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If we look upon the intellectual relationships of the mathematical sciences

to philosophy as they have developed since the times of the Enlightenment,

we notice with satisfaction that at present mathematical thought is at the

point of regaining that powerful influence on philosophical speculation that it

possessed up to Kant’s time, which it then, suddenly, lost completely. That

sudden averting from mathematical thought was influenced by the general

estrangement from the spirit of the period of the Enlightenment that took

place at the beginning of the nineteenth century.

However, this detachment of philosophy from the exact sciences was only

a unilateral one. Namely, while the dominant philosophy became quite es-
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tranged1 from mathematics, a philosophical orientation evolved more and

more among mathematicians.

The essential reason for this was that mathematics had grown far beyond

the limits within which it had moved up to the time of Kant. Not only had

the domain of investigated facts grown considerably larger, but the whole

structure of the investigations became grander and the entire method more

encompassing. The concept-formations [Begriffsbildungen] rose to a higher

level of generality; the meaning of the formula became less important com-

pared with conceptual abstractions and systematic fundamental ideas. Fur-

thermore, the attitude toward the foundations and toward the object of the

mathematical sciences also changed.

The task of geometry was understood in broader terms. Geometrical

concepts became more general and freed themselves more and more from

the subordination to spatial intuition [Vorstellung]. Moreover, in the recent

geometrical theories the intuition of space no longer had the significance of

an epistemological foundation, but rather it was employed here merely in the

sense of an intuitive analogy.

In arithmetic, research experienced an essential extension of problem for-

mulation as well. On the one hand, the concepts of Number [Anzahl] and

of order [Ordnung] were, through the invention of set theory, generalized in

a completely |Mancosu: 190 new way and applied to infinite totalities. On the

other hand, the development of algebra led to numbers and quantities no

1Among those philosophers who in this respect represented a laudable exception,

Bolzano, in particular, must be mentioned, who first gave the rigorous foundation of

the theory of real numbers.
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longer exclusively viewed as objects of investigation; rather, mathematical

formalism itself was made an object of study, and one focused, very gener-

ally, on the examination of formalisms. Numbers as well as quantities now

appeared only as something special, and the more one examined their lawful-

ness under more general points of view, the more one became unaccustomed

to taking this lawfulness for granted. In this way, the whole development of

mathematics moved on: to rob of its appearance of exclusiveness and finality

all of that which was previously considered to be the only object of research,

and whose basic properties were considered as something to be accepted

by mathematics and neither capable nor in need of mathematical investi-

gation. The bounds the previous philosophical view, and even the Kantian

philosophy, had marked out for mathematics were burst. Mathematics no

longer allowed philosophy to prescribe the method and the bounds of its re-

search; rather it took the discussion of its methodological problems into its

own hands. In this way the axioms of the mathematical theories were more

precisely investigated on the basis of their logical relations, and the forms of

inference were subjected to more precise critique as well. And the more these

problems have been pursued, the more mathematical thought has shown its

fruitfulness with respect to them, and it has proved itself an indispensable

tool for theoretical philosophy.

David Hilbert has contributed in a significant way to this development,

which extends to the present. What he has accomplished in this field will be

described in what follows.

When Hilbert applied himself to the problems that were to be solved

concerning the foundations of mathematical thought, he had at his disposal
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not only his comprehensive command of the mathematical sciences, but he

was also above all, as it were, predestined for the task by his human dispo-

sition. Mathematics had for him the meaning of a world view, and he went

about those fundamental problems with the attitude of a conqueror who en-

deavors to secure a sphere of influence for mathematical thought that is as

comprehensive as possible.

In the pursuit of this goal the main point was to avoid the mistake of

those extreme rationalist thinkers who thought that a complete knowledge

of all that is real [alles Wirkliche] could be attained by pure thought. This

could not be a question of, say, including in mathematics all knowledge of the

factual [Tatsächliches]; rather it was necessary, for the purpose of the widest

possible extension of the domain of mathematics, to undertake a sharp delin-

eation of boundaries between the mathematical and the nonmathematical,

which would actually allow one to claim for mathematics all mathematical

components in cognition [alle mathematischen Bestandteile im Erkennen].

