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Hilbert’s new methodological approach for the founding of arithmetic, which

I will discuss, is a modified and more definite version of the plan that Hilbert

already had in mind for a long time and that he first expressed in his Hei-

delberg lecture. The previous, quite obscure hints have been replaced by a

sharply outlined and comprehensible program, the beginnings of which have

already been carried out.

1



The problem whose solution we are seeking here is that of proving the

consistency of arithmetic. First we have to recall how one arrives at the

formulation of this problem.

The development of arithmetic (in the wider sense, thus encompassing

analysis and set theory), as it has been done since the introduction of rigorous

methods, is an axiomatic one. This means that, as in the axiomatic ground-

ing of geometry, one begins by assuming a system of things with certain

relational properties [Verknüpfungseigenschaften]. In Dedekind’s foundations of

analysis the basis is taken to be the system of elements of the continuum,

and in Zermelo’s construction of set theory, it is the domain B [Operations-

bereich]. Also in the grounding of analysis that starts by considering number

sequences, the number series is conceived of as a closed, surveyable system,

akin to an infinite piano keyboard.

In the assumption of such a system with certain relational properties lies

something, as it were, transcendent for mathematics, and the question arises

as to which fundamental position one should take regrading it.

An appeal to an intuitive grasp of the number series as well as to the

manifold of magnitudes is certainly to be considered. ‖11 But, in any case,

this should not be a question of intuition in the primitive sense; for, in any

case, no infinite manifolds are given to us in the primitive mode of intu-

itive representation. And even though it might be quite rash to contest any

farther-reaching kind of intuitive evidence from the outset, we will neverthe-

less respect that tendency of exact science that aims to eliminate the finer

organs of cognition as far as possible and to use only the most primitive

means of cognition.
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According to this viewpoint we will consider whether it is possible to

ground those transcendent assumptions in such a way that only primitive

intuitive cognitions are applied. Because of this restricted use of cognitive

means, on the other hand, we cannot demand of this grounding that it allows

us to recognize as truths (in the philosophical sense) the assumptions that

are to be grounded. Rather, we will be content if one succeeds in showing

the arithmetic built on those assumptions to be a possible (i.e., consistent)

system of thought.

Hereby we have already arrived at the Hilbertian formulation of the prob-

lem. But before we look at how the problem must be tackled, we first have

to ask ourselves whether there is not a different and perhaps more natural

position to take on the transcendent assumptions.

In fact two different attempts suggest themselves and have also been un-

dertaken. The one attempt aims likewise at a demonstration of consistency,

not by the means of primitive intuition, but rather with the help of logic.

One will recall that the consistency of Euclidian geometry was already

proved by Hilbert using the method of reduction to arithmetic. That is

why it now seems appropriate to prove also the consistency of arithmetic by

reduction to logic.

Frege and Russell, in particular, vigorously tackled the problem of the

logical grounding of arithmetic.

In regard to the original goal, the result was negative.

First of all it became obvious with the famous paradoxes of set theory

that no greater certainty with respect to the usual mathematical methods is

achieved by a reduction to [Zurückgehen auf ] logic. The contradictions of naive
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set theory could be seen [ließen sich wenden] logically as well as set theoretically.

Also the control of inferences through the logical calculus, which had been

developed further ‖12 precisely for securing mathematical reasoning, did not

help in avoiding the contradictions.

When Russell then introduced the very cautious procedure of the [ram-

ified] higher order predicate calculus, it turned out that analysis and set

theory in their usual form could not be obtained in this way. Thus, Russell

and Whitehead, in Principia Mathematica, were forced to introduce an as-

sumption about the system of “first order” predicates, the so-called axiom of

reducibility.

But one thereby returned completely to the axiomatic standpoint and

gave up the goal of the logical grounding.

By the way, the difficulty appears already within the theory of whole

numbers. Here, to be sure, one succeeds—by defining the numbers [An-

zahlen] logically according to Frege’s fundamental idea—in proving the laws

of addition and multiplication and also the individual numerical equations as

logical theorems. However, by this procedure one does not obtain the usual

number theory, since one cannot prove that for every number there exists a

greater one—unless one expressly introduces some kind of axiom of infinity.

Even though the development of mathematical logic did not in principle

lead beyond the axiomatic standpoint, an impressive systematic construction

of all of arithmetic, equal in rank to the system of Zermelo, has nonetheless

emerged in this way.

