to
a domain of existing formal things. As an argument against this conception
we could put forward the set-theoretic paradoxes; but it is simpler to point
out directly that primitive mathematical evidence does not assume such a
domain of existing formal entities and that, in contrast, the connection with
that to what is actually imagined is essential as a starting point for formal
abstraction. In this sense the Kantian assertion that pure intuition is the
form of empirical intuition is valid.

Correspondingly, existence assertions in disciplines that rest on elemen-
tary mathematical evidence do not have a proper meaning. In particular, in
elementary number theory we only deal with existence assertions that refer
to an explicit totality of numbers that can be exhibited, or to an explicit
process that can be executed intuitively, or to both together, i.e. to a totality
of numbers that can be obtained by such a process.

‖343 Examples of such existence claims are: “There is a prime number
between 5 and 10,” namely 7 is a prime number.

“For every number there is a greater one,” namely if n is a number, then
construct n + 1. This number is greater than n.

“For every prime number there is a greater one,” namely if a prime num-
ber p is given, then construct the product of this number and all smaller
prime numbers and add 1. If k is the number obtained in this way, then
there must be a prime number among the numbers between p + 1 and k.

In each of these cases the existence assertion is made more precise by a
further specification; the existence claim is restricted to explicit processes
that can be carried out in intuition and makes no reference to a totality of
all numbers. Following Hilbert, we will call this elementary point of view, re-
stricted by the requirements imposed by intuitability in principle, the finitist
standpoint; and in the same sense we will speak of finitist methods, finitist
considerations, and finitist inferences.

It is now easy to see that existential reasoning goes beyond the finitist
standpoint. This transcending of the finitist standpoint already takes place
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with any existence proposition which is put forward without a more exact
determination of the existence claim, as for example with the thoerem that
there is at least one prime number in every infinite arithmetic sequence

a · n + b (n = 0, 1, 2, 3, ...)

if a and b are relatively prime numbers.
An especially common and important case of transcending the finitist

standpoint is the inference from the failure of an assertion to hold universally
(for all numbers) to the existence of acounterexample or, in other words, the
principle according to which the following alternative holds for every number
predicate P (n): either the universal assertion that P (n) holds of all numbers
is valid, or there is a number n of which P (n) does not hold. From the
standpoint of existential reasoning this principle results as a direct applica-
tion of the law of the excluded middle, i.e. from the meaning of negation.
This logical consequence fails to hold for the finitist standpoint, because the
assertion that P (n) holds for all numbers has here the purely hypothetical
sense that the predicate holds for any given number, and thus the negation
of this claim does not have the positive meaning of an existence assertion.

But, this does not yet close the discussion of the possibilities of a dis-
cerning mathematical foundation for the assumptions of analysis. It has to
be admitted that the assumption of a totality of formal objects does not
correspond to the standpoint of primitive mathematical evidence, but the
‖344 demands of the infinitesimal calculus can be motivated by the obser-
vation that the totalities of numbers and number sets one deals with are
structures of infinite sets. In particular, the application of existential rea-
soning on number would thus not be inferred from the idea of the concept
of numbers in the realm of formal objects, but rather from considering the
structure of the number sequence in which the individual numbers occur as
elements. Indeed we have not yet considered the argument already men-
tioned that mathematical knowledge can also concern structures of infinite
multiplicities [Mannigfaltigkeiten].

Herewith we come to the question of the actual infinite. For the infinite
insofar as infinite manifolds are concerned, is the true actual infinite in con-
trast to the “potential infinite;” by the latter is meant not an infinite object
but merely the unboundedness of the progression from something finite ‖A36

to something that is again finite. For example, this unboundedness also holds
from the finitist standpoint for numbers, since for every number a greater one
can be constructed.
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The question about the actual infinite which we have to ask first is
whether it is given to us as an object of intuitive mathematical knowledge.

In harmony with what we have determined so far, one could be of the
opinion that we really are capable of an intuitive knowledge of the actual
infinite. For even if it is certain that we have a concrete conception only of
finite objects, nevertheless an effect of formal abstraction could be exactly the
following: that it frees itself from the restriction to the finite and passes to the
limit, as it were, in the case of certain indefinitely continuable processes. In
particular one may be tempted to invoke geometric intuition and to point to
examples of intuitively given infinite manifolds from the domain of geometric
objects.

Now in the first place geometric examples are not conclusive. One is
easily deceived here by interpreting the spatially intuitive in thesense of an
existential conception. For example, a line segment is not intuitively given as
an ordered manifold of points but as a uniform whole, although, to be sure,
an extended whole within which positions are distinguishable. The idea of
one position on the line segment is intuitive, but the totality of all positions
on the line segment is merely a concept of thought. By means of intuition
we here reach only the potential ‖345 infinite since every position on the line
segment corresponds to a division into two shorter segments each of which is
in turn divisible into shorter segment yet.

Furthermore, one cannot point to infinitely extended things like infinite
lines, infinite planes, or infinite space as objects of intuition. In particular,
space as a whole is not given to us in intuition. We do indeed represent
every spatial figure as situated in space. But this relationship of individual
spatial figures to the whole of space is given as an object of intuition only
to the extent that a spatial neighborhood is represented along with every
spatial object. Beyond this representation, the position in the whole of space
is conceivable only in thought. (In opposition to Kant, we must maintain this
view.)

The main argument that Kant gave in favor of the intuitive ‖A37 char-
acter of our representation of space as a whole, in fact proves only that one
cannot attain the concept of a single inclusive space through mere general-
izing abstraction. But that is not what is claimed by the assertion that our
representation of the whole of space is only accessible in thought, i.e. that
we are here dealing with a mere general concept.

Rather, we have in mind a more complicated situation: the representation
of the whole of space involves two different kinds of thoughts both of which
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go beyond the standpoint of intuition and of reflective logic. One rests upon
the thought that connecting things yields the world as a whole and therefore
stems from our belief about what is real. The other is a mathematical idea
which, to be sure, begins with intuition but does not remain in the domain of
the intuitively representable; it is the representation of space as a manifold
of points subject to the laws of geometry.5

In both of these ways of representing space as a whole this totality is not
recognized as given, but rather is posited only tentatively. The representa-
tion of the whole of physical space ‖346 is a fundamental problem; afterall,
it is exactly from the standpoint of contemporary physics that there is the
possibility of giving this initially very vague thought a more restricted and
precise formulation, whereby it becomes significant systematically and acces-
sible to research. The geometric ideas of spatial manifolds are indeed precise
from the very beginning, but require a proof of their consistency.

