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If we consider the intellectual relationship of the mathematical sciences
to philosophy, as they have developed since the time of the Enlightenment,
we notice with satisfaction that mathematical thought is now at the point of
regaining the powerful influence on philosophical speculation that it had up
to Kant’s time, but then suddenly lost completely. That sudden turn from
mathematical thought was influenced by the general turn from the spirit of
the Enlightenment period that took place at the beginning of the nineteenth
century.

This detachment of philosophy from the exact sciences was, however,
only a unilateral one: While the dominant philosophy became completely
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4 1. HILBERT’S SIGNIFICANCE (1922)

estranged1 from mathematics, a philosophical orientation evolved more and
more among mathematicians.

The most important reason for this was that mathematics had grown far
beyond the framework within which it had moved up to the time of Kant. Not
only had the domain of investigated facts grown considerably, but the whole
form of the investigations became grander and the entire method more en-
compassing. The concept-formations rose to a higher level of generality; the
meaning of the formula became less important than conceptual abstractions
and leading systematic ideas. Furthermore, the attitude toward the founda-
tions and toward the object of the mathematical sciences also changed.

The task of geometry was understood in broader terms. Formation of
geometrical concepts became more general and freed themselves more and
more from the connection to spatial representation. In the recently developed
geometrical theories, moreover, intuition of space no longer had the signifi-
cance of an epistemological foundation, but was rather employed merely in
the sense of an intuitive analogy.

In arithmetic, research experienced an essential extension of the formu-
lation of problems as well. On the one hand, the concepts of number and of
order were generalized, through the invention of set theory, in a completely
new way and applied to infinite totalities. On the other hand, the develop-
ment of algebra led to numbers and quantities no longer being exclusively
viewed as the objects of investigation; rather, the formalism of calculation
itself was made an object of study, and one made, very generally, the consid-
eration of formalisms one’s task. Numbers as well as quantities now appeared
only as something special, and the more one examined their lawfulness from
more general points of view, the more one was weaned away from taking this
lawfulness for granted.

In this way, the whole development of mathematics moved on: to rob
of its appearance of exclusiveness and finality all that which had previously
been considered to be the only object of research, and whose basic properties
were considered as something to be accepted by mathematics and neither
capable nor in need of mathematical investigation. The framework which
earlier philosophical views, and even Kantian philosophy, had marked out
for mathematics was spring. Mathematics no longer allowed philosophy to

1Among those philosophers who represented in this respect a laudable exception,
Bolzano must be mentioned in particular; he gave the first rigorous foundation of the
theory of real numbers.
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prescribe the method and the bounds of its research; rather it took the dis-
cussion of its methodological problems into its own hands. In this way the
axioms of the mathematical theories were investigated in regard to their log-
ical relationships, and the forms of inference were subjected to more precise
critique as well. And the more these problems have been pursued, the more
mathematical thought has shown its fruitfulness with respect to them, and
it has proved itself as an indispensable tool for theoretical philosophy.

To this development, which extends to the present, David Hilbert has
contributed isignificantly. What he has accomplished in this field will be
described in what follows.

When Hilbert applied himself to the problems that were to be solved
concerning the foundations of mathematical thought, he not only had at his
disposal his comprehensive command of the mathematical methods, but he
was also above all, as it were, predestined for the task by his human dispo-
sition. For mathematics had for him the significance of a world view, and
he approached those fundamental problems with the attitude of a conqueror
who endeavors to secure for mathematical thought a sphere of influence which
is as comprehensive as possible.

The main point, while pursuing this goal, was to avoid the mistake of
those extreme rationalist thinkers who thought that complete knowledge
of everything real could be attained by pure thought. There could be no
question of, say, incorporating into mathematics all knowledge of the fac-
tual; rather it was necessary, for extending the realm of mathematics in the
widest possible way, to delineate sharply the boundaries between the math-
ematical and the nonmathematical. That would actually allow one to claim
for mathematics all mathematical components of knowledge.

In fact, Hilbert also understood the problem in this way. His first and
largest work in the field of methodological questions is the Foundations of
Geometry, which appeared in 1899. In this work, Hilbert laid out a new
system of axioms for geometry that he chose according to the criteria of
simplicity and logical completeness, following Euclid’s concept-formations as
closely as possible. He divided the whole system of axioms into five groups of
axioms and then investigated more precisely the share the different groups of
axioms (as well as single axioms) have in the logical development of geometry.

Through its wealth of new, fruitful methods and viewpoints, this investi-
gation has exercised a powerful influence on the development of mathematical
research. However, the significance of Hilbert’s foundations of geometry by
no means lies only in its purely mathematical content. Rather, what made
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this book popular and Hilbert’s name renowned, far beyond the circle of his
colleagues, was the new methodological turn that was given to the idea of
axiomatics.

The essence of the axiomatic method, i. e., the method of logically de-
veloping a science from axioms and definitions, consists according to the
familiar conception in the following: One starts with a few basic proposi-
tions, of whose truth one is convinced, puts them as axioms at the top, and
derives from them by means of logical inference theorems; their truth is then
as certain as that of the axioms, precisely because they follow logically from
the axioms. In this view, attention is focused above all on the epistemic
character of the axioms. Indeed, originally one considered as axioms only
propositions whose truth was evident a priori . And Kant still held the view
that the success and the fruitfulness of the axiomatic method in geometry
and mechanics essentially rested on the fact that in these sciences one could
proceed from a priori knowledge (the axioms of pure intuition and the prin-
ciples of pure understanding).

Of course, the demand that each axiom expresses an a priori knowable
truth was soon abandoned. For on the manifold occasions that presented
themselves for the axiomatic method, especially in the further development
of physics, it followed, so to speak, automatically that one chose both empir-
ical statements and also mere hypotheses as axioms of physical theories. The
axiomatic procedure turned out to be especially fruitful in cases where one
succeeded in encompassing the results of multifarious experiences in a state-
ment of general character through positing an axiom. A famous example of
this is that of the two propositions about the impossibility of a perpetuum
mobile of the first and second type ; Clausius put them as axioms at the top
of the theory of heat.

In addition, the belief in the a priori knowledge of the geometrical axioms
was increasingly lost among the researchers in the exact sciences, mainly as a
consequence of non-Euclidian geometry and under the influence of Helmholtz’
arguments. Thus the empirical viewpoint, according to which geometry is
nothing but an empirical science, found more and more supporters. However,
this abandonment of a prioricity did not alter essentially the perspective on
the axiomatic method.

A more powerful change, however, was brought about by the systematic
development of geometry. Starting out from elementary geometry, mathe-
matical abstraction had raised itself far above the domain of spatial intuition;
it had led to the construction of comprehensive systems, in which ordinary
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Euclidian geometry could be incorporated and within which its lawlikeness
appeared only as a special case among others with equal mathematical jus-
tification. In this way, a new sort of mathematical speculation opened up,
by means of which one could consider the geometrical axioms from a higher
standpoint. It immediately became apparent, however, that this type of con-
sideration had nothing to do with the question of the epistemic character of
the axioms, which of course had formerly been considered as the only signif-
icant feature of the axiomatic method. Accordingly, the necessity of a clear
separation between the mathematical and the epistemological problems of
axiomatics ensued. The demand for such a separation of the problems had
already been stated with full clarity by Klein in his Erlangen Program.2

What was essential, then, about Hilbert’s foundation of geometry was
that here, from the beginning and for the first time, in the laying down of
the axiom system, the separation of the mathematical and logical realm from
the spatial-intuitive realm, and thereby from the epistemological foundation
of geometry, was carried out completely and brought to rigorous expression.

To be sure, in the introduction to his book Hilbert does express the
thought that laying down the axioms for geometry and the investigation
of their relationships is a task that amounts “to the logical analysis of our
spatial intuition,” and likewise he remarks in the first section that each single
of these groups of axioms expresses “certain basic facts of our intuition which
belong together.”a But these statements are located completely outside the
axiomatic development, which is carried out without any reference to spatial
intuition.

A strict axiomatic grounding of geometry has of course always to satisfy
the demand that the proofs should exclusively appeal to what is formulated
in the axioms, and that they not draw, in any way, on spatial intuition. In
recent times, it was especially Pasch who, in his foundation of geometry,3 em-
phazised the importance of this requirement and has done so in a consistent
way.

However, Hilbertian axiomatics goes even one step further in the elimi-
nation of spatial intuition. Drawing on spatial representation is completely

2Vide [?].
3Vide [?].

aVide [?], pp. , .
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avoided here, not only in the proofs but also in the axioms and the concept-
formations. The words “point,” “line,” “plane” serve only as names for three
different sorts of objects, about which nothing else is directly assumed ex-
cept that the objects of each sort constitute a fixed determinate system.
Any further characterization, then, follows from the axioms. In the same
way, expressions like “the point A lies on the line a” or “the point A lies be-
tween B and C” are not associated with the usual intuitive meanings; rather
these expressions will designate only certain, at first indeterminate, relations,
which are implicitly characterized4 only through the axioms in which these
expressions occur.

In consequence of this conception, the axioms are in no way judgments,
that can be said to be true or false; after all, they have a sense only in the
context of the whole axiom system. And even the axiom system as a whole
does not state a truth; rather, the logical structure of axiomatic geometry in
Hilbert’s sense—completely analogous to that of abstract group theory—is
a purely hypothetical one. If there are anywhere in reality three systems
of objects, as well as determinate relations between these objects, such that
the axioms of geometry hold of them (this means that by an appropriate
assignment of names to the objects and relations, the axioms turn into true
assertions), then all theorems of geometry hold of these objects and relations
as well. Thus the axiom system itself does not express something factual;
rather, it presents only a possible form of a system of connections that must
be investigated mathematically according to its internal properties.

Accordingly, the axiomatic treatment of geometry amounts to separat-
ing the purely mathematical part of knowledge from geometry, considered
considered as a science of spatial figures, and investigating it in isolation on
its own. The spatial relationships are, as it were, mapped into the sphere
of the mathematical-abstract in which the structure of their interconnec-
tions appears as an object of pure mathematical thought. This structure is
subjected to a mode of investigation that concentrates only on the logical
relations and is indifferent to the question of the factual truth, that is, the
question whether the geometrical connections determined by the axioms are
found in reality (or even in our spatial intuition).

This sort of interpretation, which the axiomatic method in Hilbert’s Foun-
dations of Geometry presented, offered the particular advantage of not being

4One speaks in this sense of “implicit definition.”
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restricted to geometry but indeed of being transferable to other disciplines
without further ado. From the beginning, Hilbert envisaged the point of view
of the uniformity of the axiomatic method in its application to the most di-
verse domains, and guided by this viewpoint, he tried to bring this method
to bear as widely as possible. In particular, he succeeded in grounding ax-
iomatically the kinetic theory of gases as well as the elementary theory of
radiation in a rigorous way.

In addition, many mathematicians subscribed to Hilbert’s axiomatic mode
of investigation and worked in the spirit of his endeavors. In particular, it
was a success of axiomatics when Zermelo, in the field of set theory, overcame
the existing uncertainty of inference by a suitable axiomatic delimitation of
the modes of inference and, at the same time, created with his system a
common foundation for number theory, analysis, and set theory.5

In his Zurich lecture on “ Axiomatic Thought” (1917),6 Hilbert gave
a summary of the leading methodological thoughts and an overview of the
results of research in axiomatics. Here he characterizes the axiomatic method
as a general procedure for scientific thinking. In all areas of knowledge,
in which one has already come to the point of setting up a theory, or, as
Hilbert says, to an arrangement of the facts by means of a framework of
concepts, this procedure sets in. Then, it always becomes obvious that a few
propositions suffice for the logical construction of the theory, and through this
the axiomatic foundation of the theory is made possible. This will at first take
place in the sense of the old axiomatics. However, one can always—as within
geometry—move on to Hilbert’s axiomatic standpoint by disregarding the
epistemic character of the axioms and by considering the whole framework of
concepts only (as a possible form of a system of interconnected relationships)
in regard to its internal structure.

Thus, the theory turns into the object of a purely mathematical investiga-
tion, just what is called an axiomatic investigation. And, to be sure, the same
principle questions must always be considered for any theory: First of all, in
order to represent a possible system of interconnected relations, the axiom
system must satisfy the condition of consistency ; i. e., the relations expressed
in the axioms must be logically compatible with one another. Consequently,
the task of proving the consistency of the axiom system arises—a problem
with which the old conception of axiomatics was not acquainted, since here

5Vide [?].
6Vide [?].
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indeed every axiom counts as stating a truth. Then comes the question of
gaining an overview of the logical dependencies among the different theorems
of the theory. A particular focus of investigation must be on whether the ax-
ioms are logically independent of each other or whether, say, one or more
axioms can be proved from the remaining ones and are thus superfluous in
their role as axioms. In addition, there remains the task of investigating the
possibilities of a “deepening of the foundations” of the theory, i. e., examining
whether the given axioms of the theory might not be reduced to propositions
of a more fundamental character that would then constitute “a deeper layer
of axioms” for the framework of concepts under consideration.b

This sort of investigation, which is of a mathematical character through-
out, can now be applied to any domain of knowledge that is at all suitable
for theoretical treatment, and its execution is of the highest value for the
clarity of knowledge and for a systematic overview. Thus, through the idea
of axiomatics, mathematical thought gains a universal significance for scien-
tific knowledge. Hilbert can indeed claim: “Everything whatsoever, that can
be the object of scientific thought is subject, as soon as it is ripe for the for-
mation of a theory, to the axiomatic method and thereby to mathematics.”c

Now, by means of this comprehensive development of the axiomatic idea,
a sufficiently wide framework for the mathematical formulation of problems
was indeed obtained, and the epistemological fruitfulness of mathematics was
made clear. But with regard to the certainty of the mathematical procedure,
a fundamental question still remained open.

Namely, the task of proving the consistency of the axiom system was
indeed recognized as first and foremost in the axiomatic investigation of a
theory. In fact, the consistency of the axioms is the vital question for any
axiomatic theory; for whether the framework of concepts represents a system
of interconnected relations at all or only the appearance of such a system
depends on this question.

If we now examine how things stand with the proof of consistency for
the several geometrical and physical theories that have been axiomatically
grounded, then we find that this proof is produced in every case only in
a relative sense: The consistency of the axiom system to be investigated is
proved by exhibiting a system of objects and of relations within mathematical
analysis that satisfies the axioms. This “method of reduction” to analysis

bVide [?], p. .
cVide [?], p. .
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(i. e., to arithmetic in the wider sense) presupposes that analysis itself—
independently of whether it is considered as a body of knowledge or only
as an axiomatic structure (i. e., as a merely possible system of relations)—
constitutes a consistent system.

However, the consistency of analysis is not as immediately evident as one
would like to think at first. The modes of inference applied in the theory
of real numbers and real functions do not have that character of tangible
evidence which is characteristic, for instance, of the inferences of elementary
number theory. And if one wants to free the methods of proof from everything
that is somehow problematic, then one is compelled to axiomatically set up
analysis. Thus it turns out to be necessary to provide also a consistency
proof for analysis.

From the beginning, Hilbert recognized and emphasized the need for such
a proof to guarantee the certainty of the axiomatic method and of mathe-
matics in general. And although his efforts concerning this problem have not
yet reached the ultimate goal, he has nonetheless succeeded in finding the
methodological approach by which the task can be mathematically under-
taken.

Hilbert presented the main ideas of this approach already in 1904 in his
Heidelberg lecture “On the Foundations of Logic and Arithmetic.”7 How-
ever, this exposition was difficult to understand and was subject to some
objections. Since then, Hilbert has pursued his plan further and has given a
comprehensible form to his ideas, which he recently presented in a series of
lectures in Hamburg.

The line of thought on which Hilbert’s approach to the foundations of
arithmetic and analysis is based is the following: The methodological dif-
ficulties of analysis, on the basis of which in this science one is compelled
to go beyond the framework of what is concretely representable, result from
the fact that here continuity and infinity play an essential role. This circum-
stance would also constitute an insuperable obstacle to the consistency proof
for analysis, if this proof had to be carried out by showing that a system of
things as assumed by analysis, say the system of all finite or infinite sets of
whole numbers, is logically possible.

However, the claim of consistency needs not at all be proved in this way.
Rather, one can give the following entirely different twist to the claim: The

7Appendix VII to [?].
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modes of inference of analysis can never lead to a contradiction or, what
amounts to the same thing: It is impossible to derive the relation 1 �= 1 (“1 is
not equal to 1”) from the axioms of analysis and by means of its methods of
inference. Here it is not a question concerning the possibility of a continuous,
infinite manifold of certain properties, but concerning the impossibility of a
mathematical proof with determinate properties. A mathematical proof is,
however, unlike a continuous infinite manifold, a concrete object surveyable in
all its parts. A mathematical proof must, at least in principle, be completely
communicable from beginning to end. Moreover, the required property of the
proof (i. e., that it proceeds according to the principles of analysis and leads to
the final result 1 �= 1) is also a concretely determinable property. This is why
there is also, in principle, the possibility of furnishing a proof of consistency
for analysis by means of elementary, and evidently certain, considerations.
We only have to take the standpoint that the object of investigation is not
constituted by the objects to which the proofs of analysis refer, but rather
these proofs themselves.

On the basis of this consideration, the task arises then for Hilbert to
examine more precisely the forms of mathematical proofs. We must, so he
says in his lecture on axiomatic thought, “make the concept of specific math-
ematical proof itself the object of an investigation, just as the astronomer
takes into account the motion of his location, the physicist concerns himself
with the theory of his apparatus, and the philosopher criticizes reason it-
self.”d The general forms of logical inference are decisive for the structure of
mathematical proofs. That is why the required investigation of mathematical
proofs must, in any case, also concern the logical forms of inference. Accord-
ingly, already in the Heidelberg lecture, Hilbert explained that “a partially
simultaneous development of the laws of logic and arithmetic is necessary.”

With this thought Hilbert took up mathematical logic. This science,
whose idea goes back to Leibniz, and which, in the second half of the nine-
teenth century developed from primitive beginnings into a fruitful field of
mathematical thought, has developed the methods for achieving a mathe-
matical mastery of the forms of logical inference through a symbolic notation
for the simplest logical relations (as “and,” “or,” “not,” and “all”). It turned
out that by this “logical calculus” only one gains the complete overview of
the system of logical forms of inference. The inferential figures, which are

dVide [?], p. .
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dealt with in traditional logic, constitute only a relatively small subfield of
this system. Peano, Frege, and Russell in particular, succeeded in developing
the logical calculus in such a way that the mental inferences of mathematical
proofs can be perfectly imitated by means of symbolic operations.

This procedure of the logical calculus forms a natural supplement to the
method of the axiomatic grounding of a science to the following extent: It
makes possible, along with the exact determination of the presuppositions—
as it is brought about by the axiomatic method—also an exact pursuit of the
modes of inference by which one proceeds from the principles of a science to
its conclusions.

In adopting the procedure of mathematical logic, Hilbert reinterpreted it
as he had done with the axiomatic method. Just as he had formerly stripped
the basic relations and axioms of geometry of their intuitive content, he now
eliminates the intellectual content of the inferences from the proofs of arith-
metic and analysis which he takes as the object of his investigation. He
achieves this by taking the systems of formulas, by which those proofs are
represented in the logical calculus—detached from their contentual-logical
interpretations—, as the immediate object of consideration, and thereby re-
placing the proofs of analysis with a purely formal manipulation of definite
signs according to fixed rules.

Through this mode of consideration, in which the separation of the specifi-
cally mathematical from everything contentual reaches its high point, Hilbert’s
view on the nature of mathematics and on the axiomatic method finally finds
its real completion. For we recognize at this point that that sphere of the
abstract mathematical, into which the method of thought of mathematics
translates all that is theoretically comprehensible, is not the sphere of logical
contentual but rather the domain of pure formalism. Mathematics turns out
to be the general doctrine of formalisms, and by understanding it as such,
its universal significance also becomes immediately.

This meaning of mathematics as a general doctrine of forms has come to
light in recent physics in a most splendid way, especially in Einstein’s theory
of gravitation, in which the mathematical formalism gave Einstein the lead-
ing idea for setting up his law of gravitation, whose more exact form could
never have been found without enlisting mathematical tools. And here it
was once again Hilbert who first brought this law of gravitation to its sim-
plest mathematical form. And by showing the possibility of a harmonious
combination of the theory of gravitation with electrodynamics, he initiated
the further mathematical speculations connected to Einstein’s theory which
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were brought to systematic completion by Weyl with the help of his geomet-
rical ideas. If these speculations should stand the test in physics, then the
triumph of mathematics in modern science would thereby be a perfect one.

If we now look at the ideas yielded by Hilbert’s philosophical investiga-
tions as a whole, as well as the effect brought about by these investigations,
and if we, on the other hand, bear in mind the unfolding of mathematics in
the recent times as outlined above, thenthe essence of Hilbert’s philosophi-
cal accomplishment reveals itself. By developing a sweeping philosophical
conception of mathematics, which does justice to the significance and scope
of its method, Hilbert has succeeded in forcefully establishing the claim that
mathematics, through its depth and profundity, has a universal intellectual
influence throughout the sciences. For this, the friends of mathematics will
be always be indebted to him.
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Hilbert’s new methodological approach for the founding of arithmetic,
which I will discuss, is a modified and more definite version of the plan that
Hilbert already had in mind for a long time and that he first expressed in
his Heidelberg lecture. The previous, quite obscure hints have been replaced
by a sharply outlined and comprehensible program, the beginnings of which
have already been carried out.

The problem whose solution we are seeking here is that of proving the
consistency of arithmetic. First we have to recall how one arrives at the
formulation of this problem.

15
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The development of arithmetic (in the wider sense, thus encompassing
analysis and set theory), as it has been done since the introduction of rig-
orous methods, is an axiomatic one. This means that, as in the axiomatic
grounding of geometry, one begins by assuming a system of things with cer-
tain relational properties. In Dedekind’s foundations of analysis the basis is
taken to be the system of elements of the continuum, and in Zermelo’s con-
struction of set theory, it is the domain B. Also in the grounding of analysis
that starts by considering number sequences, the number series is conceived
of as a closed, surveyable system, akin to an infinite piano keyboard.

In the assumption of such a system with certain relational properties lies
something, as it were, transcendent for mathematics, and the question arises
as to which fundamental position one should take regrading it.

An appeal to an intuitive grasp of the number series as well as to the
manifold of magnitudes is certainly to be considered.

But, in any case, this should not be a question of intuition in the primitive
sense; for, in any case, no infinite manifolds are given to us in the primitive
mode of intuitive representation. And even though it might be quite rash to
contest any farther-reaching kind of intuitive evidence from the outset, we will
nevertheless respect that tendency of exact science that aims to eliminate the
finer organs of cognition as far as possible and to use only the most primitive
means of cognition.

According to this viewpoint we will consider whether it is possible to
ground those transcendent assumptions in such a way that only primitive
intuitive cognitions are applied. Because of this restricted use of cognitive
means, on the other hand, we cannot demand of this grounding that it allows
us to recognize as truths (in the philosophical sense) the assumptions that
are to be grounded. Rather, we will be content if one succeeds in showing
the arithmetic built on those assumptions to be a possible (i. e., consistent)
system of thought.

Hereby we have already arrived at the Hilbertian formulation of the prob-
lem. But before we look at how the problem must be tackled, we first have
to ask ourselves whether there is not a different and perhaps more natural
position to take on the transcendent assumptions.

In fact two different attempts suggest themselves and have also been un-
dertaken. The one attempt aims likewise at a demonstration of consistency,
not by the means of primitive intuition, but rather with the help of logic.

One will recall that the consistency of Euclidian geometry was already
proved by Hilbert using the method of reduction to arithmetic. That is
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why it now seems appropriate to prove also the consistency of arithmetic by
reduction to logic.

Frege and Russell, in particular, vigorously tackled the problem of the
logical grounding of arithmetic.

In regard to the original goal, the result was negative.
First of all it became obvious with the famous paradoxes of set theory

that no greater certainty with respect to the usual mathematical methods is
achieved by a reduction to logic. The contradictions of naive set theory could
be seen logically as well as set theoretically. Also the control of inferences
through the logical calculus, which had been developed further precisely for
securing mathematical reasoning, did not help in avoiding the contradictions.

When Russell then introduced the very cautious procedure of the ram-
ified higher order predicate calculus, it turned out that analysis and set
theory in their usual form could not be obtained in this way. Thus, Russell
and Whitehead, in Principia Mathematica, were forced to introduce an as-
sumption about the system of “first order” predicates, the so-called axiom of
reducibility.

But one thereby returned completely to the axiomatic standpoint and
gave up the goal of the logical grounding.

By the way, the difficulty appears already within the theory of whole
numbers. Here, to be sure, one succeeds—by defining the numbers logically
according to Frege’s fundamental idea—in proving the laws of addition and
multiplication and also the individual numerical equations as logical theo-
rems. However, by this procedure one does not obtain the usual number
theory, since one cannot prove that for every number there exists a greater
one—unless one expressly introduces some kind of axiom of infinity.

Even though the development of mathematical logic did not in principle
lead beyond the axiomatic standpoint, an impressive systematic construction
of all of arithmetic, equal in rank to the system of Zermelo, has nonetheless
emerged in this way.

Moreover, symbolic logic has taken us further in methodical knowledge:
Whereas one previously only took account of the assumptions of the mathe-
matical theories, now also the inferences are made precise. And it turns out
that one can replace mathematical reasoning—in so far as only its outcomes
matter—by a purely formal manipulation (according to determinate rules)
in which actual thinking is completely eliminated.

However, as already said, mathematical logic does not achieve the goal
of a logical grounding of arithmetic. And it is not to be assumed that the
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reason for this failure lies in the particular form of the Fregean approach.
It seems rather to be the case that the problem of reducing mathematics to
logic is completely ill-posed, namely, because mathematics and logic do not
stand at all to each other in the relationship of particular and general.

Mathematics and logic are based on two different directions of abstraction.
While logic deals with the contentually most general, (pure) mathematics
is the general theory of the formal relations and properties. Such that, on
the one hand each mathematical consideration is subject to the logical laws,
while, on the other hand each logical figure-of-thought falls into the domain of
mathematical consideration because of the external structure that necessarily
comes with it.

In view of this situation one is impelled to an attempt that is, in a cer-
tain way, opposed to that of the logical grounding of arithmetic. Because
one fails to establish as logically necessary the mathematically transcendent
basic assumptions, the question arises whether these assumptions cannot be
dispensed with at all.

In fact, one possibility for eliminating the axiomatic basic assumptions
seems to consist of elimination entirely the existential form of the axioms
and replacing the existential assumptions by construction postulates.

Such a replacement procedure is not new to the mathematician; espe-
cially in elementary geometry the constructive version of the axioms is often
applied. For example, instead of laying down the axiom that any two points
determine a line, one postulates the connection of two points by a line as a
possible construction.

Likewise, one can now proceed with the arithmetical axioms. For exam-
ple, instead of saying “each number has a successor,” one introduces progres-
sion by one or the attachment of +1 as a basic operation.

One thus arrives at the attempt of a purely constructive development of
arithmetic. And indeed this goal for mathematical thought is a very tempting
one: Pure mathematics should be the carpenter of its own house and not be
dependent on the assumption of a certain system of things.

This constructive tendency, which was first brought forcefully into promi-
nence by Kronecker, and later, in a less radical form, by Poincaré, is currently
pursued by Brouwer and Weyl in their new founding of arithmetic.

Weyl first checks the higher modes of inference in regard to the possibility
of a constructive reinterpretation; that is, he investigates whether or not the
methods of analysis as well as those of Zermelo’s set theory can be interpreted
constructively. He finds this impossible, for in the attempt to thoroughly
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carry out a replacement of the existential axioms by constructive methods,
one constantly falls into logical circles.

From this Weyl draws the conclusion that the modes of inference of analy-
sis and set theory have to be restricted to such an extent that in their con-
structive interpretation no logical circles arise. In particular, he feels com-
pelled to give up the theorem of the existence of the upper bound.

Brouwer goes even further in this direction by also applying the construc-
tive principle to large numbers. If one wants, as Brouwer does, to avoid the
assumption of a closed given totality of all numbers and to take as a foun-
dation only the act of progressing by one, performable without bound, then
statements of the form “There are numbers of such and such a type . . . ” do
not have a prima facie meaning. Thus, one is also not justified in generally
putting forward, for each number theoretical statement, the alternative that
either the statement holds for all numbers or that there is a number (respec-
tively, a pair of numbers, a triple of numbers, . . . ) by which it is refuted.
This way of applying the tertium non datur is then at least questionable.

Thereby we find ourselves in a great predicament: The most success-
ful, elegant, and time-tested modes of inference ought to be abandoned just
because, from a specific standpoint, one has no justification for them.

The unsatisfactoriness of such a procedure can not be overcome by the
considerations, by which Weyl tries to show that the concept formation of the
mathematical continuum, as it is fundamental for ordinary analysis, does not
correspond to the visual representation of continuity. For, an exact analogy
to the content of perception is not at all necessary for the applicability and
the fruitfulness of analysis; rather, it is perfectly sufficient that the method
of idealization and conceptual interpolation used in analysis be consistently
applicable. As far as pure mathematics is concerned, it only matters whether
the usual, axiomatically characterized mathematical continuum is in itself a
possible, that is, a consistent, structure.

At best, this question could be rejected if, instead of the hitherto pre-
vailing mathematical continuum, we had at our disposal a simpler and more
perspicuous conception that would supersede it. But if one examines more
closely the new approaches by Weyl and Brouwer, one notices that a gain in
simplicity can not be hoped for here; rather, the complications required in
the concept formations and modes of inference are only increased instead of
decreased.

Thus, it is not justified to dismiss the question concerning the consis-
tency of the usual axiom system for arithmetic. And what we are to draw
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from Weyl’s and Brouwer’s investigations is the result that a demonstration
of consistency is not possible by means of replacing existential axioms by
construction postulates.

So we come back to Hilbert’s idea of a theory of consistency based on a
primitive-intuitive foundation. And now I would like to describe the plan,
according to which Hilbert intends to develop such a theory, and the leading
principles to which he adheres in doing so.

Hilbert takes over what is positively fruitful from each of the two attempts
at grounding mathematics discussed above. From the logical theory he takes
the method of the rigorous formalization of inference. That this formalization
is necessary follows directly from the way the task is formulated. For the
mathematical proofs are to be made the object of a concrete-intuitive form
of view. To this end, however, it is necessary that they are projected, as
it were, into the domain of the formal. Accordingly, in Hilbert’s theory we
have to distinguish sharply between the formal image of the arithmetical
statements and proofs as the object of the theory, on the one hand, and
the contentual thought about this formalism, as the content of the theory,
on the other hand. The formalization is done in such a way that formulas
take the place of contentual mathematical statements, and that a sequence
of formulas, following each other according to certain rules, takes the place
of an inference. But one does not attach any meaning to the formulas; the
formula does not count as the expression of a thought, but it corresponds
to a contentual judgment only insofar as it plays, within the formalism,
a role analogous to that which the judgment plays within the contentual
consideration.

More basic than this connection to symbolic logic is the contiguity of
Hilbert’s approach with the constructive theories of Weyl and Brouwer. For
Hilbert in no way wants to abandon the constructive tendency that aims at
the autonomy of mathematics; rather, he is especially eager to bring it to
bear in the strongest way. In light of what we stated with respect to the
constructive method, this appears at first to be incompatible with the goal
to demonstrate the consistency proof of arithmetic. In fact, however, the ob-
stacle to the unification of both goals lies only in a preconceived opinion from
which the advocates of the constructive tendency have always proceeded until
now, namely, that within the domain of arithmetic every construction must
indeed be a number construction (respectively set construction). Hilbert
considers this view to be a prejudice. A constructive reinterpretation of the
existential axioms is possible not only in such a way that one transforms them
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into generating principles for the construction of numbers; rather, the mode
of inference made possible by such an axiom can, as a whole, be replaced by a
formal procedure in a such a way that certain signs replace general concepts
like number, function, etc.

Whenever concepts are missing, a sign will be readily available. This
is the methodical principle of Hilbert’s theory. An example should explain
what is meant. The existential axiom “Each number has a successor” holds in
number theory. In keeping with the restriction to what is concretely intuitive,
the general concept of number as well as the existential form of the statement
must now be avoided.

As mentioned above, the usual constructive reinterpretation consists in
this case in replacing the existential axiom by the procedure of progression
by one. This is a procedure of number construction. Hilbert, on the contrary,
replaces the concept of number by a symbol Z and lays down the formula:

Z(a) → Z(a + 1).

Here a is a variable for which any mathematical expression can be substi-
tuted, and the sign → represents the hypothetical propositional connective
“if—then,” that is, the following rule holds: if two formulas A and A → B

are written down, then B can also be written down.
On the basis of these stipulations, the mentioned formula accomplishes,

within the framework of the formalism, exactly what is otherwise accom-
plished by the existential axiom for contentual argumentation.

Here we see how Hilbert utilizes the method of formalizing inferences
according to the constructive tendency; for him it is in no way merely a tool
for the demonstration of consistency. Rather, it is, at the same time, also
the way to a rigorous constructive development of arithmetic. Moreover,
the methodical idea of construction is here conceived of so broadly, that
also all higher mathematical modes of inference can be incorporated in the
constructive development.

After having characterized the goal of Hilbert’s theory, I would now like
to outline the basic features of the theory. The following three questions are
to be answered:

1. The constructive development should represent the formal image of
the system of arithmetic and at the same time it should the object for
the intuitive theory of consistency. How does such a development take
shape?



22 CHAPTER 2. HILBERT’S THOUGHTS (1922)

2. How is the consistency statement to be formulated?

3. What are the means of the contentual consideration by which the
demonstration of consistency is to be carried out?

First, as far as the constructive development is concerned, it is accom-
plished in the following way. Above all, the different kinds of signs are intro-
duced, and at the same time the substitution rules are determined. Further-
more, certain formulas are layed down as basic formulas. And now “proofs”
are to be formed.

What counts here as a proof is a concretely written-down sequence of
formulas where for each formula the following alternative holds: Either the
formula is identical to a basic formula or to a preceding formula, or it results
from such a formula by a valid substitution; or, it constitutes the end formula
in an “inference,” that is, in a sequence of formulas of the type

A

A → B

B

Hence a “proof” is nothing else than a figure with certain concrete prop-
erties and such figures constitute the formal image of arithmetic.

This answer to the first question makes the urgency of the second espe-
cially evident. For what should the statement of consistency mean in regard
to the pure formalism? Isn’t it impossible that mere formulas can contradict
themselves?

The simple reply to this is: The contradiction is formalized just as well.
Faithful to his principle Hilbert introduces the letter Ω for the contradiction;
and the role of this letter within the formalism is determined by laying down
basic formulas in such a way that from any two formulas—to which contrary
statements correspond—Ω can be deduced. More precisely, by adding two
such formulas to the basic formulas, a proof with Ω as end formula can be
constructed.

In particular the basic formula

a = b → (a �= b → Ω)

serves us here, where �= is the usual sign of inequality. (The relation of
inequality is taken by Hilbert as a genuine arithmetical relation, just as
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equality is, but not as the logical negation of equality. Hilbert does not
introduce a sign for negation at all.)

Now, the statement of consistency is simply formulated as follows: Ω can
not be obtained as the end formula of a proof.

Hence, this claim is in need of a demonstration.
Now the only remaining question concerns the means by which this demon-

stration should be carried out. In principle this question is already settled.
For our whole problem originates from the demand of taking only what is con-
cretely intuitive as a basis for mathematical considerations. Thus the matter
is simply to realize which tools are available to us from the concrete-intuitive
point of view.

This much is certain: We are justified in using, to the full extent, the
elementary ideas of succession and order as well as the usual counting. (For
example, we can see whether there are three, or fewer, occurrences of the
sign → in a formula.)

However, we cannot get by in this way alone; rather, it is absolutely
necessary to apply certain forms of complete induction. Yet, in doing so we
do not go beyond the domain of what is concretely intuitive.

To wit, two types of complete induction are to be distinguished: the
narrower form of induction, which applies only to something completely and
concretely given, and the wider form of induction, which uses in an essential
manner either the general concept of whole number or the operating with
variables.