Moreover, symbolic logic has taken us further in methodical knowledge:

Whereas one previously only took account of the assumptions of the mathe-
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matical theories, now also the inferences are made precise. And it turns out

that one can replace mathematical reasoning—in so far as only its outcomes

matter—by a purely formal manipulation (according to determinate rules)

in which actual thinking is completely eliminated.

However, as already said, mathematical logic does not achieve the goal

of a logical grounding of arithmetic. And it is not to be assumed that the

reason for this failure lies in the particular form of the Fregean approach.

It seems rather to be the case that the problem of reducing mathematics to

logic is completely ill-posed, namely, because mathematics and logic do not

stand at all to each other in the relationship of particular and general.

Mathematics and logic are based on two different directions of abstrac-

tion. While logic deals with the contentually most ‖13 general [das inhaltlich

Allgemeinste], (pure) mathematics is the general theory of the formal relations

and properties. Such that, on the one hand each mathematical consideration

is subject to the logical laws, while, on the other hand each logical figure-of-

thought falls into the domain of mathematical consideration because of the

external structure that necessarily comes with it.

In view of this situation one is impelled to an attempt that is, in a cer-

tain way, opposed to that of the logical grounding of arithmetic. Because

one fails to establish as logically necessary the mathematically transcendent

basic assumptions, the question arises whether these assumptions cannot be

dispensed with at all.

In fact, one possibility for eliminating the axiomatic basic assumptions

seems to consist of elimination entirely the existential form of the axioms

and replacing the existential assumptions by construction postulates.
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Such a replacement procedure is not new to the mathematician; espe-

cially in elementary geometry the constructive version of the axioms is often

applied. For example, instead of laying down the axiom that any two points

determine a line, one postulates the connection of two points by a line as a

possible construction.

Likewise, one can now proceed with the arithmetical axioms. For exam-

ple, instead of saying “each number has a successor,” one introduces progres-

sion by one or the attachment of +1 as a basic operation.

One thus arrives at the attempt of a purely constructive development of

arithmetic. And indeed this goal for mathematical thought is a very tempting

one: Pure mathematics should be the carpenter of its own house and not be

dependent on the assumption of a certain system of things.

This constructive tendency, which was first brought forcefully into promi-

nence by Kronecker, and later, in a less radical form, by Poincaré, is currently

pursued by Brouwer and Weyl in their new founding of arithmetic.

Weyl first checks the higher modes of inference in regard to the possibility

of a constructive reinterpretation; that is, he investigates whether or not the

methods of analysis as well as those of Zermelo’s set theory can be interpreted

constructively. He finds this impossible, for in the attempt to thoroughly

carry out a replacement of the existential axioms by constructive methods,

one constantly falls into logical circles. ‖14

From this Weyl draws the conclusion that the modes of inference of anal-

ysis and set theory have to be restricted to such an extent that in their

constructive interpretation no logical circles arise. In particular, he feels

compelled to give up the theorem of the existence of the upper bound.
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Brouwer goes even further in this direction by also applying the construc-

tive principle to large numbers. If one wants, as Brouwer does, to avoid the

assumption of a closed given totality of all numbers and to take as a foun-

dation only the act of progressing by one, performable without bound, then

statements of the form “There are numbers of such and such a type . . . ” do

not have a prima facie meaning. Thus, one is also not justified in generally

putting forward, for each number theoretical statement, the alternative that

either the statement holds for all numbers or that there is a number (respec-

tively, a pair of numbers, a triple of numbers, . . . ) by which it is refuted.

This way of applying the “tertium non datur” is then at least questionable.

Thereby we find ourselves in a great predicament: The most success-

ful, elegant, and time-tested modes of inference ought to be abandoned just

because, from a specific standpoint, one has no justification for them.

The unsatisfactoriness of such a procedure can not be overcome by the

considerations, by which Weyl tries to show that the concept formation of

the mathematical continuum, as it is fundamental for ordinary analysis, does

not correspond to the visual [bildlich] representation of continuity. <des

Stetigen>. For, an exact analogy to the content of perception is not at all

necessary for the applicability and the fruitfulness of analysis; rather, it is

perfectly sufficient that the method of idealization and conceptual interpola-

tion used in analysis be consistently applicable. As far as pure mathematics

is concerned, it only matters whether the usual, axiomatically characterized

mathematical continuum is in itself a possible, that is, a consistent, structure

[Gebilde].