Thus we have no grounds for the assumption that we have an intuitive
representation of space as a whole. We cannot point directly to such a
representation, nor is there any necessity to introduce that assumption as an
explanation. But if we deny the intuitiveness of space as a whole, then we also
cannot claim that infinitely extended spatial configurations are intuitively
representable.

It should also be noted that the original intuitive conception of elementary
Euclidean geometry does not in the least require a representation of infinite
figures. After all, we are dealing here only with finitely extended figures.
Infinite manifolds of points are also never involved, since there are no under-
lying general existential assumptions; every existential claim rather asserts
a possible geometric construction.6 For example, that every line segment
has a midpoint says from this standpoint only that for every line segment a
midpoint can be constructed.7

Thus the apparent possibility of displaying an actual infinity in the do-

5Both of these representations of space are united in the view of nature found in New-
tonian physics and are not clearly distinguished from one another. In Newtonian physics
Euclidean geometry constitutes the law governing the spatial relation of things in the
universe. Only the subsequent development of geometry and physics showed the neces-
sity of distinguishing between space as a physical entity and space as an ideal manifold
determined by geometric laws.

6German text of Abh. has erroneously “Konjunktion.”
7In Euclid’s axiomatization this standpoint is of course not completely adhered to, since

one finds here the notion of an arbitrarily great extension of a line segment. This notion
can in fact be avoided; one needs only formulate the axiom of parallels differently.
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main of objects of geometrical intuition is misleading. We can, however, also
show in a more general way that there is no question of eliminating the con-
dition of finitude via formal abstraction as would be required for an intuition
of the actual infinite. Indeed, the requirement of finitude is no accidental
empirical limitation but an essential characteristic of a formal object.

The empirical limitation still lies within the domain of the finite, where
formal abstraction must help us to go beyond the boundaries of our actual
power of representation. A clear example of this is the unlimited divisibility
of a line segment. Our actual power of representation already fails when the
division exceeds a certain degree of fineness. This boundary is physically
accidental ‖347 and it can be overcome with the help of optical equipment.
But after a certain smallness all optical equipment becomes useless, and
finally our spatial and metrical representations lose all physical meaning.
Thus, in representing unlimited divisibility we already abstract from the
requirements of actual representation as well as from the requirements of
physical reality.

The situation is analogous in the case of the representation of unlimited
addition in number theory. Here, too, there are limits to the execution
of repetitions both with respect to actual representability and to physical
realization. Let us consider as an example the number 10(101000). We can
‖A39 arrive at it in a finitist way as follows: we start from the number 10,
which, according to the standardization given earlier, we represent by the
figure,

1111111111 .

Let z be an arbitrary number, represented by an analogous figure. If in
the representation of 10 we replace each 1 with the figure z, there results, as
we can see intuitively, another number-figure, which for purposes of commu-
nication is called “10× z.”8 In this way we get the process of multiplying a
number by 10. From this we obtain the process of transforming a number
a into 10a by letting the first 1 in a correspond to the number 10 and every
subsequent 1 to the process of multiplication by 10 until the end of the figure
a is reached. The number obtained by the last process of multiplying by 10
is called 10a.

From an intuitive viewpoint this procedure offers no difficulty whatsoever.
But, if we want to consider the process in detail our representation already
fails in the case of rather small numbers. We can again get some further

8Here we use a symbol “with meaning.”
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help from instruments or by making use of external objects, which involve
the determination of very large numbers. But even with all of these we soon
reach a limit: it is easy for us to represent the number 20; 1020 far extends
our actual power of representation, but is definitely within the domain of
physical realizability; it is ultimately very questionable, however,whether the
number 10(1020) occurs in any way in physical reality either as a relation
between magnitudes or as a cardinal number.

But intuitive abstraction is not constrained by such limits on the possibil-
ity of realization. For limits are ‖348 accidental from the formal standpoint.
Formal abstraction finds no earlier place, so to speak, to make a principled
distinction than at the difference between finite and infinite.

This difference is indeed a fundamental one. If we consider more pre-
cisely how an infinite manifold as such can be characterized at all, then we
find that such a characterization is not possible by means of any intuitive
presentation; rather it is possible only by means of the assertion (or assump-
tion or determination) of a lawlike connection. Thus, infinite manifolds are
accessible to us only in thought. Such thinking ‖A40 is indeed also a kind
of representation, by which a manifold is, however, not represented as an
object; rather conditions are represented which a manifold satisfies (or has
to satisfy).

The fact that formal abstraction is essentially tied to the element of fini-
tude becomes especially apparent through the fact that the property of fini-
tude is not a special limiting characteristic from the standpoint of intuitive
evidence when considering totalities and figures. From this standpoint the
limitation to the finite is observed immediately and, so to speak, tacitly. We
do not need a special definition of finitude in this case, because the finitude
of objects is taken for granted for formal abstraction. So, for example, the
intuitive structural introduction of the numbers is suitable only for the finite
numbers. From the intuitive formal standpoint, “repetition” is eo ipso finite
repetition.

This representation of the finite, which is implicit in the formal point of
view, contains the epistemological justification for the principle of complete
induction and for the admissibility of recursive definition, both procedures
here construed in their elementary form, as “finitist induction” and “finitist
recursion.”

Drawing on this representation of the finite of course goes beyond the
intuitive evidence that is necessarily involved in logical reasoning. It cor-
responds rather to the standpoint from which one reflects already on the
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general characteristics of intuitive objects. Furthermore, the use of the intu-
itive representation of the finite can be avoided in number theory if one does
not insist on treating this theory in an elementary way. But the intuitive
representation of the finite forces itself upon us as soon as a formalism itself
is made the object of examination, thus in particular in the systematic ‖349

theory of logical inferences. This brings to the fore the fact that finiteness is
an essential feature of the figures of any formalism whatsoever. The limits
of any formalism, however, are none other than those of representability of
intuitive complexes in general.

Thus our answer to the question whether the actual infinite is intuitively
knowable turns out to be negative. A further consequence is that the method
of finitist examination is the appropriate one for the standpoint of intuitive
mathematical knowledge.

‖A41 In this way, however, we can not verify the already mentioned as-
sumption for the infinitesimal calculus.