Whereas this wider form of complete induction is a higher mode of in-
ference which is to be grounded by Hilbert’s theory, the narrower form of
inference is part of primitive intuitive knowledge and can therefore be used
as a tool of contentual argumentation.

As typical examples of the narrower form of complete induction, as it is
used in the argumentations of Hilbert’s theory, the following two inferences
can be adduced:

1. If the sign + occurs at all in a concretely given proof, then, in reading
through the proof, one finds a place where it occurs for the first time.

2. If one has a general procedure for eliminating, from a proof with a
certain concretely describable property E, the first occurrence of the sign Z,
without the proof losing the property E in the process, then one can, by
repeated application of the procedure, completely remove the sign Z from
such a proof, without its losing the property E.

(Notice, that here it is exclusively a question of formalized proofs, i. e.,
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proofs in the sense of the definition given above.)
The method which the theory of consistency must follow is hereby set

forth in its essentials. Currently the development of this theory is still in its
early infancy; most of it has yet to be accomplished. In any case though, the
possibility in principle and the feasibility in practice of the required point of
view can already be recognized from what has been achieved so far; and one
also sees that the considerations to be employed here are mathematical in
the very genuine sense.

The great advantage of Hilbert’s procedure is just this: The problems
and difficulties that present themselves in the founding of mathematics are
transferred from the epistemologico-philosophical domain into the realm of
what is properly mathematical.

Mathematics creates here a court of arbitration for itself, before which
all fundamental questions can be settled in a specifically mathematical way,
without having to rack one’s brain about subtle questions of logical scruples
such as whether judgments of a certain form make sense or not.

Hence we can also expect that the enterprise of Hilbert’s new theory will
soon meet with approval and support within mathematical circles.
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The topic of the lecture and its title have been chosen in the spirit of
Hilbert. What is here called theoretical logic is usually referred to as symbolic
logic, mathematical logic, algebra of logic, or logical calculus. The purpose
of the following remarks is to present this research area in a way that justifies
calling it theoretical logic.

Mathematical logic is in general not very popular. It is most often re-
garded as idle play that neither supports effectively practical inference nor
contributes significantly to our logical insights.

To begin with, the charge of playfulness is only justified with regard to
the initial treatment of mathematical logic. The main emphasis was initially
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put on the formal analogy to algebra, and the pursuit of the latter was often
considered as an end in itself. But this was the state of affairs decades ago,
and today the problems of mathematical logic are inseparably intertwined
with the questions concerning the foundations of the exact sciences, so that
one can no longer speak of a merely playful character.

Secondly, concerning the application to practical inference, it has to be
mentioned first that a symbolic calculus promises advantages only to someone
who has sufficient practice in using it. But, in addition, one has to consider
that—in contrast to most kinds of symbolisms which serve, after all, the pur-
pose of abbreviating and contracting operations—it is the primary task of the
logical calculus to decompose the inferences into their ultimate constituents
and to make outwardly evident each individual step and bring it thereby
into focus. The main interest connected with the application of the logical
calculus is consequently not one of technique, but of theory and principle.
This leads me to the third charge; namely that mathematical logic does not
significantly further our logical insights. This opinion is connected with the
view on logic expressed by Kant in the second preface to the Critique of Pure
Reason, where he says: “It is remarkable also that to the present day this
logic has not been able to advance a single step, and is thus to all appearance
a closed and completed body of doctrine.”a

It is my intention to show that this standpoint is erroneous. To be sure,
Aristotle’s formulation of the ultimate principles of inference and their im-
mediate consequences constitutes one of the most significant intellectual ac-
complishments; it is also one of the very few accomplishments which belong
to the permanently secured part of the realm of philosophical knowledge.
This fact will continue to receive its full due. But this does not prevent us
from ascertaining that traditional logic, in posing its problems, is essentially
open-ended, and in arranging its facts it is insufficiently adapted to the needs
of either a systematic overview and of methodical and epistemologico-critical
insights. Only the newer logic, as it has developed under the name of algebra
of logic or mathematical logic, introduced such concept formations and such
an approach to formal logic as makes it possible to satisfy these needs of
systematics and of philosophy.

The realm of logical laws, the world of abstract relations, has only thereby
been revealed to us in its formal structure, and the relationship of mathe-

a[?], p. 17.
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matics and logic has been illuminated in a new way. I will try briefly to give
an idea of this transformation and of the results it has brought to light.

In doing so I will not be concerned with presenting the historical devel-
opment or the various forms in which mathematical logic has been pursued.
Instead, I want to choose a presentation of the new logic that best facilitates
relating and comparing it to traditional logic. As for logical symbols, I shall
use the symbolism Hilbert employs now in his lectures and publications.

Traditional logic subdivides its problems into the investigation of concept
formation, of judgment, and of inference. It is not advantageous to begin with
concept formation, because its essential forms are not elementary but are
already based on judgments. Let us begin, therefore, with judgment.

Here, the newer logic immediately introduces an essentially new vantage
point, replacing classifications by the search for elementary logical operations.
One does not speak of the categorical or the hypothetical or the negative
judgment, but of the categorical or hypothetical connexion, of negation as
a logical operation. In the same way, one does not classify judgments into
universal and particular ones but introduces logical operators for universality
and particularity.

This approach is more appropriate than that of classification for the fol-
lowing reason. In judgments different logical processes generally occur in
combination, so that a unique corresponding classification is not possible at
all.

First let us consider the categorical relationship, i. e. that of subject and
predicate. We have here an object and a proposition about it. The symbolic
representation for this is

P (x),

to be read as:

“x has the property P .”

The relation of the predicate to an object is here explicitly brought out by
the variable. This is merely a clearer kind of notation; however, the remark
that several objects can be subjects of a proposition is crucial. In that case
one speaks of a relation between several objects. The notation for this is

R(x, y), or R(x, y, z), etc.

Cases and prepositions are used in ordinary language to indicate the
different members of relations.
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By taking into account relations, logic is extended in an essential way
when compared with its traditional form. I shall speak about the significance
of this extension when discussing the theory of inference.

The forms of universality and particularity are based on the categorical
relationship. Universality is represented symbolically by

(x)P (x)

“all x have the property P .”

The variable x appears here as a “bound variable;” the proposition does
not depend on x—in the same way as the value of an integral does not depend
on the variable of integration.

We sharpen the particular judgment first by replacing the somewhat
indefinite proposition, “some x have the property P ,” with the existential
judgment:

“there is an x with the property P ,”

written symbolically:
(Ex)P (x).

By adding negation, the four types of judgment are obtained which are
denoted in Aristotelian logic by the letters “a, e, i, o.”

If we represent negation by putting a bar over the expression to be
negated, then we obtain the following representations for the four types of
judgment:

a: (x) P (x)

e: (x) P (x)

i: (Ex) P (x)

o: (Ex) P (x).

Already here, in the doctrine of “oppositions,” it proves useful for the
comprehension of matters to separate the operations; thus we recognize, for
example, that the difference between contradictory and contrary opposition
lies in the fact that in the former case the whole proposition, e. g., (x)P (x),
is negated, whereas in the latter case only the predicate P (x) is negated.

Let us now turn to the hypothetical relationship.

A → B “if A, then B.”
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This includes a connexion of two propositions (predications). So the
members of this connexion already have the form of propositions, and the
hypothetical relationship applies to these propositions as undivided units.
The latter already holds also for the negation A.

There are still other such propositional connexions, in particular:

the fact that A exists together with B: A & B,

and further, the disjunctive connexion; there we have to distinguish between
the exclusive “or,” in the sense of the Latin “aut-aut,” and the “or” in the
sense of “vel.” In accordance with Russell’s notation this latter connexion is
represented by A ∨ B.

In ordinary language, such connexions are expressed with the help of
conjunctions.

A consideration, analogous to that used in the doctrine of opposition,
suggests itself here, namely to combine the binary propositional connexions
with negation in one of two ways, either by negating the individual members
of the connexion or by negating the latter as a whole. And now, let us see
what dependency relations result.

To indicate that two connexions have materially the same meaning (or
are “equivalent”), I will write “eq” between them (though, “eq” is not a sign
of our logical symbolism).

In particular the following connexions and equivalences result:

A & B: “neither A nor B”
A & B: “A and B exclude each other”
A & B eq A ∨ B

eq A → B
eq B → A

A → B eq A ∨ B

B eq B

(double negation is equivalent to affirmation).
From this it furthermore follows:

A → B eq A & B
eq A ∨ B

A ∨ B eq A → B
eq A & B.
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On the basis of these equivalences it is possible to express some of the
logical connexions

, →, &, ∨

by means of others. In fact, according to the above equivalences one can
express

→ by ∨ and
∨ by & and
& by → and

so that each of

& and
or ∨ and
or → and

alone suffice as basic connexions. One can get along even with a single basic
connexion, but, to be sure, not with one of those for which we already have a
sign. If we introduce for the connexion of mutual exclusion A & B the sign
A|B then the following equivalences obtain:

A|A eq A

A|B eq A & B
eq A → B.

This shows that with the aid of this connexion one can represent negation as
well as → and, consequently, the remaining connexions. Just like the relation
of mutual exclusion also the connexion

“neither — nor” A & B

can be taken as the only basic connexion. If for this connexion we write

A ‖ B,

then we have

A ‖ A eq A
A ‖ B eq A & B;
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thus, negation as well as & is expressible by means of this connexion.
These reflections already border somewhat on the playful. Nevertheless,

it is remarkable that the discovery of such a simple fact as that of reducing
all propositional connexions to a single one was reserved for the 20th century.
The equivalences between propositional connexions were not at all systemat-
ically investigated in the old logic.1 There one finds only occasional remarks
like, for example, that of the equivalence of

A → B with B → A

on which the inference by “contraposition” is based. The systematic search
for equivalences is, however, all the more rewarding as one reaches here a
self-contained and entirely surveyable part of logic, the so-called propositional
calculus. I will explain in some detail the value of this calculus for reasoning.

Let us reflect on what the sense of equivalence is. When I say

A & B eq A ∨ B,

I do not claim that the two complex propositions have the same sense but only
that they have the same truth value. That is, no matter how the individual
propositions A, B are chosen, A ∨ B and A & B are always simultaneously
true or false, and consequently these two expressions can represent each other
with respect to truth.

Indeed, any complex proposition A and B can be viewed as a mathemat-
ical function assigning to each pair of propositions A, B one of the values
“true” or “false.” The actual content of the propositions A, B does not mat-
ter at all. Rather, what matters is only whether A is true or false and whether
B is true or false. So we are dealing with truth functions : To a pair of truth
values another truth value is assigned.

Each such function can be given by a schema in such a way, that the four
possible connections of two truth values (corresponding to the propositions

1Today these historical remarks stand in need of correction. In the first place, the
reducibility of all propositional connexions to a single one was already discovered in the
19th century by Charles S. Peirce—to be sure, a fact which became more generally known
only with the publication of his collected works in 1933. Further, it is not correct that the
equivalences between propositional connectives were not considered systematically in the
old logic—to be sure, not in Aristotelian logic, but in other Greek schools of philosophy.
(On this topic see the book Formal Logic (vide [?]).)

Remark: This footnote, as well as the next three, are subsequent additions occasioned
by the republication of this lecture.
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A, B) are represented by four cells, and in each of these the corresponding
truth value of the function (“true” or “false”) is written down.

The schemata for A & B, A ∨ B, A → B are specified here.

A & B :

A

B
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true false
false false false

A ∨ B :

A

B
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true true
false true false

A → B :

A

B
︷ ︸︸ ︷
true false︷ ︸︸ ︷

true true true
false false true

One can easily calculate that there are exactly 16 different such functions.
The number of different functions of n truth values

A1, A2, . . . , An

is, correspondingly, 2(2n).
To each function of two or more truth values corresponds a class of substi-

tutableb propositions of connexions. Among these one class is distinguished,
namely the class formed by those connexions that are always true.

These connexions represent all logical sentences that hold generally and
in which individual propositions occur only as undivided units. We will call
the expressions representing sentences that hold generally valid formulas.c

We master propositional logic, if we know the valid formulas (among the
propositions of connexions), or if we can decide for a given propositional

bVide [?], pp. 47–48: “Um uns kurz ausdrücken zu können wollen wir zwei Aussagen-
verknüpfungen durch einander ‘ersetzbar’ nennen, wenn sie dieselbe Wahrheitsfunktion
darstellen.”

cVide for the distinction between “to hold generally” and “to be valid.”
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connexion whether or not it is valid. After all, the task for reasoning in
propositional logic is formulated as follows:

Certain connexions

V1, V2, . . . , Vk,

are given; they are built up from elementary propositions A, B, . . ., and rep-
resent true sentences for a certain interpretation of the elementary proposi-
tions. The question is whether another given connexion D of these elemen-
tary propositions follows logically whenever V1, V2, . . . , Vk are valid, indeed
without considering the more precise content of the propositions A, B, . . ..

The answer to this question is “yes,” if and only if

(V1 & V2 & . . . & Vk) → D,

composed from A, B, . . ., represents a valid formula.
The decision concerning the validity of a propositional connexion can in

principle always be reached by trying out all relevant truth values. The
method of considering equivalences, however, provides a more convenient
procedure. That is to say, by means of equivalent transformations each for-
mula can be put into a certain normal form in which only the logical symbols
&,∨, occur, and from this normal form one can read off directly whether
or not the formula is valid.

The rules of transformation are also very simple. One can in particular
calculate with & and ∨ in complete analogy to + and · in algebra. Indeed,
matters are here even simpler, as & and ∨ can be treated in a completely
symmetrical way.

By considering the equivalences, we entered, as already mentioned, the
domain of inferences. But here we carried out the inferences, as it were, in
a naive way, on the basis of the meaning of the logical connexions, and we
turned the task of making inferences into a decision problem.

But for logic there remains the task of systematically presenting the rules
of inference.

Aristotelian logic lays down the following principles of inference:

1. Rule of categorical inference: the dictum de omni et nullo: what holds
universally, holds in each particular instance.

2. Rule of hypothetical inference: if the antecedent is given, then the
consequent is given, i. e. if A and if A → B, then B.
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3. Laws of negation: law of contradiction and law of excluded middle: A
and A can not both hold, and, at least one of the two propositions must
hold.

4. Rule of disjunctive inference: if at least one of A or B holds and if
A → C as well as B → C, then C holds.

One can say that each of these laws represents the implicit definition for
a logical process: 1. for universality, 2. for the hypothetical connexion, 3. for
negation, 4. for disjunction (∨).

These laws contain indeed the essence of what is expressed when infer-
ences are being made. But for a complete analysis of inferences this does not
suffice. For this we demand that nothing needs to be reflected upon, once
the principles of inference have been spelled out. The rules of inference must
be constituted in such a way that they eliminate logical thinking. Otherwise
we would have to have again logical rules which specify how to apply those
rules.

This demand to exorcise the mind can indeed be met. The development of
the doctrine of inferences obtained in this way is analogous to the axiomatic
development of a theory. Certain logical laws written down as formulas cor-
respond here to the axioms, and operating on formulas externally according
to fixed rules, that lead from the initial formulas to further ones, corresponds
to contentual reasoning that usually leads from axioms to theorems.

Each formula, that can be derived in such a way, represents a valid logical
proposition.

Here it is once again advisable to separate out propositional logic, which
rests on the principles 2., 3., and 4. We need only the following rules; we
represent the elementary propositions by variables

X, Y, . . .

The first rule now states: any propositional connexion can be substituted for
such variables (substitution rule).

The second rule is the inference schema

S

S → T

T

according to which the formula T is obtained from two formulas S, S → T.
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The choice of the initial formulas can be made in quite different ways.
One has taken great pains, in particular, to get by with the smallest possible
number of axioms, and in this respect the limit of what is possible has indeed
been reached. The purpose of logical investigations is better served, however,
when we separate, as in the axiomatics for geometry, various groups of axioms
from one another, such that each group gives expression to the role of one
logical operation. The following list then emerges:

I Axioms of implication
IIa) Axioms for &
IIb) Axioms for ∨
III Axioms of negation.

This system of axiomsd generates through application of the rules all valid
formulas of propositional logic.2 This completeness of the axiom system can
be characterized even more sharply by the following facts: if we add any
underivable formula to the axioms, then we can deduce with the help of the
rules arbitrary propositional formulas.

The division of the axioms into groups has a particular advantage, as it
allows one to separate out positive logic. We understand this to be the system
of those propositional connexions that are valid without assuming that an
opposite exists.e For example:

(A & B) → A
(A & (A → B)) → B.

The system of these formulas presents itself in our axiomatics as the to-
tality of those formulas that are derivable without using axiom group III. This
system is far less perspicuous than the full system of valid formulas. Also,

2We refer here only to those formulas that can be built up with the operations →,&,∨
and with negation. If further operation symbols are added, then they can be introduced
by replacement rules. To be sure, one is not bound to distinguish the four mentioned
operations in this particular way.

dFixing the axioms as in [?], p. 65; already formulated in the early twenties As to
completeness, cf. the Habilitationsschrift of Bernays written in 1918.

eVide [?], p. 67: “Die ‘positive Logik ’ . . . , d. h. die Formalisierung derjenigen logis-
chen Schlüsse, welche unabhängig sind von der Voraussetzung, daß zu jeder Aussage ein
Gegenteil existiert.”
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no decision procedure is known by which one can determine, in accordance
with a definite rule, whether a formula belongs to this system.3 It is not the
case that, for instance, every formula expressible in terms of →, &,∨, which
is valid and therefore derivable on the basis of I–III, is already derivable from
I–II. One can rigorously prove that this is not the case.

An example is provided by the formula

A ∨ (A → B).

Representing → by ∨ and this formula turns into

A ∨ (A ∨ B),

and this representation allows one immediately to recognize the formula as
valid. However, it can be shown that the formula is not derivable within
positive logic, i. e., on the basis of axioms I–II. Hence, it does not represent
a law of positive logic.

We recognize here quite clearly that negation plays the role of an ideal
element whose introduction aims at rounding off the logical system to a total-
ity with a simpler structure, just as the system of real numbers is extended
to a more perspicuous totality by the introduction of imaginary numbers,
and just as the ordinary plane is completed to a manifold with a simpler
projective structure by the addition of points at infinity. Thus this method of
ideal elements, fundamental to science, is already encountered here in logic,
even if we are usually not aware of its significance.

A special part of positive logic is constituted by the doctrine of chain
inferences that was discussed already in Aristotelian logic. In this area there
are also natural problems and simple results, not known to traditional logic
and again requiring that specifically mathematical considerations be brought
to bear. I have in mind Paul Hertz’s investigations of sentence-systems.f —

The axiomatics we have considered up to now refers to those inferences
which depend solely on the rules of the hypothetical and disjunctive inference,
and of negation. Now we still have the task of incorporating categorical

3Since then decision procedures for positive logic have been given by Gerhard Gentzen
and Mordechaj Wajsberg.

f Vide [?], p. 84, but also [?] , p. 300.
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reasoning into our axiomatics. How this is done I will only describe briefly
here.

Of the dictum de omni et nullo we need also the converse: “what holds
in each particular instance, also holds generally.” Furthermore, we have to
take into account the particular judgment. It holds analogously:

“If a proposition A(x) is true of some object x, then there is an
object of which it is true, and vice versa.”

Thus we obtain four principles of reasoning that are represented in the
axiomatics by two new initial formulas and two rules. A substitution rule for
the individual variables x, y, . . . is also added.

Moreover, the substitution rule concerning propositional variables X, Y, . . .
has to be extended in such a way now that the formulas of propositional logic
can be applied also to expressions containing individual variables.

Let us now see, how the typical Aristotelian inferences are worked out
from this standpoint. For that it is necessary to say first something about
the interpretation of the universal judgment “all S are P .”

According to the Aristotelian view, such a judgment presupposes that
there are certain objects with property S, and it is then claimed that all
these objects have property P . This interpretation of the universal judg-
ment, to which Franz Brentano in particular objected from the side of phi-
losophy, is admittedly quite correct. But it is suited neither for the purposes
of theoretical science nor for the formalization of logic, since the implicit
presupposition brings with it unnecessary complications. Therefore we shall
restrict the content of the judgment, “all S are P ,” to the assertion, “an
object having property S has also property P .”

Accordingly, such a judgment is simultaneously universal and hypotheti-
cal. It is represented in the form

(x)(S(x) → P (x)).

The so-called categorical inferences contain consequently a combination of
categorical and hypothetical inferences. I want to illustrate this by a classical
example:

“All men are mortal, Cajus is a man, therefore Cajus is mortal.”

If we represent “x is human” and “x is mortal” in our notation by H(x)
and Mrt(x) respectively, then the premises are
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(x)(H(x) → Mrt(x)),

H(Cajus),

and the conclusion is: Mrt(Cajus).
The derivation proceeds, first, according to the inference from the general

to the particular, by deducing from

(x)(H(x) → Mrt(x))

the formula

H(Cajus) → Mrt(Cajus).

And this proposition together with

H(Cajus)

yields according to the schema of the hypothetical inference:

Mrt(Cajus).

It is characteristic for this representation of the inference that one refrains
from giving a quantitative interpretation of the categorical judgment (in the
sense of subsumption). Here one recognizes particularly clearly that mathe-
matical logic does not depend in the least upon being a logic of extensions.

Our rules and initial formulas permit us now to derive all the familiar
Aristotelian inferences as long as they agree with our interpretation of the
universal judgment—that leaves just 15. In doing so one realizes that there
are actually only very few genuinely different kinds of inferences. Further-
more, one gets the impression that the underlying problem is delimited in a
quite arbitrary way.

A more general problem, which is also solved in mathematical logic, con-
sists in finding a decision procedure that allows one to determine whether
a predicate formula is valid or not. In this way, one masters reasoning in
the domain of predicates, just as one masters propositional logic with the
decision procedure mentioned earlier.

But our rules of inference extend much farther. The actual wealth of log-
ical connections is revealed only when we consider relations (predicates with
several subjects). Only then does it become possible to capture mathematical
proofs in a fully logical way.
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However, here one is induced to add various extensions which are sug-
gested to us also by ordinary language.

The first extension consists in introducing a formal expression for “x is
the same object as y,” or “an object different from y.” For this purpose the
“identity of x and y” has to be formally represented as a particular relation,
the properties of which are to be formulated as axioms.

Second, we need a symbolic representation of the logical relation we ex-
press linguistically with the aid of the genitive or the relative pronoun in
such phrases as “the son of Mr. X” or “the object that.” This relation forms
the basis of the concept of a function in mathematics. It matters here that
an object, having uniquely a certain property or satisfying a certain relation
to particular objects, is characterized by this property or relation.

The most significant extension, however, is brought about by the cir-
cumstance that we are led to consider predicates and relations themselves
as objects, just as we do in ordinary language when we say, for example,
“patience is a virtue.” We can state properties of predicates and relations,
and furthermore, second order relations between predicates and also between
relations. Likewise, the forms of universality and particularity can be applied
with respect to predicates and relations. In this way we arrive at a logic of
second order ; for its formal implementation the laws of categorical reasoning
have to be extended appropriately to the domain of predicates and relations.

The solution of the decision problem—which, incidentally, is here auto-
matically subsumed under a more general problem—presents an enormous
task for this enlarged range of logical relation resulting from the inclusion of
relations and the other extensions mentioned. Its solution would mean that
we have a method that permits us, at least in principle, to decide for any
given mathematical proposition whether or not it is provable from a given
list of axioms. As a matter of fact, we are far from having a solution of this
problem. Nevertheless, several important results of a very general charac-
ter have been obtained in this area through the investigations of Löwenheim
and Behmann; in particular one succeeded in completely solving the decision
problem for predicate logic also in the case of second order logic.4

Here we see that the traditional doctrine of inferences comprises only a

4Notice that one speaks here of “predicate logic” in the sense of the distinction between
predicates and relations. Thus, what is meant here by “predicate logic” is what currently
is mostly called the logic of monadic predicates. The logic of polyadic predicates is already
generally undecidable for the first order case, as was shown by Alonzo Church.
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minute part of what really belongs to the domain of logical inference.
As yet I have not even mentioned concept formation. And, for lack of time,

I cannot consider it in detail. I will just say this much: a truly penetrating
logical analysis of concept formation becomes possible only on the basis of
the theory of relations. Only by means of this theory one realizes what
kind of complicated combinations of logical expressions (relations, existential
propositions, etc.) are concealed by short expressions of ordinary language.
Such an analysis of concept formation has been initiated to a large extent,
especially by Bertrand Russell, and it has led to knowledge about general
logical processes of concept formation. The methodical understanding of
science is being furthered considerably through their clarification.

I now come to the end of my remarks. I have tried to show that logic,
that is to say the correct old logic as it was always intended, obtains its gen-
uine rounding off, its proper development and systematic completion, only
through its mathematical treatment. The mathematical mode of considera-
tion is introduced here not artificially, but rather arises in an entirely natural
way, in the further pursuit of actual problems.

The resistance to mathematical logic is widespread, particularly among
philosophers; it has—apart from the reasons mentioned at the beginning—
also a principled one. Many approve of having mathematics absorbed into
logic. But here one realizes the opposite, namely, that the system of logic
is absorbed into mathematics. With respect to the mathematical formal-
ism logic appears here as a specific interpretation and application, perfectly
resembling the relation between, for example, the theory of electricity and
mathematical analysis, when the former is treated according to Maxwell’s
theory.

That does not contradict the generality of logic, but rather the view that
this generality is superordinate to that of mathematics. Logic is about certain
contents that find application to any subject matter whatsoever, insofar as
it is thought about. Mathematics, on the other hand, is about the most
general laws of any combination whatsoever. This is also a kind of highest
generality, namely, in the direction towards the formal. Just as every thought,
including the mathematical ones, is subordinate to the laws of logic, each
structure, each manifold however primitive—and thus also the manifold given
by the combination of sentences or parts of sentences—must be subject to
mathematical laws.

If we wanted a logic free of mathematics, no theory at all would be left,
but only pure reflection on the most simple connections of meaning. Such
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purely contentual considerations—which can be comprised under the name
“philosophical logic”—are, in fact, indispensable and decisive as a starting
point for the logical theory; just as the purely physical considerations, serv-
ing as the starting point for a physical theory, constitute the fundamental
intellectual achievement for that theory. But such considerations do not con-
stitute fully the theory itself. Its development requires the mathematical
formalism. Exact systematic theory of a subject is, for sure, mathematical
treatment, and it is in this sense that Hilbert’s dictum holds: “Anything
at all that can be the object of scientific thought, as soon as it is ripe for the
formation of a theory . . . will be part of mathematics.” g Even logic can
not escape this fate.

gVide [?], p. .
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1. To supplement the preceding paper by Hilbert let me add some more
detailed explanations concerning the consistency proof by Ackermann that
was sketched there.

First, as for an upper bound on the number of steps of replacement in the
case of embedding, it is given by 2n, where n is the number of ε-functionals
distinct in form. The method of proof described furnishes yet another, sub-
stantially closer bound, which, for example, for the case in which there is no
embedding at all yields the upper bound n + 1.a

aVide [?], pp. 96–97, for how this bound is obtained.
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2. Let the argument by which we recognize that the procedure is finite
in the case of superposition be carried out under simple specializing assump-
tions.

The assumptions are the following: Let the ε-functionals occurring in the
proof be

εaA(a, εbK(a, b))

and
εbK(a1, b), εbK(a2, b), . . . , εbK(an, b),

where a1, . . . , an may contain εaA(a, εbK(a, b)) but no other ε-functional.
The procedure now consists in a succession of “total replacements;” each

of these consists of a function replacement χ(a) for εbK(a, b)), by means of
which εaA(a, εbK(a, b)) goes over into εaA(a, χ(a)), and a replacement for
εaA(a, χ(a)), by means of which a1, . . . , an go over into numerals z1, . . . , zn

and the values
χ(z1), . . . , χ(zn)

are obtained for
εbK(a1, b), . . . , εbK(an, b).

We begin with the function

χ0(a),

which has the value 0 for all a (“zero replacement”), and accordingly also
replace the terms

εbK(a1, b), . . . , εbK(an, b)

by 0.
Holding this replacement fixed, we apply to

εaA(a, χ0(a))

the original testing procedure, which after two steps at most leads to the
goal; that is, all the critical formulas corresponding to

εaA(a, χ0(a))

then become correct.
Thus we obtain one or two total replacements,

E0, or E0 and E′
0,
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respectively. Now either E0 (or E′
0) is final or one of the critical formulas

corresponding to
εbK(a1, b), εbK(a2, b), . . .

becomes false. Assume that this formula corresponds to, say εbK(a1, b) and
that a1 goes into z1. Then we find a value z such that

K(z1, z)

is correct. Now that we have this value, we take as replacement function for

εbK(a, b)

not χ0(a), but the function
χ1(a)

defined by

χ1(z1) = z

χ1(a) = 0 for a �= z1.

At this point we repeat the above procedure with χ1(a), the values of the

εbK(aν , b) (ν = 1, . . . , n)

now being determined only after a value has been chosen for

εaA(a, χ1(a)),

and thus we obtain one or two total replacements,

E1, or E1 and E′
1.

Now either E1 (or E′
1) is final or for one of the ε-functionals that result

from
εbK(a1, b), . . . , εbK(an, b),

by the previous total replacement we again find a value z′, such that for a
certain z2

K(z2, z
′)

is correct, while
K(z2, χ1(z))
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is false. From this it directly follows that

z2 �= z1.

Now, instead of χ1(a) we introduce χ(a)2 as replacement function by
means of the following definition:

χ2(z1) = z

χ2(z2) = z′

χ2(a) = 0 for a �= z1, z2.

The replacement procedure is now repeated with this function χ2(a).
As we continue in this way, we obtain a sequence of replacement functions

χ0(a), χ1(a), χ2(a), . . . ,

each of which is formed from the preceding one by addition, for a new argu-
ment value, of a function value different from 0; and for every function χ(a)
we have one or two replacements,

Ep, or Ep and E′
p.

The point is to show that this sequence of replacements terminates. For this
purpose we first consider the replacements

E0, E1, E2, . . . .

In these,

εaA(a, εbK(a, b))

is always replaced by 0; the

εbK(aν , b) (ν = 1, . . . , n)

therefore always go over into the same ε-functionals; for each of these we
put either 0 or a numeral different from 0, and this is then kept as a final
replacement. Accordingly, at most n + 1 of the replacements

E0, E1, E2, . . .
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can be distinct.b If, however, Ek is identical with El, then neither one has,
or else each has, a successor replacement

E′
k, or E′

l,

and in these
εaA(a, εbK(a, b))

is then in both cases replaced by the same number found as a value, so that,
for both replacements, the

εbK(aν , b) (ν = 1, . . . , n)

also go over into the same ε-functionals.
Accordingly, of the replacements E′

l for which El coincides with a fixed
replacement Ek again at most n + 1 can be distinct.

Hence there cannot be more than (n + 1)2 distinct

Ep, or Ep and E′
p

altogether. From this it follows, however, that our procedure comes to an
end at the latest with the replacement function

χ(n+1)2(a).

For, the replacements associated with two distinct replacement functions
χp(a) and χq(a), q > p, cannot coincide completely, since otherwise we would
by means of χq(a) be led to the same value z∗ that has already been found
by means of χp(a), whereas this value is already used in the definition of
the replacement functions following χp(a), hence in particular also in that of
χq(a).

3. Let us note, finally, that in order to take into consideration the axiom of
complete induction, which for the purpose of demonstrating the consistency
may be given in the form

(εaA(a) = b′) → A(b),

we need only, whenever we have found a value z for which a proposition B(a)
holds, go to the least such value by seeking out the first correct proposition
in the sequence

B(0), B(0′), . . . ,B(z)

of propositions that have been reduced to numerical formulas.c

bSee footnote a.
cIn [?], p. 213, end of footnote 1, Bernays writes that this last paragraph, on mathe-
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matical induction, should be deleted. In 1927 Hilbert and his collaborators had not yet
gauged the difficulties facing consistency proofs of arithmetic and analysis. Ackermann
had set out (in [?]) to prove the consistency of analysis; but, while correcting the printer’s
proofs of his paper, he had to introduce a footnote, on page 9, that restricts his rule of
substitution. After the introduction of such a restriction it was no longer clear for which
system Ackermann’s proof establishes consistency. Certainly not for analysis. The proof
suffered, moreover, from imprecisions in its last part. Ackermann’s paper was received
for publication on 30 March 1924 and came out on 26 November 1924. In 1927, received
for publication on 29 July 1925 and published on 2 January 1927, von Neumann criti-
cized Ackermann’s proof and presented a consistency proof that followed lines somewhat
different from those of Ackennann’s. The proof came to be accepted as establishing the
consistency of a first-order arithmetic in which induction is applied only to quantifier-
free formulas. When he was already acquainted with von Neumann’s proof, Ackermann
communicated, in the form of a letter, a new consistency proof to Bernays. This proof
developed and deepened the arguments used in Ackermann’s 1924 proof, and, like von
Neumann’s, it applied to an arithmetic in which induction is restricted to quantifier-free
formulas. It is with this proof of Ackermann’s that Hilbert’s remarks above [BB: insert
explicit reference] (pp. 477-479) and Bernays’s present comments are concerned. It was
felt at that point, among the members of the Hilbert school, that the consistency of full
first-order arithmetic could be established by relatively straightforward extensions of the
arguments used by von Neumann or by Ackermann (vide [?], p. 137, lines 20-21; [?], p. 490,
line 4u, to p. 491, line 2; [?], p. 211, lines 4-7). These hopes were dashed by Gödel’s 1931.
Ackermann’s unpublished proof was presented in [?], pp. 93-130. In [?] Ackermann gave
a consistency proof for full first-order arithmetic, using a principle of transfinite induction
(up to ε0) that is not formalizable in this arithmetic.
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In connection with the preceding article by Otto Meyerhof, a few words
on Nelson’s significance for the philosophy of mathematics might be added.

Nelson was among those philosophers whose style of thinking resulted
from a familiarity with the spirit of the exact sciences. Mathematics and
physics represented the methodical ideal that he strove to achieve in elabo-
rating his philosophical thoughts.

He considered the demand of systematic rigor to be completely satisfied
in mathematical axiomatics, in particular in the form that Hilbert had given
it in Foundations of Geometry. And he therefore endeavored to extend the
reach of this method of axiomatics in the domain of philosophy.

49
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In doing so Nelson avoided the unfruitful imitation of mathematics that
was dominant in pre-Kantian metaphysics, which was based on the belief
that knowledge could be conjured up from nothing by logical reasoning.

As a follower of Kant, he held the doctrine of the synthetic character of
mathematical knowledge; he stressed that the cognitive content of mathe-
matics was captured in its axioms, which he considered the expression of
knowledge deriving from pure intuition.

In various writings, in particular in the essay “Remarks on non-Euclidean
geometry” (1906), he turned against the skeptical and the empiricist con-
ceptions, which—in regard to the validity of the geometrical axioms—have
found more and more adherents among scientists since the discovery of non-
Euclidean geometry.

Here he shows how these views result from clinging to the old Aristotelian
doctrine according to which all knowledge has its origin either in the senses
as the source of experience or in the understanding as the source of logic.

If this disjunction, which in itself is not compelling, is dropped, one re-
tains the possibility of recognizing extra-logical necessities, especially of an
intuitive sort, which are expressed in synthetic propositions. In particular,
concerning the parallel axiom, if this “dogmatic disjunction” is abandoned, it
is by no means possible to infer from the logical possibility of a non-Euclidean
geometry that the parallel axiom has no necessary validity, but only the that
this axiom has a synthetic, i. e. non-logical, character.

These ideas were further elaborated by Nelson in a lecture “On the
Foundations of Geometry,” which he delivered in Paris in April 1914 (on
the occasion of the foundation of the Société internationale de philosophie
mathématique.

Here Nelson supports his claim of the intuitive but at the same time
rational character of geometrical knowledge by a series of arguments.

In particular, he points out that the difficulties presented by a conceptual
description of (the continuity of) the continuum are a clear sign of the fact
that this is a task posed to thought from without, i. e. through intuition.