At best, this question could be rejected if, instead of the hitherto pre-
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vailing mathematical continuum, we had at our disposal a simpler and more

perspicuous conception that would supersede it. But if one examines more

closely the new approaches by Weyl and Brouwer, one notices that a gain in

simplicity can not be hoped for here; rather, the complications required in

the concept formations and modes of inference are only increased instead of

decreased.

Thus, it is not justified to dismiss the question concerning the consistency

‖15 of the usual axiom system for arithmetic. And what we are to draw

from Weyl’s and Brouwer’s investigations is the result that a demonstration

of consistency is not possible by means of replacing existential axioms by

construction postulates.

So we come back to Hilbert’s idea of a theory of consistency based on a

primitive-intuitive foundation. And now I would like to describe the plan,

according to which Hilbert intends to develop such a theory, and the leading

principles to which he adheres in doing so.

Hilbert takes over what is positively fruitful from each of the two attempts

at grounding [mathematics] discussed above. From the logical theory he takes

the method of the rigorous formalization of inference. That this formalization

is necessary follows directly from the way the task is formulated. For the

mathematical proofs are to be made the object of a concrete-intuitive form

of view. To this end, however, it is necessary that they are projected, as it

were, into the domain of the formal. Accordingly, in Hilbert’s theory we have

to distinguish sharply between the formal image [Abbild] of the arithmetical

statements and proofs as the object of the theory, on the one hand, and

the contentual thought about this formalism, as the content of the theory,
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on the other hand. The formalization is done in such a way that formulas

take the place of contentual mathematical statements, and that a sequence

of formulas, following each other according to certain rules, takes the place

of an inference. But one does not attach any meaning to the formulas; the

formula does not count as the expression of a thought, but it corresponds

to a contentual judgment only insofar as it plays, within the formalism,

a role analogous to that which the judgment plays within the contentual

consideration.

More basic than this connection to symbolic logic is the contiguity of

Hilbert’s approach with the constructive theories of Weyl and Brouwer. For

Hilbert in no way wants to abandon the constructive tendency that aims at

the autonomy of mathematics; rather, he is especially eager to bring it to

bear in the strongest way. In light of what we stated with respect to the

constructive method, this appears at first to be incompatible with the goal

to demonstrate the consistency proof of arithmetic. In fact, however, the

obstacle to the unification of both goals lies only in a preconceived opinion

from which the advocates of the constructive tendency have always proceeded

until now, namely, that within the domain of arithmetic every construction

must indeed be a number construction (respectively set construction). ‖16

Hilbert considers this view to be a prejudice. A constructive reinterpreta-

tion of the existential axioms is possible not only in such a way that one

transforms them into generating principles for the construction of numbers;

rather, the mode of inference made possible by such an axiom can, as a whole,

be replaced by a formal procedure in a such a way that certain signs replace

general concepts like number, function, etc.
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Whenever concepts are missing, a sign will be readily available. This

is the methodical principle of Hilbert’s theory. An example should explain

what is meant. The existential axiom “Each number has a successor” holds in

number theory. In keeping with the restriction to what is concretely intuitive,

the general concept of number as well as the existential form of the statement

must now be avoided.

As mentioned above, the usual constructive reinterpretation consists in

this case in replacing the existential axiom by the procedure of progression

by one. This is a procedure of number construction. Hilbert, on the contrary,

replaces the concept of number by a symbol Z and lays down the formula:

Z(a)→ Z(a+ 1).

Here a is a variable for which any mathematical expression can be substi-

tuted, and the sign → represents the hypothetical propositional connective

“if—then,” that is, the following rule holds: if two formulas A and A → B

are written down, then B can also be written down.

On the basis of these stipulations, the mentioned formula accomplishes,

within the framework of the formalism, exactly what is otherwise accom-

plished by the existential axiom for contentual argumentation [Beweisführung].

Here we see how Hilbert utilizes the method of formalizing inferences

according to the constructive tendency; for him it is in no way merely a tool

for the demonstration of consistency. Rather, it is, at the same time, also

the way to a rigorous constructive development of arithmetic. Moreover,

the methodical idea of construction is here conceived of so broadly, that

also all higher mathematical modes of inference can be incorporated in the

constructive development.
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After having characterized the goal of Hilbert’s theory, I would now like

to outline the basic features of the theory. The following three questions are

to be answered:

1. The constructive development should represent the formal image [Ab-

bild] of the system of arithmetic and at the same time it should ‖17

the object for the intuitive theory of consistency. How does such a

development take shape?

2. How is the consistency statement to be formulated?

3. What are the means of the contentual consideration by which the

demonstration of consistency [Widerspruchslosigkeit] is to be carried out?