2. Intuitionism. Arithmetic as a theoretical framework

How should we proceed now in the light of these facts? Concerning this
question the opinions are divided. We find here a conflict of views similar
to that over the question of characterizing mathematical knowledge. The
proponents of the standpoint of primitive intuitiveness conclude immediately
from the fact that the postulates of analysis and set theory transcend the
finitist standpoint that these mathematical theories must be abandoned in
their present form and revised from the ground up. The proponents of the
standpoint of theoretical logic, on the other hand, either try to logically
justify the postulates of the theory of the infinite, or they deny that these
postulates are problematic at all by disputing the fundamental significance
of the difference between finite and infinite.

The former view was already held by Kronecker when the method of
existential inference first emerged; he was probably the first person to pay
close attention to the methodological standpoint that we call finitist and
to emphasize most strongly its importance. His attempts to satisfy this
methodological requirement in analysis remained fragmentary, however; a
more precise philosophical presentation of this standpoint was also lacking.
Thus in particular Kronecker’s oft quoted dictum, that God has created the
whole numbers, but everything else is the work of man, is not at all suited
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for motivating Kronecker’s requirement:9 if the whole numbers are created
by God, one ‖350 would think that it is permissible to apply existential infer-
ence to them, whereas it is just the existential point of view that Kronecker
excludes already in the case of the whole numbers.

Brouwer has extended Kronecker’s standpoint in two directions: on the
one hand with respect to philosophical motivation ‖A42 by putting forward
his theory of “intuitionism,”10 and on the other hand by showing how one
can apply the finitist standpoint in analysis and set theory, and finitistically
ground at least a considerable portion of these theories by fundamentally
revising the formation of concepts and the methods of inference.

The result of this investigation does have its negative side, however; for it
turns out that, in the process of treating analysis and set theory finitistically,
one must accept with not only great complications, but also serious losses
with respect to systematization.

The complications appear already in connection with the first concepts
of the infinitesimal calculus such as boundedness, convergence of a number
sequence, the difference between rational and irrational. Let us take for
example the concept of boundedness of a sequence of integers. According to
the usual view one of the following alternatives holds: either the sequence
exceeds every bound, and then the sequence is unbounded, or all numbers in
the sequence are below some given bound, and then the sequence is bounded.
In order to determine here a finitist concept we must sharpen the definition
of boundedness and unboundedness as follows: a sequence is called bounded
if we can indicate a bound for the numbers in the sequence, either directly or
by giving a procedure for producing one; the sequence is called unbounded
if there is a law according to which every bound is necessarily exceeded by
the sequence, i.e., the assumption that the sequence has a bound leads to an
absurdity.

With this formulation of the concepts the definitions do indeed have a
finitist character, but we no longer have a complete disjunction between the
cases of boundedness and unboundedness. We therefore cannot infer that a
sequence is bounded from a refutation of the assumption that the sequence
is unbounded. Likewise we cannot consider ‖351 a claim as established when

9The methodical standpoint appropriate to this dictum is the one adopted by Weyl in
his book Das Kontinuum (1918).

10In the interest of clarifying the discussion it seems to me advisable to use the term
“intuitionism” to refer to a philosophical view in contrast to the term “finitist,” which
refers to a particular method of inference and concept formation.
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it is proved, on the one hand, under the assumption that a certain sequence
of numbers is bounded and, on the other hand, under the assumption that
it is unbounded.

‖A43 In addition to such complications, which permeate the entire theory,
there is a yet more essential disadvantage, namely that many of the general
theorems, through which mathematics obtains its systematic clarity, fail. So,
for example, in Brouwer’s analysis even the theorem that every continuous
function has a maximum value on a finite closed interval is not valid.

It seems an unjustified and unreasonable demand that philosophy is
putting on mathematics, to give up its simpler and more fruitful method
in favor of a cumbersome method, which is also inferior from a systematic
point of view, without being forced to do so by an inner necessity. This
constraint makes us suspicious of the standpoint of intuitionism.

Let us see what are the main points of this philosophical view that was
developed by Brouwer. It includes, first of all, a characterization of math-
ematical evidence. Our earlier discussion of formal abstraction agrees in
essential points with this characterization, in particular with regard to their
connection with Kant’s theory of pure intuition.

Admittedly there is a divergence insofar as according to Brouwer’s view
the temporal aspect is an essential feature of the objects of mathematics. But
it is not necessary to go into a discussion of this point here, since a decision
concerning it is of no consequence for the question of mathematical method-
ology: what for Brouwer arises as a consequence of the connection between
time and the objects of mathematics is nothing other than what is obtained
by us from the connection of formal abstraction with its concrete, intuitive
starting point, namely the methodological restriction to finitist procedures.

The decisive consequences of intuitionism result first from the further as-
sertion that all mathematical thought with a claim to scientific validity must
be carried out on the basis of mathematical evidence, so that the limits of
mathematical evidence are at the same time limits for mathematical thought
in general.

This demand that mathematical thought be limited to the intuitively
evident appears at first to be completely justified. Indeed it corresponds
to our familiar conception of mathematical certainty. We must, however,
keep in mind that this familiar conception of ‖352 mathematics originally
went together with a philosophical view, according to which the intuitive
evidence of the ‖A44 foundations of the infinitesimal calculus was not in
question. However, we have departed from such a view since we found that
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the postulates of analysis cannot be verified by intuition, that in partiular the
representation of infinite totalities, which is fundamental in analysis, cannot
be grasped in intuition but only through the formation of ideas.

Now we can not expect this new view of the limits of intuitive evidence
to fit directly with the received conception of the epistemological character
of mathematics. Rather, on the basis of what we have determined it seems
likely that the generally accepted conception of mathematics represents the
situation too simply and that we can not do justice to what goes on in
mathematics from the standpoint of evidence alone; we must acknowledge
that thinking has its own distinctive role.

Thus we arrive at a distinction between the standpoint of elementary
mathematics and a systematic standpoint that goes beyond it. This distinc-
tion is by no means artificial or merely ad hoc; rather it corresponds to the
two different starting points from which one is led to arithmetic: on the one
hand, the combinatorial consideration of relations between discrete entities,
and on the other, the theoretical demand placed on mathematics by geome-
try and physics.11 The system of arithmetic by no means arises only from an
activity of construction and intuitive consideration, but also, in large part,
from the task of precisely conceptualizing and theoretically mastering the
geometric and physical representations of quantity, area, impact, velocity,
and so on. The method of arithmetization is a means to ‖A45 this end. But
in order to serve this purpose, arithmetic must extend its methodological
standpoint from the original elementary ‖353 standpoint of number theory
to a systematic perspective in the sense of the postulates discussed.