He furthermore emphasizes that intuition cannot be charged with the
typical geometrical errors such as, for instance, those which originate from
overlooking the possibility of one-sided surfaces; rather, they result from
hasty conceptual generalizations of intuitively grasped states of affairs.

In addition, he objects to the claim that non-Euclidean space can be
grasped intuitively. In the familiar spatial presentations of non-Euclidean
geometry, e. g. by the geometry of the interior of a sphere with a suitable
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definition of congruence, what is presented is not a non-Euclidean space
but only the satisfaction of the non-Euclidean laws by certain objects and
relations of the Euclidean space.

If this argument is not accepted by many today, this is due to the fact
that today’s mathematicians and physicists have mostly lost sight the real
meaning of the words “intuition” and “intuitive,” so that one talks about
intuitiveness in most cases only in a paled and blurred sense, according to
which no distinction is drawn between real intuitive representation and mere
intuitive analogy.

A weightier objection against Nelson’s standpoint originates from the
view that our spatial intuition is not perfectly sharp; therefore the geomet-
rical laws are only approximately determined by intuition and are derived
from the data of intuition only by a process of idealization.

Nelson argues against this claim as follows. It cannot be denied that the
geometrical axioms represent an idealization with respect to the facts of ob-
servation. But this circumstance only speaks against the empirical character
of geometrical laws. Their intuitive character is not thereby disputed (unless
one relies on the dogmatic disjunction already mentioned).

On the contrary, an idealization presupposes an ideal. Only if such an
ideal, in the sense of an epistemological norm, is given to us, does the ab-
straction that is to be carried out by the idealization have its definite dis-
tinctiveness, free of arbitrariness; and only then, as well, is the stability of
the idealization vis-a-vis the extensions of our domain of experience guar-
anteed. Hence, it is the viewpoint of idealization that points to the fact of
pure intuition, on the basis of which the process of idealization can simply
be understood as the transition from sensory intuition to pure intuition.

From this doctrine of pure intuition as the norm for geometrical idealiza-
tions, Nelson draws the consequence that there is a fundamental difference
between geometrical and physical idealization. In physical idealizations, the
applicability to reality is always problematic, in the first place because the
assumption of a limit for the idealizing limit process requires a justification
through experience and therefore can only be shown as highly probable at
best. By contrast, in geometrical idealizations the limiting entities are given
to us in pure intuition, which guides the process of geometrical idealization;
here the existence of a limit is for us certain, independently of experience.

The independence from experience is not to be understood in the sense of
pure immanence, so that one should, e. g., distinguish the a priori validity of
geometry for intuition from the validity of “real” (physical) space. Rather,
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Nelson states explicitly—in this respect too, a true follower of Kant: “We
know only one space. This is the space of geometry and in which physical
bodies are.”

Accordingly, the laws of geometry are binding for physics. They form the
framework within which all natural science is bound, and only through which
does the task of physical research receive its determination. This is because,
as Nelson explains, if one makes geometry itself an object of experimental
control, then one loses the possibility of drawing definite conclusions from
physical observations. For, given a new observation, one can never know
whether it expresses a previously unknown feature of space or some other
physical fact. Nelson elucidates this by the following example. Let us assume
that, when the Earth was thought to be a disk, one had established that
the sum of the angles of earthly triangles was larger than two right angles;
then one could equally have concluded from this result, according to the
empirical conception of geometry, either a non-Euclidean property of space
or the spherical shape of the earth.

What is said here in particular about geometrical laws similarly applies
to all those laws which, according to the Kantian doctrine, are taken from
pure intuition, i. e. also the laws of time and the geometric doctrine of motion
(kinematics).

Because of his conviction about the binding a priori character of these
laws for the physical explanation of nature, Nelson opposed the new physics,
whose characteristic feature consists precisely in the increased freedom from
the necessity of integrating all physical facts into the framework of the a
priori fixed, spatio-temporal ordering, which resulted in the distinguished
position of the geometric-kinematic laws vis-a-vis the physical laws.

However, this change in the methodological conception of physics forms
only a part of the philosophical impact originating from the more recent
development of the exact sciences. Another important influence comes from
research on the foundations of arithmetic. Nelson was actively involved n the
development of this research.

Nelson was in close touch with the work resulting from Cantorian set
theory through several members of the neo-Friesian school founded by him,
especially Gerhard Hessenberg, who was one of the leaders in this develop-
ment.

He dealt specifically with the paradoxes of set theory, the emergence of
which he witnessed. These paradoxes had a special interest for Nelson be-
cause of their relation to certain dialectical modes of inference, which he
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often used for disproving antagonistic views — especially by showing an “in-
trojected” contradiction, i. e. a contradiction which occurs in such cases
where accepting the validity or insightfulness of a posited general claim al-
ready gives a counterexample to its validity.

The essay “Remarks on the paradoxes of Russell and Burali-Forti” (vide
[?]), composed by Nelson together with Grelling, does not claim to solve
the paradoxes; it served to state them more precisely and sharpen the given
range of problems and reject unsatisfactory solutions. It is here that the
very concise paradox related to the word “heterological” was presented for
the first time.

Nelson was critical of attempts to found mathematics by pure logic. By
contrast, he had a deep and active sympathy for the Hilbertian enterprise
of a new foundation of mathematics. In this way of founding mathematics,
Nelson welcomed the realization of the methodological principle of a separa-
tion of critique and system, i. e. the complete dissociation of the foundational
procedure from the systematic deductive construction of mathematics, and
the associated epistemological distinction between proper mathematical facts
and “meta-mathematical” facts which have to be shown by the foundation.
This agreement of the Hilbertian approach with the basic ideas of his own
methodology, following Fries, was a source of great satisfaction for Nelson.
Even shortly before the end of his life he expounded in a paper (56th con-
vention of German philologists and schoolmen, Göttingen, September 1927)
the methodological kinship of the Hilbertian foundation with the Friesian
critique of reason.

There is, however, still another feature relating the Hilbertian foundation
of mathematics to Nelson’s philosophy: the “finitist attitude” demanded by
Hilbert as methodological foundation must be characterized epistemologically
as some sort of pure intuition, because, on the one hand, it is intuitive and,
on the other hand, it goes beyond what can actually be experienced.

The prerequisite of such a foundation of knowledge is, as such, still inde-
pendent of the special nature of the Hilbertian conception; it holds for any
finitist foundation of mathematics. A characteristic feature of the Hilbertian
foundation, however, is that here the finitist standpoint is related to the ax-
iomatic foundation of the theoretical sciences. The conditions of the finitist
attitude present themselves thereby as the conditions for the possibility of
theoretical knowledge of nature, quite in the sense of the Kantian formulation
of the problem.

Once this connection is generally recognized, it will be possible for the



54 CHAPTER 5. NELSON’S POSITION (1928)

basic ideas of the Kantian critique of pure reason to be revived in a new
form, detached from its particular historical conditions, from whose bounds
theoretical science has freed itself.

Such a methodological clarification can help contribute to restoring what
was correct in the rational tendencies that were always advocated by Nelson,
but which are so one-sidedly disregarded today.
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A discussion of the relation between axiomatic geometry and intuition can
be carried out from very different perspectives and on the basis of different
epistemological assumptions.

The present book, written by Richard Strohal with the essential collab-
oration of Franz Hillebrand, sets out to emphasize a certain methodological
and epistemological view of geometry. The introduction states that the “psy-
chological prehistory” of geometrical concepts and principles is the subject
of the investigation. In fact, however, the more specific elaboration of the
program shows already that it does by no means concern questions of ge-
netic psychology, but questions such as: In what way do we have to recur
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on intuition when introducing geometrical concepts; what role does intuition
play for the formation of basic concepts and complex concepts as well as for
setting up the principles of geometry; and how do we have to evaluate then
the epistemological character of these principles?

In this connection the author does not at all intend to make geometry
appear as being determined to the greatest possible extent by intuition.

On the one hand Strohal, as he mentions in the beginning, wants to leave
the question of application to “our space” completely aside (he does not, in
fact, go to such an extreme); he is concerned with the foundations of pure
geometry. A foundation of geometry through spatial experience is out of
question for him. But he also excludes a rational foundation based on an
appeal to an aprioristic evidence of geometrical intuition, because he does
not accept any aprioristic evidence other than the analytic one and does not
attribute any rational character to intuition. He does not enter into a closer
discussion of the concept of “intuition,” but begins with the view—which he
takes as self-evident, as it were, and which is admittedly also common among
exact researchers—that intuition is neither capable of giving us perfectly
clear objects nor of presenting us with a relation as necessary, so that all
idealizations and all insights of strict generality come about only by way of
conceptual abstraction.

Considering his epistemological position one should now think that Stro-
hal would welcome the standpoint of Hilbert’s formal axiomatics as being in
accord with his views and his intention. But in fact he agrees by no means
agrees with this modern axiomatics; he rather explicitly opposes it and, in
particular, Hilbert’s foundation of geometry.

It is difficult to explain comprehensibly and in a few words how Strohal
intends to deal with geometry because in his conception different intentions
are at play. In any case, this present attempt to dissent in principle from the
current standpoint of axiomatics and to go back to older tendencies may at
first sight seem appealing to some, but it is, on closer inspection, only suited
to bring our current standpoint into brighter light, and to make clear the
justification of the motives from which it arose in a particularly precise way.
But especially from this point of view it seems not to be useless to present
the main points of Strohal’s views and to discuss his presentation critically.

Strohal deals in particular detail with the formation of concepts. First of
all, the role of intuition, according to Strohal, consists in the following:

1. Elementary concepts are obtained from intuition by processes of ab-
straction.
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2. Intuition serves as a cause (causa occasionalis) for the formation of
complex concepts (for “synthetical definitions”) by suggesting the formation
of certain conceptual syntheses. This is done in the following way: sharp
definitions are obtained by combining elementary concepts and replace intu-
itive concepts, i. e., concepts directly taken from intuition (like the intuitive
concept of a straight line or of the circle); the extension of a concept formed
in this way does not have to coincide completely with the corresponding
intuitive concept.

For one thing, we have to take into account here that the intuition under
consideration by no means always has to be spatial intuition according to
Strohal, e. g., the elementary concept of congruence, which he identifies in
the style of Bolyai with “indistinguishability except for location,” is obtained
in the way that “the intuitive givenness of indistinguishable qualities, colors,
sounds, odors etc.” leads first to a vague concept of indistinguishability
(equality); from this we get then the rigorous concept of indistinguishability
as a limiting concept by a process of abstraction (pp. 71–72).

It is above all essential, however, that we are not free, according to Stro-
hal, to introduce as an elementary concept just any concept that has been
obtained from intuition by abstraction. He rather claims that: a concept
may be regarded as an elementary one only “if an entity falling under the ex-
tension of the respective concept cannot also be given by conceptual marks,”
or in a more succinct formulation: “When it is at all possible to define a
concept explicitly, then one has to define it.”

This “criterion” is of course completely indeterminate; since the possi-
bility of explicitly defining a concept depends essentially on the choice of
geometrical principles, and the selection of principles depends on the choice
of elementary concepts.

The motivation for the criterion is also quite unsatisfactory. Strohal as-
serts that the explanation of a concept has to make it possible “to decide
whether an object which is given in some way falls under the extension of
the respective concept or not” (p. 18). For instance, we have to be able to
decide whether the geometrical location of all points equidistant from two
fixed points A, B falls under the extension of the concept of a straight line;
such a task would be hopeless, he thinks, if one would regard the concept
of a straight line as a basic concept (p. 19). Again Strohal does not take
into account that the extensional relations between geometrical concepts are
only determined by the principles of geometry and that they, on the other
hand, can make it possible also to prove a complex concept to be exten-
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sionally equivalent to an elementary concept. Lacking a more immediate
justification, he says “obviously.”

Despite the indeterminacy of the criterion, the aim pursued with it can
be recognized: Geometry should—like a philosophical science—advance in its
formation of concepts from the highest generality to the particular by way of
conceptual synthesis. It must therefore not take the concepts of particular
geometrical entities as elementary concepts, but only those of an entirely
general character.

Because of this methodological demand, Strohal is forced to depart com-
pletely from the well-known elementary construction of geometry as it can be
found in Euclid and, in a similar form, also in Hilbert’s Foundations. He finds
a formation of geometrical concepts in line with his principle in Lobachefsky
and Bolyai. He follows these two, especially Lobachefsky, when introducing
the elementary concepts. On the basis of an exhaustive discussion he arrives
at the following system of elementary concepts:

1. the spatial (spatial formations);

2. the contact (the adjoining);

3. the “having-it-inside” (the part-whole relation);

4. the congruence (indistinguishability except for location).

Obviously we are here dealing with a construction of geometry according
to which the topological properties of space have precedence and only then
their is metric introduced. This method of constructing geometry and its sys-
tematic advantages are familiar to the mathematician—especially since the
investigations of Riemann and Helmholtz1 on the foundations of geometry.
He will not be satisfied, however, with having only this kind of foundation
available. In particular, the usual elementary foundational approach has the
great methodological advantage that geometry, like elementary number the-
ory, starts here by considering certain simple, easily comprehensible objects,
and that one does not need to introduce the concept of continuity and limit

1[1] Helmholtz’s group-theoretic conception, which was carried further by Lie and
Hilbert, is however not in line with Strohal’s intention (as will be seen from the following).
The “derivation of the elementary spatial concepts from that of equality” sketched by
Weyl (in the first paragraph of his book Space, time, matter (vide [?]) is more in accord
with it.
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processes from the outset. In any event one will insist on the freedom to
choose the basic concepts relative to the viewpoint according to which geom-
etry is carried out.

Strohal concedes, however, that it is in principle possible that systems
other than the one he gives “connect with intuition immediately in a different
manner, i. e., are based on other elementary concepts” (p. 63). But, he rejects
almost all other foundational approaches.

In his opinion, e. g., the concept of a straight line should not be taken as
a basic concept.2 He also deliberately avoids introducing the point as a basic
element. In his system the point is defined as the common boundary of two
lines which touch each other; the line results accordingly from two touching
surfaces and the surface from two touching solids.

He completely rejects the idea of taking the concept of direction as an
elementary concept. He declares that if one intends to use the concept of
direction for defining the straight line, this would “only be possible by con-
sidering the concept ‘equidirected’ as an elementary concept, which is not
further reducible, and thus connects to the intuition of ‘straightness’ itself.
That is to say, since no intuition can yield this elementary concept other than
that of an intuitive straight line, this amounts to regarding the straight line
itself as an elementary concept.” (p. 56). By contrast, one should remark
that one can obtain different directions starting from a point intuitively in-
dependent of the idea of straightness by considering different parts of the
visual field and by the imaginations of directions connected to our impulses
of motion. And moreover, as far as comparison of directions starting from
different points is concerned, Strohal, according to his methodological princi-
ples would have to accept their synthetic introduction by linking the concept
of direction with the concept of “indistinguishability,” since he arrives at the
comparison of lengths of segments in different locations in a very similar way.
In particular the pure closeness geometry discovered by Weyl has recently
clarified that, indeed, the a priori comparability of separate segments is by
no means more easily comprehensible than the comparability of directions
starting from distinct points. Here Strohal only repeats an old prejudice.

Strohal also rejects the characterization of the relation of congruence by
the concept of rigid motion as a circular procedure. “The concept of a rigid

2[1] Incidentally, Strohal considers a straight line only as a spatial object, or straightness
as a property of a line. He does not consider at all the possibility of introducing collinearity
as a relation between three points.
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solid which occurs in this connection can again be explained in no other
way than by presupposing the congruence of the different positions of this
solid. If one wants to understand the rigid solid as an elementary concept,
however, one will find that to obtain it no other intuitions will help than
those which give us the concept of congruence itself, so that the detour
through the concept of a rigid solid becomes pointless” (pp. 17–18). This
argumentation would be justified only if the concept of a rigid solid would
have to be formed as an ordinary generic concept, e. g., in such a way that
starting from an empirical representation of the rigid solid one arrives by
abstraction at the concept of the perfectly rigid solid. It is in fact possible to
carry out instead a completely different abstraction process, which consists
in sharpening by abstraction the intuitive facts about rigid bodies concerning
freedom of motion and coincidence into a strict lawfulness, and then forming
the geometrical concept of a rigid solid with respect to this lawfulness. In
its mathematical formulation, this kind of concept formation emerges by
considering rigid motions from the outset not individually, but by considering
the group of rigid motions.

This thought, which goes back to Helmholtz, was groundbreaking for an
entire line of geometrical research, and is increasingly topical because of the
theory of relativity. It is not mentioned by Strohal at all.

Now, if so many approaches adopted by mathematics in order to erect
geometry are rejected, one would expect that the way of justification so de-
cisively preferred by Strohal would be presented as a paradigm of methodol-
ogy. In fact, however, the considerations by means of which Strohal following
Lobachefsky explains the method—leading from the elementary concepts of
the spatial, contact and of the having-it-inside to the distinction of dimen-
sions and to the concepts of surface, line and point—are far removed from the
precision we are now used to when dealing with such topological questions;
on the basis of these considerations one cannot even determine whether those
three elementary concepts are sufficient for the topological characterization
of space.—

Up to now we have only regarded the part of Strohal’s considerations
that deals with geometrical concept formation. Strohal’s standpoint, how-
ever, becomes really clear only through the way in which he conceives of the
principles of geometry.

It is essential to this view that Strohal sticks to the separation of the
κoιναὶ έννoιαι (communes animi conceptiones) and the αιτ ήµατα (postu-
lata) as it is found in Euclid’s Elements. Strohal regards this distinction as
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fundamentally significant, and sees an essential shortcoming of recent foun-
dations of geometry in their deviation from this distinction.

Here it has to be remarked first of all that deviating from Euclid on
this point is not a result of mere sloppiness but is completely intentional.
Euclid puts the propositions of the theory of magnitude, which are gathered
under the title κoιναὶ έννoιαιbefore the specifically geometrical postulates
as propositions of greater than geometrical generality, which are to be applied
to geometry.

The kind of application, however, leads to fundamental objections since
the subordination of geometrical relations under the concepts occurring in the
κoιναὶ έννoιαι is tacitly presupposed in several cases where the possibility
of such a subordination represents a geometrical law that is by no means
self-evident.

Hilbert, in particular, has criticized Euclid’s application of the principle
that the whole is greater than the part in the theory of the areas of plane
figures in this way—an application which would only be justified, if one
could presuppose without a second thought that one could assign to every
rectilinear plane figure a positive quantity as its area (in such a way that
congruent figures have the same area and that by joining surfaces the areas
add up).3

Considering such a case one recognizes that the essential point in applying
the κoιναὶ έννoιαι always lies in the conditions of applicability. If these con-
ditions are recognized as satisfied, the application of the respective principle
in most cases becomes entirely superfluous, and sometimes the proposition to
be proved by applying the general principle belongs itself to these conditions
of applicability.

Putting the κoιναὶ έννoιαι at the beginning therefore appears to be a
continuous temptation to commit logical mistakes and it is more suited to
obscure the true geometrical state of affairs than to make it clear, and this
is the reason why this method has been completely abandoned.

Strohal seems to be ignorant of these considerations; in any case he does
not mention Hilbert’s criticism with even a syllable. He aims at emphasizing
again the distinction between the two kinds of principles. In particular, this
appears to him to be necessary because, in his opinion, the κoιναὶ έννoιαι
have a completely different epistemological character than the postulates,

3[1] Hilbert has shown that this presupposition in fact need not always be satisfied by
constructing a special “non-Archimedian” and “non-Pythagorean” geometry.
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namely that of evident analytic propositions, whereas postulates are not
expressions of knowledge at all; they are only suggested to us by certain
experiences.

Strohal therefore calls the κoιναὶ έννoιαι the “proper axioms.” He con-
siders it a particular success of his theory of geometrical concept formation
that it makes the analytic nature of the κoιναὶ έννoιαι comprehensible. He
finds this comprehensibility in the fact that these axioms, as propositions
each concerned with a single elementary relation, have the sense of an in-
struction and specify from which relational intuitions one has to abstract the
elementary concept “in order to turn the axiom concerned into an identical
proposition” (p. 70). This characterization amounts to the claim that the
axioms in question constitute logical identities based on the contentual view
of the elementary concepts.

It seems curious that such geometrically empty propositions should be
regarded as “proper axioms” of geometry, and one wonders furthermore to
what end one needs to posit specifically these propositions as principles at
all, since the elementary concepts are introduced contentually anyway.

For instance, one of these axioms is the proposition that if a is indistin-
guishable from b and b from c, then a is indistinguishable from c. This propo-
sition is, because of the meaning of “indistinguishability,” a consequence of
the purely logical proposition: if two things a, b behave the same with respect
to the applicability or non-applicability of a predicate P and also b, c behave
in this respect the same, then a and c also behave in this respect the same.

We now have the following alternative: Either the concept “indistinguish-
able” is used in its contentual meaning, then we have before us a proposition
which can be understood purely logically, and there is no reason to list such a
proposition as an axiom, since in geometry we regard the laws of logic as an
obvious basis anyway. Or else the concept “indistinguishable” and also the
other elementary concepts will not be applied contentually at all; rather, only
concept names are introduced initially, and the axioms give certain instruc-
tions about their meaning. Then we are taking the standpoint of formal
axiomatics, and the κoιναὶ έννoιαι are nothing else than what are called
implicit definitions following Hilbert.

Those places where Strohal stresses that the κoιναὶ έννoιαι do not pro-
vide “proper definitions” or “explicit definitions” of elementary relations
(pp. 68 and 72) indicate that this is indeed Strohal’s view—who very carefully
avoids using the term “implicit definition” anywhere.

From this standpoint it is not appropriate, however, to ascribe to the
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axioms in question the character of being evident. They simply constitute
formal conditions for certain initially indeterminate relations, and then there
is also no principled necessity of separating these axioms from the “postu-
lates.”

So either the setting up of the axioms, which according to Strohal have
the role of κoιναὶ έννoιαι, is altogether superfluous, or the separation of
these axioms as analytically evident propositions from the other principles is
not justified.

Furthermore, however, we find the same ills that discredited Euclid’s
κoιναὶ έννoιαι again in the application of these axioms in Strohal: the
formulation of these propositions, which can easily be confused with geomet-
rically contentful propositions, leads to logical mistakes, and these are in fact
committed.

Two cases are especially characteristic. 1. As an example of a proper
axiom the proposition is given4 that in a “cut,” i. e., when two adjoining
parts of a solid (spatial entity) touch, one always has to distinguish two sides
of the cut (p. 64). This proposition is tautological, however, since as the two
adjoining parts are called “sides” of the cut (p. 23), it says nothing but that
if two parts of a solid touch each other (adjoin), two adjoining parts have
to be distinguished. This proposition, moreover, is completely irrelevant
for geometry. But, it seems to state something geometrically important,
since given the wording one thinks of another proposition which expresses a
topological property of space.

The following mistake shows that Strohal himself is not immune to con-
fusions of a similar kind. He raises the following question (when discussing
the concept of congruence): “Is it possible to find two solids connected by a
continuous series of such solids which have one and the same surface in com-
mon, i. e., which all touch in one surface?” “We have to answer this question
in the negative,” he continues, “because it follows from the explanation of a
surface that only two solids are able to touch each other in one and the same
surface” (pp. 42–43).

2. The famous axiom: “The whole is greater than the part,” which
became, as mentioned, the source of a mistake for Euclid, is interpreted
by Strohal in the following way: The axiom hints at an elementary concept
“greater,” “which can be obtained by abstraction from a divided solid.” The

4[1] In this example Strohal follows some considerations of Lobachefsky.
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procedure of abstraction is characterized “by examining that relation which
obtains between the totality of all subsolids (the whole) and one of them
(the part). For the concept “greater” obtained this way, the proposition To-
tum parte maius est is an identity” (p. 77). Here we disregard that in this
interpretation the “whole” is wrongly identified with the totality of all part-
solids. In any case, it follows from this interpretation that the proposition “a
is greater than b” is only another expression for b being a part of a. So we have
again a perfect tautology, from which one can infer nothing for geometry; in
particular it is impossible to derive from this the proposition that a body
cannot be congruent with one of its parts—which also follows from the fact
that this proposition is generally valid only under certain restrictions anyway.
(For instance, a half line can turn into a part by a congruent translation, and
equally a spatial octant into a suboctant by a congruent translation.)

In fact, however, Strohal would have to have some formulation of this
proposition at his disposal for the theory of congruence—which he, however,
does not develop in this respect; for otherwise it would not be certain that this
“indistinguishability disregarding location” does not just mean topological
equality. Indeed, in the conceptual system that Strohal takes as a basis—the
first three elementary concepts, spatial object, adjoining, having-it-inside—
all belong to the domain of topological determinations, and only by the
concept of congruence the metric is introduced into geometry. Therefore, the
concept of congruence must contain a new distinguishing property besides the
element of correspondence. In the concept of indistinguishability disregarding
location5 such a distinguishing property, however, is not really given; for this
one also needs a principle according to which certain objects, that are at the
outset only determined as different with respect to the position but not as
topologically different, can also be recognized as distinguishable disregarding
location. In other words: it is important to introduce difference in size.
The principle that the whole is greater than the part should actually help us
achieve this. This will be impossible, however, if we interpret the proposition
in the way Strohal does; because from this interpretation it cannot be derived
that an object a which is greater than b is also distinguishable from it, even
with respect to location.

This circumstance perhaps escaped Strohal; for otherwise he would have

5[1] The “location” of a solid is, according to the definition Strohal took from
Lobachevsky with a certain revision (pp. 24 and 93), synonymous with the boundary
of the solid.
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realized the fact that his concept of indistinguishability disregarding location
does not yet yield geometrical congruence. Thus, we find here a gap very
similar to that in Euclid’s doctrine of the area.

The result of this consideration is that the method of putting the κoιναὶ
έννoιαι first becomes even more objectionable through the modified inter-
pretation given to it by Strohal; in any case, it does not appear to be an
example that should be followed.

At the same time Strohal’s characterization of these axioms has led us
to assume that he does not keep the contentual view of elementary concepts
even within geometry itself or, as the case may be, he does not make use of it
for geometrical proofs. This assumption is confirmed by Strohal’s discussion
of the postulates of geometry.

According to Strohal we are forced neither by intuition nor by logical
reasons to posit the postulates, “but are caused to do so by certain expe-
riences” (p. 97). For pure geometry they have the meaning of stipulations;
they are “tools for defining geometrical space, their totality forms the defin-
ition of geometrical space” (p. 103). They are characterized contentually as
“excluding certain combinations of elementary concepts, which are a priori
possible” (p. 103).

The point of this characterization emerges from Strohal’s view of the de-
ductive development of geometry. According to Strohal, this development
proceeds by a continued combination of properties, i. e., by forming syn-
thetical definitions. In forming the first syntheses one is only bound by those
restrictions resulting from the κoιναὶ έννoιαι. “Incidentally, one can proceed
completely arbitrarily in combining elementary concepts,” i. e., the decision
“whether one wants to unite certain elementary concepts in a synthesis or
to exclude such a union,” is caused by motives, “which lie outside of pure
geometry.” “However, in arbitrarily excluding the existence of a certain com-
bination, one introduces a proposition into pure geometry which has to serve
as a norm for further syntheses. propositions of this kind are called require-
ments, αιτ ήµατα, postulates.” “In forming higher syntheses” one has to
show that these “do not contradict the postulates already set up. One must,
as we say concisely, prove the possibility, the existence, of the defined object.
Here, existence and possibility mean the same, and amount to nothing but
consistency with the postulates” (pp. 98–99 and p. 102).

What is most striking in this description of the geometrical method is
that here, contrary to all familiar kinds of geometrical axiomatics, only a
negative content is ascribed to the postulates, namely that of excluding pos-
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sibilities, whereas all existential propositions in geometry are only interpreted
as statements about consistency.

Strohal’s view is in accord with the views of his philosophical school; these
views include Brentano’s theory of judgement as an essential element. Ac-
cording to this theory, all general judgements are negative existential judge-
ments whose content is that the matter of a judgement (a combination of the
contents of ideas is rejected (excluded).

In fact every general judgement can be brought into this logical form. By
producing such a normal form, however, the existential moment is not re-
moved, but only transferred into the formation of the matters of judgements.

One thus also does not succeed in geometry in excluding existential claims
completely or in reducing them to consistency claims. One can only hide an
existential claim by a double application of negation. Strohal proceeds in this
way for instance when he speaks of an αιτηµα which excludes the assump-
tion “that when dividing a geometrical solid no parts can ever be congruent”
(p. 93). We find another such example in his discussion of Dedekind’s con-
tinuity axiom. After having spoken of the divisions of a line segment AB
which has the cut property, and furthermore of the creation of a cut by a
point C, he continues: “In excluding the possibility of such a division of some
line segment AB on which such a point C is not found, I assert the αιτηµα of
continuity for the line segment” (p. 113). Talk of “occurring,” “being found,”
or “existence” all amount to the same thing. And in any case here, where
the formulation of of postulates is concerned, the interpretation of existence
in the sense of consistency with postulates is not permissible.

The identification of existence and consistency is justifiable in two senses:
first, with respect to geometrical space whose existence indeed only consists
in the consistency of the postulates defining it; and second also with respect
to geometrical objects, but only under the condition of the completeness of
the systems of postulates.

If the system of postulates is complete, i. e., if, the postulates already de-
cide, for every combination (every synthesis) of elementary concepts whether
they are permitted or excluded, then indeed the possibility (consistency) of
an object coincides with its existence.

However, as long as one is in the process of obtaining a system of pos-
tulates, i. e., of the stepwise determination of geometrical space, one has to
distinguish between existence and consistency. From the proof of the consis-
tency of a synthesis it only follows that it agrees with the postulates already
set up; it may nevertheless be possible to exclude this synthesis by a further
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postulate. By contrast, an existence proof says that already by the prior
postulates one is logically forced to accept the respective synthesis.

Let us take as an example “absolute geometry,” which results from or-
dinary geometry by excluding the parallel axiom. In this geometry one can
assume, without contradiction with the postulates, a triangle with an angu-
lar sum of a right angle; if we would identify consistency with existence in
this context, we would get the proposition: “In absolute geometry there is a
triangle with the angular sum of one right angle.” Then the following propo-
sition would equally hold: “In absolute geometry there exists a triangle with
an angular sum of two right angles.” Hence, in absolute geometry both a
triangle with an angular sum of a right angle and one with an angular sum of
two right angles would have to exist. This consequence contradicts, however,
a theorem proved by Legendre according to which in absolute geometry the
existence of a triangle with an angular sum of two right angles implies that
every triangle has this angular sum.

In order, therefore, to characterize the existence of geometrical objects
by the consistency with the postulates, as Strohal intends to do, one has to
have a complete system of postulates for which no decision concerning the
admission of a synthesis remains open. This prerequisite of completeness is
not mentioned by Strohal anywhere, and furthermore, it does not follow from
his description of the progressive method of forming and excluding syntheses
whether this way ever comes to a conclusion.

Disregarding all these objections, however, which concern the special kind
of characterization of the postulates and of the progressive method of obtain-
ing them, it has to be remarked above all that, according to the description
of geometry which Strohal gives here in the section on the postulates, geom-
etry turns out to be pure conceptual combinatorics,—such as it could not
be performed in a more extreme way in formal axiomatics: Combinations of
elementary concepts are tried out; in doing so the content of these concepts
is not taken into account, but only certain axioms representing this content
which act as initial rules of the game. Moreover, certain combinations are
excluded by arbitrary stipulations, and now one stands back and sees what
remains as possible.

Here, the detachment from the contentual formation of concepts is ex-
ecuted to the same degree as in Hilbert’s axiomatics; the initial contentual
introduction of elementary concepts does not play a role in this development;
it is, so to speak, eliminated with the help of the κoιναὶ έννoιαι.

Thus we have here—similar to Euclid’s foundation of geometry—the state
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of affairs that the contentual determination of the elementary concepts is
completely idle, i. e., precisely that state of affairs for the sake of which one
refrains from a contentual formulation of the elementary concepts in the
newer axiomatics.

In Euclid’s foundation, however, the state of affairs is different insofar as
here the postulates are still given in an entirely intuitive way. In the first
three postulates the close analogy with geometrical drawing is especially ap-
parent. The constructions required here are nothing but idealizations of
graphical procedures. This contentual formulation of the postulates permits
the interpretation according to which the postulates are positive existential
claims concerning intuitively evident possibilities which receive their verifica-
tion based on the intuitive content of the elementary concepts. For Strohal,
such a standpoint of contentual axiomatics is out of the question, since he
considers an intuitively evident verification of the postulates to be impos-
sible and therefore he can admit only the character of stipulations for the
postulates.

So Strohal’s sketch of the geometrical axiomatics ends in a conflict be-
tween the intuitive introduction of concepts and the completely non-intuitive
way in which the geometrical system is to be developed as a purely concep-
tual science starting from the definition of geometrical space given by the
postulates,—a discrepancy which is barely covered by the twofold role of the
the κoιναὶ έννoιαι, which function on the one hand as analytically evident
propositions, on the other hand as initial restrictive conditions for conceptual
syntheses.

In the light of these unsatisfying results one wonders on what grounds
Strohal rejects the simple and systematic standpoint of Hilbert’s axiomatics.
This question is even more appropriate as Strohal knows full well the reasons
leading to Hilbert’s standpoint. He himself says: “The intuitions represent-
ing the causa occasionalis for forming the syntheses, do not enter . . . into
geometry in the sense that one could immediately prove a proposition cor-
rect by referring to intuition;” moreover, shortly thereafter: “As soon as the
axioms”—Strohal is here only referring to the κoιναὶ έννoιαι—“are formu-
lated, the specific nature of elementary concepts has no further influence on
the development of geometrical deduction” (pp. 132–133).

Indeed, there are also no conclusive objections in Strohal’s polemic against
Hilbert’s foundation of geometry, which can be found in the final section of
his book.

Here his main argument is that in Hilbert’s conception of axiomatics the
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contentual element is only pushed back to the formal properties of the basic
relations, i. e., to relations of higher order. The formal requirements on the
basic relations which are expressed in the axioms would have to be regarded
contentually so Strohal and the contentual representations necessary for this
could again be obtained only by abstraction from the appropriate relational
intuitions. Thus, concerning the higher relations which constitute the re-
quired properties of the basic geometrical relations, one “has arrived at the
reference to intuition which axiomatics precisely wants to avoid” (p. 129).

This argument misses the essential point. What is to be avoided by
Hilbert’s axiomatics is the reference to spatial intuition.

The point of this method is that intuitive contents is retained only when
it essentially enters into geometrical proofs. By satisfying this demand we
free ourselves from the special sphere of ideas in the subject of the spatial,
and the only contentual representation we use is the primitive kind of in-
tuition which concerns the elementary forms of the combination of discrete,
bounded objects, and which is the common precondition for all exact sci-
entific thinking—which was stressed in particular by Hilbert in his recent
investigations on the foundations of mathematics.6

This methodological detachment from spatial intuition is not to be iden-
tified with ignoring the spatial-intuitive starting point of geometry. It is also
not connected with the intention—as Strohal insinuates—“to act as if these
and exactly these axioms had been joined in the system of geometry by some
inner necessity” (p. 131). On the contrary, the names of spatial objects and
of spatial connections of the respective objects and relations are maintained
deliberately in order to make the correlation with spatial intuitions and facts
evident, and to keep it continuously in mind.

The inadequacy of Strohal’s polemic becomes especially apparent when he
goes on to create artificially an opportunity for an objection. While report-
ing on the procedure of proving the consistency of the geometrical axioms,
he states: “For this purpose one chooses as an interpretation, e. g., the con-
cepts of ordinary geometry; by this Hilbert’s axioms transform into certain
propositions of ordinary geometry whose compatibility, i. e., consistency is
already established independently. Or one interprets the symbols by num-
bers or functions; then the axioms are transformed into certain relations of
numbers whose compatibility can be ascertained according to the laws of

6[1] Cf. especially the treatise “New foundation of mathematics” (vide [?]).
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arithmetic” (p. 127).
Strohal added the first kind of interpretation himself; in Hilbert there is

not a single syllable about an interpretation by “ordinary geometry.” Strohal
nevertheless has the nerve to connect an objection to Hilbert’s method with
this arbitrarily added explanation: “If one, say, proves the consistency of
Hilbert’s axioms by interpreting its “points,” “lines,” “planes” as points,
lines, planes of Euclidean geometry whose consistency is established, then one
presupposes . . . that these objects are already defined elsewhere” (p. 130).