Hilbert has actually also understood the problem in this way. His first

and largest work in the field of methodological questions is the Foundations

of Geometry, which appeared in 1899. In this work, Hilbert laid out a new

system of axioms for geometry that he chose according to the criteria of

simplicity and logical completeness, following Euclid’s concepts as closely

as possible. He subdivided the whole system of axioms into five groups

of axioms and then investigated more precisely the part that the different

groups of axioms (as well as single axioms) have in the logical construction

of geometry. |Mancosu: 191

Through the wealth of new, fruitful methods and viewpoints it presented,
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this investigation has exercised a powerful influence on the development of

mathematical research. However, the significance of Hilbert’s “Foundations

of Geometry” by no means lies only in purely mathematical contents. What

conferred popularity on this book and made Hilbert’s name renowned far

beyond the circle of his colleagues was the new methodological turn that was

given to the idea of axiomatics.

The essence of the axiomatic method, that is, the method of logically

developing a science from axioms and definitions, consists, according to the

familiar conception, in the following: One starts with a few basic propositions

[Grundsätze], of whose truth one is convinced, puts them as axioms at the top,

and from them, by means of logical inference, one derives theorems whose

truth is then as certain as that of the axioms, precisely because they follow

logically from the axioms. In this view, attention is focused above all on the

epistemic character [Erkenntnischarakter] of the axioms. Indeed, originally one

recognized as axioms only propositions whose truth would be clear a priori.

And still Kant held the view that the success and the fruitfulness of the

axiomatic method in geometry and mechanics essentially rested on the fact

that in these sciences one could proceed from a priori knowledge (the axioms

of pure intuition and the principles of pure understanding [Verstand]).

This demand that each axiom should express an a priori knowable truth

was soon abandoned, for, in the manifold occasions that presented themselves

for the axiomatic method, especially in the further development of physics, it

followed, so to speak, automatically that one chose both empirical statements

and also mere hypotheses as axioms of physical theories. The axiomatic

procedure turned out to be especially fruitful in the cases where one succeeded
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in encompassing the results of multifarious experiences in a statement of

general character through the positing of an axiom. A famous example of

this is the two propositions about the impossibility of a perpetuum mobile of

the first and second type, which Clausius put at the top as axioms of the

theory of heat.

Moreover, the belief in the a priori knowledge of the geometrical axioms

was increasingly lost among the researchers in the exact sciences, mainly as

a consequence of non-Euclidian geometry and the persuasiveness of the ar-

guments by Helmholtz. Thus the empirical viewpoint, according to which

geometry is nothing but an empirical science, found more and more sup-

porters. However, this departure from a prioricity [vom Apriorismus] did not

essentially alter the view under which one considered the axiomatic method.

A more powerful change, however, was brought about by the systematic

development of geometry. Mathematical abstraction had, starting with el-

ementary geometry, raised itself far above the domain of spatial intuition

and had led to the construction of comprehensive systems, in which ordinary

Euclidian geometry could be incorporated and within which its lawlikeness

appeared only as one particular among others of equal mathematical rights.

With this a new sort of mathematical speculation opened up by means of

which one could consider the geometrical axioms from a higher standpoint.

It immediately became apparent, however, that this mode of consideration

had nothing to do with the question of the epistemic character of the axioms,

which had, after all, formerly been considered as the only significant feature

of the axiomatic method. Accordingly, the necessity of a clear separation

between the mathematical and the epistemological problems of axiomatics
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|Mancosu: 192 ensued. The demand for such a separation of the problems had

already been stated with full rigor by Klein in his Erlangen Programme.2

The important thing, then, about Hilbert’s “Foundations of Geometry” was

that here, from the beginning and for the first time, in the laying down of the

axiom system, the separation of the mathematical and logical [spheres] from

the spatial-intuitive [sphere], and with it from the epistemological foundation

of geometry, was completely carried out and expressed with complete rigor.

To be sure, in the introduction to his book Hilbert does express the

thought that laying down the axioms of geometry and the investigation of

their relationships is a task that amounts “to the logical analysis of our spa-

tial intuition,” and likewise he remarks in the first paragraph that each single

group of axioms expresses “certain related basic facts of our intuition.” How-

ever, these statements are located completely outside the axiomatic construc-

tion, which takes place without any reference whatsoever to spatial intuition.

Of course demands have always been placed upon a rigorous axiomatic

grounding of geometry that the proofs should exclusively appeal to what is

formulated in the axioms, and they must not rely upon spatial intuition in

any way. More recently, Pasch, in his foundation of geometry,3 has placed

importance on the carrying out of this demand and has been completely

consistent in doing so.