Arithmetic, which comprises the encompassing framework within which
the geometric and physical disciplines find their place, consists not only of
the elementary, intuitive treatment of numbers, but it has itself the character
of a theory in that it builds on the representation of the totality of numbers as
a system of things as well as the totality of sets of numbers. This systematic

11It is remarkable that Jakob Friedrich Fries, who still ascribed mathematical evidence to
a domain going far beyond the finite (in particular, according to his view “the continuous
sequence of larger and smaller” is given in pure intuition), nevertheless made a methodical
distinction between, on the one hand, “arithmetic as a theory,” which conceptualizes
and scientifically develops the intuitive representation of magnitude, and, on the other,
“combinatory theory or syntactic,” which rests only on the postulate of arbitrary ordering
of given elements and its arbitrary repeated applications, and which needs no axioms
since its operations are “immediately comprehensible in themselves.” (Cf. J.F. Fries,
Mathematische Naturphilosophie l822.)
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arithmetic achieves its aim in the best possible way, and there are no grounds
in its procedures for objections, so long as it is clear that we are here not
taking the standpoint of elementary intuitiveness, but that of a thought
construction, i.e., the standpoint that Hilbert calls the axiomatic one.

The charge of arbitrariness against this axiomatic approach is also un-
justified, for in the foundations of systematic arithmetic we are not dealing
with an arbitrary axiom system, put together according to need, but with a
natural systematic extrapolation from elementary number theory. However,
the analysis and set theory which develop on this foundation constitute a
theory which is already distinguished in pure intellect, and which is suited
to be taken as the theory κατ ’ ε’ξoχήν,12 into which we incorporate the
doctrines and theoretical approaches of geometry and physics.

Thus we cannot acknowledge the veto that intuitionism directs against
the method of analysis. The observation, on which we agree with intuition-
ism, that the infinite is not given to us intuitively does indeed require us to
modify our philosophical conception of mathematics, but not to transform
mathematics itself.

Of course, the problem of the infinite returns again. For in taking a
thought construction as the starting point for arithmetic, we have introduced
something problematic. A thought construction, may it be ever so plausible
and natural from a systematic point of view, contains in and of itself no
guarantee that it can be carried out consistently. In apprehending the idea
of the infinite totality of numbers and of sets of numbers, the possibility is
not excluded that this idea could lead to a contradiction in its consequences.
Thus it remains it to investigate the question of ‖A46 the freedom from
contradiction, or “consistency,”13 of the system of arithmetic.

Intuitionism wants to spare us these tasks by restricting mathematics to
the domain of finitist considerations; but the price for this elimination of the
difficulties is too high: the problem goes away, but the systematic simplicity
and clarity of analysis is also lost.

12EDNOTE: Breathing mark on epsilon needs to be fixed !
13We suggest here using this expression, which Cantor used specifically with respect to

the construction of sets, more generally with respect to any theoretical approach.
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3. The problems with logicism. The value of the logicis-
tic reduction of arithmetic

The proponents of the standpoint of logicism believe that they can deal with
this problem in a completely different way. In discussing this standpoint we
connect with our earlier consideration of logicism. There it was important
to recognize that intuitive evidence even plays a role in deductive logic, and
that the logical definition of cardinal number does not establish the specifi-
cally logical nature of the concept of cardinal number (as a concept of pure
reflection) but rather is only a logical normalization of elementary structural
concepts.

These reflections concern the demarcation of what is logical in the narrow
sense from what is formal. The recognition of the formal element in logic,
however, by no means resolves the methodological question of logicism. Logi-
cism is concerned not only with the theoretical development of the science
of inference; but, as already explained, it takes as its further task the re-
duction of all arithmetic to the formalism of logic. This reduction proceeds
first via the introduction of cardinal numbers as properties of predicates, as
already described, and then (as will not be described more precisely here)
by expressing the construction of sets of numbers in terms of the logical for-
malism, replacing each set with a defining predicate. Thus the totality of
predicates of numbers replaces the totality of sets of numbers.

In this way one in fact succeeds in assigning to every arithmetical sentence
a sentence from the domain of theoretical logic in which, ‖47 aside from
variables, only “logical constants” occur, i.e. basic logical operations like
conjunction, negation, the form of generality, etc.

‖355 Now it is clear that the problem of the infinite can not be solved
solely by this translation of arithmetic into the formalism of logic. If theo-
retical logic deductively obtains the system of arithmetic, then its procedures
must include either explicit or hidden assumptions through which the actual
infinite is introduced.

The justification that is given for these assumptions, and the position
adopted with respect to them, has been the weak point of logicism from
the start. Indeed, Frege and Dedekind, whose proofs and discussions dis-
played extreme precision and rigor everywhere else, were relatively uncon-
cerned about the supposed self-evident assumptions they took as the basis
for the standpoint of general logic, namely the idea of a closed totality of all
conceivable logical objects whatsoever.
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If this idea were tenable, it would of course be more satisfactory from a
systematic point of view than the more specialized postulates of arithmetic.
But, as is well known, it had to be dropped, because of the contradictions
to which it lead. Since then logicism has forgone proving the existence of an
infinite totality, and has instead explicitly postulated an axiom of infinity.

This axiom of infinity, however, is not a sufficient assumption for ob-
taining arithmetic as logically construed. We could only obtain with it what
follows from our first postulate, the admissibility of existential inference with
respect to the integers. To conform with our second postulate we still re-
quire something further, namely, the application of existential inference with
respect to predicates. The justification of this way of proceeding might at
first seem to be logically self-evident, and in fact it is not questioned under
the conception of Frege and Dedekind. But once the idea of the totality of
all logical objects is given up, the idea of the totality of all predicates be-
comes problematic as well, and here closer inspection reveals a particular,
fundamental difficulty.