First, as far as the constructive development is concerned, it is accom-

plished in the following way. Above all, the different kinds of signs are intro-

duced, and at the same time the substitution rules are determined. Further-

more, certain formulas are layed down as basic formulas. And now “proofs”

are to be formed.

What counts here as a proof is a concretely written-down sequence of

formulas where for each formula the following alternative holds: Either the

formula is identical to a basic formula or to a preceding formula, or it results

from such a formula by a valid substitution; or, it constitutes the end formula

in an “inference,” that is, in a sequence of formulas of the type

A

A → B

B.
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Hence a “proof” is nothing else than a figure with certain concrete prop-

erties and such figures constitute the formal image [Abbild] of arithmetic.

This answer to the first question makes the urgency of the second espe-

cially evident. For what should the statement of consistency mean in regard

to the pure formalism? Isn’t it impossible that mere formulas can contradict

themselves?

The simple reply to this is: The contradiction is formalized just as well.

Faithful to his principle Hilbert introduces the letter Ω for the contradiction;

and the role of this letter within the formalism is determined by laying down

basic formulas in such a way that from any two formulas—to which contrary

statements correspond—Ω can be deduced. More precisely, by adding two

such formulas to the basic formulas, a proof with Ω as end formula can be

constructed.

In particular the basic formula

a = b→ (a 6= b→ Ω)

serves us here, where 6= is the usual sign of inequality. (The relation of

inequality is taken by Hilbert as a genuine arithmetical relation, just as

equality is, but not as the logical negation of ‖18 equality. Hilbert does not

introduce a sign for negation at all.)

Now, the statement of consistency is simply formulated as follows: Ω can

not be obtained as the end formula of a proof.

Hence, this claim is in need of a demonstration.

Now the only remaining question concerns the means by which this demon-

stration should be carried out. In principle this question is already settled.
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For our whole problem originates from the demand of taking only what is con-

cretely intuitive as a basis for mathematical considerations. Thus the matter

is simply to realize which tools are available to us from the concrete-intuitive

point of view. <Betrachtungsweise>

This much is certain: We are justified in using, to the full extent, the

elementary ideas of succession and order as well as the usual counting. (For

example, we can see whether there are three, or fewer, occurrences of the

sign → in a formula.)

However, we cannot get by in this way alone; rather, it is absolutely

necessary to apply certain forms of complete induction. Yet, in doing so we

do not go beyond the domain of what is concretely intuitive.

To wit, two types of complete induction are to be distinguished: the

narrower form of induction, which applies only to something completely and

concretely given, and the wider form of induction, which uses in an essential

manner either the general concept of whole number or the operating with

variables.

Whereas this wider form of complete induction is a higher mode of in-

ference which is to be grounded by Hilbert’s theory, the narrower form of

inference is part of primitive intuitive knowledge and can therefore be used

as a tool of contentual argumentation.

As typical examples of the narrower form of complete induction, as it is

used in the argumentations of Hilbert’s theory, the following two inferences

can be adduced:

1. If the sign + occurs at all in a concretely given proof, then, in reading

through the proof, one finds a place where it occurs for the first time.
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2. If one has a general procedure for eliminating, from a proof with a

certain concretely describable property E, the first occurrence of the

sign Z, without the proof ‖19 losing the property E in the process,

then one can, by repeated application of the procedure, completely

remove the sign Z from such a proof, without its losing the property

E.

(Notice, that here it is exclusively a question of formalized proofs, i.e.,

proofs in the sense of the definition given above.)

The method which the theory of consistency must follow is hereby set

forth in its essentials. Currently the development of this theory is still in its

early infancy; most of it has yet to be accomplished. In any case though, the

possibility in principle and the feasibility in practice of the required point of

view can already be recognized from what has been achieved so far; and one

also sees that the considerations to be employed here are mathematical in

the very genuine sense.

The great advantage of Hilbert’s procedure is just this: The problems

and difficulties that present themselves in the founding of mathematics are

transferred from the epistemologico-philosophical domain into the realm of

what is properly mathematical.

Mathematics creates here a court of arbitration for itself, before which

all fundamental questions can be settled in a specifically mathematical way,

without having to rack one’s brain about subtle questions of logical scruples

[Gewissensfragen] such as whether judgments of a certain form make sense or

not.

Hence we can also expect that the enterprise of Hilbert’s new theory will
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soon meet with approval and support within mathematical circles.

(Received October 13, 1921.)

15