However, Hilbertian axiomatics goes one step further in the elimination

of spatial intuition. Reliance on spatial representation is completely avoided

here, not only in the proofs but also in the axioms and the concepts. The

2“Vergleichende Betrachtungen über neue geometrische Forschungen,” Mathematische

Annalen, Bd. 43, 1872.
3“Vorlesungen über neuere Geometrie,” 1882.
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words “point,” “line,” “plane” serve only as names for three different sorts of

objects, about which nothing else is assumed directly except that the objects

of each sort constitute a fixed determinate system. Any further characteriza-

tion is carried out only through the axioms. In the same way, expressions Re

“the point A lies on the line a” or “the point A lies between B and C” will not

be associated with the usual intuitive meanings; rather these expressions will

designate only certain, at first indeterminate, relations, which are implicitly

characterized4 only through the axioms in which these expressions occur.

According to this conception, the axioms are in no way judgments that

can be said to be true or false; they have a sense only in the context of the

whole axiom system. And even the axiom system as a whole does not con-

stitute the statement of a truth; rather, the logical structure of axiomatic

geometry in Hilbert’s sense—analogously to that of abstract group theory—

is a purely hypothetical one. If there are anywhere in reality three systems

of objects, as well as determinate relations between these objects, such that

the axioms of geometry hold of them (this means that by an appropriate

assignment of names to the objects and relations, the axioms turn into true

statements), then all theorems of geometry hold of these objects and rela-

tionships as well. Thus the axiom system itself does not express something

factual; rather, it presents only a possible form of a system of connections

that must be investigated mathematically according to its internal [innere]

properties.

Accordingly, the axiomatic treatment of geometry consists in separat-

ing the purely mathematical part of knowledge from geometry, considered

4One speaks in this sense of “implicit definition.”
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as a science of spatial figures, and investigating it on its own in isolation.

The spatial relationships are, as it were, projected into the sphere of the

mathematical-abstract in which the structure of their connections appears

as an object of pure mathematical, thought. |Mancosu: 193 This structure is

subjected to a mode of investigation that concentrates only on the logical

relations and is indifferent to the question of the factual truth, that is, the

question whether the geometrical connections determined by the axioms are

found in reality (or even in our spatial intuition).

This sort of interpretation of the axiomatic method presented in Hilbert’s

“Foundations of Geometry” offered the particular advantage of not being

restricted to geometry but of being directly applicable to other disciplines.

From the beginning, Hilbert envisaged the point of view of the uniformity

of the axiomatic method in its application to the most diverse domains, and

guided by this viewpoint, he tried to bring this method to bear as widely as

possible. In particular, he succeeded in grounding axiomatically the kinetic

theory of gases as well as the elementary theory of radiation in a rigorous

way.

Many mathematicians subscribed to Hilbert’s axiomatic mode of investi-

gation and worked in the spirit of his endeavors. In particular, it was a great

success of axiomatics when Zermelo, in the field of set theory, overcame the

existing uncertainty of inference by a suitable axiomatic delimitation of the

inferential modes and, at the same time, created with his system a common

foundation for number theory, analysis, and set theory.5

5“Untersuchungen über die Grundlagen der Mengenlehre,” Mathematische Annalen,

Bd. 65, 1907.
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In his Zurich lecture on “Axiomatic Thought” (1917),6 Hilbert has given

a summary of the methodological guiding principles and an overview of the

results of axiomatic research. In his lecture he characterizes the axiomatic

method as a general procedure for scientific thinking. This procedure can be

applied in all areas of knowledge where one has already come to the point

of setting up a theory, or, as Hilbert says, to an arrangement of the facts

by means of a framework of concepts. Thus each time we see that a few

propositions suffice for the logical construction of the theory, and through

this the axiomatic foundation of the theory is made possible. This will at

first take place in the sense of the old axiomatics; however, one can always

move on to Hilbert’s axiomatic standpoint by disregarding the epistemic

character of the axioms and by considering the whole framework of concepts

only (as a possible form of a connection of relations) in its internal structure.

Accordingly, the theory turns into the object of a purely mathematical

investigation, exactly what is called axiomatic investigation. The same main

questions must always be considered for all theories: First of all, the axiom

system, with which a system of connection of relations is represented, must

satisfy the condition of consistency ; that is, the relations expressed in the ax-

ioms must be logically compatible with one another. Consequently, the task

of proving the consistency of the axiom system arises. The old axiomatics

was not familiar with this problem because for this conception every axiom

indeed counts as a statement of a truth. After that it is a question of gaining

an overview of the logical dependencies among the different theorems of the

theory. A particular focus of investigation must be whether the axioms are

6Mathematische Annalen, Bd. 78
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logically independent of each other, or whether, say, one or more axioms can

be proven from the remaining ones and are thus superfluous in their role as

axioms. In addition, there remains the task of investigating the possibilities

of a “deepening of the foundations,” that is, examining whether the given

axioms of the theory might not be reduced to propositions of a more funda-

mental character that would then constitute “a deeper layer of axioms” for

the framework of concepts under consideration.