Namely, in accordance with the genuine logicist standpoint, we construe
the totality of predicates as a totality which essentially first comes into ex-
istence ‖A48 in the frame of the system of logic by applying logical con-
structions to certain initial, prelogical predicates, e.g., predicates taken from
intuition. ‖356 Further predicates are now obtained by reference to the to-
tality of predicates. An example is the already mentioned Fregean definition
of finite number: “a number n is called finite if every predicate holds of n
that holds of the number 0 and that, if it holds of a number a also holds
of the succeeding number.” The predicate of finiteness is defined here by
reference to the totality of all predicates.

Definitions of this kind, called “impredicative,”14 occur everywhere in the
foundation of arithmetic , and indeed, right in the crucial places.

Now there is really no objection to determining a thing from a totality

14The term is due to Poincaré who—in contrast to the other critics of set theory, almost
all of whom concerned themselves just with the axiom of choice—brought the issue of
impredicative definition into the discussion and put the emphasis on it. His criticism was
disputable, however, because he made the use of impredicative definitions appear to be a
novelty introduced by set theory. Zermelo could reply to him that impredicative definitions
already occur essentially in the usual modes of inference in analysis, which Poincaré in
fact accepted.

Since then Russell and Weyl in particular have thoroughly discussed and completely
clarified the role of impredicative definition in analysis.
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by means of a property that refers to this totality. So, for example, in the
totality of numbers a particular number is defined by the property of being
the greatest prime number, such that its product with 1000 is greater than
the product of the preceding prime number with 1001.15

But it is required here that the totality in question is determined in-
dependently of the definitions referring to it; otherwise we enter a vicious
circle.

However, precisely in the case of the totality of predicates and the im-
predicative definitions referring to it, this precondition cannot be taken as
directly satisfied. For the totality of predicates is determined according to
the conception discussed here by the ‖A49 laws for logical constructions, and
these include also impredicative definitions.

In order to avoid the vicious circle it would of course suffice to show that
every predicate introduced by an impredicative definition can also be defined
in a “predicative” way. Indeed, one could even get by with a weaker claim.
Since in the logical foundation of arithmetic a predicate is always considered
just with respect to its extension, i.e., with respect to the set of things of
which it holds, we would only need to know that every predicate introduced
by an impredicative definition is extensionally equal to a predicatively defined
predicate.

This postulate, called the “axiom of reducibility,” was imposed along
with the axiom of infinity by Russell, who recognized with total clarity the
difficulty involved in impredicative definitions.

But how is this axiom of reducibility to be understood? From its for-
mulation it is not clear whether it expresses a logical law or an extralogical
assumption.

If, in the first case, in which the axiom of reducibility would be the ex-
pression of a logical law, its validity would have to be independent of the
basic domain of prelogical initial predicates—at least assuming that this do-
main satisfies the axiom of infinity. But this would mean that the domain of
predicates of an axiomatic theory in which the forms of the universal and the
existential judgment (the existential reasoning) are applied only to objects
and not to predicates cannot be enlarged by the introduction of impredicative
definitions, provided only that the axiom system requires for its satisfaction
an infinite system of objects.

15The example is chosen in such a way that the reference to the totality of numbers can
not be eliminated directly as is the case in most of the simpler examples.
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But the correctness of such a statement is out of the question. One can
easily construct examples which refute this claim.

Dedekind’s introduction of the concept of number furnishes such
an example. Dedekind starts with a system in which a thing 0 is
distinguished and which permits a one-one mapping onto a subset
not containing the thing 0. Suppose we represent this mapping by
a predicate with two subjects and formulate the required proper-
ties of this predicate as axioms; we then get an elementary axiom
system that contains in its axioms no reference ‖A50 to the to-
tality of predicates and that, moreover, can be satisfied only by
an infinite system of objects. Let us now consider Dedekind’s
concept of number; if we translate his definition from the lan-
guage of set theory into that of the theory of predicates, it can be
formulated in full analogy to Frege’s definition of finite number:
“a thing n of our system is a number if every predicate holds
of n which holds of 0 and which, if it holds of a thing a in our
system, holds also of the thing to which a is correlated by the
one-one mapping.” This definition is impredicative; and one can
see that it is not possible to obtain a predicate that is extension-
ally equal to the hereby defined concept of “being a number,” by
a predicative definition from the basic elements of the theory.16

‖358 We find, therefore, that for the axiom of reducibility, only the second
interpretation comes into consideration, according to which it expresses a
condition on the initial domain of prelogical predicates.

By introducing such an assumption one abandons the conception that
the domain of predicates is generated by logical processes. The aim of a
genuinely logical theory of predicates is then given up.

If one decides to do this, then it seems more natural and appropriate to
return to the conception of a logical function that corresponds to Schröder’s
standpoint: one construes a logical function as an assignment of the values
“true” and “false” to the objects of the domain of individuals. Each pred-
icate defines such an assignment; but the totality of assignments of values
is construed, in analogy with the finite, as a combinatorial manifold which
exists independently of conceptual definitions.

16Another example was given by Waismann in a note on “Die Natur des Reduzibilitäts-
Axioms” (1928). This, however, requires some modification.
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This conception removes the circularity of the impredicative definitions
of theoretical logic; we have only to replace any statement about the totality
of predicates by the corresponding statement about the totality of logical
functions. The axiom of reducibility is thus dispensable.

This step was actually taken by the logicist school at the suggestion of
Wittgenstein and Ramsey. These two maintained in particular that in or-
der to avoid the contradictions connected with the concept of the set of all
mathematical ‖A51 objects it is not necessary to distinguish predicates by
their definitions, as Whitehead and Russell had done in Principia Mathe-
matica. Rather, they maintained, it suffices to delimit clearly the domains
of definition of predicates, so that one distinguishes between the predicates
of individuals, the predicates of predicates, the predicates of predicates of
predicates, and so on.

In this way one has returned from the type theory of Principia Mathe-
matica to the simpler conceptions of Cantor and Schröder.

However, one should not be deceived over the fact that with this change
one has moved far away from the standpoint of logical self-evidence. The
assumptions on which theoretical logic is then based ‖359 are in principle
of exactly the same kind as the basic postulates of analysis, and are also
completely analogous to them in content. The axiom of infinity in the logical
theory corresponds to the conception of the number sequence as an infinite
totality; and in the logical theory one postulates the concept of all logical
functions instead of the concept of all sets of numbers, whereby the functions
refer to the “domain of individuals” or to a determinate domain of predicates.