On the whole one gets the impression that Strohal, out of a resistance
against the methodological innovation given by the formal standpoint of ax-
iomatics compared with the contentual-conceptual opinion, rejects the ac-
ceptance of Hilbert’s standpoint instinctively.

Strohal exhibits this attitude, however, not only against Hilbert’s ax-
iomatics, but also against most of the independent and important thoughts
that recent science has contributed to the present topic. This spirit of hos-
tility is expressed in the book under review not only by how it divides praise
and criticism, but even more in the fact that essential achievements, consid-
erations and results are simply ignored. For instance (as already mentioned
earlier), Strohal passes over in complete silence the famous investigation of
Helmholtz, which concerns the present topic most closely, and likewise Kant’s
doctrine of spatial intuition. And as to the strict mathematical proof of the
independence of the parallel axiom from the other geometrical axioms, Stro-
hal presents this as if it were still an unsolved problem: “This question
will finally be clarified only if one shows that no consequence of the other
postulates can ever be in conflict with the denial of the parallel postulate”
(p. 101). And this statement cannot be explained away by ignorance for, as
can be seen from other passages, Strohal knows of Klein’s projective deter-
mination of measure, and is also familiar with Poincaré’s interpretation of
non-Euclidean geometry by spherical geometry within Euclidean space (from
a review by Wellstein). The explanation instead is to be found in Strohal’s
oppositional emotional attitude, which refuses to appreciate the significance
of the great achievements of recent mathematics.

A naive reader can thus only receive a distorted picture of the develop-
ment of geometrical science from Strohal’s book. Those who are informed
about the present state of our science might take Strohal’s failed enterprise, in
view of the various methodological tendencies that work together in it, as an
opportunity to think through anew the fundamental questions of axiomatics.
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Part I: The Nature of Mathematical Knowledge

When we read and hear today about the foundational crisis in mathemat-
ics or the dispute between “formalism” and “intuitionism,” those unfamiliar
with the activities of mathematical science may think that this science is
shaken to its very foundations. In reality, mathematics has long been mov-
ing in such quiet waters that one notices instead the absence of stronger
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impulses, although there has been no shortage of significant systematic ad-
vances and brilliant achievements.

In fact, the current discussion of the foundations of mathematics does
not spring at all from a predicament of mathematics itself. Mathematics is
in a completely satisfactory state of methodological certainty. In particular,
the concern raised by the set theoretic paradoxes has long been overcome,
since it was recognized that, to avoid the known contradictions, it suffices to
impose restrictions that do not in the least impinge on the demands made
on set theory by mathematical theories.

The problems, the difficulties, and the differences of opinion really begin
only when one inquires not just about the mathematical facts, but about
the epistemological foundation and the demarcation of mathematics. These
philosophical questions have become particularly urgent since the transfor-
mation, which the methodological approach of mathematics underwent to-
wards the end of the nineteenth century.

The characteristic aspects of this transformation are: the emergence of the
concept of set, by means of which the rigorous foundation of the infinitesimal
calculus was achieved, and further the rise of existential axiomatics, that is,
the method of developing a mathematical discipline as the theory of a system
of things with certain relations whose properties constitute the content of the
axioms. To these we must add, as a consequence of the two aforementioned
aspects, a closer connection between mathematics and logic is established.

This development confronted the philosophy of mathematics with a com-
pletely new situation and entirely new insights and problems. Since then no
agreement has been reached in the discussion of the foundations of mathe-
matics. The present stage of this discussion is centered around the struggle
with the difficulties that are caused by the role of the infinite in mathematics.

The problem of the infinite, however, is neither the first nor the most
general question which one has to address in the philosophy of mathematics.
Here, the first task is to gain clarity about what constitutes the specific
nature of mathematical knowledge. We intend to address this question first,
and also to recall the development of the different points of view, but only
in a rough way and without their exact chronological order.

§ 1 The Development of Conceptions of Mathematics

The older conception of mathematical knowledge proceeded from the di-
vision of mathematics into arithmetic and geometry; according to it math-
ematics was characterized as a theory of two particular kinds of domains,
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that of numbers and that of geometric figures. This division could no longer
be maintained in the face of the rise to prominence of arithmetical methods
in geometry. Also geometry was not restricted to the study of the prop-
erties of figures but was broadened to a general theory of manifolds. The
completely changed situation of geometry found a particularly concise ex-
pression in Klein’s Erlangen Program, which systematically summarized the
various branches of geometry from a group-theoretical point of view.

In the light of this situation the possibility arose to incorporate geome-
try into arithmetic. And since the rigorous foundations of the infinitesimal
calculus by Dedekind, Weierstrass, and Cantor reduced the more general
concepts of number—as required by the mathematical theory of quantities
(rational number, real number)—to the usual (“natural”) numbers 1, 2, . . . ,
the conception emerged that the natural numbers constitute the true object
of mathematics and that mathematics is precisely the theory of numbers.

This conception has many supporters. In its favor is the fact that all
mathematical objects can be represented through numbers, or combinations
of numbers, or through higher set formations obtained from the number
sequence. From a foundational perspective the characterization of mathe-
matics as a theory of numbers is already unsatisfactory, because it remains
open what one considers here as essential to number. The question concern-
ing the nature of mathematical knowledge is thereby shifted to the question
concerning the nature of numbers.

This question, however, appears to be completely idle to the proponents
of the conception of mathematics as the science of numbers. They proceed
from the attitude common to mathematical thought, that numbers are a sort
of things, which by their nature are completely familiar to us, so much so
that an answer to the question concerning the nature of numbers could only
consist in reducing something familiar to something less familiar. From this
standpoint one sees the reason for the special status of numbers in the fact
that numbers make up an essential component of the world order. This order
is comprehensible to us in a rigorous scientific way just to the extent to which
it is governed by the factor of number.

Opposing this view, according to which number is something completely
absolute and final, there emerged soon, in the aforementioned epoch of the
development of set theory and axiomatics, a completely different conception.
This conception denies that mathematical knowledge is of a particular and
characteristic kind and holds that mathematics is to be obtained from pure
logic. One was led naturally to this conception through axiomatics, on the
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one hand, and through set theory, on the other.
The new methodological turn in axiomatics consisted in giving promi-

nence to the fact that for the development of an axiomatic theory the epis-
temic character of its axioms is irrelevant. Rigorous axiomatics demands
that in the proofs no other knowledge from the given subject be used than
what is expressly formulated in the axioms. This was intended already by
Euclid in his axiomatics, even though at certain points the program is not
completely carried through.

According to this demand, the development of an axiomatic theory shows
the logical dependence of the theorems on the axioms. But for this logical
dependence it does not matter whether the axioms placed at the beginning
are true sentences or not. It represents a purely hypothetical connection:
If things are as the axioms say, then the theorems hold. Such a separation
of deduction from asserting the truth of the initial statements is in no way
idle hair splitting. On the contrary, an axiomatic development of theories,
without regard to the truth of the fundamental sentences taken as starting
points, can be of great value for our scientific knowledge: in this way, on
the one hand, it is possible to test, in relation to the facts, assumptions of
doubtful correctness by systematic development of their logical consequences;
furthermore, the possibilities of a priori theory construction can be investi-
gated mathematically from the point of view of systematic simplicity and, as
it were, to develop a supply. With the development of such theories, math-
ematics takes over the role of the discipline formerly called mathematical
natural philosophy.

By completely ignoring the truth of the axioms of an axiom system, the
content of the basic concepts also becomes irrelevant, and thus one is lead to
completely abstract from all intuitive content of the theory. This abstraction
is further supported by a second feature, which comes as an addition to the
newer axiomatics, as it was developed above all in Hilbert’s Foundations
of Geometry, and which is, in general, essential for the formation of recent
mathematics, namely, the existential conception of the theory.

Whereas Euclid always thinks of the figures under consideration as con-
structed ones, contemporary axiomatics proceeds from the idea of a system
of objects, which is fixed in advance. In geometry, for example, one conceives
of the points, lines, and planes in their totality as such a system of things.
Within this system one considers the relations of incidence (a point lies on
a line, or in a plane), of betweenness (a point lies between two others), and
of congruence as being determined from the outset. Now, regardless of their



75

intuitive meaning, these relations can be characterized purely abstractly as
certain basic predicates. (We will use the term “predicate” also in the case of
a relation between several objects, so that we also speak of predicates with
several subjects.)1

Thus, e. g., in Hilbert’s system the Euclidean construction postulate,
which demands the possibility of connecting two points with a line, is re-
placed by the existence axiom: For any two points there is always a straight
line that belongs to each of the two points. “Belonging to” is here the ab-
stract expression of incidence.

According to this conception of axiomatics, the axioms as well as the the-
orems of an axiomatic theory are statements about one or several predicates,
which refer to the objects of an underlying system. And the knowledge pro-
vided to us by the proof of a theorem L, which is carried out by means of
the axioms A1 . . . Ak (for the sake of simplicity we will assume that we are
dealing here with only one predicate) consists in the realization that, if the
statements A1 . . . Ak hold of a predicate, then so does the statement L.

What we have before us is, however, a very general proposition about
predicates, that is, a proposition of pure logic. In this way, the results of
an axiomatic theory, according to the purely hypothetical and existential
understanding of axiomatics, present themselves as theorems of logic.

These theorems, though, are only significant if the conditions formulated
in the axioms can be satisfied at all by a system of objects together with
certain predicates concerning them. If such a satisfaction is inconceivable,
that is, logically impossible, then the axiom system does not lead to a the-
ory at all, and the only logically important statement about the system is
then the observation that a contradiction results from the axioms. For this
reason every axiomatic theory requires a proof of the satisfiability, that is,
consistency, of its axioms.

Unless one can make do with direct finite model constructions, this proof
is accomplished in general by means of the method of reduction to arithmetic,
that is, by exhibiting objects and relations within the realm of arithmetic that
satisfy the axioms to be investigated. As a result, one is again faced with
the question of the epistemic character of arithmetic.

Even before this question became acute in connection with axiomatics,

1This terminology follows a suggestion of Hilbert. It has certain advantages over the
usual distinction between “predicates” and “relations” for the conception of what is logical
in principle and also agrees with the usual meaning of the word “predicate.”
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as just described, set theory and logistics had already taken a position on it
in a novel way. Cantor showed that the number concept, both in the sense
of cardinal number and in the sense of ordinal number, can be extended
to infinite sets. The theory of natural numbers and the theory of positive
real numbers (analysis) were subsumed as parts under general set theory.
Even if natural numbers lost an essential aspect of their distinguished role,
nonetheless, from Cantor’s standpoint, the number sequence still constitutes
something immediately given, the examination of which was the starting
point of set theory.

This was not the end of the matter; rather, the logicians soon adopted the
stronger claim: sets are nothing but extensions of concepts and set theory
is synonymous with the logic of extensions, and,in particular, the theory of
numbers is to be derived from pure logic. With this thesis, that mathematics
is to be obtained from pure logic, an old and favorite idea of rational philos-
ophy, which had been opposed by the Kantian theory of pure intuition, was
revived.

Now the development of mathematics and theoretical physics had already
shown that the Kantian theory of experience, in any case, was in need of
a fundamental revision. As to the radical opponents of Kant’s philosophy
the moment seemed to have arrived for refuting this philosophy in its very
starting point, namely the claim that mathematics is synthetic in character.

This refutation, however, was not completely successful. A first symptom
that the situation was more difficult and complicated than the leaders of
the logistic movement had thought became apparent in the discovery of the
famous set-theoretic paradoxes. Historically, this discovery was the signal
for the beginning of the critique. If today we want to discuss the situation
philosophically it is more satisfactory to consider the matter directly without
bringing in the dialectical argument involving the paradoxes.

§ 2 The mathematical element in logic. – Frege’s defi-
nitions of number

In fact in order to see what is essential we need only to consider the new
discipline of theoretical logic itself, the intellectual achievement of the great
logicians Frege, Schröder, Peano, and Russell, and see what it teaches us
about the relation of the mathematical to the logical.

One sees immediately a peculiar two-sidedness in this relation which
shows itself in a varying conception of the task of theoretical logic: Frege
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strives to subordinate mathematical concepts to the concept formations of
logic, but Schröder, on the other hand, tries to bring to prominence the math-
ematical character of logical relations and develops his theory as an “algebra
of logic.”

But the difference here is only a matter of emphasis. In the various
systems of logistic one never finds the specifically logical point of view dom-
inating by itself; rather, in each case, it is imbued from the outset with the
mathematical perspective. Just as in the area of theoretical physics, the
mathematical formalism and mathematical concept formation prove here to
be the appropriate means of representing interconnections and of gaining a
systematic overview.

To be sure, it is not the usual formalism of algebra and analysis that is
applied here, but a newly created calculus developed by theoretical logic on
the basis of the formula language used to represent the logical connectives.
No one familiar with this calculus and its theory will doubt its explicitly
mathematical character.

Concerning this situation there arises first of all the requirement to de-
limit the concept of the mathematical, independently of the actual situation
in the mathematical disciplines by means of a principled characterization of
the nature of mathematical knowledge. If we examine what is meant by the
mathematical character of a deliberation, it becomes apparent that the dis-
tinctive feature lies in a certain kind of abstraction that is involved. This
abstraction, which may be called formal or mathematical abstraction, consists
in emphasizing and taking exclusively into account the structural aspects of
an object, that is, the manner of its composition from parts; “object” is un-
derstood here in its widest sense. One can, accordingly, define mathematical
knowledge as that which rests on the structural consideration of objects.

The study of theoretical logic teaches us, furthermore, that in the rela-
tionship between mathematics and logic, the mathematical point of view, in
contrast to the contentual logical one, is under certain circumstances the
more abstract one. The aforementioned analogy between theoretical logic
and theoretical physics extends as follows: just as the mathematical laws of
theoretical physics are contentually specialized by their physical interpreta-
tion, so the mathematical relationships of theoretical logic are also special-
ized through their contentual logical interpretation. The laws of the logical
relations appear here as a special model for a mathematical formalism.

This distinctive relation between logic and mathematics—not only can
mathematical judgments and inferences be subjected to logical abstraction,
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but also logical relationships can be subjected to mathematical abstraction—
is based on the special role of the formal realm with respect to logic. Namely,
whereas in logic one can otherwise abstract from the specifics of a given
subject, this is not possible in the formal realm, because formal elements
enter essentially into logic itself.

This holds in particular for logical inference. Theoretical logic teaches
that logical proofs can be “formalized.” The method of formalization consists
first of all in representing the premises of the proof by specific formulas in the
logical formula language, and furthermore in the replacement of the principles
of logical inference by rules that specify determinate procedures, according
to which one proceeds from given formulas to other formulas. The result
of the proof is represented by an end formula, which, on the basis of the
interpretation of the logical formula language, presents the proposition to be
proved.

Here we use that all logical inference, considered as a process, is reducible
to a limited number of logical elementary processes that can be exactly and
completely enumerated. In this way it becomes possible to pursue questions
of provability systematically. The result is a field of theoretical inquiry within
which the theory of the different possible forms of categorical inference put
forward in traditional logic deals with only a very specific special problem.

The typically mathematical character of the theory of provability reveals
itself especially clearly, through the role of the logical symbolism. The sym-
bolism is here the means for carrying out the formal abstraction. The tran-
sition from the point of view of logical content to the formal one takes place
when one ignores the original meaning of the logical symbols and makes the
symbols themselves representatives of formal objects and connections.

For example, if the hypothetical relation

“if A then B”

is represented symbolically by

A → B

then the transition to the formal standpoint consists in abstracting from all
meaning of the symbol → and taking the connection by means of the “sign”
→ itself as the object to be considered. To be sure one has here a specification
in terms of figures instead of the original specification of the connection in
terms of content; this, however, is harmless insofar as it is easily recognized



79

as an accidental feature. Mathematical thought uses the symbolic figure to
carry out the formal abstraction.

The method of formal consideration is not introduced here at all artifi-
cially; rather it is almost forced upon us when we inquire more closely into
the effects of logical inference.

If we now consider why the investigation of logical inference is so much in
need of the mathematical method, we discover the following fact. In proofs
there are two essential features which work together: the elucidation of con-
cepts, the feature of reflection, and the mathematical feature of combination.

Insofar as inference rests only on elucidation of meanings, it is analytic
in the narrowest sense; progress to something new comes about only through
mathematical combination.

This combinatorial element can easily appear to be so obvious that it is
not viewed as a separate factor at all. With regard to deductively obtained
knowledge, philosophers especially were in the habit of considering only what
is the precondition of proof as epistemologically problematic and in need of
discussion, namely fundamental assumptions and rules of inference. This
standpoint is, however, insufficient for the philosophical understanding of
mathematics: for the typical effect of a mathematical proof is achieved only
after the fundamental assumptions and rules of inference have been fixed.
The remarkable character of mathematical results is not diminished when
we modify the provable statements contentually by introducing the ultimate
assumptions of thetheory as premises and in addition explicitly state the
rules of inference (in the sense of the formal standpoint).

To clarify the situation we can make-use of Weyl’s comparison of a proof
conducted in a purely formal way with a game of chess; the fundamental
assumptions correspond to the initial position in the game, the rules of infer-
ence to the rules of the game. Let us assume that a bright chess master has
for a certain initial position A discovered the possibility of checkmating his
opponent in 10 moves. From the usual point of view we must then say that
this possibility is logically determined by the initial position and the rules of
the game. On the other hand, one can not maintain that the assertion of the
possibility of a checkmate in 10 moves is implied by the specification of the
initial position A and the rules of the game. The appearance of a contra-
diction between these claims disappears, if we see clearly that the “logical”
effect of the rules of the game depends upon combination and therefore does
not come about just through analysis of meaning but only through genuine
presentation.
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Every mathematical proof is in this sense a presentation. We will show
here by a simple special case how the combinatorial element comes into play
in a proof.

We have the rule of inference: “if A and if A implies B, then B.” In a
formal translation of a proof this inference principle corresponds to the rule
that the formula B can be obtained from the two formulas A and A → B.
Now let us apply this rule in a formal derivation, and we furthermore assume
that A and A → B do not belong to the initial assumptions. Then we have
a sequence of inferences S leading to A and a sequence T leading to A → B
and according to the rule described the formulas A and A → B yield the
formula B.

If we want to analyze what is going on here, we must not prejudge the
decisive point by the mode of presentation. The endformula of the sequence
of inferences T is initially only given as such, and it is epistemologically a
new step to recognize that this formula coincides with the one which arises
by connecting with a “→” the formula A obtained in some other way and
the formula B to be derived.

The determination of an identity is by no means always an identical or
tautological determination. The coincidence to be noted in the present case
can not be read off directly from the content of the formal rules of inference
and the structure of the initial formulas; rather, it can be read off only from
the structure that is obtained by application of the rules of inference, that is
to say by the carrying out of the inferences. Thus, a combinatorial element
is here present in fact.2

If in this way we become clear about the role of the mathematical in
logic, then it will not seem astonishing that arithmetic can be subsumed
within the system of theoretical logic. But also from the standpoint we have
now reached this subsumption loses its epistemological significance. For we
know in advance that the formal element is not eliminated by the inclusion
of arithmetic in the logical system. But with respect to the formal we have
found that the mathematical considerations represent a standpoint of higher
abstraction than the conceptual logical ones. We therefore achieve no greater
generality at all for mathematical knowledge as a result of its subsumption

2Paul Hertz defended the claim that logical inference contains “synthetic elements” in
his essay “On thinking” (vide [?]). His grounds for this claim will be explained in an essay
on the nature of logic, to appear shortly; they include the point developed here but rest
in addition on still other considerations.
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under logic; rather we achieve just the opposite; a specialization by logical
interpretation, a kind of logical clothing.

A typical example of such logical clothing is the method by which Frege
and, following him but with a certain modification, Russell defined the nat-
ural numbers.

Let us briefly recall the idea underlying Frege’s theory. Frege introduces
the numbers as cardinal numbers. His premises are as follows:

A cardinal number applies to a predicate. The concept of cardinal num-
ber arises from the concept of equinumerosity. Two predicates are called
equinumerous if the things of which the one predicate holds can be corre-
lated one-one with the things of which the other predicate holds.

If the predicates are divided into classes by reference to equinumerosity
in such a way that all the predicates of a class are equinumerous with one
another and predicates of different classes are not equinumerous, then every
class represents the cardinal number which applies to the predicates belonging
to it.

In the sense of this general definition of cardinal number, the particular
finite numbers like 0, 1, 2, 3 are defined as follows:

0 is the class of predicates which hold of no thing. 1 is the class of “one-
numbered” predicates; and a predicate P is called one-numbered if there is
a thing x of which P holds and no other thing different from x of which P
holds. Similarly, a predicate P is called two-numbered if there is a thing x
and a thing y different from it such that P holds of x and y and if there is no
thing different from x and y of which P holds. 2 is the class of two-numbered
predicates. The numbers 3, 4, 5 etc. are to be explained as classes in an
analogous way.

After he has introduced the concept of a number immediately following
a number, Frege defines the general concept of finite number in the following
way: a number n is called finite if every predicate holds of n, which holds
of 0 and which, if it holds of a number a holds of the immediately following
number.

The concept of a number belonging to the series of numbers from 0 to n is
explained in a similar way. The formulation of these concepts is followed by
the derivation of the principles of number theory from the concept of finite
number.

We now want to consider in particular Frege’s definition of the individual
finite numbers. Let us take the definition of the number 2, which is explained
as the class of two-numbered predicates. It may be objected to this explana-
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tion that the belonging of a predicate to the class of two-numbered predicates
depends upon extralogical conditions and the class therefore constitutes no
logical object whatsoever.

This objection is, however, eliminated if we adopt the standpoint of Rus-
sell’s theory with respect to the understanding of classes (sets or extensions
of concepts). According to it classes (extensions of concepts) are not actual
objects at all; rather they function only as dependent terms within a reformu-
lated sentence. If, for example, K is the class of things with the property E,
i. e. the extension of the concept E, then, according to Russell, the assertion
that an thing a belongs to the class K is to be viewed only as a reformulation
of the assertion that the thing a has the property E.

If we combine this conception with Frege’s definition of cardinal number,
we arrive at the idea that the number 2 is to be defined not in terms of the
class of two-numbered predicates but in terms of the concept the extension
of which constitutes this class. The number 2 is then identified with the
property of two-numberedness for predicates, i. e. with the property of a
predicate of holding of an thing x and of an thing y different3 from x but of
no thing different from x and y.

For the evaluation of this definition it is essential to know how the process
of defining is understood here and what claims are involved in it. What will
be shown here is that this definition is not a correct reproduction of the
true meaning of the cardinal number concept “two” by means of which this
concept is revealed in its logical purity freed from all inessential features.
Rather it will be shown that it is exactly the specifically logical element in
the definition that is an inessential addition.

The two-numberedness of a predicate P means nothing else but that there
are two things of which the predicate P holds. Here three distinct conceptual
features are present: the concept “two things,” the existential feature, and
the fact that the predicate P holds. The content of the concept “two things”
here does not depend on the meaning of either of the other two concepts.
“Two things” means something already without the assertion of the existence
of two things and also without reference to a predicate which holds of two
things; it means simply: “one thing and one more thing.”

In this simple definition the concept of cardinal number shows itself to
be an elementary structural concept. The appearance that this concept is

3For the sake of simplicity we shall skip the considerations regarding the concept of
difference, resp. its contradictory concept of identity.
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reached from the elements of logic results, in the case of the logical definition
of cardinal number under consideration, only from the fact that the concept is
conjoined with logical elements, namely the existential form and the subject-
predicate relation, which are in themselves inessential for the concept of
cardinal number. We thus indeed have before us here a formal concept in
logical clothing.

The result of these considerations is that the claim of the logicists that
mathematics is a purely logical field of knowledge shows itself to be imprecise
and misleading when theoretical logic is examined more closely. That claim
is sound only if the concept of the mathematical is taken in the sense of its
historical demarcation and the concept of the logical is systematically broad-
ened. But such a determination of concepts hides what is epistemologically
essential and ignores the special nature of mathematics.

§ 3 Formal abstraction

We have determined that formal abstraction, i. e. the focusing on the
structural side of objects, is the characteristic feature of mathematical rea-
soning and have thus demarcated the field of the mathematical in a funda-
mental way. If we want likewise to gain an epistemological understanding of
the concept of the logical, then we are led to separate from the entire domain
of the theory of concepts, judgments, and inferences, which is commonly
called logic, a narrower subdomain, that of reflective or philosophical logic.
This is the domain of knowledge which is analytic in the genuine sense and
which stems from a pure awareness of meaning. This philosophical logic is
the starting point of systematic logic, which takes its initial elements and
its principles from the results of philosophical logic and, using mathematical
methods, develops from them a theory.

In this way the extent of genuinely analytic knowledge is separated clearly
from that of mathematical knowledge, and what is justified in Kant’s theory
of pure intuition on the one hand, and in the claim of the logicists on the
other, comes into play. We can distinguish Kant’s fundamental idea that
mathematical knowledge and also the successful application of logical infer-
ence rest on an intuitive evidence from the particular form that Kant gave
to this idea in his theory of space and time. By doing so we also arrive
at the possibility of doing justice to both the very elementary character of
mathematical evidence and to the high degree of abstraction of the mathe-
matical point of view, emphasized in the claim about the logical character of
mathematics.
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Our conception also gives a simple account of the role of number in math-
ematics: we have explained mathematics as the knowledge which rests upon
the formal (structural) consideration of objects. However, the numbers con-
stitute as cardinal numbers the simplest formal determinates and as ordinal
numbers the simplest formal objects.

Cardinality concepts present a special difficulty for philosophical explica-
tion because of their special categorial position, which also makes itself felt in
language in the need for a unique species of number words. We do not have
to bother here with more detailed explication, but we do have to observe that
the determination of cardinal number involves the putting together of a given
or imagined complex out of components, which is just what constitutes the
structural side of an object. And indeed it is the most elementary structural
characteristics that are conveyed by cardinal numbers. Thus cardinal num-
bers play a role in all domains to which formal considerations are applicable;
in particular we encounter cardinal number within theoretical logic in a wide
variety of ways: for example, as cardinal number of the subjects of a predicate
(or as one says, as cardinal number of the arguments of a logical function);
as cardinal number of the variable predicates involved in a logical sentence;
as cardinal number of the applications of a logical operation involved in the
construciton of a concept or sentence; as cardinal number of the sentences
involved in a mode of inference; as the type-number of a logical expression,
i. e. the highest number of successive subject-predicate relations involved in
the expression (in the sense of the ascent from the objects of a theory to
the predicates, from the predicates to the predicates of the predicates, from
these latter to their predicates, and so on).

Cardinal numbers, however, provide us only with formal determinations
and not yet with formal objects. For example, in the conception of the car-
dinality three there is still no unification of three things into one object.
The bringing together of several things into one object requires some kind of
ordering. The simplest kind of order is that of mere succession, which leads
to the concept of ordinal number. An ordinal number in itself is also not
determined as an object; it is merely a place marker. We can, however, stan-
dardize it as an object, by choosing as place markers the simplest structures
deriving from the form of succession. Corresponding to the two possibilities
of beginning the sequence of numbers with 1 or with 0, two kinds of stan-
dardization can be considered. The first is based on a sort of things and a
form of adjoining a thing; the objects are figures which begin and end with
a thing of the sort under consideration, and each thing, which is not yet the
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end of the figure, is followed by an adjoined thing of that sort. In the second
kind of standardization we have an initial thing and a process; the objects
are then the initial thing itself and in addition the figures that are obtained
by beginning with the initial thing and applying the process one or more
times.

If we want to have the ordinal numbers, according to either standardiza-
tion, as unique objects free from all inessential features, then we must take
as object in each case the bare schema of the respective figures obtained by
repetition; this requires a very high degree of abstraction. However, we are
free to represent these purely formal objects by concrete objects (“number
signs” or “numerals”); these then possess inessential arbitrarily added char-
acteristics, which, however, can be immediately recognized as such. This
procedure is based on a certain agreement, which must be kept throughout
one and the same deliberation.4 Such an agreement, according to the first
standardization, is the representation of the first ordinal numbers by the fig-
ures 1, 11, 111, 1111. According to an agreement corresponding to the second
standardization, the first ordinal numbers are represented by the figures 0,
0′, 0′′, 0′′′, 0′′′′.

Having found a simple access to the numbers in this way by regarding
them structurally, our conception of the character of mathematical knowledge
receives a new confirmation. For, the dominant role of number in mathemat-
ics becomes clear on the basis of this conception; and our characterization of
mathematics as a theory of structures seems to be an appropriate extension
of the view mentioned at the beginning of this essay that numbers constitute
the real object of mathematics.

The satisfactory features of the standpoint we have reached must not
mislead us into thinking that we have already obtained all the fundamental
insights required for the problem of the grounding of mathematics. In fact,
until now we have only dealt with the preliminary question that we wanted
to clarify first, namely, what is the specific character of mathematical knowl-
edge? Now, however, we must turn to the problem that raises the main

4Philosophers are inclined to treat this relation of representation as a connection of
meaning. One must notice, however, that there is an essential difference here from the usual
relation of word and meaning; namely the representing thing contains in its constitution the
essential properties of the object represented, so that the relationships to be investigated
among the represented objects can also be found among the representatives and can be
determined by consideration of the latter.
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difficulties in grounding mathematics, the problem of the infinite.

Part II: The problem of the infinite and the for-

mation of mathematical concepts

§ 1 The postulates of the theory of the infinite. – The
impossibility of a basis in intuition. – The finitist
standpoint

The mathematical theory of the infinite is analysis (infinitesimal calculus)
and its extension by general set theory. We can restrict ourselves here to
consideration of the infinitesimal calculus because the step from it to general
set theory requires only additional assumptions, but no fundamental change
of philosophical conception.

The foundation given to the infinitesimal calculus by Cantor, Dedekind,
and Weierstraß shows that a rigorous development of this theory succeeds if
two things are added to the elementary inferences of mathematics:

1. The application of the method of existential inference to the integers,
i. e., the assumption of the system of integers in the manner of a domain
of objects of an axiomatic theory, as is explicitly done in Peano’s axioms
for number theory.

2. The conception of the totality of all sets of integers as a combinatorially
surveyable manifold. A set of integers is determined by a distribution of
the values 0 and 1 to the positions in the number series. The number n
belongs to the set or not depending on whether the nth position in the
distribution is 1 or 0. Just as the totality of possible distributions of
the values 0, 1 over a finite number of positions, e. g. over five positions,
is completely surveyable, by analogy the same is assumed also for the
entire number series.

From this analogy follows in particular also the validity of Zermelo’s
principle of choice for collections of sets of numbers. However, for the time
being we will put aside the discussion of this principle, it will fit in naturally
at a later point.

If we now consider these requirements from the standpoint of our general
characterization of mathematical knowledge, it seems at first that there is no
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fundamental difficulty in justifying them on that basis. For both in the case
of the number series and in that of the sets derived from it, one deals with
structures, which differ from those treated in elementary mathematics only
in being structures of infinite manifolds . The existential inference applied
to numbers also seems to be justified by their objective character as formal
objects the existence of which can not depend on accidental facts about
people’s conceptions of numbers.

Against this argumentation it is to be remarked, however, that it is pre-
mature to conclude from the character of formal objects, i. e. from their being
free of accidental empirical features, that formal entities must be related to
a domain of existing formal things. As an argument against this conception
we could put forward the set-theoretic paradoxes; but it is simpler to point
out directly that primitive mathematical evidence does not assume such a
domain of existing formal entities and that, in contrast, the connection with
that to what is actually imagined is essential as a starting point for formal
abstraction. In this sense the Kantian assertion that pure intuition is the
form of empirical intuition is valid.

Correspondingly, existence assertions in disciplines that rest on elemen-
tary mathematical evidence do not have a proper meaning. In particular,
in elementary number theory we only deal with existence assertions that re-
fer to an explicit totality of numbers that can be exhibited, or to an explicit
process that can be executed intuitively, or to both together, i. e. to a totality
of numbers that can be obtained by such a process.

Examples of such existence claims are: “There is a prime number between
5 and 10,” namely 7 is a prime number.

“For every number there is a greater one,” namely if n is a number, then
construct n + 1. This number is greater than n.

“For every prime number there is a greater one,” namely if a prime num-
ber p is given, then construct the product of this number and all smaller
prime numbers and add 1. If k is the number obtained in this way, then
there must be a prime number among the numbers between p + 1 and k.

In each of these cases the existence assertion is made more precise by a
further specification; the existence claim is restricted to explicit processes
that can be carried out in intuition and makes no reference to a totality of
all numbers. Following Hilbert, we will call this elementary point of view, re-
stricted by the requirements imposed by intuitability in principle, the finitist
standpoint; and in the same sense we will speak of finitist methods, finitist
considerations, and finitist inferences.
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It is now easy to see that existential reasoning goes beyond the finitist
standpoint. This transcending of the finitist standpoint already takes place
with any existence proposition which is put forward without a more exact
determination of the existence claim, as for example with the thoerem that
there is at least one prime number in every infinite arithmetic sequence

a · n + b (n = 0, 1, 2, 3, . . .)

if a and b are relatively prime numbers.

An especially common and important case of transcending the finitist
standpoint is the inference from the failure of an assertion to hold universally
(for all numbers) to the existence of acounterexample or, in other words, the
principle according to which the following alternative holds for every number
predicate P (n): either the universal assertion that P (n) holds of all numbers
is valid, or there is a number n of which P (n) does not hold. From the
standpoint of existential reasoning this principle results as a direct applica-
tion of the law of the excluded middle, i. e. from the meaning of negation.
This logical consequence fails to hold for the finitist standpoint, because the
assertion that P (n) holds for all numbers has here the purely hypothetical
sense that the predicate holds for any given number, and thus the negation
of this claim does not have the positive meaning of an existence assertion.

But, this does not yet close the discussion of the possibilities of a dis-
cerning mathematical foundation for the assumptions of analysis. It has to
be admitted that the assumption of a totality of formal objects does not
correspond to the standpoint of primitive mathematical evidence, but the
demands of the infinitesimal calculus can be motivated by the observation
that the totalities of numbers and number sets one deals with are structures
of infinite sets. In particular, the application of existential reasoning on num-
ber would thus not be inferred from the idea of the concept of numbers in the
realm of formal objects, but rather from considering the structure of the num-
ber sequence in which the individual numbers occur as elements. Indeed we
have not yet considered the argument already mentioned that mathematical
knowledge can also concern structures of infinite multiplicities .

Herewith we come to the question of the actual infinite. For the infinite
insofar as infinite manifolds are concerned, is the true actual infinite in con-
trast to the “potential infinite;” by the latter is meant not an infinite object
but merely the unboundedness of the progression from something finite to
something that is again finite. For example, this unboundedness also holds
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from the finitist standpoint for numbers, since for every number a greater
one can be constructed.

The question about the actual infinite which we have to ask first is
whether it is given to us as an object of intuitive mathematical knowledge.

In harmony with what we have determined so far, one could be of the
opinion that we really are capable of an intuitive knowledge of the actual
infinite. For even if it is certain that we have a concrete conception only of
finite objects, nevertheless an effect of formal abstraction could be exactly the
following: that it frees itself from the restriction to the finite and passes to the
limit, as it were, in the case of certain indefinitely continuable processes. In
particular one may be tempted to invoke geometric intuition and to point to
examples of intuitively given infinite manifolds from the domain of geometric
objects.

Now in the first place geometric examples are not conclusive. One is
easily deceived here by interpreting the spatially intuitive in thesense of an
existential conception. For example, a line segment is not intuitively given as
an ordered manifold of points but as a uniform whole, although, to be sure,
an extended whole within which positions are distinguishable. The idea of
one position on the line segment is intuitive, but the totality of all positions
on the line segment is merely a concept of thought. By means of intuition we
here reach only the potential infinite since every position on the line segment
corresponds to a division into two shorter segments each of which is in turn
divisible into shorter segment yet.

