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‖89 1. To supplement the preceding paper [[by Hilbert]] let me add some

more detailed explanations concerning the consistency proof by Ackermann

that was sketched there.

First, as for an upper bound on the number of steps of replacement in the

case of embedding, it is given by 2n, where n is the number of ε-functionals

distinct in form. The method of proof described furnishes yet another, sub-

stantially closer bound, which, for example, for the case in which there is no

embedding at all yields the upper bound n + 1.1

2. Let the argument by which we recognize that the procedure is finite

in the case of superposition be carried out under simple specializing assump-

tions.

1[[See in Hilbert and Bernays 1939, pp. 96–97, how this bound is obtained.]]
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The assumptions are the following: Let the ε-functionals occurring in the

proof be

εaA(a, εbK(a, b))

and

εbK(a1, b), εbK(a2, b), . . . , εbK(an, b),

where a1, . . . , an may contain εaA(a, εbK(a, b)) but no other ε-functional.

The procedure now consists in a succession of “total replacements”; each

of these consists of a function replacement χ(a) for εbK(a, b)), by means of

which εaA(a, εbK(a, b)) goes over into εaA(a, χ(a)), and a replacement for

εaA(a, χ(a)), by means of which a1, . . . , an go over into numerals z1, . . . , zn

and the values

χ(z1), . . . , χ(zn)

are obtained for

εbK(a1, b), . . . , εbK(an, b).

‖90 We begin with the function χ0(a), which has the value 0 for all a

(“zero replacement”), and accordingly also replace the terms

εbK(a1, b), . . . , εbK(an, b)

by 0.

Holding this replacement fixed, we apply to

εaA(a, χ0(a))

the original testing procedure, which after two steps at most leads to the

goal; that is, all the critical formulas corresponding to

εaA(a, χ0(a))
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then become correct.

Thus we obtain one or two total replacements, E0, or E0 and E′
0, re-

spectively. Now either E0 (or E′
0) is final or one of the critical formulas

corresponding to εbK(a1, b), εbK(a2, b), . . . becomes false. Assume that this

formula corresponds to, say εbK(a1, b) and that a1 goes into z1. Then we find

a value z such that

K(z1, z)

is correct. Now that we have this value, we take as replacement function for

εbK(a, b)

not χ0(a), but the function χ1(a) defined by

χ1(z1) = z

χ1(a) = 0 for a 6= z1.

At this point we repeat the above procedure with χ1(a), the values of the

εbK(aν , b) (ν = 1, . . . , n) now being determined only after a value has been

chosen for

εaA(a, χ1(a)),

‖91 and thus we obtain one or two total replacements, E1, or E1 and E′
1.

Now either E1 (or E′
1) is final or for one of the ε-functionals that result

from

εbK(a1, b), . . . , εbK(an, b),

by the previous total replacement we again find a value z′, such that for a

certain z2

K(z2, z
′)
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is correct, while

K(z2, χ1(z))

is false. From this it directly follows that z2 6= z1.

Now, instead of χ1(a) we introduce χ(a)2 as replacement function by

means of the following definition:

χ2(z1) = z

χ2(z2) = z′

χ2(a) = 0 for a 6= z1, z2.

The replacement procedure is now repeated with this function χ2(a).

As we continue in this way, we obtain a sequence of replacement functions

χ0(a), χ1(a), χ2(a), . . . ,

each of which is formed from the preceding one by addition, for a new argu-

ment value, of a function value different from 0; and for every function χ(a)

we have one or two replacements, Ep, or Ep and E′
p. The point is to show that

this sequence of replacements terminates. For this purpose we first consider

the replacements

E0, E1, E2, . . . .

In these,

εaA(a, εbK(a, b))

is always replaced by 0; the εbK(aν , b) (ν = 1, . . . , n) therefore always go over

into the same ε-functionals; for each of these we put either 0 or a numeral

different from 0, ‖92 and this is then kept as a final replacement. Accordingly,
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at most n+1 of the replacements E0, E1, E2, . . . can be distinct.2 If, however,

Ek is identical with El, then neither one has, or else each has, a successor

replacement E′
k, or E′

l, and in these

εaA(a, εbK(a, b))

is then in both cases replaced by the same number found as a value, so that,

for both replacements, the εbK(aν , b) (ν = 1, . . . , n) also go over into the same

ε-functionals.

Accordingly, of the replacements E′
l for which El coincides with a fixed

replacement Ek again at most n + 1 can be distinct.

Hence there cannot be more than (n + 1)2 distinct Ep, or Ep and E′
p

altogether. From this it follows, however, that our.procedure comes to an

end at the latest with the replacement function χ(n+1)2(a). For, the replace-

ments associated with two distinct replacement functions χp(a) and χq(a),

q > p, cannot coincide completely, since otherwise we would by means of

χq(a) be led to the same value z∗ that has already been found by means of

χp(a), whereas this value is already used in the definition of the replacement

functions following χp(a), hence in particular also in that of χq(a).

3. Let us note, finally, that in order to take into consideration the axiom of

complete induction, which for the purpose of demonstrating the consistency

may be given in the form

(εaA(a) = b′) → Ā(b),

we need only, whenever we have found a value z for which a proposition B(a)

holds, go to the least such value by seeking out the first correct proposition

2[[See footnote 1.]]
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in the sequence

B(0), B(0′), . . . ,B(z)

of propositions that have been reduced to numerical formulas.3

3[[ In 1935, p. 213, end of footnote 1, Bernays writes that this last paragraph, on

mathematical induction, should be deleted. In 1927 Hilbert and his collaborators had

not yet gauged the difficulties facing consistency proofs of arithmetic and analysis. Ack-

ermann had set out (in 1924 ) to prove the consistency of analysis; but, while correcting

the printer’s proofs of his paper, he had to introduce a footnote, on page 9, that restricts

his rule of substitution. After the introduction of such a restriction it was no longer clear

for which system Ackermann’s proof establishes consistency. Certainly not for analysis.

The proof suffered, moreover, from imprecisions in its last part. Ackermann’s paper was

received for publication on 30 March 1924 and came out on 26 November 1924. In 1927,

received for publication on 29 July 1925 and published on 2 January 1927, von Neumann

criticized Ackermann’s proof and presented a consistency proof that followed lines some-

what different from those of Ackennann’s. The proof came to be accepted as establishing

the consistency of a first-order arithmetic in which induction is applied only to quantifier-

free formulas. When he was already acquainted with von Neumann’s proof, Ackermann

communicated, in the form of a letter, a new consistency proof to Bernays. This proof

developed and deepened the arguments used in Ackermann’s 1924 proof, and, like von

Neumann’s, it applied to an arithmetic in which induction is restricted to quantifier-free

formulas. It is with this proof of Ackermann’s that Hilbert’s remarks above (pp. 477-479)

and Bernays’s present comments are concerned. It was felt at that point, among the

members of the Hilbert school, that the consistency of full first-order arithmetic could be

established by relatively straightforward extensions of the arguments used by von Neu-

mann or by Ackermann (see Hilbert 1928a, p. 137, lines 20-21; 1930, p. 490, line 4u, to

p. 491, line 2; Bernays 1935, p. 211, lines 4-7). These hopes were dashed by Gödel’s 1931.

Ackermann’s unpublished proof was presented in Hilbert and Bernays 1939, pp. 93-130. In

1940 Ackermann gave a consistency proof for full first-order arithmetic, using a principle

of transfinite induction (up to ε0) that is not formalizable in this arithmetic.]]
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