Thus, when arithmetic is incorporated into the system of theoretical logic,
nothing is saved in terms of assumptions. Contrary to what one might at
first think, this incorporation by no means has the significance of a reduction
of the postulates of arithmetic to lesser assumptions; its value is rather in
the fact that the mathematical theory is placed on a broader basis by joining
it with the logical formalism.

In this way the theory attains, first of all, a higher degree of method-
ological distinction, as follows. Not only do its assumptions result from a
natural extrapolation of intuitive numbers, but they are also obtained by
extrapolating the logic of extensions to infinite totalities.

Moreover, by joining arithmetic with theoretical logic we gain an insight
into the connection of the processes of set formation with the fundamental
operations of logic; and the logical structure of concept formation and of
inferences becomes clearer.
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Thus, in particular, the meaning of the Principle of Choice becomes fully
comprehensible only by means of the formalism of logic. We can express this
principle in the following form: if B(x, y) is a two-place predicate (defined in
a certain domain) and ‖A52 if for every thing x in the domain of definition
there is at least one thing y in this domain for which B(x, y) holds, then
there is (at least) one function y = f(x), such that for every thing x in the
domain of definition of B(x, y) the value f(x) is again in this domain, and is
such that B(x, f(x)) holds.

Let us consider what this assertion claims in the special case of a two
element domain, the things of which we can represent by the numbers 0,
1. In this case there are only four different courses of values of functions
y = f(x) to consider. Then the assertion is a simple application of one of the
distributive laws governing the relation between conjunction and disjunction,
i.e. the following theorem of elementary logic: “If A holds ‖360 and if, in
addition, B or C holds, then either A and B holds or A and C holds.”17

Also in the case of a subject domain consisting of any determinate finite
number of things, the assertion of the Principle of Choice follows from this
distributive law. The general assertion of the Principle of Choice is therefore
nothing but the extension of a law of elementary logic for conjunction and
disjunction to infinite totalities. And thus, the Principle of Choice supple-
ments the logical rules governing universal and existential judgments, i.e. the
rules of existential inference, for their application to infinite totalities signifies
in the same way that certain elementary laws for conjunction and disjunction
are being carried over to the infinite.

The Principle of Choice has a distinctive position with respect to these
rules of existential inference only insofar as its formulation requires the con-
cept of function. This concept, in turn, receives its sufficient implicit charac-
terization only by means of the Principle of Choice.

This concept of function corresponds to the concept of logical function;
the only difference is that the values of the former are not taken to be “true”
and “false” but the things of the subject domain. The totality of the functions
that are being considered here is therefore the totality of all possible “self-
assignments” of the subject domain.

‖A53 According to this concept of function the existence of a function
with the property E in no way means that one can form a concept that

17“Or” is in both cases meant not in the sense of the exclusive “or” but in the sense of
the Latin “vel.” But of course the theorem also holds for the exclusive “or.”
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uniquely determines a definite function with the property E. Consideration of
this circumstance invalidates the usual objections to the Principle of Choice,
which rests mostly on the fact that one is misled by the name “Principle of
Choice” to the view that this principle asserts the possibility of a choice.

At the same time we recognize that the assumption expressed by the
Principle of Choice does not fundamentally go beyond the understanding
upon which we have to base, in any event, the procedure of theoretical logic
in order to interpret it in a circle-free manner without introducing an axiom
of reducibility.

To be sure, we can also give contrary emphasis to this observation: the
controversial character of the Principle of Choice, the formulation of which
is in line with the systematic elaboration of the standpoint of theoretical
‖361 logic, brings most strongly to the fore what is problematic about this
standpoint.

When we considered the logicist foundation of arithmetic we were also led
to this result: the incorporation of arithmetic into theoretical logic provides
indeed a broader foundation for the arithmetic theory and contributes to
the contentual motivation of its assumptions; but it does not lead beyond
the methodological standpoint of the conceptual approach, i.e. beyond the
standpoint of axiomatics.

In this way the problem of the infinite is formulated, but it is not solved.
For there remains the open question whether the analogies between the finite
and the infinite, postulated as assumptions for the development of analysis
and set theory, constitute an admissible approach, i.e. one which can be
carried out consistently.

Intuitionism tries to avoid this question by excluding the problematic
assumptions, while most logicists dispute its legitimacy by denying a funda-
mental difference between the finite and the infinite; Hilbert’s proof theory
begins to address this question in a positive way.

4. Hilbert’s proof theory

In order to better grasp the leading ideas of proof theory let us first call to
mind once again the character of the problem ‖54 to be solved here. At issue
is proving the consistency of the mathematical concept formation on which
the theory of arithmetic rests.

On the philosophical side, the question has frequently been raised whether
a proof of consistency alone provides a justification for this concept formation
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[Ideenbildung]. This way of putting the question is however misleading; it does
not take into account the fact that the scientific motivation for the theoretical
approach of arithmetic has been provided in essence already by science and
that the proof of consistency is the only desideratum that remains to be
fulfilled.

The edifice of arithmetic is built on the foundation of conceptions which
are of greatest relevance for scientific systematization in general: namely the
principle of conservation (“permanence”) of laws, which occurs here as the
postulate of the unlimited applicability of the usual logical forms of judgment
and inference, and the demand for a purely objective formulation of the
theory, by which it is freed from all reference to our cognition. ‖362

The fundamental methodological significance of these requirements yields
the inner motivation and distinctive character of the approach of the arith-
metic theory.

In addition to this inner motivation we have the splendid corroboration
of the conceptual system of arithmetic in the form of its deductive fruit-
fulness, its systematic success, and the coherence of its consequences. This
conceptual system is clearly suited in a truly remarkable way to treating the
relations of numbers and of magnitudes. The systematicity of this magnifi-
cent theory, obtained by combining function theory with number theory and
algebra, has no equal. And as a comprehensive conceptual apparatus for the
construction of scientific theories, arithmetic proves to be suited not only
to the formulation and development of laws, but it has also been used with
great success, and to an extent which had not been anticipated, in the search
for laws.

Regarding the coherence of the consequences, it has been most strongly
corroborated by the intensive theoretical development of analysis and its
many numerical applications.

What is still lacking here is only this: that the merely empirical trust,
gained by many trials, in the ‖A55 consistency of the arithmetic theory, i.e. in
the thorough coherence of its results, be replaced by a real insight into this
consistency; to effect this is the purpose of a proof of consistency.