Furthermore, one cannot point to infinitely extended things like infinite
lines, infinite planes, or infinite space as objects of intuition. In particular,
space as a whole is not given to us in intuition. We do indeed represent
every spatial figure as situated in space. But this relationship of individual
spatial figures to the whole of space is given as an object of intuition only
to the extent that a spatial neighborhood is represented along with every
spatial object. Beyond this representation, the position in the whole of space
is conceivable only in thought. (In opposition to Kant, we must maintain this
view.)

The main argument that Kant gave in favor of the intuitive character
of our representation of space as a whole, in fact proves only that one can-
not attain the concept of a single inclusive space through mere generalizing
abstraction. But that is not what is claimed by the assertion that our repre-
sentation of the whole of space is only accessible in thought, i. e. that we are
here dealing with a mere general concept.
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Rather, we have in mind a more complicated situation: the representation
of the whole of space involves two different kinds of thoughts both of which
go beyond the standpoint of intuition and of reflective logic. One rests upon
the thought that connecting things yields the world as a whole and therefore
stems from our belief about what is real. The other is a mathematical idea
which, to be sure, begins with intuition but does not remain in the domain of
the intuitively representable; it is the representation of space as a manifold
of points subject to the laws of geometry.5

In both of these ways of representing space as a whole this totality is not
recognized as given, but rather is posited only tentatively. The representa-
tion of the whole of physical space is a fundamental problem; afterall, it is
exactly from the standpoint of contemporary physics that there is the possi-
bility of giving this initially very vague thought a more restricted and precise
formulation, whereby it becomes significant systematically and accessible to
research. The geometric ideas of spatial manifolds are indeed precise from
the very beginning, but require a proof of their consistency.

Thus we have no grounds for the assumption that we have an intuitive
representation of space as a whole. We cannot point directly to such a
representation, nor is there any necessity to introduce that assumption as an
explanation. But if we deny the intuitiveness of space as a whole, then we also
cannot claim that infinitely extended spatial configurations are intuitively
representable.

It should also be noted that the original intuitive conception of elemen-
tary Euclidean geometry does not in the least require a representation of
infinite figures. After all, we are dealing here only with finitely extended fig-
ures. Infinite manifolds of points are also never involved, since there are no
underlying general existential assumptions; every existential claim rather as-
serts a possible geometric construction. For example, that every line segment
has a midpoint says from this standpoint only that for every line segment a
midpoint can be constructed.6

5Both of these representations of space are united in the view of nature found in New-
tonian physics and are not clearly distinguished from one another. In Newtonian physics
Euclidean geometry constitutes the law governing the spatial relation of things in the
universe. Only the subsequent development of geometry and physics showed the neces-
sity of distinguishing between space as a physical entity and space as an ideal manifold
determined by geometric laws.

6In Euclid’s axiomatization this standpoint is of course not completely adhered to, since
one finds here the notion of an arbitrarily great extension of a line segment. This notion
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Thus the apparent possibility of displaying an actual infinity in the do-
main of objects of geometrical intuition is misleading. We can, however, also
show in a more general way that there is no question of eliminating the con-
dition of finitude via formal abstraction as would be required for an intuition
of the actual infinite. Indeed, the requirement of finitude is no accidental
empirical limitation but an essential characteristic of a formal object.

The empirical limitation still lies within the domain of the finite, where
formal abstraction must help us to go beyond the boundaries of our actual
power of representation. A clear example of this is the unlimited divisibility
of a line segment. Our actual power of representation already fails when the
division exceeds a certain degree of fineness. This boundary is physically
accidental and it can be overcome with the help of optical equipment. But
after a certain smallness all optical equipment becomes useless, and finally
our spatial and metrical representations lose all physical meaning. Thus, in
representing unlimited divisibility we already abstract from the requirements
of actual representation as well as from the requirements of physical reality.

The situation is analogous in the case of the representation of unlimited
addition in number theory. Here, too, there are limits to the execution
of repetitions both with respect to actual representability and to physical
realization. Let us consider as an example the number 10(101000). We can
arrive at it in a finitist way as follows: we start from the number 10, which,
according to the standardization given earlier, we represent by the figure,

1111111111 .

Let z be an arbitrary number, represented by an analogous figure. If in the
representation of 10 we replace each 1 with the figure z, there results, as we
can see intuitively, another number-figure, which for purposes of communi-
cation is called “10 × z.”7 In this way we get the process of multiplying a
number by 10. From this we obtain the process of transforming a number
a into 10a by letting the first 1 in a correspond to the number 10 and every
subsequent 1 to the process of multiplication by 10 until the end of the figure
a is reached. The number obtained by the last process of multiplying by 10
is called 10a.

From an intuitive viewpoint this procedure offers no difficulty whatsoever.
But, if we want to consider the process in detail our representation already

can in fact be avoided; one needs only formulate the axiom of parallels differently.
7Here we use a symbol “with meaning.”
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fails in the case of rather small numbers. We can again get some further
help from instruments or by making use of external objects, which involve
the determination of very large numbers. But even with all of these we soon
reach a limit: it is easy for us to represent the number 20; 1020 far extends
our actual power of representation, but is definitely within the domain of
physical realizability; it is ultimately very questionable, however,whether the
number 10(1020) occurs in any way in physical reality either as a relation
between magnitudes or as a cardinal number.

But intuitive abstraction is not constrained by such limits on the possi-
bility of realization. For limits are accidental from the formal standpoint.
Formal abstraction finds no earlier place, so to speak, to make a principled
distinction than at the difference between finite and infinite.

This difference is indeed a fundamental one. If we consider more precisely
how an infinite manifold as such can be characterized at all, then we find that
such a characterization is not possible by means of any intuitive presentation;
rather it is possible only by means of the assertion (or assumption or deter-
mination) of a lawlike connection. Thus, infinite manifolds are accessible to
us only in thought. Such thinking is indeed also a kind of representation, by
which a manifold is, however, not represented as an object; rather conditions
are represented which a manifold satisfies (or has to satisfy).

The fact that formal abstraction is essentially tied to the element of fini-
tude becomes especially apparent through the fact that the property of fini-
tude is not a special limiting characteristic from the standpoint of intuitive
evidence when considering totalities and figures. From this standpoint the
limitation to the finite is observed immediately and, so to speak, tacitly. We
do not need a special definition of finitude in this case, because the finitude
of objects is taken for granted for formal abstraction. So, for example, the
intuitive structural introduction of the numbers is suitable only for the finite
numbers. From the intuitive formal standpoint, “repetition” is eo ipso finite
repetition.

This representation of the finite, which is implicit in the formal point of
view, contains the epistemological justification for the principle of complete
induction and for the admissibility of recursive definition, both procedures
here construed in their elementary form, as “finitist induction” and “finitist
recursion.”

Drawing on this representation of the finite of course goes beyond the
intuitive evidence that is necessarily involved in logical reasoning. It cor-
responds rather to the standpoint from which one reflects already on the
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general characteristics of intuitive objects. Furthermore, the use of the in-
tuitive representation of the finite can be avoided in number theory if one
does not insist on treating this theory in an elementary way. But the intu-
itive representation of the finite forces itself upon us as soon as a formalism
itself is made the object of examination, thus in particular in the systematic
theory of logical inferences. This brings to the fore the fact that finiteness is
an essential feature of the figures of any formalism whatsoever. The limits
of any formalism, however, are none other than those of representability of
intuitive complexes in general.

Thus our answer to the question whether the actual infinite is intuitively
knowable turns out to be negative. A further consequence is that the method
of finitist examination is the appropriate one for the standpoint of intuitive
mathematical knowledge.

In this way, however, we can not verify the already mentioned assumption
for the infinitesimal calculus.

§ 2 Intuitionism. – Arithmetic as a theoretical frame-
work

How should we proceed now in the light of these facts? Concerning this
question the opinions are divided. We find here a conflict of views similar
to that over the question of characterizing mathematical knowledge. The
proponents of the standpoint of primitive intuitiveness conclude immediately
from the fact that the postulates of analysis and set theory transcend the
finitist standpoint that these mathematical theories must be abandoned in
their present form and revised from the ground up. The proponents of the
standpoint of theoretical logic, on the other hand, either try to logically
justify the postulates of the theory of the infinite, or they deny that these
postulates are problematic at all by disputing the fundamental significance
of the difference between finite and infinite.

The former view was already held by Kronecker when the method of
existential inference first emerged; he was probably the first person to pay
close attention to the methodological standpoint that we call finitist and
to emphasize most strongly its importance. His attempts to satisfy this
methodological requirement in analysis remained fragmentary, however; a
more precise philosophical presentation of this standpoint was also lacking.
Thus in particular Kronecker’s oft quoted dictum, that God has created the
whole numbers, but everything else is the work of man, is not at all suited for
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motivating Kronecker’s requirement:8 if the whole numbers are created by
God, one would think that it is permissible to apply existential inference to
them, whereas it is just the existential point of view that Kronecker excludes
already in the case of the whole numbers.

Brouwer has extended Kronecker’s standpoint in two directions: on the
one hand with respect to philosophical motivation by putting forward his
theory of “intuitionism,”9 and on the other hand by showing how one can
apply the finitist standpoint in analysis and set theory, and finitistically
ground at least a considerable portion of these theories by fundamentally
revising the formation of concepts and the methods of inference.

The result of this investigation does have its negative side, however; for it
turns out that, in the process of treating analysis and set theory finitistically,
one must accept with not only great complications, but also serious losses
with respect to systematization.

The complications appear already in connection with the first concepts
of the infinitesimal calculus such as boundedness, convergence of a number
sequence, the difference between rational and irrational. Let us take for
example the concept of boundedness of a sequence of integers. According to
the usual view one of the following alternatives holds: either the sequence
exceeds every bound, and then the sequence is unbounded, or all numbers in
the sequence are below some given bound, and then the sequence is bounded.
In order to determine here a finitist concept we must sharpen the definition
of boundedness and unboundedness as follows: a sequence is called bounded
if we can indicate a bound for the numbers in the sequence, either directly or
by giving a procedure for producing one; the sequence is called unbounded
if there is a law according to which every bound is necessarily exceeded by
the sequence, i. e., the assumption that the sequence has a bound leads to an
absurdity.

With this formulation of the concepts the definitions do indeed have a
finitist character, but we no longer have a complete disjunction between the
cases of boundedness and unboundedness. We therefore cannot infer that a
sequence is bounded from a refutation of the assumption that the sequence

8The methodical standpoint appropriate to this dictum is the one adopted by Weyl in
his book The Continuum (vide [?]).

9In the interest of clarifying the discussion it seems to me advisable to use the term
“intuitionism” to refer to a philosophical view in contrast to the term “finitist,” which
refers to a particular method of inference and concept formation.
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is unbounded. Likewise we cannot consider a claim as established when it is
proved, on the one hand, under the assumption that a certain sequence of
numbers is bounded and, on the other hand, under the assumption that it is
unbounded.

In addition to such complications, which permeate the entire theory, there
is a yet more essential disadvantage, namely that many of the general the-
orems, through which mathematics obtains its systematic clarity, fail. So,
for example, in Brouwer’s analysis even the theorem that every continuous
function has a maximum value on a finite closed interval is not valid.

It seems an unjustified and unreasonable demand that philosophy is
putting on mathematics, to give up its simpler and more fruitful method
in favor of a cumbersome method, which is also inferior from a systematic
point of view, without being forced to do so by an inner necessity. This
constraint makes us suspicious of the standpoint of intuitionism.

Let us see what are the main points of this philosophical view that was
developed by Brouwer. It includes, first of all, a characterization of math-
ematical evidence. Our earlier discussion of formal abstraction agrees in
essential points with this characterization, in particular with regard to their
connection with Kant’s theory of pure intuition.

Admittedly there is a divergence insofar as according to Brouwer’s view
the temporal aspect is an essential feature of the objects of mathematics. But
it is not necessary to go into a discussion of this point here, since a decision
concerning it is of no consequence for the question of mathematical method-
ology: what for Brouwer arises as a consequence of the connection between
time and the objects of mathematics is nothing other than what is obtained
by us from the connection of formal abstraction with its concrete, intuitive
starting point, namely the methodological restriction to finitist procedures.

The decisive consequences of intuitionism result first from the further as-
sertion that all mathematical thought with a claim to scientific validity must
be carried out on the basis of mathematical evidence, so that the limits of
mathematical evidence are at the same time limits for mathematical thought
in general.

This demand that mathematical thought be limited to the intuitively
evident appears at first to be completely justified. Indeed it corresponds to
our familiar conception of mathematical certainty. We must, however, keep
in mind that this familiar conception of mathematics originally went together
with a philosophical view, according to which the intuitive evidence of the
foundations of the infinitesimal calculus was not in question. However, we



96 CHAPTER 7. PHIL.OFMATH. & HILBERT (1930)

have departed from such a view since we found that the postulates of analysis
cannot be verified by intuition, that in partiular the representation of infinite
totalities, which is fundamental in analysis, cannot be grasped in intuition
but only through the formation of ideas.

Now we can not expect this new view of the limits of intuitive evidence
to fit directly with the received conception of the epistemological character
of mathematics. Rather, on the basis of what we have determined it seems
likely that the generally accepted conception of mathematics represents the
situation too simply and that we can not do justice to what goes on in
mathematics from the standpoint of evidence alone; we must acknowledge
that thinking has its own distinctive role.

Thus we arrive at a distinction between the standpoint of elementary
mathematics and a systematic standpoint that goes beyond it. This distinc-
tion is by no means artificial or merely ad hoc; rather it corresponds to the
two different starting points from which one is led to arithmetic: on the one
hand, the combinatorial consideration of relations between discrete entities,
and on the other, the theoretical demand placed on mathematics by geome-
try and physics.10 The system of arithmetic by no means arises only from an
activity of construction and intuitive consideration, but also, in large part,
from the task of precisely conceptualizing and theoretically mastering the
geometric and physical representations of quantity, area, impact, velocity,
and so on. The method of arithmetization is a means to this end. But
in order to serve this purpose, arithmetic must extend its methodological
standpoint from the original elementary standpoint of number theory to a
systematic perspective in the sense of the postulates discussed.

Arithmetic, which comprises the encompassing framework within which
the geometric and physical disciplines find their place, consists not only of
the elementary, intuitive treatment of numbers, but it has itself the character
of a theory in that it builds on the representation of the totality of numbers as

10It is remarkable that Jakob Friedrich Fries, who still ascribed mathematical evidence to
a domain going far beyond the finite (in particular, according to his view “the continuous
sequence of larger and smaller” is given in pure intuition), nevertheless made a methodical
distinction between, on the one hand, “arithmetic as a theory,” which conceptualizes
and scientifically develops the intuitive representation of magnitude, and, on the other,
“combinatory theory or syntactic,” which rests only on the postulate of arbitrary ordering
of given elements and its arbitrary repeated applications, and which needs no axioms
since its operations are “immediately comprehensible in themselves.” (Cf. J. F. Fries,
Mathematical Philosophy of Nature (vide [?] p. ).)
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a system of things as well as the totality of sets of numbers. This systematic
arithmetic achieves its aim in the best possible way, and there are no grounds
in its procedures for objections, so long as it is clear that we are here not
taking the standpoint of elementary intuitiveness, but that of a thought
construction, i. e., the standpoint that Hilbert calls the axiomatic one.

The charge of arbitrariness against this axiomatic approach is also unjus-
tified, for in the foundations of systematic arithmetic we are not dealing with
an arbitrary axiom system, put together according to need, but with a nat-
ural systematic extrapolation from elementary number theory. However, the
analysis and set theory which develop on this foundation constitute a theory
which is already distinguished in pure intellect, and which is suited to be
taken as the theory κατ ’ ’εξoχήν, into which we incorporate the doctrines
and theoretical approaches of geometry and physics.

Thus we cannot acknowledge the veto that intuitionism directs against
the method of analysis. The observation, on which we agree with intuition-
ism, that the infinite is not given to us intuitively does indeed require us to
modify our philosophical conception of mathematics, but not to transform
mathematics itself.

Of course, the problem of the infinite returns again. For in taking a
thought construction as the starting point for arithmetic, we have intro-
duced something problematic. A thought construction, may it be ever so
plausible and natural from a systematic point of view, contains in and of
itself no guarantee that it can be carried out consistently. In apprehend-
ing the idea of the infinite totality of numbers and of sets of numbers, the
possibility is not excluded that this idea could lead to a contradiction in its
consequences. Thus it remains it to investigate the question of the freedom
from contradiction, or “consistency,”11 of the system of arithmetic.

Intuitionism wants to spare us these tasks by restricting mathematics to
the domain of finitist considerations; but the price for this elimination of the
difficulties is too high: the problem goes away, but the systematic simplicity
and clarity of analysis is also lost.

§ 3 The problems with logicism. – The value of the
logicistic reduction of arithmetic

11We suggest here using this expression, which Cantor used specifically with respect to
the construction of sets, more generally with respect to any theoretical approach.
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The proponents of the standpoint of logicism believe that they can deal
with this problem in a completely different way. In discussing this stand-
point we connect with our earlier consideration of logicism. There it was
important to recognize that intuitive evidence even plays a role in deductive
logic, and that the logical definition of cardinal number does not establish
the specifically logical nature of the concept of cardinal number (as a concept
of pure reflection) but rather is only a logical normalization of elementary
structural concepts.

These reflections concern the demarcation of what is logical in the narrow
sense from what is formal. The recognition of the formal element in logic,
however, by no means resolves the methodological question of logicism. Logi-
cism is concerned not only with the theoretical development of the science
of inference; but, as already explained, it takes as its further task the re-
duction of all arithmetic to the formalism of logic. This reduction proceeds
first via the introduction of cardinal numbers as properties of predicates, as
already described, and then (as will not be described more precisely here)
by expressing the construction of sets of numbers in terms of the logical for-
malism, replacing each set with a defining predicate. Thus the totality of
predicates of numbers replaces the totality of sets of numbers.

In this way one in fact succeeds in assigning to every arithmetical sentence
a sentence from the domain of theoretical logic in which, aside from variables,
only “logical constants” occur, i. e. basic logical operations like conjunction,
negation, the form of generality, etc.

Now it is clear that the problem of the infinite can not be solved solely by
this translation of arithmetic into the formalism of logic. If theoretical logic
deductively obtains the system of arithmetic, then its procedures must in-
clude either explicit or hidden assumptions through which the actual infinite
is introduced.

The justification that is given for these assumptions, and the position
adopted with respect to them, has been the weak point of logicism from
the start. Indeed, Frege and Dedekind, whose proofs and discussions dis-
played extreme precision and rigor everywhere else, were relatively uncon-
cerned about the supposed self-evident assumptions they took as the basis
for the standpoint of general logic, namely the idea of a closed totality of all
conceivable logical objects whatsoever.

If this idea were tenable, it would of course be more satisfactory from a
systematic point of view than the more specialized postulates of arithmetic.
But, as is well known, it had to be dropped, because of the contradictions
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to which it lead. Since then logicism has forgone proving the existence of an
infinite totality, and has instead explicitly postulated an axiom of infinity.

This axiom of infinity, however, is not a sufficient assumption for ob-
taining arithmetic as logically construed. We could only obtain with it what
follows from our first postulate, the admissibility of existential inference with
respect to the integers. To conform with our second postulate we still re-
quire something further, namely, the application of existential inference with
respect to predicates. The justification of this way of proceeding might at
first seem to be logically self-evident, and in fact it is not questioned under
the conception of Frege and Dedekind. But once the idea of the totality of
all logical objects is given up, the idea of the totality of all predicates be-
comes problematic as well, and here closer inspection reveals a particular,
fundamental difficulty.

Namely, in accordance with the genuine logicist standpoint, we construe
the totality of predicates as a totality which essentially first comes into ex-
istence in the frame of the system of logic by applying logical constructions
to certain initial, prelogical predicates, e. g., predicates taken from intuition.
Further predicates are now obtained by reference to the totality of predicates.
An example is the already mentioned Fregean definition of finite number: “a
number n is called finite if every predicate holds of n that holds of the number
0 and that, if it holds of a number a also holds of the succeeding number.”
The predicate of finiteness is defined here by reference to the totality of all
predicates.

Definitions of this kind, called “impredicative,”12 occur everywhere in the
foundation of arithmetic , and indeed, right in the crucial places.

Now there is really no objection to determining a thing from a totality
by means of a property that refers to this totality. So, for example, in the
totality of numbers a particular number is defined by the property of being
the greatest prime number, such that its product with 1000 is greater than

12The term is due to Poincaré who—in contrast to the other critics of set theory, almost
all of whom concerned themselves just with the axiom of choice—brought the issue of
impredicative definition into the discussion and put the emphasis on it. His criticism was
disputable, however, because he made the use of impredicative definitions appear to be a
novelty introduced by set theory. Zermelo could reply to him that impredicative definitions
already occur essentially in the usual modes of inference in analysis, which Poincaré in
fact accepted.

Since then Russell and Weyl in particular have thoroughly discussed and completely
clarified the role of impredicative definition in analysis.
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the product of the preceding prime number with 1001.13

But it is required here that the totality in question is determined in-
dependently of the definitions referring to it; otherwise we enter a vicious
circle.

However, precisely in the case of the totality of predicates and the im-
predicative definitions referring to it, this precondition cannot be taken as
directly satisfied. For the totality of predicates is determined according to
the conception discussed here by the laws for logical constructions, and these
include also impredicative definitions.

In order to avoid the vicious circle it would of course suffice to show that
every predicate introduced by an impredicative definition can also be defined
in a “predicative” way. Indeed, one could even get by with a weaker claim.
Since in the logical foundation of arithmetic a predicate is always considered
just with respect to its extension, i. e., with respect to the set of things of
which it holds, we would only need to know that every predicate introduced
by an impredicative definition is extensionally equal to a predicatively defined
predicate.

This postulate, called the “axiom of reducibility,” was imposed along
with the axiom of infinity by Russell, who recognized with total clarity the
difficulty involved in impredicative definitions.

But how is this axiom of reducibility to be understood? From its for-
mulation it is not clear whether it expresses a logical law or an extralogical
assumption.

If, in the first case, in which the axiom of reducibility would be the ex-
pression of a logical law, its validity would have to be independent of the
basic domain of prelogical initial predicates—at least assuming that this do-
main satisfies the axiom of infinity. But this would mean that the domain of
predicates of an axiomatic theory in which the forms of the universal and the
existential judgment (the existential reasoning) are applied only to objects
and not to predicates cannot be enlarged by the introduction of impredicative
definitions, provided only that the axiom system requires for its satisfaction
an infinite system of objects.

But the correctness of such a statement is out of the question. One can
easily construct examples which refute this claim.

13The example is chosen in such a way that the reference to the totality of numbers can
not be eliminated directly as is the case in most of the simpler examples.
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Dedekind’s introduction of the concept of number furnishes such an example. Dedekind
starts with a system in which a thing 0 is distinguished and which permits a one-one map-
ping onto a subset not containing the thing 0. Suppose we represent this mapping by a
predicate with two subjects and formulate the required properties of this predicate as ax-
ioms; we then get an elementary axiom system that contains in its axioms no reference to
the totality of predicates and that, moreover, can be satisfied only by an infinite system of
objects. Let us now consider Dedekind’s concept of number; if we translate his definition
from the language of set theory into that of the theory of predicates, it can be formulated
in full analogy to Frege’s definition of finite number: “a thing n of our system is a number
if every predicate holds of n which holds of 0 and which, if it holds of a thing a in our
system, holds also of the thing to which a is correlated by the one-one mapping.” This
definition is impredicative; and one can see that it is not possible to obtain a predicate that
is extensionally equal to the hereby defined concept of “being a number,” by a predicative
definition from the basic elements of the theory.14

We find, therefore, that for the axiom of reducibility, only the second
interpretation comes into consideration, according to which it expresses a
condition on the initial domain of prelogical predicates.

By introducing such an assumption one abandons the conception that
the domain of predicates is generated by logical processes. The aim of a
genuinely logical theory of predicates is then given up.

If one decides to do this, then it seems more natural and appropriate to
return to the conception of a logical function that corresponds to Schröder’s
standpoint: one construes a logical function as an assignment of the values
“true” and “false” to the objects of the domain of individuals. Each pred-
icate defines such an assignment; but the totality of assignments of values
is construed, in analogy with the finite, as a combinatorial manifold which
exists independently of conceptual definitions.

This conception removes the circularity of the impredicative definitions
of theoretical logic; we have only to replace any statement about the totality
of predicates by the corresponding statement about the totality of logical
functions. The axiom of reducibility is thus dispensable.

This step was actually taken by the logicist school at the suggestion of
Wittgenstein and Ramsey. These two maintained in particular that in or-
der to avoid the contradictions connected with the concept of the set of

14Another example was given by Waismann in a note on “The nature of the axiom of
reducibility” (vide [?]). This, however, requires some modification.
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all mathematical objects it is not necessary to distinguish predicates by
their definitions, as Whitehead and Russell had done in Principia Mathe-
matica. Rather, they maintained, it suffices to delimit clearly the domains
of definition of predicates, so that one distinguishes between the predicates
of individuals, the predicates of predicates, the predicates of predicates of
predicates, and so on.

In this way one has returned from the type theory of Principia Mathe-
matica to the simpler conceptions of Cantor and Schröder.

However, one should not be deceived over the fact that with this change
one has moved far away from the standpoint of logical self-evidence. The as-
sumptions on which theoretical logic is then based are in principle of exactly
the same kind as the basic postulates of analysis, and are also completely
analogous to them in content. The axiom of infinity in the logical theory
corresponds to the conception of the number sequence as an infinite totality;
and in the logical theory one postulates the concept of all logical functions
instead of the concept of all sets of numbers, whereby the functions refer to
the “domain of individuals” or to a determinate domain of predicates.

Thus, when arithmetic is incorporated into the system of theoretical logic,
nothing is saved in terms of assumptions. Contrary to what one might at
first think, this incorporation by no means has the significance of a reduction
of the postulates of arithmetic to lesser assumptions; its value is rather in
the fact that the mathematical theory is placed on a broader basis by joining
it with the logical formalism.

In this way the theory attains, first of all, a higher degree of method-
ological distinction, as follows. Not only do its assumptions result from a
natural extrapolation of intuitive numbers, but they are also obtained by
extrapolating the logic of extensions to infinite totalities.

Moreover, by joining arithmetic with theoretical logic we gain an insight
into the connection of the processes of set formation with the fundamental
operations of logic; and the logical structure of concept formation and of
inferences becomes clearer.

Thus, in particular, the meaning of the Principle of Choice becomes fully
comprehensible only by means of the formalism of logic. We can express this
principle in the following form: if B(x, y) is a two-place predicate (defined in
a certain domain) and if for every thing x in the domain of definition there
is at least one thing y in this domain for which B(x, y) holds, then there is
(at least) one function y = f(x), such that for every thing x in the domain
of definition of B(x, y) the value f(x) is again in this domain, and is such
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that B(x, f(x)) holds.
Let us consider what this assertion claims in the special case of a two

element domain, the things of which we can represent by the numbers 0,
1. In this case there are only four different courses of values of functions
y = f(x) to consider. Then the assertion is a simple application of one of the
distributive laws governing the relation between conjunction and disjunction,
i. e. the following theorem of elementary logic: “If A holds and if, in addition,
B or C holds, then either A and B holds or A and C holds.”15

Also in the case of a subject domain consisting of any determinate finite
number of things, the assertion of the Principle of Choice follows from this
distributive law. The general assertion of the Principle of Choice is therefore
nothing but the extension of a law of elementary logic for conjunction and
disjunction to infinite totalities. And thus, the Principle of Choice supple-
ments the logical rules governing universal and existential judgments, i. e.
the rules of existential inference, for their application to infinite totalities
signifies in the same way that certain elementary laws for conjunction and
disjunction are being carried over to the infinite.

The Principle of Choice has a distinctive position with respect to these
rules of existential inference only insofar as its formulation requires the con-
cept of function. This concept, in turn, receives its sufficient implicit charac-
terization only by means of the Principle of Choice.

This concept of function corresponds to the concept of logical function;
the only difference is that the values of the former are not taken to be “true”
and “false” but the things of the subject domain. The totality of the functions
that are being considered here is therefore the totality of all possible “self-
assignments” of the subject domain.

According to this concept of function the existence of a function with
the property E in no way means that one can form a concept that uniquely
determines a definite function with the property E. Consideration of this cir-
cumstance invalidates the usual objections to the Principle of Choice, which
rests mostly on the fact that one is misled by the name “Principle of Choice”
to the view that this principle asserts the possibility of a choice.

At the same time we recognize that the assumption expressed by the
Principle of Choice does not fundamentally go beyond the understanding
upon which we have to base, in any event, the procedure of theoretical logic

15“Or” is in both cases meant not in the sense of the exclusive “or” but in the sense of
the Latin “vel.” But of course the theorem also holds for the exclusive “or.”
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in order to interpret it in a circle-free manner without introducing an axiom
of reducibility.

To be sure, we can also give contrary emphasis to this observation: the
controversial character of the Principle of Choice, the formulation of which is
in line with the systematic elaboration of the standpoint of theoretical logic,
brings most strongly to the fore what is problematic about this standpoint.

When we considered the logicist foundation of arithmetic we were also led
to this result: the incorporation of arithmetic into theoretical logic provides
indeed a broader foundation for the arithmetic theory and contributes to
the contentual motivation of its assumptions; but it does not lead beyond
the methodological standpoint of the conceptual approach, i. e. beyond the
standpoint of axiomatics.

In this way the problem of the infinite is formulated, but it is not solved.
For there remains the open question whether the analogies between the finite
and the infinite, postulated as assumptions for the development of analysis
and set theory, constitute an admissible approach, i. e. one which can be
carried out consistently.

Intuitionism tries to avoid this question by excluding the problematic
assumptions, while most logicists dispute its legitimacy by denying a funda-
mental difference between the finite and the infinite; Hilbert’s proof theory
begins to address this question in a positive way.

§ 4 Hilbert’s proof theory

In order to better grasp the leading ideas of proof theory let us first call
to mind once again the character of the problem to be solved here. At issue
is proving the consistency of the mathematical concept formation on which
the theory of arithmetic rests.

On the philosophical side, the question has frequently been raised whether
a proof of consistency alone provides a justification for this concept formation
. This way of putting the question is however misleading; it does not take into
account the fact that the scientific motivation for the theoretical approach
of arithmetic has been provided in essence already by science and that the
proof of consistency is the only desideratum that remains to be fulfilled.

The edifice of arithmetic is built on the foundation of conceptions which
are of greatest relevance for scientific systematization in general: namely the
principle of conservation (“permanence”) of laws, which occurs here as the
postulate of the unlimited applicability of the usual logical forms of judgment
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and inference, and the demand for a purely objective formulation of the
theory, by which it is freed from all reference to our cognition.

The fundamental methodological significance of these requirements yields
the inner motivation and distinctive character of the approach of the arith-
metic theory.

In addition to this inner motivation we have the splendid corroboration
of the conceptual system of arithmetic in the form of its deductive fruit-
fulness, its systematic success, and the coherence of its consequences. This
conceptual system is clearly suited in a truly remarkable way to treating the
relations of numbers and of magnitudes. The systematicity of this magnifi-
cent theory, obtained by combining function theory with number theory and
algebra, has no equal. And as a comprehensive conceptual apparatus for the
construction of scientific theories, arithmetic proves to be suited not only
to the formulation and development of laws, but it has also been used with
great success, and to an extent which had not been anticipated, in the search
for laws.

Regarding the coherence of the consequences, it has been most strongly
corroborated by the intensive theoretical development of analysis and its
many numerical applications.

What is still lacking here is only this: that the merely empirical trust,
gained by many trials, in the consistency of the arithmetic theory, i. e. in
the thorough coherence of its results, be replaced by a real insight into this
consistency; to effect this is the purpose of a proof of consistency.

Thus, it is not the case that the conceptual system of arithmetic must
first be established by means of a proof of its consistency. Rather, the sole
purpose of this proof is to give us with regard to this conceptual system
(which is already motivated on internal systematic grounds and has proved
itself as an intellectual tool in its applications), the evident certainty that it
cannot be undermined by the incoherence of its consequences.

If this succeeds, we will know that the idea of the actual infinite can
be developed systematically. And we can rely on the results of applying
the basic arithmetic postulates just as if we were in the position to verify
them intuitively. For when we recognize the consistency of the application of
these postulates, it follows immediately that their consequences, if they are
intuitively, i. e. finitistically, meaningful, can never contradict an intuitively
recognizable fact. In the case of finitist sentences, the ascertainment of their
nonrefutability is equivalent to the ascertainment of their truth.

From this consideration of the need for and the purpose of a consistency
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proof, it follows in particular that for such a proof only one thing matters;
namely to recognize, in the literal sense of the word, the freedom from con-
tradictions of the arithmetic theory, i. e., the impossibility of its immanent
refutation.

The novel feature of Hilbert’s approach was that he limited himself to
this problem; previously, one had always carried out consistency proofs for
axiomatic theories by positively exhibiting the simultaneously satisfaction
of the axioms by certain objects. There was no basis for this method of
exhibition in the case of arithmetic; in particular, Frege’s idea of taking the
objects to be exhibited from the domain of logic does not succeed, because, as
we have recognized, the application of ordinary logic to the infinite is just as
problematic as arithmetic, the consistency of which was to be shown. Indeed,
the basic postulates of the arithmetic theory concern exactly the extended
application of the usual forms of judgment and inference.

By focusing on this aspect, we are led directly to the first guiding principle
of Hilbert’s proof theory : it says that, in proving the consistency of arithmetic,
we must consider the laws of logic as applied in arithmetic to be in the domain
of what is to be shown consistent; thus, the proof of consistency covers logic
and arithmetic together.

The first essential step in carrying out this idea is already taken by in-
corporating arithmetic into the system of theoretical logic. Because of this
incorporation the task of proving the consistency of arithmetic reduces to
establishing the consistency of theoretical logic, or, in other words, deter-
mining the consistencyof the axiom of infinity, of impredicative definitions,
and of the Principle of Choice.

In this connection it is advisable to replace Russell’s axiom of infinity
with Dedekind’s characterization of the infinite.

Russell’s axiom of infinity requires the existence of an n-numbered predicate for every
finite number n (in the sense of Frege’s definition of finite cardinal) and thus implicitly
requires also that the domain of individuals (the basic domain of things) be infinite. Now
it is an unnecessary and also from a principled standpoint objectionable complication that
here three infinities in different layers run concurrently: that of the infinitely many things
in the domain of individuals, furthermore that of the infinitely many predicates, and then
that of the resulting infinitely many cardinals, which are after all defined as predicates of
predicates.

We can avoid this multiplicity by determining the infinity of the domain of individuals
not by an infinite series of unary predicates, but rather by a single binary predicate, namely
a predicate that provides a one-one mapping of the domain of individuals onto a proper
subdomain, i. e. a subdomain which excludes at least one thing. This characterization of
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the infinite, due to Dedekind, can be introduced in the most simple and elementary way if
we do not postulate the one-one mapping by means of an existence axiom, but introduce
it explicitly from the start by taking as basic elements of the theory an initial object and
a basic process.

In this way we achieve that the numbers occur already as things in the domain of
individuals, rather than as predicates of predicates of things.

However, this consideration already refers to the particular form of the
systematic development, and there are several ways of pursuing it. But we
must first orient ourselves as to how in general how a proof of consistency in
the intended sense can be carried out at all. This possibility is not immedi-
ately obvious. For how can one survey all possible consequences that follow
from the assumptions of arithmetic or of theoretical logic?

Here the investigation of mathematical proofs by means of the logical
calculus comes into play in a decisive way. This has shown that the methods
of forming concepts and making inferences which are used in analysis and
set theory are reducible to a limited number of processes and rules; thus,
one succeeds in completely formalizing these theories in the framework of a
precisely specified symbolism.

Hilbert inferred from the possibility of this formalization, which was done
originally only for the sake of a more precise logical analysis of proof, the
second guiding idea of his proof theory, namely that the task of proving the
consistency of arithmetic is a finitist problem.