|Mancosu: 194 This sort of investigation, which is definitely of a mathemat-

ical character, can now be applied to any domain of knowledge that is at all

suitable for theoretical treatment, and its realization is of the highest value

for the clarity of knowledge and for a systematic overview. Thus mathemat-

ical thought gains a universal significance for scientific cognition [Erkennen]

through the idea of axiomatics. Hilbert can indeed claim: “everything that

can be the object of scientific thought is subject, as soon as it is ripe for

the construction of a theory, to the domain of axiomatics and thereby of

mathematics.”

By means of this comprehensive development [Ausgestaltung] of axiomatic

thought, a sufficiently wide context was indeed obtained for the mathematical

formulation of problems, and the epistemological fruitfulness of mathemat-

ics was made clear. But with regard to the certainty of the mathematical

procedure, a fundamental question still remained open.

Of course, the task of proving the consistency of the axiom system was

indeed recognized as first and foremost in the axiomatic investigation of a

theory. In fact, the consistency of the axioms represents the vital question

for any axiomatic theory, for whether.the framework of concepts represents
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a connection of relations or only the appearance of such a connection at all

depends on this question.

If we now examine how things stand with the proof of consistency for

the several geometrical and physical theories that have been axiomatically

grounded, then we find that this proof is produced in general only in a

relative sense: The consistency of the axiom system to be investigated is

proven by exhibiting a system of objects and of relations within mathemati-

cal analysis that satisfies the axioms. This “method of reduction” to analy-

sis (i.e., to arithmetic in the wider sense) presupposes that analysis itself—

independently of whether it is considered as a body of knowledge [Inbegriff

von Erkenntnissen] or only as an axiomatic structure (i.e., as a merely possible

system of relations)—constitutes a consistent system.

However, the consistency of analysis is not as immediately evident as one

would first like to think. The modes of inference that are used in the theory of

real numbers and real functions do not have that character of direct evidence

[Charakter des unmittelbar Handgreiflichen], which is characteristic, for instance,

of the inferences of elementary number theory. And if one wants to free the

methods of proof from everything problematic, then one is compelled to set

up a theory of analysis axiomatically. Thus it turns out to be necessary also

to provide a consistency proof for analysis.

From the beginning, Hilbert has recognized and emphasized the need for

such a proof for the certainty of the axiomatic method and of mathemat-

ics in general. And although his efforts concerning this problem have not

yet reached the ultimate goal, he has nonetheless succeeded in finding the

methodological approach by which the task can be mathematically under-
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taken. Hilbert stated the main idea of this approach by 1904 in his Hei-

delberg lecture “On the Foundations of Logic and Arithmetic.”7 However,

these comments were difficult to understand and were subject to some ob-

jections. Since then, Hilbert has pursued his plan further and has given a

comprehensible form to his ideas, which he recently presented in a series of

lectures in Hamburg. ne reasoning on which Hilbert’s approach to the foun-

dation of arithmetic and analysis is based is as follows: the methodological

difficulties of analysis, on the |Mancosu: 195 basis of which in this science one is

compelled to go beyond the scope of what is concretely representable, follow

from the fact that continuity and infinity play here an essential role. This

circumstance would also constitute an insuperable obstacle to the proof of

the consistency of analysis, if this proof had to be carried out in the sense

that one shows that a system of things as assumed in analysis, say the system

of all finite or infinite sets of natural numbers, is logically possible.

However, the claim of consistency need not at all be proven in this sense.

Rather, one can give the following new twist to the claim: The modes of in-

ference of analysis can never lead to a contradiction or, what amounts to the

same thing: It is impossible to derive the relation 1 6= 1 (“1 is different from

1”) from the axioms of analysis and by means of its methods of inference.

Here it is not a question of the possibility of a continuous, infinite manifold of

certain properties, but of the impossibility of a mathematical proof with de-

terminate properties. A mathematical proof is, however, unlike a continuous

infinite manifold, a concrete object surveyable in all its parts. A mathe-

matical proof must, at least in principle, be completely communicable from

7Appendix VII to the “Grundlagen der Geometrie.”
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beginning to end. Moreover, the required property of the proof (i.e., that it

proceeds according to the principles of analysis and leads to the final result

1 6= 1) is also a concretely determinable property. seat is why there is def-

initely, also, in principle, the possibility of furnishing a proof of consistency

for analysis by means of elementary, and obviously certain, considerations.