Thus, it is not the case that the conceptual system of arithmetic must
first be established by means of a proof of its consistency. Rather, the sole
purpose of this proof is to give us with regard to this conceptual system
(which is already motivated on internal systematic grounds and has proved
itself as an intellectual tool in its applications), the evident certainty that it
cannot be undermined by the incoherence of its consequences.
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If this succeeds, we will know that the idea of the actual infinite can
be developed systematically. And we can rely on the results of applying
the basic arithmetic postulates just as if we were in the position to verify
them intuitively. For when we recognize the consistency of the application of
these postulates, it follows immediately that their consequences, if they are
intuitively, i.e. finitistically, meaningful, can never contradict an intuitively
recognizable fact. In the case of finitist sentences, ‖363 the ascertainment of
their nonrefutability is equivalent to the ascertainment of their truth.

From this consideration of the need for and the purpose of a consistency
proof, it follows in particular that for such a proof only one thing matters;
namely to recognize, in the literal sense of the word, the freedom from con-
tradictions of the arithmetic theory, i.e., the impossibility of its immanent
refutation.

The novel feature of Hilbert’s approach was that he limited himself to
this problem; previously, one had always carried out consistency proofs for
axiomatic theories by positively exhibiting the simultaneously satisfaction
of the axioms by certain objects. There was no basis for this method of
exhibition in the case of arithmetic; in particular, Frege’s idea of taking the
objects to be exhibited from the domain of logic does not succeed, because, as
we have recognized, the application of ordinary logic to the infinite is just as
problematic as arithmetic, the consistency of which was to be shown. Indeed,
the basic postulates of the arithmetic theory concern exactly the extended
application of the usual forms of judgment and inference.

By focusing on this aspect, we are led ‖A56 directly to the first guiding
principle of Hilbert’s proof theory : it says that, in proving the consistency
of arithmetic, we must consider the laws of logic as applied in arithmetic
to be in the domain of what is to be shown consistent; thus, the proof of
consistency covers logic and arithmetic together.

The first essential step in carrying out this idea is already taken by in-
corporating arithmetic into the system of theoretical logic. Because of this
incorporation the task of proving the consistency of arithmetic reduces to
establishing the consistency of theoretical logic, or, in other words, deter-
mining the consistencyof the axiom of infinity, of impredicative definitions,
and of the Principle of Choice.

In this connection it is advisable to replace Russell’s axiom of infinity
with Dedekind’s characterization of the infinite.

Russell’s axiom of infinity requires the existence of an n-numbered
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predicate for every finite number n (in the sense of Frege’s defini-
tion of finite cardinal) and thus implicitly requires also that the
domain of individuals (the basic domain of things) be infinite.
Now it is an unnecessary and also from a principled standpoint
objectionable complication that here three infinities in different
layers run ‖364 concurrently: that of the infinitely many things
in the domain of individuals, furthermore that of the infinitely
many predicates, and then that of the resulting infinitely many
cardinals, which are after all defined as predicates of predicates.

We can avoid this multiplicity by determining the infinity of the
domain of individuals not by an infinite series of unary predicates,
but rather by a single binary predicate, namely a predicate that
provides a one-one mapping of the domain of individuals onto
a proper subdomain, i.e. a subdomain which excludes at least
one thing. This characterization of the infinite, due to Dedekind,
can be introduced in the most simple and elementary way if we
do not postulate the one-one mapping by means of an existence
axiom, but introduce it explicitly from the start by taking as basic
elements of the theory an initial object and a basic process.

In this way we achieve that the numbers occur already as things in
the domain of individuals, rather than as predicates of predicates
of things.

However, this consideration already refers to the particular form of the
systematic development, and there are several ways of pursuing it. But
we must first ‖A57 orient ourselves as to how in general how a proof of
consistency in the intended sense can be carried out at all. This possibility is
not immediately obvious. For how can one survey all possible consequences
that follow from the assumptions of arithmetic or of theoretical logic?

Here the investigation of mathematical proofs by means of the logical
calculus comes into play in a decisive way. This has shown that the methods
of forming concepts and making inferences which are used in analysis and
set theory are reducible to a limited number of processes and rules; thus,
one succeeds in completely formalizing these theories in the framework of a
precisely specified symbolism.

Hilbert inferred from the possibility of this formalization, which was done
originally only for the sake of a more precise logical analysis of proof, the
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second guiding idea of his proof theory, namely that the task of proving the
consistency of arithmetic is a finitist problem.

An inconsistency in the contentual theory must indeed show itself by
means of the formalization in the following way: two formulas are derivable
according to the rules of the formalism, one of which results from the other
though that process which is the formal image of negation. The claim of
consistency is therefore equivalent to the claim that two formulas standing in
the above relation can not be derived by the rules of the formalism. ‖365 But
this claim has fundamentally the same character as any general statement
of finitist number theory, e.g., the statement that it is impossible to produce
three integers a, b, c (different from 0) such that a3 + b3 = c3.

The proof of consistency for arithmetic thus becomes in fact a finitist
problem of the theory of inferences. The finitist investigation having formal-
ized theories of mathematics as its object is called by Hilbert metamathemat-
ics. The task falling to metamathematics vis-à-vis the system of mathematics
is analogous to the one which Kant ascribed to the critique of reason vis-à-vis
the system of philosophy.

In accord with this methodological program, proof theory has already
been developed to a substantial degree;18 but there are still ‖A58 considerable
mathematical difficulties to be overcome. The proofs of Ackermann and von
Neumann secure the consistency of the first postulate of arithmetic, i.e., the
applicability of existential reasoning to the integers. Ackermann developed
in some detail an approach to the further problem of the consistency of the
general concept of a set (resp. numerical function) of numbers together with
a corresponding Principle of Choice.

If this problem were solved, then almost the entire domain of existing
mathematical theories would be proved to be consistent.19 This proof would
in particular be sufficient to recognize the consistency of the geometric and
physical theories.

18Hilbert gave a first sketch of a theory of proofs already in his 1904 Heidelberg lecture
“On the foundations of logic and arithmetic.” The first guiding idea of a joint treatment
of logic and arithmetic is expressly formulated here; the methodological principle of the
finitist standpoint is also intended, but not yet explicitly stated.— The investigation of
Julius Koenig, “New foundations for logic, arithmetic, and set theory” (published in 1914)
falls between this lecture and Hilbert’s more recent publications on proof theory; it comes
very close to Hilbert’s standpoint and gives already a proof of consistency which is in
full accord with proof theory. This proof covers only a very narrow domain of formal
operations and is therefore only of methodological significance.