An inconsistency in the contentual theory must indeed show itself by
means of the formalization in the following way: two formulas are derivable
according to the rules of the formalism, one of which results from the other
though that process which is the formal image of negation. The claim of
consistency is therefore equivalent to the claim that two formulas standing
in the above relation can not be derived by the rules of the formalism. But
this claim has fundamentally the same character as any general statement of
finitist number theory, e. g., the statement that it is impossible to produce
three integers a, b, c (different from 0) such that a3 + b3 = c3.

The proof of consistency for arithmetic thus becomes in fact a finitist
problem of the theory of inferences. The finitist investigation having formal-
ized theories of mathematics as its object is called by Hilbert metamathemat-
ics. The task falling to metamathematics vis-à-vis the system of mathematics
is analogous to the one which Kant ascribed to the critique of reason vis-à-vis
the system of philosophy.

In accord with this methodological program, proof theory has already
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been developed to a substantial degree;16 but there are still considerable
mathematical difficulties to be overcome. The proofs of Ackermann and von
Neumann secure the consistency of the first postulate of arithmetic, i. e., the
applicability of existential reasoning to the integers. Ackermann developed
in some detail an approach to the further problem of the consistency of the
general concept of a set (resp. numerical function) of numbers together with
a corresponding Principle of Choice.

If this problem were solved, then almost the entire domain of existing
mathematical theories would be proved to be consistent.17 This proof would
in particular be sufficient to recognize the consistency of the geometric and
physical theories.

One can also extend the problem still further and investigate the consis-
tency of more inclusive systems, e. g., axiomatic set theory. Axiomatic set
theory, as first formulated by Zermelo and supplemented and extended by
Fraenkel and von Neumann, with its construction processes, already goes far
beyond what is actually used in mathematics; and the proof of its consistency
would also establish the consistency of the system of theoretical logic.

This does not achieve an absolute completion of this formation of con-
cepts, because formalized set theory motivates metamathematical consider-
ations which have the formal constructions of set theory as their object and
in this way go beyond these constructions.18

In spite of this possibility of extending the concept formation a formalized
theory can nevertheless be closed in the following sense: no new results are

16Hilbert gave a first sketch of a theory of proofs already in his 1904 Heidelberg lecture
“On the foundations of logic and arithmetic” (vide [?]). The first guiding idea of a joint
treatment of logic and arithmetic is expressly formulated here; the methodological principle
of the finitist standpoint is also intended, but not yet explicitly stated.— The investigation
of Julius Koenig, New Foundations for Logic, Arithmetic, and Set Theory (vide [?]), falls
between this lecture and Hilbert’s more recent publications on proof theory; it comes very
close to Hilbert’s standpoint and gives already a proof of consistency which is in full accord
with proof theory. This proof covers only a very narrow domain of formal operations and
is therefore only of methodological significance.

17Cantor’s theory of numbers of the second number class is also included here.
18The more detailed discussion of this point is connected to the Richard paradox, of

which Skolem has recently given a more precise formulation. These considerations are
not conclusive since they are made in the framework of a non-finitist metamathematics.
A final answer to the question discussed here would be obtained only if one succeeded
in producing in a finitist way a set of numbers which could be shown not to occur in
axiomatic set theory.
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obtained in the domain of the laws that can be formulated in terms of the
concepts of the theory by extending the concept formation.

This condition is satisfied whenever the theory is deductively closed, i. e.,
when it is impossible to add a new axiom, which is expressible in terms of
the concepts of the theory but not already derivable, without producing a
contradiction,—or, what amounts to the same thing: if every statement that
can be formulated within the framework of the theory is either provable or
refutable.19

We believe that number theory as delimited through Peano’s axioms with
the addition of definition by recursion is deductively closed in this sense;
but the problem of giving an actual proof of this is still entirely unsolved.
The question becomes even more difficult if we go beyond the domain of
number theory and ascend to analysis and the further set theoretic concept
formations.

In the realm of these and related questions there lies a considerable field
of open problems. But these problems are not of such a kind that they
represent an objection to the standpoint we have adopted. We must only
keep in mind that the formalism of theorems and proofs that we use to
represent our ideas does not coincide with the formalism of the structure
that we intend in thought. The formalism suffices to formulate our ideas of
infinite manifolds and to draw the logical consequences from them; but in
general it is not able to produce the manifold combinatorially out of itself,
so to speak.

The position we have reached concerning the theory of the infinite can be
viewed as a form of the philosophy of the “as if.” It differs fundamentally from
the Vaihinger’s philosophy thus designated, however, by placing weight on
the consistency and the permanence of ideas; in contrast, Vaihinger considers
the demand for consistency to be a prejudice and indeed claims that the
contradictions in the infinitesimal calculus are “not only not to be disavowed,
but . . . are precisely the means by which progress was attained.”20

Vaihinger’s considerations are focused exclusively on scientific heuristics.
He considers only the “fictions” that occur as mere temporary aids for think-

19Notice that this requirement of being deductively closed does not go as far as the
requirement that every question of the theory be decidable. The latter says that there
should be a procedure for deciding for any arbitrarily given pair of contradictory claims
belonging to the theory which of the two is provable (“correct”).

20Vaihinger, The Philosophy of “As if”, 2nd edition, ch. XII (vide [?], p. ).
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ing. In introducing these fictions, thought does itself violence and their
contradictory character (if we are dealing with “genuine fictions”) can be
rendered harmless only by a skillful adjustment for the contradictions.

Ideas in our sense are a permanent possession of the mind. They are
distinguished forms of systematic extrapolation and of idealizing approxima-
tion to what is real. They are also by no means arbitrary nor yet forced
upon thought; on the contrary, they constitute a world in which our thinking
feels at home and from which the human mind, absorbed in this world, gains
satisfaction and joy.

Postscript

Because of various insights that have been gained since the publication
of the above essay, some of the considerations presented here have to be
corrected.

First of all, as far as intuitionism is concerned, it was initially believed
that the methodology of intuitionistic proofs agreed with that of Hilbert’s
“finitist standpoint.” It has become clear, however, that the methods of
intuitionism go beyond the finitist proof procedures intended by Hilbert. In
particular, Brouwer uses the general concept of a contentual proof, to which
the concept of “absurdity” is also connected, but which is not employed in
finitist reasoning.

Then, as far as Hilbert’s proof theory is concerned, the view that the
consistency proof for arithmetic amounts to a finitist problem is justified
only in the sense that the consistency statement can be formulated finitis-
tically. This does not imply at all that the problem can be solved with
finitist methods. By a theorem of Gödel the possibility of a finitist solution
was made most implausible, though not directly excluded, already for num-
ber theory; moreover, it turned out that the above mentioned consistency
proofs that were available at the time did not extend to the full formalism of
number theory. The methodological standpoint of proof theory was conse-
quently broadened, and various consistency proofs were carried out, first for
formalized number theory and then also for formal systems of analysis; their
methods, although not restricted to finitist, i. e., elementary combinatorial
considerations, require neither the usual methods of existential reasoning,
nor the general concept of contentual proof.

In connection with the theorem of Gödel mentioned above, the assump-
tion that number theory, when axiomatically delimited and formalized, is
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deductively complete turned out to be incorrect. Even more generally, Gödel
showed that formalized theories satisfying certain very general conditions of
expressiveness and formal rigor cannot be deductively complete as long as
they are consistent.

On the whole the situation is as follows: Hilbert’s proof theory, together
with the discovery of the possibility of formalizing mathematical theories,
has opened a rich area of research, but the epistemological perspective which
motivated its formulation has become problematic.

This suggests revising the epistemological remarks in the above essay. Of
course, the positive remarks are hardly in need of revision, in particular those
exhibiting the mathematical element in logic and emphasizing the evidence of
elementary arithmetic. However, the sharp distinction between the intuitive
and the non-intuitive, which was employed in the treatment of the problem
of the infinite, apparently cannot be drawn so strictly, and the reflections
on the formation of mathematical ideas still need to be worked out in more
detail in this respect. Various considerations for this are contained in the
following essays.a

aThis refers to the remaining essays in the collection [?].
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Dear schoolmates! In having the honor to speak in the context of a
meeting devoted to the memory of Leonard Nelson, I would like first to set
forth briefly the purpose of my presentation.

Nelson was the appointed head of his school not only because of the
sharpness of his thought but also on account of his overall personality. Such a
personality gathers among its followers people who in part differ very widely
in their opinions, each of whom takes from the whole of the philosophical
doctrine what for him is essential in this doctrine. This fact makes itself felt
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when such an intellectual leader passes away. For the members of the school,
and indeed for every single one of them, the question arises in what manner
he should preserve and elaborate the received thoughts for himself, and also
how to further bring them to bear outwardly. In our case this question arises
all the more as Nelson’s system of thought is devoted to the reawakening and
further elaboration of a philosophy which one had more or less considered
wrapped up; and it arises all the more as in this philosophy the work of
a philosopher has already been elaborated by a thinker differing in many
respects, as Fries did in comparison to Kant.

Each of us can answer this question only for himself. However, allow me
to propose certain ideas in this respect, whereby I do not make any claim
to a complete treatment of the topic, if only for the reason that I will speak
here only about questions concerning the critique of knowledge. I would like
to stress a certain, uniform complex of thoughts of the Kant-Friesian school
which seems to me, in any case, to retain its important role in philosophy.

As you know, there is a certain discrepancy between several claims of the
Kant-Friesian philosophy and present-day scientific theories. This discrep-
ancy is very clear and coarse. But it is not that striking that many things in
present-day science develop in such a way that makes it possible, if stressed
in the proper way, to bring to bear the thoughts of the Kant-Friesian philos-
ophy again, provided only that one is prepared to make certain modifications
to it.

Above all I mean those thoughts that constitute transcendental ideal-
ism and the difference between intuitive knowledge and purely conceptual
knowledge.

If we consider the most recent philosophical doctrines, we find that most
of them oppose transcendental idealism in principle. It is especially the phi-
losophy of immanence of Mach’s school that is widespread among researchers
in the exact sciences and indeed it dominates almost absolutely. This philos-
ophy claims to be able to eliminate the notion of existence in general and to
get by with the notion of phenomenon. According to it, there is fundamen-
tally no other kind of knowledge than perceiving, remembering, following the
sequence of representations and comparing the contents of representation.

The difficulties of this position are known to you. I need not consider
them more closely. I would only like to point out that Willy Freytag in his
book Realism and the Problem of Transcendence (vide [?]) explains very well
the weaknesses of the position of immanence. Moritz Schlick also follows
this book in certain parts of his General Theory of Knowledge (vide [?]);
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however, he again slips back into the position of immanence in another way
when characterizing cognition as recognition from the outset, thus restricting
cognition again to a mere comparison of the given.

Phenomenalism has received certain refinements. One of these is found
today in the Russellian school of mathematical logic. Here the domain of
the intuitively given is enlarged by certain logical constructions. It is char-
acteristic in this connection that one essentially deals here only with class
constructions, that is only with an abstract kind of comparison. What is
united into classes are either contents of representations or classes already
constructed. In principle one does not go with this beyond phenomenalism,
for Mach and his school as well have considered the construction of concepts
as essential in addition to direct intuitive representations.

But the tendency to a restriction to the immanent is quite widespread
not only in those approaches to philosophy that are tied to the exact sciences
but also in the philosophy characterized as spiritual. An especially remark-
able and engaging form of the standpoint of immanence is that adopted in
Husserl’s phenomenological school. There the principle of displayability of
every single phenomenon is posed as a methodological guideline, i. e. the re-
quirement that every concept or term introduced be justified by displaying a
phenomenon determined by it. If this principle is understood in a sufficiently
wide sense, there is nothing to object against it. But there is the obvious
interpretation, and it is applied by many followers of the school, accord-
ing to which our reasoning has to remain in the domain of phenomena, i. e.
contentual representation, that therefore nothing beyond the given can be
reasonably thought of at all. By the way, it is remarkable that Oskar Becker
in his book Mathematical Existence (vide [?]) recently called this standpoint
transcendental idealism.

Among the philosophical directions known today there is arguably not a
single one that is opposed to the positions just mentioned as fundamentally
as the doctrine of Fries. Fries laid stress on exactly what all these philoso-
phers endeavor to argue away, namely the fundamental transcending of the
contentual standpoint by the forms of thought. The categorial formation of
the judgment can only be understood as the expression of a “demand of cog-
nition,” as expression of a search, guided by a belief that is already inherent
opaquely in every perception and generally in every state of consciousness,
but which makes itself explicit in a clearer form only through thought. This
belief gives us the conviction that the contents found in experience are to be
related to a reality, to a unity of existing objects, that is in itself real and
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structured into real connections.
It can be explained why one has serious problems in making up one’s mind

to accept this doctrine. First of all, one would like to have a standpoint with
as few presuppositions as possible, and with the assumption of the rational
belief too much seems to be postulated at the outset. Upon closer exami-
nation, this objection does not apply to the Friesian doctrine of conceptual
knowledge as such, but to the view that the content of this knowledge can
be rendered in entirely distinct, definitely formulated principles. Anyway, I
would like to point out that the fundamental idea of the Friesian doctrine is
by all means compatible with the fact that the way in which, in the investi-
gation of nature, we relate the contents of experience to existing objects by
reasoning is not determined in knowledge but belongs itself to the task of
research that is given to us by reason.

There is however another reason for the resistance against the Friesian
doctrine. I leave out of consideration here the known difficulties related to
the question of the correct characterization of the mode of existence of rea-
son and its expressions. It has been very much discussed, especially in our
school, whether conceptual knowledge has to be regarded psychologically as
a faculty or as a continuous activity. These are difficulties and problems
but not really objections; they are objections only for the one who, again in
the domain of psychology, intends to carry out the standpoint of a complete
restriction to contents. Fries thought in this respect more vitally; he did not
want to be content with a theory of psychological phenomena, but aimed at a
theory of the unit of life; and I think we have reason to agree with him in this
respect. What forms, however, a more substantial reason for the resistance
against the Friesian claims is that on closer inspection one recognizes that
one is thereby already necessarily pushed towards transcendental idealism.
Because in the fact that conceptual knowledge makes itself felt in the form
of a categorial requirement of an existential relation (otherwise no more pre-
cisely determined) to a world of existing, there lies already the division of
truth. Both the contentual and the categorical form belong to knowledge
as such. According to the position of naive realism we believe to find both
united and to have in common perception complete knowledge before us.
Closer inspection forces us in a well-known way to give up this position; it
becomes manifest to us that the experiential uniform perception consists of
two distinct parts in regard to knowledge: the givenness of a contentual ma-
terial and the existential reference to the unity of reality in which the former
has to be integrated in a manner initially unknown.
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The fundamental imperfection of our knowledge is based on this. We
know the contents of our experience and can talk about them; but how to
interpret them as proper truth is only very fragmentarily known, although
to an extent that is sufficient for the purposes of our practical standards of
living, within which we help ourselves with a general attitude based on beliefs
in those domains where our scientific knowledge no longer suffices.

If we introduce transcendental idealism that way independently from the
doctrine of antinomies we can thereby remain in complete agreement with
Fries. For the doctrine of the division of truth, which Fries subsequently puts
forward for the resolution and explanation of the antinomies, does not need
the antinomies for its grounding. And this is a methodological advantage,
since the doctrine of the antinomies contains very many problematic argu-
ments. Above all there is the risk of proving too much by posing statements
in the antithesis that are by no means irrevocable in principle for scientific
thinking and therefore assign boundaries to science, which in fact it does not
have. Transcendental idealism must not be understood in such a way that
it produces a factual-structural discrepancy between what is given in real-
ity and what is asserted in the scientific world view. If science has to have
meaning we have to hold the standpoint that what is claimed in science as
factual—as far as it is not a common error in the sense of science itself—also
expresses a fact of reality, and in any case it does not deviate from reality in
such a way that is expressible in the framework of science itself. The limi-
tation of scientific knowledge has therefore to be based in a proper sense on
the conditions of possibility of the scientific investigation of nature as such.

Such a condition is, in the first place, the connection to perception. The
considerations which force us to give up naive realism and in general to
eliminate sensible qualities in the physical reflection have to be imputed to
the antinomies. The discursive character of science is a further essential
condition that comes from the fact that conceptual knowledge is conveyed
to us through thought. In fact even here something arises which in any case
is inadequate to reality, namely the hypothetical form of the laws of nature.
It is not in accordance with the idea of a real connection that the latter
consists in a law according to which something takes place under certain
circumstances. Such a law can only be a reason but not a real cause. Thus,
while the aforementioned antinomy refers to the fact that we don’t have
knowledge of existing in its essence but only as something that stands in
certain relations, the second antinomy concerns the lack of essence of the
connection. The existence of still other antinomies, especially of the kind
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posed by Kant, should in no way be disputed in principle. But in any case a
revision of the given, which goes farther than what has been carried out so
far in our school, is necessary.

If we observe how factual natural science relates to the program of pure
immanence we find that one has departed from the observance of a phenom-
enological program more than ever, despite the conscious emphasis on Mach’s
thoughts, which were also propounded in particular by Einstein. There we
have completely abstract existence claims, which are related to perception
only in their consequences. This is especially true for present-day quantum
theory. According to this theory the physical state is related to perception
only through probability statements, i. e. the physical states whose temporal
connection is a wave-theoretical causal one have relevance for perception only
through the fact that they involve certain discrete processes in a statistical
frequency, computable from the state variables, and these frequencies and
also other quantitative determinations of those processes present themselves
for the experiment through intuitive quantities, e. g., color and intensity of
spectral lines.

Likewise, Einstein’s general relativity theory by no means conforms to
the tendencies of a pure phenomenalism. The lawfulness of the space-time
manifold is here introduced purely conceptually through the assumption of
a metric field that forms a physical object analogous to the electromagnetic
field. The quantitative distribution of this field is correspondingly deter-
mined by spatio-temporal measurements, similarly to the way the shape of
the earth is determined by measurements of lengths on the base of our or-
dinary intuition of space. However, whereas the earth transcends our power
of imagination only because of its size, the metric field is in principle out of
the range of the intuitively imaginable on account of the union of the spatial
and the temporal which takes place in it.

The establishment of such theories, which are very far removed from
observation, speaks very strongly in favor of the Friesian doctrine of only
conscious conceptual knowledge. Sure enough, these theories cannot be rec-
onciled with the Kant-Friesian doctrine of pure intuition. But we do not
need, also in this case, to give up this doctrine as a whole in order to stay in
harmony with contemporary scientific theories, but only its specific formula-
tion.

Thus, one rightly disputes the Kantian claim that geometry and physics
are bound by the framework of our intuitive representations of space and time
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as a condition of possibility of scientific knowledge. In fact, in its abstractions
geometry goes far beyond the framework of the intuitive representation of
space by having developed into a general theory of ordered manifolds endowed
with topological relations within which the laws of Euclidean geometry form
only a special structural lawfulness distinguished by systematic advantages.

Moreover, concerning theoretical physics, its recent development has shown
with full clarity that the possibility of theoretical knowledge of nature is com-
pletely independent from the acceptance of a determinate structural lawful-
ness of space and time.

In another respect, however, the Kantian doctrine of pure intuition has
curently again gained recognition. For a long time heretofore, the dominant
opinion was that mathematics could be developed purely out of logic. The
attempt to carry out this idea, as it was initially undertaken by Frege and
then by Whitehead and Russell has not succeeded, regardless of the system-
atic unity of the work Principia Mathematica. Rather, the investigation of
the foundations of mathematics has shown two things. First, that a certain
kind of purely intuitive knowledge has to be taken as a starting point for
mathematics; indeed, that even logic as the theory of judgments and infer-
ences cannot be developed without appealing to such an intuitive knowledge
to some extent. It is an issue of the intuitive representation of the discrete
from which we draw the most primitive combinatorial representations, in
particular that of succession. Constructive arithmetic develops by means of
this elementary intuitive knowledge. Secondly, it appears that constructive
arithmetic is not sufficient for the theory of real numbers, that rather for the
latter we have to add certain notions related to the totality of collections of
mathematical objects, e. g. the totality of all the numbers and the totality of
all sets of numbers.

It is now remarkable that Fries—in his Mathematical Philosophy of Nature
(vide [?])—already separated the elementary kind of mathematical knowledge
under the name “syntactics” from arithmetic in the sense of a theory of
quantities. He says about syntactics:

It “contains the most general abstraction which can be done for
mathematical knowledge whatsoever. It is solely based on the
postulates of the arbitrary order of given elements and their ar-
bitrary repetition without end. It has no proper theory, for it does
not know any axioms; its operations are for themselves immedi-
ately comprehensible . . . ” (p. 70)
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In his considerations on syntactics, however, Fries only thought of the
doctrine of permutations and combinations, whereas he treated number the-
ory only in connection with analysis. He stated:

“The purpose of the number system is generally to reduce the
knowledge of quantity to concepts, i. e. to recognize the relation-
ships between quantities not only intuitively but also through
thought.” (p. 121)

“The specific pure intuition of arithmetic is the continuous series
of the larger and the smaller. By scientifically developing this
pure intuition we should think the idea of quantity or reduce it
to concepts.” (p. 77)

In order to pass from these Friesian views to a conception in accordance
with the present state of research one does not need very substantial mod-
ifications. Of course, we have to include elementary number theory in the
domain of syntactics. Moreover, it cannot be taken for granted that the
scientific development of the concept of quantity consists only in the clarifi-
cation of pure intuitive knowledge. Rather, we have to take the possibility
into account that we are dealing here with a conceptual sharpening, an
“idealization”—as Felix Klein called it—of the intuitive representation of
the larger and the smaller. Even so, the rational element would not yet have
been excluded from the arithmetical theory of quantities (of analysis). This
is because that conceptual sharpening takes place, as already said, by in-
cluding certain representations of totality, and thereby we would have to see
what reason adds to the intuitive representation. This is supported especially
by the fact that the representations of totality applied in analysis become
relevant to the system of mathematics by making possible the unrestricted
application of the logical forms of the general and the particular judgment
in the domain of real numbers and functions. And according to Fries the
logical forms of judgments are exactly those through which we become aware
of conceptual knowledge in thought.

In the sense of such a conception, analysis would already contain a com-
ponent of conceptual knowledge grasped only by thought. It would thus have
the same epistemological character that Fries assigns to pure natural science,
and indeed, in contemporary science, mathematics has entirely the role of
pure natural science, the “armory of hypotheses,” as Fries puts it.

It is also characteristic that—right from the beginning of the rigorization
of infinitesimal methods—some sort of phenomenological opposition arose
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against the rational element in analysis. At first Kronecker and at present
Brouwer and his school propound a position that calls for the restriction
to the intuitively representable and according to which the totality assump-
tions of analysis mentioned above are categorically rejected. Lately Weyl has
hinted at the analogy between this “Intuitionism” and Mach’s standpoint.

Hilbert shows, in a completely different way than this opposition, the rele-
vance of his proof theory for the special epistemological position of elementary
intuitive (syntactical) or, as Hilbert calls it, “finitist” mathematics, vis-à-vis
systematic mathematics, based on concept formations, in particular analysis
and set theory. Hilbert here subjects systematic mathematics to a sort of
critique of proof by which, using elementary finite methods, the deductive
consequences of the concept formations of systematic mathematics are inves-
tigated, whereby the aim is to show that the application and the pursuit of
these concept formations can never lead to discrepancies in the consequences
and thus also, in particular, that it cannot lead to contradictions with the
elementary intuitively recognizable facts.

For a philosophical completion of this proof theory a methodological ex-
plication is necessary by which those principles systematized in proof theory
receive some kind of deduction in the sense of a clarification of their episte-
mological methodological significance. This explication should at the same
time clarify the methods of mathematical idealization and with this give a
satisfying answer to Nelson’s question, what the norm for an idealization
could consist, if it does not lie in pure intuition.

In conclusion, I would still like to indicate how the special status of aes-
thetics becomes understandable through the doctrine of transcendental ide-
alism. In the language of our school the expression “aesthetic” is used for all
those objective evaluations, whose measure cannot be conceptually grasped.
It appears to be appropriate—on the one hand with respect to the ordinary
use of language and also for pointing out essential differences—to restrict
the use of the word “aesthetic” to that kind of evaluation in which an object
is valued as a symbolical representation for something which is not directly
accessible to our finite knowledge of nature. According to this, the value of
an aesthetic object as such does not attach to the thing as actually existing,
as in the case of the value of a noble character whose existence has value for
itself, but rather that value is principally related to the representing subject,
i. e. the object is only valuable as represented. The objective character of an
aesthetic value consists in the objective determination of the suitability of an
object to serve as a symbolic expression. The interest for such a symbolic
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expression depends essentially on the imperfection of our view of nature, i. e.
the division of truth. We value the symbolic expression of ethical values in
the beauty of figures of nature and art, because we cannot directly intuitively
represent the value of a being but only assign it conceptually. Likewise, we
value the conceptual unity of scientific systems of thought as a surrogate for
an immediate intuitive grasp of the unity in the connection of the real.

According to this view, theoretical science has—leaving out of consider-
ation its vital significance for our orientation and our action—an aesthetical
significance, in so far as we regard it solely under a systematic viewpoint.
This conception indeed remains as the only option, if we do not want to
exaggerate the role of exact sciences to that of a perfect worldview, or reduce
it to that of a mere tool. Accordingly, the scientific systematization has not
only the purpose of saving labor, but also an esthetic task that is given to
us by reason. Only the doctrine of the belief of reason makes the search for
a systematic unity and the success of such a search understandable; from
Mach’s standpoint this success is a pure miracle. On the other hand, from
the doctrine of transcendental idealism we take the advice to moderate our
expectation of a systematic completeness in the knowledge of nature.

With this I have sketched in what sense I think possible a vital preser-
vation and continuation of the basic thoughts of the Friesian doctrine. You
know that it was Nelson’s special concern to ensure that the thoughts of
Fries’s philosophy would not be forgotten again. I believe that one also has
to avert another risk, namely that these thoughts, although preserved in the
tradition, be considered only from a historical perspective and not as stand-
ing in vital interaction with philosophical intellectual life. The purpose of my
presentation was to show that the Friesian doctrine is capable of such a lively
interaction with contemporary philosophy and that we do not need to worry
that the basic ideas of this doctrine will be lost by modifications that take
into account the development of science. Let us also take into consideration
that it was Nelson’s own intention to tackle, after completion of his system
of ethics, the domain of speculative philosophy, and with this in particular,
the philosophical methodology of natural science in the sense of a revision
and a new treatment of Fries’s thought.
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The methods that were used to prove the consistency of formalized the-
ories from the finitist standpoint can be surveyed according to the following
classification.

1. Method of valuation. It has obtained its essential development by
Hilbert’s procedure of trial valuation. Using this procedure Ackermann and
v. Neumann demonstrated the consistency of number theory—admittedly,
under the restrictive condition that the application of the inference from n
to (n + 1) is only allowed to formulas with just free variables.
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2. Method of integration. This can only be applied to such domains that
are completely mastered mathematically. For those it allows one to give a
completely positive answer not only to the question of consistency, but also
to those of completeness and decidability. Such domains are in particular:

a) the monadic function calculus, which was treated conclusively by Löwen-
heim, Skolem, and Behmann.

b) Fragments of number theory. To such formalisms Herbrand and Pres-
burger have applied the method. Thereby it becomes obvious that the Peano
axioms, using the function calculus of “first order” (with the axioms for equal-
ity) as a foundation, do not yet suffice for the development of number theory.
Only by adding the recursive equations for addition and multiplication do
we arrive at full number theory1.

3. Method of elimination. Its idea can already be found in Russell and
Whitehead, in particular in the application to the concept “that which.”
However, the actual implementation of the idea is tedious. A significant
simplification is brought about by Hilbert’s approach, which ties in with
the introduction of the “ε-symbol.” First, this approach yields again—as
has been shown by Ackermann—the result of the method of valuation in a
simpler way.

From here, moreover, one arrives at a new proof of a theorem, which
was discovered and proved for the first time by Herbrand. It is a converse
to Löwenheim’s famous theorem about satisfiability in countable domains
and it also yields a general procedure for the treatment of questions about
consistency.

The limitation of the results at hand presents itself, despite the insights
obtained in multiple ways, as a fundamental one; this is because of Gödel’s
new theorem—and a conjecture by v. Neumann connected to it—on the limits
of decidability in formal systems.

1The situation is different if one, like Dedekind, takes the standpoint of the logic of
classes as basic from the outset; this standpoint, however, contains stronger assumptions
than are needed for number theory.
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§ 1 The problem of consistency in axiomatics

as a logical decision problem

The state of research in the field of foundations of mathematics, to which
our deliberations are related, is characterized by the outcome of three kinds
of investigation:

1. the refinement of the axiomatic method, especially with the help of
the foundations of geometry,

2. the grounding of analysis according to today’s rigorous method by the
reduction of the theory of magnitudes to the theory of numbers and sets of
numbers;
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3. investigations of the foundations of number theory and set theory.
On the basis of stricter methodological demands a broader set of tasks

is connected to the standpoint reached through these investigations that
involves a new way of dealing with the problem of the infinite. We want to
introduce this problem by considering axiomatics.

The term “axiomatic” is used partly in a wider, partly in a narrower
sense. We call the development of a theory axiomatic in the widest sense of
the word, if the fundamental concepts and fundamental presuppositions are
set out as such from the beginning, and the further content of the theory
is logically derived from these with the help of definitions and proofs. In
this sense Euclid gave an axiomatic foundation for geometry, Newton for
mechanics, and Clausius for thermodynamics.

The axiomatic standpoint was made more rigorous in Hilbert’s Foun-
dations of Geometry. The greater rigour consists in the fact that in the
axiomatic development of a theory one retains only that portion of the rep-
resentational subject matter, from which the fundamental concepts of the
theory are formed, that is formulated as an extract in the axioms; one ab-
stracts, however, from all other content. The existential form comes along
as a further moment in axiomatics in its most narrow meaning, through
which the axiomatic method is distinguished from the constructive or ge-
netic method of grounding a theory.1 Whereas in the constructive method
the objects of a theory are introduced merely as a genus of things,2 in an ax-
iomatic theory one is concerned with a fixed system of things (or several such
systems) which constitutes, from the beginning, a delimited/circumscribed
domain of subjects for all the predicates out of which the statements of the
theory are constituted.

Except in the trivial cases in which a theory has to do just with a finite,
fixed domain of things, the presupposition of such a totality of the “domain
of individuals” involves an idealizing assumption over and above the assump-
tions formulated in the axioms.

It is a characteristic of this more rigouros form of axiomatics that results
through both abstraction from the subject matter and the existential form—
we want to call it “formal axiomatics” for short—that it requires a proof of
consistency, while contentual axiomatics introduces its fundamental concepts

1For this comparison, see Appendix VI to Hilbert’s Grundlagen der Geometrie: Über
den Zahlenbegriff [sic], 1900.

2Brouwer and his school use the word “species” in this sense.
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by reference to known facts of experience and presents its basic principles
either as obvious facts, which one can make clear to oneself, or as extracts
from complexes of experiences, thereby expressing the belief that one is on
the track of laws of nature and at the same time intending to support this
belief through the success of the theory.

In any case, formal axiomatics requires certain evidence for the execution
of deductions as well as for the proof of consistency, but with the essential
difference that this kind of evidence is not based upon any particular epis-
temological relation to the respective subject domain. Rather, it is one and
the same for every axiomatization; namely, that primitive kind of knowl-
edge which forms the precondition of every exact theoretical investigation
whatsoever. We will have to consider this kind of evidence more closely.

The following aspects are, above all, to be considered for the proper
assessment of the relation between contentual and formal axiomatics with
regards to their significance for knowledge:

Formal axiomatics necessarily requires contentual axiomatics as its sup-
plement because only in terms of this supplement does one receive guidance
for the selection of formalisms and, further, in the case of a given formal
theory, does one then receive instruction of its applicability to some domain
of reality.

On the other hand we cannot rest content at the level of contentual ax-
iomatics, since in science we are if not always, so nevertheless predominantly,
concerned with such theories that do not completely reproduce the actual
state of affairs, but represent a simplifying idealization of that state of af-
fairs and gain their meaning through this idealization. A theory of that kind
cannot receive its foundation by appealing to the evident truth of its axioms
or to experience; rather, the grounding can be brought about only in the
sense that the idealization performed in the theory, i. e., the extrapolation—
through which the concept formations and principles of the theory transcend
the range of either intuitive evidence or the data of experience—is seen to be
consistent. Addionally, any appeal to the approximate validity of the prin-
ciples is of no use to us for this knowledge of consistency; for, of course, a
contradiction can come about just from taking a relation to be strictly valid
which only holds in a restricted sense.

We are therefore forced to investigate the consistency of theoretical sys-
tems, suppressing any considerations of matters of fact, and we thus already
find ourselves on the standpoint of formal axiomatics.

Concerning the treatment of this problem up until now, this is done, both
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in the case of geometry and the branches of physics, with the help of the
method of arithmetization: One represents the objects of a theory through
numbers or systems of numbers and the basic relations through equations and
inequalities in such a way that on the basis of this translation the axioms of
the theory become either arithmetic identities or provable sentences (as in the
case of geometry) or (as in physics) a system of conditions, the simultaneous
satisfiability of which can be proved on the basis of arithmetical existential
claims.

With this procedure arithmetic is assumed to be valid; i. e., the theory of
real numbers (analysis) is presupposed. And so we come to the question of
what kind this validity is.

But before we busy ourselves with this question, we want to see whether
there is not a direct way of tackling the problem of conistency. Yet, we want
clearly and generally to present the structure of this problem. At the same
time, we want also to take the opportunity to somewhat familiarize ourselves
with the logical symbolism, which proves to be very useful for the purpose at
hand and which we will have to consider in more detail in the following.

As an example of axiomatics, we take the geometry of the plane; but
we apologize that we will, for the sake of simplicity, be considering only the
axioms of the geometry of position (the axioms that Hilbert lists as “axioms of
connection” and “axioms of order” in his Foundations of Geometry) together
with the parallel axiom.

Whereby it suggests itself for our purpose to diviate from Hilbert by
taking only points as individuals and not points and lines as the two basic
systems of things that underly the axiom system.

Then, the relation “points x and y determine the line g” is replaced by
the relation between three points “x, y, z lie on one line,” for which we make
use of the notation Gr(x, y, z).

In addition to this relation, there is a second basic relation, that of be-
tweenness: “x lies between y and z”, which we denote by Zw(x, y, z).3

Further, the concept of the identity of x and y is taken as one belonging to
logic; for this we use the usual equality sign x = y.

3The method of taking only points as individuals is carried out in particular in the ax-
iomatic system given by Oswald Veblen in the memoir “A system of axioms for geometry”
[Trans. Amer. Math. Soc. Bd. 5 (1904) S. 343–384]. Furthermore, all the geometrical
relations are there defined in terms of the relation “between”.
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For the symbolic presentation of the axioms, we
now require in addition the logical signs. Firstly,
there are the signs for generality and existence: if
P (x) is a predicate referring to the thing x, then
(x)P (x) means “All x have the property P (x)”,
and (Ex)P (x) means “There is an x with the prop-
erty P (x).” (x) is called the “for-all sign,” and
(Ex) the “there-is sign.” The for-all and there-is
signs can also refer to any other variable y, z, u
in the same way that they refer to x. The vari-
able belonging to such a sign becomes “bound” by
this sign, just as a variable of integration is bound
by the integral sign in such a way that the whole
statement does not depend on the value of the vari-
ables.

In addition we only need the logical signs
the symbolic presentation of the axioms, nam
first the signs for generality and existence:
P (x) is a predicate referring to the object x, t
(x)P (x) means, “all x have the property P (x
and (Ex)P (x) means “there is an x with
property P (x).” (x) is named the “for-all-sig
and (Ex) the “there-is-sign.” The for-all-sign
there-is-sign can refer to any other variable y, z
in the same way they can refer to x. The varia
belonging to such a sign is “bound” by this sign
the same way an integration variable is bound
the integration sign, so that the whole statem
does not depend on the value of the variables.