We only have to take the standpoint that the object of investigation is not

constituted by the objects to which the proofs in analysis refer, but rather

these proofs themselves. On the basis of this consideration, the task arises

then for Hilbert to examine more precisely the forms of mathematical proofs.

We must, he says in his lecture on axiomatic thought, “make the concept of

specific mathematical proof itself the object of our investigation, exactly as

the astronomer takes into account the motion of his location, the physicist

concerns himself with the theory of his apparatus, and the philosopher crit-

icizes reason itself.” The general forms of logical inference are decisive for

the structure of mathematical proofs. That is why the required investigation

of mathematical proofs also concerns the logical forms of inference. And

thus Hilbert pointed out already in the Heidelberg lecture that “a partially

simultaneous development of the laws of logic and arithmetic [is] necessary.”

With this thought Hilbert took up mathematical logic. This science, the

main idea of which goes back to Leibniz, emerged from primitive beginnings

and developed into a fruitful field of mathematical thought in the second half

of the nineteenth century. Mathematical logic has developed the methods for

acquiring a mathematical mastery of the forms of logical inference through a

symbolic denotation of the simplest logical relations (as “and,” “or”, “not,”

and “all”). It turned out that only by means of this “logical calculus” does
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one gain the complete overview of the system of logical forms of inference.

The inferential figures, which are dealt with in traditional logic, constitute

only a relatively small subfield of this system. In particular, Peano, Frege,

and Russell succeeded in setting up the logical calculus in such a way that

the intellectual inferences [gedankliche Schlüsse] of mathematical proofs can be

perfectly reproduced by means of symbolic operations.

This procedure of the logical calculus supplements the method of the

axiomatic grounding of a science, to the extent that such a procedure makes

possible, along with the exact laying down of the presuppositions as it is

brought about by the|Mancosu: 196 axiomatic method, an exact pursuit of the

inference modes with the aid of which one proceeds from the principles of a

science to its conclusions.

In adopting the procedure of mathematical logic, Hilbert reinterpreted it

as he had done with the axiomatic method. Just as he had formerly stripped

the basic relations and axioms of geometry of their intuitive content, he

now eliminates the intellectual content of the inference from the proofs of

arithmetic and analysis that he makes the object of his investigation. He

obtains this by taking the systems of formulas that represent those proofs in

the logical calculus, detached from their contentual-logical interpretations, as

the immediate object of study, and by replacing the proofs of analysis with

a purely formal manipulation that takes place with certain signs according

to definite rules.

Through this mode of consideration, in which the separation of what is

specifically mathematical from everything contentual reaches its high point,

Hilbert’s view on the nature of mathematics and on the axiomatic method
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then finds its actual conclusion. For we recognize at this point that the sphere

of the mathematical-abstract, into which the methods of thought of math-

ematics translate all that is theoretically comprehensible, is not that of the

contentual-logical [inhaltlich Logisches] but rather that of the domain of pure

formalism. Mathematics turns out to be the general theory of formalisms,

and by understanding it as such, its universal meaning also becomes clear.

This meaning of mathematics as general theory of forms has come to light

in recent physics in a most splendid way, especially in Einstein’s gravitational

theory, in which the mathematical formalism gave Einstein the guidelines for

setting up his gravitational laws, the exact form of which could never have

been found without enlisting mathematical tools. And it was once again

Hilbert who first brought gravitational law to its simplest mathematical form

by showing the possibility of a harmonious combination of gravitational the-

ory with electrodynamics, which has further opened mathematical specula-

tions that are connected with Einstein’s theory and were then systematically

completed by Weyl by means of his geometrical ideas. If these speculations

should prove to be worthwhile in physics, then the triumph of mathematics

in modem science would thereby be complete.

If we now observe the ideas yielded by Hilbert’s philosophical investi-

gations as a whole, as well as the effect they have had, and if we, on the

other hand, bear in mind the development of mathematics in the recent past

as initially outlined, then the important thing about Hilbert’s philosophical

accomplishment appears to us to consist of the following. By developing a

broad-minded philosophical conception of mathematics, which made it possi-

ble to do justice to the meaning and scope of its method, Hilbert has shown,
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with force and success, the claim to a universal influence in science that math-

ematics has gained by its inner consolidation and its ambitious formulation.

The friends of mathematics will always be indebted to him for this.

17