19Cantor’s theory of numbers of the second number class is also included here.

38



One can also extend the problem still further and investigate the consis-
tency of more inclusive systems, e.g., axiomatic set theory. Axiomatic set
theory, as first formulated by Zermelo and supplemented and ‖366 extended
by Fraenkel and von Neumann, with its construction processes, already goes
far beyond what is actually used in mathematics; and the proof of its consis-
tency would also establish the consistency of the system of theoretical logic.

This does not achieve an absolute completion of this formation of con-
cepts, because formalized set theory motivates metamathematical consider-
ations which have the formal constructions of set theory as their object and
in this way go beyond these constructions.20

‖A59 In spite of this possibility of extending the concept formation a for-
malized theory can nevertheless be closed in the following sense: no new
results are obtained in the domain of the laws that can be formulated in
terms of the concepts of the theory by extending the concept formation.

This condition is satisfied whenever the theory is deductively closed, i.e.,
when it is impossible to add a new axiom, which is expressible in terms of
the concepts of the theory but not already derivable, without producing a
contradiction,—or, what amounts to the same thing: if every statement that
can be formulated within the framework of the theory is either provable or
refutable.21

We believe that number theory as delimited through Peano’s axioms with
the addition of definition by recursion is deductively closed in this sense;
but the problem of giving an actual proof of this is still entirely unsolved.
The question becomes even more difficult if we go beyond the domain of
number theory and ascend to analysis and the further set theoretic concept
formations.

In the realm of these and related questions there lies a considerable field
of open problems. But these problems are not of such a kind that they
represent an objection to the standpoint we have adopted. We ‖367 must

20The more detailed discussion of this point is connected to the Richard paradox, of
which Skolem has recently given a more precise formulation. These considerations are
not conclusive since they are made in the framework of a non-finitist metamathematics.
A final answer to the question discussed here would be obtained only if one succeeded
in producing in a finitist way a set of numbers which could be shown not to occur in
axiomatic set theory.

21Notice that this requirement of being deductively closed does not go as far as the
requirement that every question of the theory be decidable. The latter says that there
should be a procedure for deciding for any arbitrarily given pair of contradictory claims
belonging to the theory which of the two is provable (“correct”).
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only keep in mind that the formalism of theorems and proofs that we use
to represent our ideas does not coincide with the formalism of the structure
that we intend in thought. The formalism suffices to formulate our ideas of
infinite manifolds and to draw the logical consequences from them; but in
general it is not able to produce the manifold combinatorially out of itself,
so to speak.

‖A60 The position we have reached concerning the theory of the infinite
can be viewed as a form of the philosophy of the “as if.” It differs fundamen-
tally from the Vaihinger’s philosophy thus designated, however, by placing
weight on the consistency and the permanence of ideas; in contrast, Vai-
hinger considers the demand for consistency to be a prejudice and indeed
claims that the contradictions in the infinitesimal calculus are “not only not
to be disavowed, but . . . [are] precisely the means by which progress was
attained.”22

Vaihinger’s considerations are focused exclusively on scientific heuristics.
He considers only the “fictions” that occur as mere temporary aids for think-
ing. In introducing these fictions, thought does itself violence and their
contradictory character (if we are dealing with “genuine fictions”) can be
rendered harmless only by a skillful adjustment for the contradictions.

Ideas in our sense are a permanent possession of the mind. They are
distinguished forms of systematic extrapolation and of idealizing approxima-
tion to what is real. They are also by no means arbitrary nor yet forced
upon thought; on the contrary, they constitute a world in which our thinking
feels at home and from which the human mind, absorbed in this world, gains
satisfaction and joy.

Postscript

Because of various insights that have been gained since the publication of the
above essay, some of the considerations presented here have to be corrected.

First of all, as far as intuitionism is concerned, it was initially believed
that the methodology of intuitionistic proofs agreed with that of Hilbert’s
“finitist standpoint.” It has become clear, however, that the methods of
intuitionism go beyond the finitist proof procedures intended by Hilbert. In
particular, Brouwer uses the general concept of a contentual proof, to which
the concept of “absurdity” is also connected, but which is not employed in

22Vaihinger, Die Philosophie des Als ob, second edition, ch. XII.
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finitist reasoning.
Then, as far as Hilbert’s proof theory is concerned, the view that the

consistency proof for arithmetic ‖A60 amounts to a finitist problem is jus-
tified only in the sense that the consistency statement can be formulated
finitistically. This does not imply at all that the problem can be solved with
finitist methods. By a theorem of Gödel the possibility of a finitist solution
was made most implausible, though not directly excluded, already for num-
ber theory; moreover, it turned out that the above mentioned consistency
proofs that were available at the time did not extend to the full formalism of
number theory. The methodological standpoint of proof theory was conse-
quently broadened, and various consistency proofs were carried out, first for
formalized number theory and then also for formal systems of analysis; their
methods, although not restricted to finitist, i.e., elementary combinatorial
considerations, require neither the usual methods of existential reasoning,
nor the general concept of contentual proof.

In connection with the theorem of Gödel mentioned above, the assump-
tion that number theory, when axiomatically delimited and formalized, is
deductively complete turned out to be incorrect. Even more generally, Gödel
showed that formalized theories satisfying certain very general conditions of
expressiveness and formal rigor cannot be deductively complete as long as
they are consistent.

On the whole the situation is as follows: Hilbert’s proof theory, together
with the discovery of the possibility of formalizing mathematical theories,
has opened a rich area of research, but the epistemological perspective which
motivated its formulation has become problematic.

This suggests revising the epistemological remarks in the above essay. Of
course, the positive remarks are hardly in need of revision, in particular those
exhibiting the mathematical element in logic and emphasizing the evidence of
elementary arithmetic. However, the sharp distinction between the intuitive
and the non-intuitive, which was employed in the treatment of the problem
of the infinite, apparently cannot be drawn so strictly, and the reflections
on the formation of mathematical ideas still need to be worked out in more
detail in this respect. Various considerations for this are contained in the
following essays.23

23Editorial remark: This refers to the remaining essays in the collection
Bernays 1976.
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