As further logical signs, we have signs for negation
and for propositional connectives [Satzverbindun-
gen]. We denote the negation of an assertion [Aus-
sage] by a line over the assertion. overstriking. In
the case where an assertion begins with a for-all or
there-is sign, the negation stroke is to be set only
above this sign, and instead of x = y the shorter
‘x �= y’ will be used. The sign & (“and”) between
two assertions means that both statements hold
(conjunction). The sign ∨ (“or” in the sense of
“vel”) between two assertions means that at least
one of the two assertions holds (“disjunction”).

Signs for negation and the joining of sentences
added as further logical signs. We designate
negation of a statement by overstriking. In
case of a preceding for-all-sign or there-is-sign
negation stroke is to be set only above this s
and instead of x = y the shorter x �= y should
written. The sign & (“and”) between two st
ments means that both statements hold (conju
tion). The sign ∨ (“or” in the sense of “vel”)
tween two statements means that at least one
the two statements holds (“disjunction”).

The sign → between two [statements] assertions means that the holding
of the first [entails] has as a consequence the holding of the second, or
[with] in other words, that the first [statement] assertion [does not] cannot
hold [,] Komma tilgen without the second holding as well (“implication”).

Accordingly, an implication A → B between two
assertions A and B is only false if A is true and B

is false; in all other cases it is true.

An implication A → B between two statement
and B is accordingly only then wrong, if A is t
and B is false. In all other cases it is true.
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The combination of the implication sign with the
for-all sign results in the representation of general
hypothetical statements. For example, the formula

(x)(y) (A(x, y) → B(x, y)) ,

|5 where A(x, y), B(x, y) represent certain rela-
tions between x and y, represents the statement
“If A(x, y) holds, then B(x, y),” or also: “for every
pair of individuals x, y for which A(x, y) holds,
then so does B(x, y).”a

aThe relation between disjunction and implication as de-
fined here and disjunctive and hypothetical assertions in the
usual sense will be discussed in § 3.

The combination of the sign of impl
the for-all-sign results in the presenta
eral hypothetical statements. For exam
mula

(x)(y) (A(x, y) → B(x, y))

with A(x, y), B(x, y) standing for the
of certain relations between x and y, re
statement “If A(x, y) holds, then B(x
“for every pair of individuals x, y for w
holds, B(x, y) holds as well.”a

aThe relation between disjunction and i
fined here and disjunctive and hypothetica
statements in the usual sense will be discuss

We use brackets in the usual way for [linking together] joining[parts]
components of formulas. [For saving] To minimize the use of brack-
ets [KEIN KOMMA] Komma ist hinzuzufügen we stipulate that for the
separation of symbolic expressions → takes precedence over & and ∨, &
over ∨, and that →, & , ∨ all have precedence over the [for-all-sign and the
there-is-sign] for-all sign and the there-is sign.

Brackets are omitted if there is no danger of am-
biguity. For example, instead of the expression

(x) ((Ey)R(x, y)) ,

in which R(x, y) designates an arbitrary relation
between x and y, we write simply (x)(Ey)R(x, y)
because in this case only one reading comes into
question: “For every x, there is a y for which the
relation R(x, y) holds.”—

Brackets are omitted if no ambiguities
We write, for example, instead of the

(x) ((Ey)R(x, y)) ,

in which R(x, y) designates an arbitr
between x and y, simply (x)(Ey)R(x, y
this case only one reading is possible:
there is a y for which the relation R(x,

We are now in position to write down the axiom system [considered] in
question.



131

To make it easier to digest, the first few axioms
are accompanied by a written version.
The formulation of the axioms does not correspond
completely to that in Hilbert’s Grundlagen der
Geometrie. Therefore, for each group of axioms,
we specify the relationship of the axioms here for-
mulated to those of Hilbert.a

aThis is meant in particular for those familiar with
Hilbert’s Grundlagen der Geometrie. All references are to
the seventh edition.

To make it easier the first axioms are accompan
by a linguistic version.
The demarcation of the axioms does not co
spond completely to that in Hilbert’s “Grundla
der Geometrie.” We therefore give for each gr
of axioms the relationship of the axioms here p
sented as formulas to those of Hilbert.a

aThis information is especially meant for those fam
with Hilbert’s “Grundlagen der Geometrie.” All refere
are to the seventh edition.

I. Axioms of [connection] Incidence.

Für Dirk: Ich habe die Auflistungsmarkierung zu der von Bernays abgeändert,
sodaß ‘1)’ usw. statt ‘1.’ usw. erzeugt wird.

1) (x)(y)Gr(x, x, y).
“x, x, y always lie on one [line] straight line.”

2) (x)(y)(z)(Gr(x, y, z) → Gr(y, x, z) & Gr(x, z, y)).
“If x, y, z lie on a [line] straight line, then [so do] TILGEN y, x, z [as
well as] respectively x, z, y [lie] also lie on a [line] straight line.”

3) (x)(y)(z)(u)(Gr(x, y, z) & Gr(x, y, u) & x �= y → Gr(x, z, u)).
“If x, y are different points and if x, y, z as well as x, y, u lie on a [line]
straight line, then [also] TILGEN x, z, u [lie] also lie on a line.”

4) (Ex)(Ey)(Ez)Gr(x, y, z).
“There are points x, y, z which do not lie on a [line] straight line.”

Because of the different concept of straight line,
1) and 2) of these axioms replace the axioms in
Hilbert’s group I 1, 3) corresponds to the axiom
I 2, and 4) corresponds to the second part of the
axiom I 3.

Of these axioms, 1) and 2) replace the axiom
1,—because of the changed concept of line; 3) c
responds to the axiom I 2; and 4) corresponds
the second part of I 3.

II. Axioms of [order] Order

Für Dirk: Nochmal Auflistungsänderung.
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1) (x)(y)(z)(Zw(x, y, z) → Gr(x, y, z))

2) (x)(y)Zw(x, y, y) .

3) (x)(y)(z)(Zw(x, y, z) → Zw(x, z, y) & Zw(y, x, z)) .

4) (x)(y)(x �= y → (Ez)Zw(x, y, z)) .
“If x and y are [different] distinct points, there is always a point z
such that x lies between y and z.”

5) (x)(y)(z)(u)(v)
(
Gr(x, y, z) & Zw(u, x, y) & Gr(v, x, y) & Gr(z, u, v)

→ (Ew){Gr(u, v, w) & Zw(w, x, z) ∨ Zw(w, y, z)}) .

1) and 2) together constitute the first part of Hilbert’s axioms II 1; 3)
unites the last part of Hilbert’s [axioms] axiom II 1 with II 3; 4) is the axiom
II 2; and 5) is the axiom of plane order [KEIN KOMMA] Komma hinfügen
II 4.

III. Parallel [axiom] Axiom

Since we are leaving aside congruence axioms, we
must take the Parallel Axiom in the more gen-
eral form: “For every straight line and any point
outside this line, there is exactly one straight line
through this point which does not intersect the
given line”.a

aCf. p. 83 of Hilbert’s Grundlagen der Geometrie.

Since we are not including congrue
we must take the parallel axiom in t
broader sense: “For every straight line
actly one line through a point outside i
not intersect it.”a

aCf. p. 83 of Hilbert’s “Grundlagen der G

To make the symbolic formulation easier, we will
use

Par(x, y; u, v)

as an abbreviation for the expression

To make symbolic formulation easier

Par(x, y; u, v)

will be used as an abbreviation for th

(Ew)(Gr(x, y, w) & Gr(u, v, w))

“There is no point w which lies on a [line] straight line both with x and y
and with u and v.”

The axiom is then

(x)(y)(z)
(
Gr(x, y, z) → (Eu){Par(x, y; z, u) & (v)(Par(x, y; z, v) → Gr(z, u, v))}

)
.
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If we

conjoin the axioms here enumerated imagine the axioms here enumerated and un
them

, we get a single logical formula which represents an assertion about the pred-
icates ‘Gr’, ‘Zw’ and which we designate as

A(Gr, Zw).

In the same way we could represent a theorem of plane geometry involving
only position and order relations [as] by a formula

S(Gr, Zw).

This presentation still corresponds to the con-
tentual axiomatic system, in which the basic re-
lations are viewed as demonstrable either in expe-
rience or in |7 intuitable representation, and with
this are thus contentually definite. The statements
of the theory can thus be seen as assertions about
this content.

This representation still accords with content
axiomatics in which the fundamental relations
viewed as something that can be shown in exp
ence or in the intuitive imagination and thus d
nite in content about which the statements of
theory make assertions.

In formal axiomatics on the other hand, the fun-
damental relations are not assumed to be deter-
mined in content from the beginning; rather, they
obtain their determination at the outset implicitly,
through the axioms. And in all considerations of
an axiomatic theory, only what is expressly for-
mulated in the axioms about the fundamental re-
lations is used.

On the other hand, in formal axiomatics the fun
mental relations are not conceived from the beg
ning as determined in content; rather they rece
their determination implicitly through the axio
and in any consideration of an axiomatic the
only what is expressly formulated in the axio
about the fundamental relations is used.

[As a result] Consequently, if in axiomatic geometry the respective
names for relations in intuitive geometry like “lie on” or “between” are used,
this is [only] merely a concession to custom and a means of [simplifying]
easing the connection [of] between the theory [with] and intuitive facts.
In [fact] truth, however,

the fundamental relations in formal axiomatics
play the role of variable predicates.

in formal axiomatics the fundamental relati
play the role of variable predicates.

Here and in the sequel we understand “predicate” in the wider sense so
that it also applies to predicates with two or more subjects.
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Depending on the number of subjects, we speak of
“one-place”, “two-place”,. . . predicates.

We speak of “one-place”
place”,. . . predicates according to t
of subjects.

In [the] that part of axiomatic geometry considered by [us] us, there are
two variable three-place predicates:

R(x, y, z), S(x, y, z) .

The axiom system consists of a demand on two such predicates expressed
in the logical formula A(R, S), [that we get] obtained from A(Gr, Zw)
when we replace Gr(x, y, z) with R(x, y, z), [Zw(x, y, z)] and Zw(x, y, z)
with S(x, y, z).

Appearing alongside the variable predicates, there
is also the identity relation x = y, and this is
to be interpreted contentually. That we accept
this predicate as determinate in content is not a
violation of our methodological standpoint. The
contentual determination of identity—which is not
a relation at all in the true sense—is not depen-
dent on the particular circle of ideas concerning
the actual domain to be investigated axiomatically.
Rather, it merely/solely concerns the separation of
the individuals, and must be taken as given to us
when the domain of individuals is laid down. check
this last para against the german.

The identity relation x = y which is
preted contentually appears in this fo
with the variable predicates. The a
this predicate as contentually determin
olation of our methodological standpo
contentual determination of identity—
relation at all in the true sense—does
on the particular range of imagination
being investigated axiomatically; rath
related to a question of distinguishing
which must be taken as already give
domain of individuals is laid down.

Following this view, to a theorem of the form
S(Gr, Zw), there corresponds a determinate log-
ical content, namely that for any predicates
R(x, y, z), S(x, y, z) satisfying the requirements
expressed by A(R, S), the relation S(R, S)
also obtains, thus that for any two predicates
R(x, y, z), S(x, y, z), the formula

A(R, S) → S(R, S)

represents a true asssertion. In this way, a geo-
metrical theorem is transformed into a theorem of
pure predicate logic.|8

From this point of view a sentence
S(Gr, Zw) corresponds to the logica
that for any predicates R(x, y, z), S
isfying the demand A(R, S), the relat
also holds; in other words, for any tw
R(x, y, z), S(x, y, z) the formula

A(R, S) → S(R, S)

represents a true statement. In this
metrical sentence is transformed into a
pure predicate logic.|8
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[From this point of view] Correspondingly, the problem of consistency
presents itself [in a corresponding way] TILGEN as a problem of pure pred-
icate logic. [In fact] Indeed, it is a question of whether two three-place pred-
icates R(x, y, z), S(x, y, z) can satisfy the conditions expressed [in] through
the formula A(R, S)4 or whether, on the contrary, the assumption that the
formula A(R, S) is satisfied for a certain pair of predicates leads to a [con-
tradiction] contradiction, so that [in general] generally for every pair of
predicates R, S the formula A(R, S) represents a correct assertion. HERE.

A question like the one given here is part of the “decision problem.” In
newer logic this problem is understood to be that of discovering general
methods for deciding the “validity” or “satisfiability” of logical formulas.5

In this connection the formulas investigated are composed with the help of
logical signs out of predicate variables and equalities—together with variables
in subject positions which we call “individual variables”—, and it is assumed
that every variable is bound by a for-all sign or there-is sign.

A formula of this kind is called logically valid when it represents a true
assertion for every determination of the variable predicates; it is called satis-
fiable when it represents a true assertion for some appropriate determination
of the predicate variables.

Simple examples for logically valid formulas are the following:

(x)F (x) & (x)G(x) → (x)(F (x) & G(x))
(x)P (x, x) → (x)(Ey)P (x, y))

(x)(y)(z)(P (x, y) & y = z → P (x, z)).

Examples for satisfiable formulas are:

(Ex)F (x) & (Ex)F (x)
(x)(y)(P (x, y) & P (y, x) → x = y)

(x)(Ey)P (x, y) & (Ey)(x)P (x, y) .

These formulas result, e. g., in true assertions for the domain of individuals
of the numbers 1, 2, if in the first formula for F (x) “x is even” is set, in the
second formula for P (x, y) the predicate x � y, and in the third formula for
P (x, y) the predicate x � y & y �= 1.

4This imprecise way of [putting] posing the question will be [sharpened] made more
precise in the sequel.

5This explanation is correct only for the decision problem in its narrower sense. We
have no need here to consider the broader conception of this decision problem.
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It is to be observed that along with the determination of the predicates the
domain of individuals over which the variables x, y, . . . range has to be fixed.
This enters into a logical formula as a kind of hidden variable. However, the
logical formula in respect to satisfiability is invariant with respect to a one-
one mapping of a domain of individuals onto another, since the individuals
enter into the formulas only as variable subjects; as a result the only essential
determination for a domain of individuals is the number of individuals.

Accordingly, we have to distinguish the following questions in relation to
logical validity and satisfiability:

1. The question of logical validity for every domain of individuals, and
also of satisfiability for any domain of individuals respectively.

2. The question of logical validity or satisfiability for a given number of
individuals.

3. The question for which numbers of individuals is a formula logically
valid or satisfiable.

It should be noted that it is best to leave out of consideration the domain
of 0 individuals on principle, since formally zero-numbered domains of indi-
viduals have a special status, and on the other hand consideration of them
is trivial and worthless for applications.6

Furthermore one should take into account that only the “value-range” of
a predicate is relevant to its determination; that is to say, all that is relevant
is for which values of the variables in subject positions the predicate holds
or does not hold (is “true” or “false”).

This circumstance has as a consequence that for a given finite number of
individuals the logical validity or satisfiability of a specific given logical for-
mula represents a pure combinatorial fact which one can determine through
elementary testing of all cases.

6The stipulation that every domain of individuals should contain at least one thing, so
that a true general judgement must hold of at least one thing, ought not to be confused
with the convention prominent in Aristotelean logic that a judgment of the form “all S are
P” counts as true only if there are in fact things with the property S. This convention has
been dropped in newer logic. A judgment of this kind is represented symbolically in the
form (x)(S(x) → P (x)); it counts as true if a thing x, insofar as it has the property S(x),
always has the property P (x) as well—independently of whether there is anything with
the property Sx at all. We will take up this topic again in connection with the deductive
construction of predicate logic. (See § 4 pp. 106–107.)
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To be specific, if n is the number of individuals and k the number of
subjects (“places”) of a predicate, then nk is the number of different systems
of values for the variables; and since for every one of these systems of values
the predicate is either true or false, there are

2(nk)

different possible value-ranges for a k-place predicate.
If then

R1, . . . , Rt

are the distinct predicate variables occurring in a given formula, with arities

k1, . . . , kt

then

2(nk1+nk2+...+nkt )

is the number of systems of value-ranges to be considered, or the number of
different possible predicate systems for short.

Accordingly logical validity of the formula means that for all of these

2(nk1+nk2+...+nkt )

explicitly enumerable predicate systems the formula represents a true asser-
tion; and its satisfiability means that the formula represents a true assertion
for one of these predicate systems. Moreover, for a fixed predicate system
the truth or falsity of the assertion represented by the formula is again de-
cidable by a finite testing of cases; the reason is that only n values come into
consideration for a variable bound by a for-all sign or there-is sign so that
‘all’ has the same meaning as a conjunction with n members and ‘there is’ a
disjunction with n members.

For example, consider the formulas mentioned above

(x)P (x, x) → (x)(Ey)P (x, y)

(x)(y)(P (x, y) & P (y, x) → x = y)

of which the first has been referred to as a logically valid, the second as a
satisfiable, formula. We refer these formulas to a domain of two individuals.
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We can indicate both individuals with the numerals 1, 2. In this case we
have t = 1, n = 2, k1 = 2; therefore the number of different predicate systems
is

2(22) = 24 = 16.

In place of (x)P (x, x) we can put

P (1, 1) & P (2, 2)

in place of (x)(Ey)P (x, y)

P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2) ,

so that the first of the two formulas becomes

P (1, 1) & P (2, 2) → P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2) .

This implication is true for those predicates P for which P (1, 1) & P (2, 2) is
false, as well as for those for which

P (1, 1) ∨ P (1, 2) & P (2, 1) ∨ P (2, 2)

is true. One can now verify that for each of the 16 value-ranges that one
gets when one assigns one of the truth values “true” or “false” to each of the
pairs of values

(1, 1), (1, 2), (2, 1), (2, 2)

one of the two conditions is satisfied; thus the whole expression always re-
ceives the value “true.” [Verification is simplified in this example because
already the determination of the values of P (1, 1) and P (2, 2) suffices to fix
the correctness of the expression.] In this way the validity of our first formula
for domains of two individuals can be determined through directly trying it
out.

For domains of two individuals the second formula has the same meaning
as the conjunction

(P (1, 1) & P (1, 1) → 1 = 1) & (P (2, 2) & P (2, 2) → 2 = 2)
& (P (1, 2) & P (2, 1) → 1 = 2) & (P (2, 1) & P (1, 2) → 2 = 1) .

Since 1 = 1 and 2 = 2 are true the first two members of the conjunction
are always true assertions. The last two members are true if, and only if,
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P (1, 2) & P (2, 1)

is false.

Therefore, to satisfy the formula under consideration one has only to
eliminate those determinations of value for P in which the pairs (1, 2) and
(2, 1) are both assigned the value “true.” Every other determination of value
produces a true assertion. The formula is therefore satisfiable in a domain
of two elements.

These examples should make clear the purely combinatorial character of
the decision problem in the case of a given finite number of individuals. One
result of this combinatorial character is that for a prescribed finite number
of individuals the logical validity of a formula F has the same meaning as
the unsatisfiability of the formula F; likewise the satisfiability of a formula
F has the same meaning as that F is not valid. Indeed F represents a true
assertion for those predicate systems for which F represents a false assertion
and vice-versa.

Let us return to the question of the consistency of an axiom system. Let
us consider an axiom system written down symbolically and combined into
one formula like our example.

The question of the satisfiability of this formula for a prescribed finite
number of individuals can be decided, in principle at least, through trying
it out. Suppose then the satisfiability of the formula is determined for a
definite finite number of individuals. The result is a proof of the consistency
of the axiom system, namely a proof by the method of exhibition, since the
finite domain of individuals together with the value-ranges chosen for the
predicates (to satisfy the formula) constitutes a model in which we can show
concretely that the axioms are satisfied.

We give an example of such an exhibition from axiomatics in geometry.
We start from from the axiom system presented in the beginning, but replace
the axiom I 4), which postulates the existence of three points not lying on a
line, with the weaker axiom

I 4′) (Ex)(Ey)(x �= y) .

“There are two distinct points.”

Furthermore we drop the axiom of plane order II 5); in its place we add
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to the axioms7 two sentences which can be proved using II 5) by, firstly,
expanding II 4) to

II 4′) (x)(y){x �= y → (Ez)Zw(z, x, y) & (Ez)Zw(x, y, z)} ,

and, secondly, adding

II 5) (x)(y)(z){x �= y & x �= z & y �= z → Zw(x, y, z) ∨ Zw(y, z, x) ∨
Zw(z, x, y)}.

We keep the parallel axiom. The resulting axiom system corresponds to
a formula A′(R, S) instead of the earlier A(R, S); it is satisfiable in a domain
of individuals of 5 things, as O. Veblen remarked.8 The value-ranges for the
predicates R, S are so chosen that first of all the predicate Gr is determined
to be true for every value triple x, y, z—we can here use the symbols ‘Gr’,
‘Zw’ with no danger of misunderstanding. One sees immediately that then
all axioms I as well as II 1) and III are satisfied. In order that the axioms
II 2), 3), 5′), and 4′) be satisfied it is necessary and also sufficient that the
following three conditions be placed on the predicate Zw:

1. Zw is always false for a triple x, y, z in which two elements coincide.

2. For any combination of three different of the 5 individuals, Zw is true
for 2 orderings with a common first element (of 6 possible orderings of
the elements), false for the remaining 4 orderings.

3. Each pair of different elements occurs as an initial as well as a final
pair in one of the triples for which Zw is true.

The first demand can be directly fulfilled by stipulation. The joint satis-
faction of the other two conditions is accomplished as follows: We designate
the 5 elements with the numerals 1, 2, 3, 4, 5. The number of value-triples
of three distinct elements for which Zw still has to be defined is 5 ·4 ·3 = 60.
Every six of these belong to a combination; for two of these Zw should be
true and false for the rest. We must therefore indicate those 20 of the 60

7Both of these sentences were introduced as axioms in earlier editions of Hilbert’s
“Grundlagen der Geometrie.” It turned out that they are provable using the axioms of
plane order. See pp. 5–6 of the seventh edition.

8In the investigation already mentioned “A system of axioms for geometry,” Trans.
Amer. Math. Soc. vol. 5, p. 350.
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triples for which Zw will be defined as true. They are those which one obtains
from the four triples

(1 2 5), (1 5 2), (1 3 4), (1 4 3)

by applying the cyclical permutation (1 2 3 4 5).

It is easy to verify that this procedure satisfies all the conditions. Thus
the axiom system is recognized as consistent by the method of exhibition.9

The method of exhibition presented in this example has very many dif-
ferent applications in newer axiomatic investigations. It is especially used for
proofs of independence. The assertion that a sentence S is independent of
an axiom system A has the same meaning as the assertion of the consistency
of the axiom system as the claim that the axiom system

A & S

which we get when we add the negation of the sentence S as an axiom
to A. The consistency can be determined by the method of exihibition if
this axiom system is satisfiable in a finite domain domain of individuals.10

Thus this method provides a sufficient extension of the method of progressive
inferences for many fundamental investigations in the sense that the unprov-
ability of a sentence from certain axioms can be proved through exhibition,
its provability through inference.

But is the application of the method of exhibition restricted in its appli-
cation to finite domains of individuals? We cannot derive this from what we
have said up until now. However, we do see immediately that in the case
of an infinite domain of individuals the possible systems of predicates no
longer constitute a surveyable multitude and there can be no talk of testing
all value-ranges. Nevertheless in the case of given axioms we might be in a
position to show their satisfiability by given predicates. And this is actually

9It follows immediately from the fact that the modified axiom system A′ is satisfiable
in a domain of 5 individuals that the axioms of this system do not completely determine
linear ordering.

10A great number of examples of this procedure can be found in the works on linear
and cyclical order by E. V. Huntington and his collaborators. See especially “A new set
of postulates for betweenness with proof of complete independence”, Trans. Amer. Math.
Soc. vol. 26 (1924) pp. 257–282. Here one also finds references to previous works.
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the case. Consider for example the system of three axioms

(x)R(x, x) ,
(x)(y)(z)(R(x, y) & R(y, z) → R(x, z)

(x)(Ey)R(x, y).

Let us clarify what these say: We start with an object a in the domain of
individuals. According to the third axiom there must be a thing b for which
R(a, b) is true; and because of the first axiom, b must be different from a. For
b there must further be a thing c for which R(b, c) is true, and because of the
second axiom R(a, c) is also true; according to the third axiom c is distinct
from a and b. For c there must again be a thing d for which R(c, d) is true.
For this thing R(a, d) and R(b, d) are also true, and d is distinct from a, b, c.
The method of this consideration here has no end; and it shows us we cannot
satisfy the axioms with a finite domain of individuals. On the other hand
we can easily show satisfaction by an infinite domain of individuals: We take
the integers as individuals and substitute the relation “x is less than y” for
R(x, y); one sees immediately that all three axioms are satisfied.

It is the same with the axioms

(Ex)(y)S(y, x) ,
(x)(y)(u)(v)(S(x, u) & S(y, u) & S(v, x) → S(v, y)) ,

(x)(Ey)S(x, y) .

One can easily ascertain that these cannot be satisfied with a finite domain
of individuals. On the other hand they are satisfied in the domain of positive
integers if we replace S(x, y) with the relation “y immediately follows x.”

However, we notice in these examples that exhibiting in these cases does
by no means conclusively settle the question of consistency; rather the ques-
tion is reduced to that of the consistency of number theory. In the earlier
example of finite exhibition we took integers as individuals. There, however,
this was only for the purpose of having a simple way to designate individu-
als. Instead of numbers we could have taken other things, letters for example.
And also the properties of numbers which were used could have been estab-
lished by a concrete exhibition.

In the case now before us, however, a concrete idea of number is not
enough; for we essentially need the assumption that the integers constitute
a domain of individuals and therefore a ready totality.

We are, of course, quite familiar with this assumption since in newer
mathematics we are constantly working with it; one is inclined to consider
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it perfectly natural. It was Frege who vigorously and with a sharp and
witty critique first established that the idea of the sequence of integers as
a ready totality must be justified by a proof of consistency.11 According
to Frege, such a proof had to be carried out in the sense of an exhibition,
as an existence proof; and he believed he could find the objects for such
an exhibition in the domain of logic. His method of exhibition amounts to
defining the totality of integers with the help of the totality (presupposed
to exist) of all conceivable one-place predicates. However, the underlying
assumption, which under impartial consideration seems very suspect anyway,
was shown to be untenable by the famous logical and set-theoretic paradoxes
discovered by Russell and Zermelo. And the failure of Frege’s undertaking
has made us even more conscious of the problematic character of assuming
the totality of the number sequence than did his dialectic.

In the light of this difficulty we might try to use some other infinite do-
main of individuals instead of the sequence of integers for the purpose of
proving consistency, a domain taken from the realm of sense perception or
physical reality rather than being a pure product of thought like the sequence
of integers. However, if we look more closely we will realize that wherever
we think we encounter infinite manifolds in the realm of sensible qualities or
in physical reality there can be no talk of the actual presence of such a man-
ifold; rather the conviction that such a manifold is present rests on a mental
extrapolation, the justification of which is as much in need of investigation
as the conception of the totality of the sequence of integers.

A typical example in this connection is those cases of the infinite which
gave rise to the well-known paradox of Zeno. Suppose some distance is
traversed in a finite time; the traversal includes infinitely many successive
subprocesses: the traversal of the first half, then of the next quarter, then
the next eighth, and so on. If we are considering an actual motion, then
these subtraversals must be real processes succeeding one another.

People have tried to refute this paradox with the argument that the sum
of infinitely many time intervals may converge producing a finite duration.
However, this reply does not come to grips with an essential point of the
paradox, namely the paradoxical aspect that lies in the fact that an infinite
succession, the completion of which we could not accomplish in the imagina-
tion either actually or in principle, should be accomplished in reality.

11Gottlob Frege, “Grundlagen der Arithmetik”, Breslau 1884, and “Grundgesetze der
Arithmetik”, Jena 1893.
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Actually there is a much more radical solution of the paradox. It consists
in considering that we are by no means forced to believe that the mathemat-
ical space-time representation of movement remains physically meaningful
for arbitrarily small segments of space and time; rather there is every reason
to assume that a mathematical model extrapolates the facts of a certain do-
main of experience, e.g., just the movements, within the range of magnitudes
accessible to our observation up to now for the purpose of a simple concep-
tual structure; this is similar to continuum mechanics which carries out an
extrapolation in taking as a basis the idea of space as filled with matter; it
is no more the case that unbounded division of a movement always produces
something characterizable as movement than that unbounded spatial divi-
sion of water always produces quantities of water. When this is accepted the
paradox vanishes.

Notwithstanding, the mathematical model of movement has, as an ideal-
izing concept formation, its value for the purpose of simplified representation.
For this purpose it must not only coincide approximately with reality, but
it has to meet the condition that the extrapolation it involves must be con-
sistent in itself. From this point of view the mathematical conception of
movement is not in the least shaken by Zeno’s paradox; the mathematical
counterargument just referred to has in this case complete validity. It is an-
other question however, whether we possess a real proof of the consistency
of the mathematical theory of motion. This theory depends essentially on
the mathematical theory of the continuum; this in turn depend essentially
on the idea of the set of all integers as a ready totality. We therefore come
back by a roundabout way to the problem we tried to avoid by referring to
the facts about motion.

It is much the same in every case in which a person thinks he can show
directly that some infinity is given in experience or intuition, for example the
infinity of the tone row extending from octave to octave to infinity, or the
continuous infinite manifold involved in the passage from one color quality
to another. Closer consideration shows in every case that in fact no infinity
is given at all; rather it is interpolated or extrapolated through some mental
process.

These considerations make us realize that reference to non-mathematical
objects can not settle the question whether an infinite manifold exists; the
question must be solved within mathematics itself. But how should one
make a start with such a solution? At first glance it seems that something
impossible is being demanded here: to present infinitely many individuals is
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impossible in principle; therefore an infinite domain of individuals as such
can only be indicated through its structure, i. e., through relations holding
among its elements. In other words: a proof must be given that for this
domain certain formal relations can be satisfied. The existence of an infinite
domain of individuals can not be represented in any other way than through
the satisfiability of certain logical formulas; but these are exactly the kind of
formulas we were led to through investigating the question of the existence
of an infinite domain of individuals; and the satisfiability of these formulas
was to have been demonstrated by the exhibition of an infinite domain of
individuals. The attempt to apply the method of exhibition to the formulas
under consideration leads then to a vicious circle.

But exhibition should serve only as a means in proofs of the consistency of
axiom systems. We were led to this procedure through considering domains
with a given finite number of individuals, and just through recognizing that
in such domains the consistency of a formula has the same significance as its
satisfiability.

The situation is more complicated in the case of infinite domains of in-
dividuals. It is true in this case also that an axiom system represented by a
formula A is inconsistent if, and only if, the formula A is logically valid. But
since we are no longer dealing with a surveyable supply of value-ranges for
the variable predicates, we can no longer conclude that if A is not logically
valid, there is some model for satisfying the axiom system A at our disposal.

Accordingly, when an infinite domain of individuals is under consider-
ation, the satisfiability of an axiom system is a sufficient condition for its
consistency, but it is not proved to be a necessary condition. We cannot
therefore expect that in general a proof of consistency can be accomplished
by means of a proof of satisfiability. On the other hand we are not forced
to prove consistency by establishing satisfiability; we can just hold to the
original negative sense of inconsistency. That is to say—if we again imagine
an axiom system represented by a formula A—we do not have to show that
satisfiability of the formula A, but only need to prove that the assumption
that A is satisfied by certain predicates cannot lead to a logical contradiction.

To attack the problem in these terms we must first aim at an overview of
the possible logical inferences that can be made from an axiom system. The
formalization of logical inference as developed by Frege, Schröder, Peano,
and Russell presents itself as an appropriate means to this end.

We have thus arrived at the following tasks: 1. to formalize rigorously
the principles of logical inference and by this turn them into a completely
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surveyable system of rules; 2. to show for a given axiom system A (which is
to be proved consistent), that starting with this system A no contradiction
can arise via logical deductions, that is to say, no two formulas of which one
is the negation of the other can be proved.

However, we do not have to carry out this proof for each axiom system
individually; for we can make use of the method of arithmetizing to which
we referred at the beginning. From the point of view we have reached now
this procedure can be characterized as follows: we chose
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With your permission, I shall now address you on the subject of the
present situation in research in the foundations of mathematics. Since there
remain open questions in this field, I am not in a position to paint a definitive
picture of it for you. But it must be pointed out that the situation is not so
critical as one could think from listening to those who speak of a foundational
crisis. From certain points of view, this expression can be justified; but it
could give rise to the opinion that mathematical science is shaken at its roots.

The truth is that the mathematical sciences are growing in complete
security and harmony. The ideas of Dedekind, Poincaré, and Hilbert have
been systematically developed with great success, without any conflict in the
results.
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It is only from the philosophical point of view that objections have been
raised. They bear on certain ways of reasoning peculiar to analysis and set
theory. These modes of reasoning were first systematically applied in giving a
rigorous form to the methods of the calculus. According to them, the objects
of a theory are viewed as elements of a totality such that one can reason as
follows: For each property expressible using the notions of the theory, it is
an objectively determinate fact whether there is or there is not an element
of the totality which possesses this property. Similarly, it follows from this
point of view that either all the elements of a set possess a given property,
or there is at least one element which does not possess it.

An example of this way of setting up a theory can be found in Hilbert’s ax-
iomatization of geometry. If we compare Hilbert’s axiom system to Euclid’s,
ignoring the fact that the Greek geometer fails to include certain necessary
postulates, we notice that Euclid speaks of figures to be constructed whereas,
for Hilbert, system of points, straight lines, and planes exist from the outset.
Euclid postulates: One can join two points by a straight line; Hilbert states
the axiom: Given any two points, there exists a straight line on which both
are situated. “Exists” refers here to existence in the system of straight lines.

This example shows already that the tendency of which we are speaking
consists in viewing the objects as cut off from all links with the reflecting
subject.

Since this tendency asserted itself especially in the philosophy of Plato,
allow me to call it “platonism.”

The value of platonistically inspired mathematical conceptions is that
they furnish models of abstract imagination. These stand out by their sim-
plicity and logical strength. They form representations which extrapolate
from certain regions of experience and intuition.

Nonetheless, we know that we can arithmetize the theoretical systems
of geometry and physics. For this reason, we shall direct our attention to
platonism in arithmetic. But I am referring to arithmetic in a very broad
sense, which includes analysis and set theory.

The weakest of the “platonistic” assumptions introduced by arithmetic is
that of the totality of integers. The tertium non datum for integers follows
from it; viz.: if P is a predicate of integers, either P is true of each number,
or there is at least one exception.

By the assumption mentioned, this disjunction is an immediate conse-
quence of the logical principle of the excluded middle; in analysis it is almost
continually applied.
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For example, it is by means of it that one concludes that for two real
numbers a and b, given by convergent series, either a = b or a < b or b < a;
and likewise: a sequence of positive rational numbers either comes as close
as you please to zero or there is a positive rational number less than all the
members of the sequence.

At first sight, such disjunctions seem trivial, and we must be attentive
in order to notice that an assumption slips in. But analysis is not content
with this modest variety of platonism; it reflects it to a stronger degree
with respect to the following notions: set of numbers, sequence of numbers,
and function. It abstracts from the possibility of giving definitions of sets,
sequences, and functions. These notions are used in a “quasi-combinatorial”
sense, by which I mean: in the sense of an analogy of the infinite to the finite.

Consider, for example, the different functions which assign to each mem-
ber of the finite series 1, 2, . . . , n a number of the same series. There are nn

functions of this sort, and each of them is obtained by n independent de-
terminations. Passing to the infinite case, we imagine functions engendered
by an infinity of independent determinations which assign to each integer an
integer, and we reason about the totality of these functions.

In the same way, one views a set of integers as the result of infinitely
many independent acts deciding for each number whether it should be in-
cluded or excluded. We add to this the idea of the totality of these sets.
Sequences of real numbers and sets of real numbers are envisaged in an anal-
ogous manner. From this point of view, constructive definitions of specific
functions, sequences, and sets arc only ways to pick out an object which
exists independently of, and prior to, the construction.

The axiom of choice is an immediate application of the quasi-combinatorial
concepts in question. It is generally employed in the theory of real numbers
in the following special form. Let

M1, M2 . . .

be a sequence of non-empty sets of real numbers, then there is a sequence

a1, a2 . . .

such that for every index n, an is an element of Mn.

The principle becomes subject to objections if the effective construction
of the sequence of numbers is demanded.
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A similar case is that of Poincaré’s impredicative definitions. An impred-
icative definition of a real number appeals to the hypothesis that all real
numbers have a certain property P , or the hypothesis that there exists a real
number with the property T .

This kind of definition depends on the assumption of the existence of the
totality of sequences of integers, because a real number is represented by a
decimal fraction, that is to say, by a special kind of sequence of integers.

It is used in particular to prove the fundamental theorem that a bounded
set of real numbers always has a least upper bound.

In Cantor’s theories, platonistic conceptions extend far beyond those of
the theory of real numbers. This is done by iterating the use of the quasi-
combinatorial concept of a function and adding methods of collection. This
is the well-known method of set theory.

The platonistic conceptions of analysis and set theory have also been
applied in modern theories of algebra and topology, where they have proved
very fertile.

This brief summary will suffice to characterize platonism and its appli-
cation to mathematics. This application is so widespread that it is not an
exaggeration to say that platonism reigns today in mathematics.

But on the other hand, we see that this tendency has been criticized in
principle since its first appearance and has given rise to many discussions.
This criticism was reinforced by the paradoxes discovered in set theory, even
though these antinomies refute only extreme platonism.

We have set forth only a restricted platonism which does not claim to
be more than, so to speak, an ideal projection of a domain of thought. But
the matter has not rested there. Several mathematicians and philosophers
interpret the methods of platonism in the sense of conceptual realism, pos-
tulating the existence of a world of ideal objects containing all the objects
and relations of mathematics. It is this absolute platonism which has been
shown untenable by the antinomies, particularly by those surrounding the
Russell-Zermelo paradox.

If one hears them for the first time, these paradoxes in their purely logical
form can seem to be plays on words without serious significance. Nonetheless
one must consider that these abbreviated forms of the paradoxes are obtained
by following out the consequences of the various requirements of absolute
platonism.

The essential importance of these antinomies is to bring out the impos-
sibility of combining the following two things: the idea of the totality of all
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mathematical objects and the general concepts of set and function; for the
totality itself would form a domain of elements for sets, and arguments and
values for functions.

We must therefore give up absolute platonism. But it must be observed
that this is almost the only injunction which follows from the paradoxes.
Some will think that this is regrettable, since the paradoxes are appealed to
on every side. But avoiding the paradoxes does not constitute a univocal
program. In particular, restricted platonism is not touched at all by the
antinomies.

Still, the critique of the foundations of analysis receives new impetus
from this source, and among the different possible ways of escaping from the
paradoxes, eliminating platonism offered itself as the most radical.

Let us look and see how this elimination can be brought about. It is done
in two steps, corresponding to the two essential assumptions introduced by
platonism. The first step is to replace by constructive concepts the concepts
of a set, a sequence, or a function, which I have called quasi-combinatorial.
The idea of an infinity of independent determinations is rejected. One em-
phasizes that an infinite sequence or a decimal fraction can be given only
by an arithmetical law, and one regards the continuum as a set of elements
defined by such laws.

This procedure is adapted to the tendency toward a complete arithmeti-
zation of analysis. Indeed, it must be conceded that the arithmetization of
analysis is not carried through to the end by the usual method. The concep-
tions which are applied there are not completely reducible, as we have seen,
to the notion of integer and logical concepts.

Nonetheless, if we pursue the thought that each real number is defined
by an arithmetical law, the idea of the totality of real numbers is no longer
indispensable, and the axiom of choice is not at all evident. Also, unless we
introduce auxiliary assumptions—as Russell and Whitehead do—we must do
without various usual conclusions. Weyl has made these consequences very
clear in his book The Continuum (vide [?]).

Let us proceed to the second step of the elimination. It consists in re-
nouncing the idea of the totality of integers. This point of view was first
defended by Kronecker and then developed systematically by Brouwer.

Although several of you heard in March 1934 an authentic exposition of
this method by Professor Brouwer himself, I shall allow myself a few words
of explanation.

A misunderstanding about Kronecker must first be dissipated, which
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could arise from his often-cited aphorism that the integers were created by
God, whereas everything else in mathematics is the work of man. If that were
really Kronecker’s opinion, he ought to admit the concept of the totality of
integers.

In fact, Kronecker’s method, as well as that of Brouwer, is characterized
by the fact that it avoids the supposition that there exists a series of natural
numbers forming a determinate ideal object.

According to Kronecker and Brouwer, one can speak of the series of num-
bers only in the sense of a process that is never finished, surpassing each
limit which it reaches.

This point of departure carries with it the other divergences, in particular
those concerning the application and interpretation of logical forms: Neither
a general judgment about integers nor a judgment of existence can be inter-
preted as expressing a property of the series of numbers. A general theorem
about numbers is to be regarded as a sort of prediction that a property will
present itself for each construction of a number; and the affirmation of the
existence of a number with a certain property is interpreted as an incomplete
communication of a more precise proposition indicating a particular number
having the property in question or a method for obtaining such a number;
Hilbert calls it a “partial judgment.”

For the same reasons the negation of a general or existential proposition
about integers does not have precise sense. One must strengthen the nega-
tion to arrive at a mathematical proposition. For example, it is to give a
strengthened negation of a proposition affirming the existence of a number
with a property P to say that a number with the property P cannot be given,
or further, that the assumption of a number with this property leads to a
contradiction. But for such strengthened negations the law of the excluded
middle is no longer applicable.

The characteristic complications to be met with in Brouwer’s “intuition-
istic” method come from this.

For example, one may not generally make use of disjunctions like these:
a series of positive terms is either convergent or divergent; two convergent
sums represent either the same real number or different ones.

In the theory of integers and of algebraic numbers, we can avoid these
difficulties and manage to preserve all the essential theorems and arguments.

In fact, Kronecker has already shown that the core of the theory of alge-
braic fields can be developed from his methodological point of view without
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appeal to the totality of integers.1

As for analysis, you know that Brouwer has developed it in accord with
the requirements of intuitionism. But here one must abandon a number of the
usual theorems, for example, the fundamental theorem that every continuous
function has a maximum in a closed interval. Very few things in set theory
remain valid in intuitionist mathematics.

We would say, roughly, that intuitionism is adapted to the theory of
numbers; the semiplatonistic method, which makes use of the idea of the
totality of integers but avoids quasi-combinatorial concepts, is adapted to
the arithmetic theory of functions, and the usual platonism is adequate for
the geometric theory of the continuum.

There is nothing astonishing about this situation, for it is a familiar proce-
dure of the contemporary mathematician to restrict his assumptions in each
domain of the science to those which are essential. By this restriction, a the-
ory gains methodological clarity, and it is in this direction that intuitionism
proves fruitful.

But as you know, intuitionism is not at all content with such a role; it
opposes the usual mathematics and claims to represent the only true math-
ematics.

On the other hand, mathematicians generally are not at all ready to ex-
change the well-tested and elegant methods of analysis for more complicated
methods unless there is an overriding necessity for it.

We must discuss the question more deeply. Let us try to portray more
distinctly the assumptions and philosophic character of the intuitionistic
method.

What Brouwer appeals to is evidence. He claims that the basic ideas
of intuitionism are given to us in an evident manner by pure intuition. In
relying on this, he reveals his partial agreement with Kant. But whereas for
Kant there exists a pure intuition with respect to space and time, Brouwer
acknowledges only the intuition of time, from which, like Kant, he derives

1To this end, Kronecker set forth in his lectures a manner of introducing the notion of
algebraic number which has been almost totally forgotten, although it is the most elemen-
tary way of defining this notion. This method consists in representing algebraic numbers
by the changes of sign of irreducible polynomials in one variable with rational integers as
coefficients; starting from that definition, one introduces the elementary operations and
relations of magnitude for algebraic numbers and proves that the ordinary laws of calcu-
lation hold; finally one shows that a polynomial with algebraic coefficients having values
with different signs for two algebraic arguments a and b has a zero between a and b.
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the intuition of number.
As for this philosophic position, it seems to me that one must concede to

Brouwer two essential points: first, that the concept of integer is of intuitive
origin. In this respect nothing is changed by the investigations of the logicists,
to which I shall return later. Second, one ought not to make arithmetic and
geometry correspond in the manner in which Kant did. The concept of
number is more elementary than the concepts of geometry.

Still it seems a bit hasty to deny completely the existence of a geometrical
intuition. But let us leave that question aside here; there are other, more
urgent ones. Is it really certain that the evidence given by arithmetical
intuition extends exactly as far as the boundaries of intuitionist arithmetic
would require? And finally: Is it possible to draw an exact boundary between
what is evident and what is only plausible?

I believe that one must answer these two questions negatively. To begin
with, you know that men and even scholars do not agree about evidence
in general. Also, the same man sometimes rejects suppositions which he
previously regarded as evident.

An example of a much-discussed question of evidence, about which there
has been controversy up to the present, is that of the axiom of parallels. I
think that the criticism which has been directed against that axiom is partly
explained by the special place which it has in Euclid’s system. Various other
axioms had been omitted, so that the parallels axiom stood out from the
others by its complexity.

In this matter I shall be content to point out the following: One can have
doubts concerning the evidence of geometry, holding that it extends only to
topological facts or to the facts expressed by the projective axioms. One can,
on the other hand, claim that geometric intuition is not exact. These opinions
are self-consistent, and all have arguments in their favor. But to claim that
metric geometry has an evidence restricted to the laws common to Euclidean
and Bolyai-Lobachevskian geometry, an exact metrical evidence which yet
would not guarantee the existence of a perfect square, seems to me rather
artificial. And yet it was the point of view of a number of mathematicians.

Our concern here has been to underline the difficulties to be encountered
in trying to describe the limits of evidence.

Nevertheless, these difficulties do not make it impossible that there should
be anything evident beyond question, and certainly intuitionism offers some
such. But does it confine itself completely within the region of this elementary
evidence? This is not completely indubitable, for the following reason: Intu-
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itionism makes no allowance for the possibility that, for very large numbers,
the operations required by the recursive method of constructing numbers can
cease to have a concrete meaning. From two integers k, l one passes immedi-
ately to kl; this process leads in a few steps to numbers which are far larger
than any occurring in experience, e. g., 67(257729).

Intuitionism, like ordinary mathematics, claims that this number can be
represented by an Arabic numeral. Could not one press further the criticism
which intuitionism makes of existential assertions and raise the question:
What does it mean to claim the existence of an Arabic numeral for the
foregoing number, since in practice we are not in a position to obtain it?

Brouwer appeals to intuition, but one can doubt that the evidence for it
really is intuitive. Isn’t this rather an application of the general method of
analogy, consisting in extending to inaccessible numbers the relations which
we can concretely verify for accessible numbers? As a matter of fact, the
reason for applying this analogy is strengthened by the fact that there is no
precise boundary between the numbers which are accessible and those which
are not. One could introduce the notion of a “practicable” procedure, and
implicitly restrict the import of recursive definitions to practicable opera-
tions. To avoid contradictions, it would suffice to abstain from applying the
principle of the excluded middle to the notion of practicability. But such
abstention goes without saying for intuitionism.

I hope I shall not be misunderstood: I am far from recommending that
arithmetic be done with this restriction. I am concerned only to show that
intuitionism takes as its basis propositions which one can doubt and in prin-
ciple do without, although the resulting theory would be rather meager.

It is therefore not absolutely indubitable that the domain of complete
evidence extends to all of intuitionism. On the other hand, several math-
ematicians recognize the complete evidence of intuitionistic arithmetic and
moreover maintain that the concept of the series of numbers is evident in
the following sense: The affirmation of the existence of a number does not
require that one must, directly or recursively, give a bound for this number.
Besides, we have just seen how far beyond a really concrete presentation such
a limitation would be.

In short, the point of view of intuitive evidence does not decide uniquely
in favor of intuitionism.

In addition, one must observe that the evidence which intuitionism uses in
its arguments is not always of an immediate character. Abstract reflections
are also included. In fact, intuitionists often use statements, containing a
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general hypothesis, of the form “if every number n has the property A(n),
then B holds.”

Such a statement is interpreted intuitionistically in the following manner:
“If it is proved that every number n possesses the property A(n), then B.”
Here we have a hypothesis of an abstract kind, because since the methods of
demonstration are not fixed in intuitionism, the condition that something is
proved is not intuitively determined.

It is true that one can also interpret the given statement by viewing it
as a partial judgment, i. e., as the claim that there exists a proof of B from
the given hypothesis, a proof which would be effectively given. (This is
approximately the sense of Kolmogorov’s interpretation of intuitionism.) In
any case, the argument must start from the general hypothesis, which cannot
be intuitively fixed. It is therefore an abstract reflection.

In the example just considered, the abstract part is rather limited. The
abstract character becomes more pronounced if one superposes hypotheses;
i. e., when one formulates propositions like the following: “If from the hy-
pothesis that A(n) is valid for every n, one can infer B, then C holds,” or
“If from the hypothesis that A leads to a contradiction, a contradiction fol-
lows, then B,” or briefly “If the absurdity of A is absurd, then B.” This
abstractness of statements can be still further increased.

It is by the systematic application of these forms of abstract reasoning
that Brouwer has gone beyond Kronecker’s methods and succeeded in estab-
lishing a general intuitionistic logic, which has been systematized by Heyting.

If we consider this intuitionistic logic, in which the notions of consequence
are applied without reservation, and we compare the method used here with
the usual one, we notice that the characteristic general feature of intuitionism
is not that of being founded on pure intuition, but rather that of being
founded on the relation of the reflecting and acting subject to the whole
development of science.

This is an extreme methodological position. It is contrary to the cus-
tomary manner of doing mathematics, which consists in establishing theories
detached as much as possible from the thinking subject.

This realization leads us to doubt that intuitionism is the sole legitimate
method of mathematical reasoning. For even if we admit that the tendency
away from the thinking subject has been pressed too far under the reign of
platonism, this does not lead us to believe that the truth lies in the opposite
extreme. Keeping both possibilities in mind, we shall rather aim to bring
about in each branch of science, an adaptation of method to the character
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of the object investigated.
For example, for number theory the use of the intuitive concept of a

number is the most natural. In fact, one can thus establish the theory of
numbers without introducing an axiom, such as that of complete induction,
or axioms of infinity like those of Dedekind and Russell.

Moreover, in order to avoid the intuitive concept of number, one is led to
introduce a more general concept, like that of a proposition, a function, or
an arbitrary correspondence, concepts which are in general not objectively
defined. It is true that such a concept can be made more definite by the
axiomatic method, as in axiomatic set theory, but then the system of axioms
is quite complicated.

You know that Frege tried to deduce arithmetic from pure logic by view-
ing the latter as the general theory of the universe of mathematical objects.
Although the foundation of this absolutely platonistic enterprise was under-
mined by the Russell-Zermelo paradox, the school of logicists has not given up
the idea of incorporating arithmetic in a system of logic. In place of absolute
platonism, they have introduced some initial assumptions. But because of
these, the system loses the character of pure logic.

In the system of Principia Mathematica, it is not only the axioms of infin-
ity and reducibility which go beyond pure logic, but also the initial conception
of a universal domain of individuals and of a domain of predicates. It is re-
ally an ad hoc assumption to suppose that we have before us the universe
of things divided into subjects and predicates, ready-made for theoretical
treatment.

But even with such auxiliary assumptions, one cannot successfully incor-
porate the whole of arithmetic into the system of logic. For, since this system
is developed according to fixed rules, one would have to be able to obtain by
means of a fixed series of rules all the theorems of arithmetic. But this is not
the case; as Gödel has shown, arithmetic goes beyond each given formalism.
(In fact, the same is true of axiomatic set theory.)

Besides, the desire to deduce arithmetic from logic derives from the tra-
ditional opinion that the relation of logic to arithmetic is that of general
to particular. The truth, it seems to me, is that mathematical abstraction
does not have a lesser degree than logical abstraction, but rather another
direction.

These considerations do not detract at all from the intrinsic value of that
research of logicists which aims at developing logic systematically and for-
malizing mathematical proofs. We were concerned here only with defending
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the thesis that for the theory of numbers, the intuitive method is the most
suitable.

On the other hand, for the theory of the continuum, given by analysis,
the intuitionist method seems rather artificial. The idea of the continuum is
a geometrical idea which analysis expresses in terms of arithmetic.

Is the intuitionist method of representing the continuum better adapted
to the idea of the continuum than the usual one?

Weyl would have us believe this. He reproaches ordinary analysis for de-
composing the continuum into single points. But isn’t this reproach better
addressed to semiplatonism, which views the continuum as a set of arith-
metical laws? The fact is that for the usual method there is a completely
satisfying analogy between the manner in which a particular point stands out
from the continuum and the manner in which a real number defined by an
arithmetical law stands out from the set of all real numbers, whose elements
are in general only implicitly involved, by virtue of the quasi-combinatorial
concept of a sequence.

This analogy seems to me to agree better with the nature of the continuum
than that which intuitionism establishes between the fuzzy character of the
continuum and the uncertainties arising from unsolved arithmetical problems.

It is true that in the usual analysis the notion of a continuous function,
and also that of a differentiable function, have a generality going far beyond
our intuitive representation of a curve. Nevertheless in this analysis, we can
establish the theorem of the maximum of a continuous function and Rolle’s
theorem, thus rejoining the intuitive conception.

Intuitionist analysis, even though it begins with a much more restricted
notion of a function, does not arrive at such simple theorems; they must
instead be replaced by more complex ones. This stems from the fact that on
the intuitionistic conception, the continuum does not have the character of
a totality, which undeniably belongs to the geometric idea of the continuum.
And it is this characteristic of the continuum which would resist perfect
arithmetization.

These considerations lead us to notice that the duality of arithmetic and
geometry is not unrelated to the opposition between intuitionism and platon-
ism. The concept of number appears in arithmetic. It is of intuitive origin,
but then the idea of the totality of numbers is superimposed. On the other
hand, in geometry the platonistic idea of space is primordial, and it is against
this background that the intuitionist procedures of constructing figures take
place.
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This suffices to show that the two tendencies, intuitionist and platonist,
are both necessary; they complement each other, and it would be doing
oneself violence to renounce one or the other.

But the duality of these two tendencies, like that of arithmetic and geom-
etry, is not a perfect symmetry. As we have noted, it is not proper to make
arithmetic and geometry correspond completely: the idea of number is more
immediate to the mind than the idea of space. Likewise, we must recognize
that the assumptions of platonism have a transcendent character which is
not found in intuitionism.

It is also this transcendent character which requires us to take certain
precautions in regard to each platonistic assumption. For even when such a
supposition is not at all arbitrary and presents itself naturally to the mind, it
can still be that the principle from which it proceeds permits only a restricted
application, outside of which one would fall into contradiction.

We must be all the more careful in the face of this possibility, since the
drive for simplicity leads us to make our principles as broad as possible. And
the need for a restriction is often not noticed.

This was the case, as we have seen, for the principle of totality, which
was pressed too far by absolute platonism. Here it was only the discovery of
the Russell-Zermelo paradox which showed that a restriction was necessary.

Thus it is desirable to find a method to make sure that the platonistic
assumptions on which mathematics is based do not go beyond permissible
limits. The assumptions in question reduce to various forms of the principle
of totality and of the principle of analogy or of the permanence of laws. And
the condition restricting the application of these principles is none other
than that of the consistency of the consequences which are deduced from the
fundamental assumptions.

As you know, Hilbert is trying to find ways of giving us such assurances
of consistency, and his proof theory has this as its goal.

This theory relies in part on the results of the logicists. They have shown
that the arguments applied in arithmetic, analysis, and set theory can be for-
malized. That is, they can be expressed in symbols and as symbolic processes
which unfold according to fixed rules. To primitive propositions correspond
initial formulae, and to each logical deduction corresponds a sequence of for-
mulae derivable from one another according to given rules. In this formalism,
a platonistic assumption is represented by an initial formula or by a rule es-
tablishing a way of passing from formulae already obtained to others. In
this way, the investigation of the possibilities of proof reduces to problems
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like those which are found in elementary number theory. In particular, the
consistency of the theory will be proved if one succeeds in proving that it is
impossible to deduce two mutually contradictory formulae A and A (with the
bar representing negation). This statement which is to be proved is of the
same structure as that, for example, asserting the impossibility of satisfying
the equation a2 = 2b2 by two integers a and b.

Thus by symbolic reduction, the question of the consistency of a theory
reduces to a problem of an elementary arithmetical character.

Starting from this fundamental idea, Hilbert has sketched a detailed pro-
gram of a theory of proof, indicating the leading ideas of the arguments for
the main consistency proofs. His intention was to confine himself to intuitive
and combinatorial considerations; his “finitary point of view” was restricted
to these methods.

In this framework, the theory was developed up to a certain point. Several
mathematicians have contributed to it: Ackermann, von Neumann, Skolem,
Herbrand, Gödel, Gentzen.

Nonetheless, these investigations have remained within a relatively re-
stricted domain. In fact, they did not even reach a proof of the consistency
of the axiomatic theory of integers. It is known that the symbolic represen-
tation of this theory is obtained by adding to the ordinary logical calculus
formalizations of Peano’s axioms and the recursive definitions of sum (a + b)
and product (a · b).

Light was shed on this situation by a general theorem of Gödel, accord-
ing to which a proof of the consistency of a formalized theory cannot be
represented by means of the formalism considered. From this theorem, the
following more special proposition follows: It is impossible to prove by ele-
mentary combinatorial methods the consistency of a formalized theory which
can express every elementary combinatorial proof of an arithmetical propo-
sition.

Now it seems that this proposition applies to the formalism of the ax-
iomatic theory of numbers. At least, no attempt made up to now has given
us any example of an elementary combinatorial proof which cannot be ex-
pressed in this formalism, and the methods by which one can, in the cases
considered, translate a proof into the aforementioned formalism, seem to
suffice in general.

Assuming that this is so,2 we arrive at the conclusion that means more

2In trying to demonstrate the possibility of translating each elementary combinatorial
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powerful than elementary combinatorial methods are necessary to prove the
consistency of the axiomatic theory of numbers. A new discovery of Gödel
and Gentzen leads us to such a more powerful method. They have shown
(independently of one another) that the consistency of intuitionist arithmetic
implies the consistency of the axiomatic theory of numbers. This result
was obtained by using Heyting’s formalization of intuitionist arithmetic and
logic. The argument is conducted by elementary methods, in a rather simple
manner. In order to conclude from this result that the axiomatic theory of
numbers is consistent, it suffices to assume the consistency of intuitionist
arithmetic.

This proof of the consistency of axiomatic number theory shows us, among
other things, that intuitionism, by its abstract arguments, goes essentially
beyond elementary combinatorial methods.

The question which now arises is whether the strengthening of the method
of proof theory obtained by admitting the abstract arguments of intuitionism
would put us into a position to prove the consistency of analysis. The answer
would be very important and even decisive for proof theory, and even, it seems
to me, for the role which is to be attributed to intuitionistic methods.

Research in the foundations of mathematics is still developing. Several
basic questions are open, and we do not know what we shall discover in
this domain. But these investigations excite our curiosity by their changing
perspectives, and that is a sentiment which is not aroused to the same degree
by the more classical parts of science, which have attained greater perfection.

I wish to thank Professor Wavre, who was kind enough to help me improve
the text of this lecture for publication. I also thank M. Rueff, who was good
enough to look over the first draft to improve the French.

proof of an arithmetical proposition into the formalism of the axiomatic theory of numbers,
we are confronted with the difficulty of delimiting precisely the domain of elementary
combinatorial methods.
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Hilbert’s first investigations of the foundations of arithmetic follow tem-
porally as well as conceptually his investigations of the foundations of geom-
etry. Hilbert begins the paper “On the concept of number”1 by applying to
arithmetic, just as to geometry, the axiomatic method, which he contrasts to
the otherwise usually applied “genetic” method.

Let us first recall the manner of introducing the concept of
number. Starting from the concept of the number 1, usually one

1Vide [?].
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thinks at first the further rational positive numbers 2, 3, 4,. . . as
arising through the process of counting, and their laws of calcula-
tion as being developed in the same way; then one arrives at the
negative number by the requirement of the general execution of
subtraction; one further defines the rational number say as a pair
of numbers—then every linear function has a zero—, and finally
the real number as a cut or a fundamental sequence—thereby ob-
taining that every whole rational indefinite, and generally every
continuous indefinite function has a zero. We can call this method
of introducing the concept of number the genetic method, because
the most general concept of real number is generated by successive
expansion of the simple concept of number.

One proceeds fundamentally differently with the development
of geometry. Here one tends to begin with the assumption of the
existence of all elements, i. e., one presupposes at the outset three
systems of things, namely the points, the lines, and the planes,
and then brings these elements—essentially after the example of
Euclid—into relation with each other by certain axioms, namely
the axioms of incidence, of ordering, of congruency, and of conti-
nuity. Then the necessary task arises of showing the consistency
and completeness of these axioms, i. e., it must be proven that the
application of the axioms that have been laid down can never lead
to contradictions, and moreover that the system of axioms suf-
fices to prove all geometric theorems. We shall call the procedure
of investigation sketched here the axiomatic method.

We raise the question, whether the genetic method is really
the only one appropriate for the study of the concept of number
and the axiomatic method for the foundations of geometry. It also
appears to be of interest to contrast both methods and to investi-
gate which method is the most advantageous if one is concerned
with the logical investigation of the foundations of mechanics or
other physical disciplines.

My opinion is this: Despite the great pedagogical and heuristic
value of the genetic method, the axiomatic method nevertheless
deserves priority for the final representation and complete logical
securing of the content of our knowledge.
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Already Peano developed number theory axiomatically.2 Hilbert now
sets up an axiom system for analysis, by which the system of real number
is characterized as a real Archimedean field which cannot be extended to a
more extensive field of the same kind.

A few illustrative remarks about dependencies follow the enumeration
of the axioms. In particular it is mentioned that the law of commutativity
of multiplication can be deduced from the remaining properties of a field
and the order properties with the help of the Archimedean axiom, but not
without it.

The requirement of non-extendibility is formulated by the “axiom of com-
pleteness.” This axiom has the advantage of conciseness; however, its logical
structure is complicated. In addition it is not immediately apparent from it
that it expresses a demand of continuity. If one wants, instead of this axiom,
one that clearly has the character of a demand of continuity and on the other
hand does not already include the requirement of the Archimedean axiom,
it is recommended to take Cantor’s axiom of continuity, which says that if
there is a series of intervals such that every interval includes the following
one, then there is a point which belongs to every interval. (The formulation
of this axiom requires the previous introduction of the concept of number
series).3

2[1] G. Peano, The Principles of Arithmetic (vide [?]). The introduction of recursive
definitions is here not unobjectionable; the proof of the solvability of the recursion equa-
tions is missing. Such a proof was provided already by Dedekind in his essay The Nature
and Meaning of Numbers (vide [?]). If one bases the introduction of recursive functions
on Peano’s axioms, it is best to proceed by first proving the solvability of the recursion
equations for the sum following L. Kalmár by induction on the parameter argument, then
defining the concept “less than” with the help of the sum, and finally using Dedekind’s
consideration for the general recursive definition. This procedure is presented in Landau’s
textbook Foundations of Analysis (vide [?]). Admittedly here the concept of function is
used. If one wants to avoid it, the recursion equations of the sum and product have to be
introduced as axioms. The proof of the general solvability of recursion equations follows
then by a method by K. Gödel (cf. “On formally undecidable propositions of Principia
Mathematica and related systems I” (vide [?]), and also Hilbert-Bernays Foundations of
Mathematics I (vide [?], pp. 412)).

3[1] Concerning the independence of the Archimedean axiom from the mentioned axiom
of Cantor, cf. P. Hertz: “On the axioms of Archimedes and Cantor” (vide [?]).

R. Baldus has recently called attention to Cantor’s axiom. See his essay “On the ax-
iomatics of geometry:” “I. On Hilbert’s axiom of completeness,” “II. Simplifications of the
Archimedean and Cantorian axiom,” “III. On the Archimedean and Cantorian axiom”
(vide [?], [?], [?]) as well as the following essay by A. Schmidt: “The continuity in absolute
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The aim which Hilbert pursues with the axiomatic version of analysis
appears particularly clearly at the end of the essay in the following words:

The objections that have been raised against the existence of the
totality of all real numbers and infinite sets in general lose all
their legitimacy with the view identified above: we do not have
to conceive of the set of real numbers as, say, the totality of all
possible laws according to which the elements of a fundamental
sequence can proceed, but rather—as has just been explained—as
a system of things whose relations between each other are given
by the finite and completed system of axioms I–IV, and about
which new propositions are valid only if they can be deduced
from those axioms in a finite number of logical inferences.

But the methodical benefit which this view brings also involves a further
requirement: for the axiomatic formulation necessarily entails the task of
proving the consistency of the axiom system in question.

Therefore, the problem of the proof of consistency for the arithmetical
axioms was mentioned in the list of problems that Hilbert posed in his lecture
in Paris “Mathematical problems.”4

To accomplish the proof Hilbert thought to get by with a suitable mod-
ification of the methods used in the theory of real numbers.

But in the more detailed engagement with the problem he was immedi-
ately confronted with the considerable difficulties that exist for this task. In
addition, the set theoretic paradox that was discovered in the meantime by
Russell and Zermelo prompted increased caution in the inference rules. Frege
and Dedekind were forced to withdraw their investigations in which they
thought they had provided unobjectionable foundations of number theory—
Dedekind using the general concepts of set theory, Frege the framework of
pure logic5—since it resulted from that paradox that their considerations
contained inadmissible inferences.

The talk6 “On the foundations of logic and arithmetic” held in 1904 shows
us a completely novel point of view. Here first the fundamental difference

geometry” (vide [?]).
4[2] Held at the International Congress of Mathematicians 1900 in Paris (vide [?]).
5[1] R. Dedekind: The Meaning and Nature of Numbers (vide [?]). G. Frege: Basic

Laws of Arithmetic (vide [?]).
6[2] At the International Congress of Mathematicians in Heidelberg 1904 (vide [?]).
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is pointed out between the problem of the consistency proof for arithmetic
and for geometry. The proof of consistency for the axioms of geometry uses
an arithmetical interpretation of the geometric axiom system. However, for
the proof of consistency of arithmetic “it seems that the appeal to another
foundational discipline is not allowed.”

To be sure, one could think of a reduction to logic.

But by attentive inspection we become aware that certain arith-
metical basic concepts are already used in the traditional formu-
lation of the laws of logic, e. g., the concept of set, in part also
the concept of number, in particular cardinal number. So we get
into a quandary, and to avoid paradoxes a partly simultaneous
development of the laws of logic and arithmetic is required.

Hilbert now presents the plan of such a joint development of logic and
arithmetic. This plan contains already in great part the leading viewpoints
for proof theory, in particular the idea of transforming the proof of consis-
tency into a problem of elementary-arithmetic character by translating the
mathematical proofs into the formula language of symbolic logic. Also rudi-
ments of the consistency proofs can be already found here.

But the execution remains still in its beginnings. In particular, the proof
for the “existence of the infinite” is carried out only in the framework of a
very restricted formalism.

The methodical standpoint of Hilbert’s proof theory is also not yet de-
veloped to its full clarity in the Heidelberg talk. Some passages suggest that
Hilbert wants to avoid the intuitive idea of number and replace it with the
axiomatic introduction of the concept of number. Such a procedure would
lead to a circle in the proof theoretic considerations. Also the viewpoint of
the restriction in the contentual application of the forms of the existential
and general judgment is not yet brought to bear explicitly and completely.

In this preliminary state Hilbert interrupted his investigations of the foun-
dations of arithmetic for a long period of time.7 Their resumption is found

7[1] A continuation of the direction of research that was inspired by Hilbert’s Heidelberg
talk was carried out by J. König, who, in his book New Foundations for Logic, Arithmetic,
and Set Theory (vide [?]), surpasses the Heidelberg talk both by a more exact formula-
tion and a more thorough presentation of the methodical standpoint, as well as by the
execution. Julius König died before finishing the book; it was edited by his son as a frag-
ment. This work, which is a precursor of Hilbert’s later proof theory, exerted no influence
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announced in the 1917 talk8 “Axiomatic thinking.”

This talk comes in the wake of the manifold successful axiomatic inves-
tigations that had been pursued by Hilbert himself and other researchers in
the various fields of mathematics and physics. In particular in the field of the
foundations of mathematics the axiomatic method had led in two ways to an
extensive systematization of arithmetic and set theory. Zermelo formulated
in 1907 his axiom system for set theory9 by which the processes of set for-
mation are delimited in such a way that on the one hand the set theoretic
paradoxes are avoided and on the other hand the set theoretic inferences
that are customary in mathematics are retained. And Frege’s project of a
logical foundation of arithmetic—for which to be sure the method that Frege
employed himself turned out to be faulty—was reconstructed by Russell and
Whitehead in their work Principia Mathematica10.11

on Hilbert. But later J. v. Neumann followed the approach of König in his investigation
“Concerning Hilbert’s proof theory” (vide [?]).

8[2] At Naturforscherversammlung Zürich (vide [?]).
9[3] E. Zermelo, “Research in the foundations of set theory I” (vide [?]). More recently

there have been various investigations building on this axiom system. A. Fraenkel added
the axiom of replacement, an extension of the admissible formation of sets in the spirit of
Cantor’s set theory; J. v. Neumann added an axiom, which rules out that the process of
going from a set to one of its elements can, for any given set, be iterated arbitrarily many
times. Moreover, Th. Skolem, Fraenkel, and J. v. Neumann have made more precise, all
in a different way, in the sense of a sharper implicit characterization of the concept of
set, the concept of “definite proposition” which was used by Zermelo in vague generality.
The result of these refinements is presented in the most concise way in v. Neumann’s
axiomatics; namely it is achieved here, that all axioms are of the “first order” (in the sense
of the terminology of symbolic logic). Zermelo rejects such a refinement of the concept of
set, in particular in the light of the consequence that was first discovered by Skolem that
such a sharper axiom system of set theory can be realized in the domain of individuals
of the whole numbers.—A presentation of these investigations up to the year 1928, with
detailed references, is contained in the textbook by A. Fraenkel, Introduction to Set Theory
(vide [?]). See also: J. v. Neumann, “Concerning a consistency question in axiomatic set
theory,” Th. Skolem, “On a foundational question of mathematics,” E. Zermelo, “On limit
numbers and domains of sets” (vide [?], [?], [?]).

10[1] Vide [?].
11[2] The axiomatic form of the set up is also present in Frege’s system. In Russell and

Whitehead’s way of proceeding, the contradiction found in Frege’s system is removed by
refusing to treat concept-extensions (classes) as individuals (objects): rather, a statement
about the extension of a concept is treated as a re-formulation of a statement about the
concept itself. In this way the distinction between levels is transferred from concepts to
classes. Incidentally, for this way of removing the contradiction a simpler distinction of
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Hilbert says about this axiomatization of logic that one could “see the
crowning of the work of axiomatization in general” in the completion of this
enterprise. But this praise and acknowledgment is immediately followed by
the remark that the completion of the project “still needs new work on many
fronts.”

In fact, the viewpoint of Principia Mathematica contains an unsolved
problematic. What is supplied by this work is the elaboration of a clear
system of assumptions for a simultaneous deductive development of logic and
mathematics, as well as the proof that this set-up in fact succeeds. For the
reliability of the assumptions, besides their contentual plausibility (which also
from the point of view of Russell and Whitehead does not yield a guarantee of
consistency), only their testing in the deductive use is put forward. But this
testing too provides us in regard to consistency only an empirical confidence,
not complete certainty. The complete certainty of consistency, however, is
regarded by Hilbert as a requirement of mathematical rigor.

Thus the task of providing a consistency proof remains also for those
assumptions, according to Hilbert. To handle this task as well as various fur-
ther fundamental questions, e. g., “the problem of the solvability in principle
of every mathematical question” or “the question of the relation between
content and formalism in mathematics and logic,” Hilbert thinks it neces-
sary to make “the concept of specifically mathematical proof itself the object
of investigation.”

In the following years, in particular since 1920, Hilbert devoted himself
especially to the plan, hereby taken up anew, of a proof theory.12 His drive in
this direction was strengthened by the opposition which Weyl and Brouwer
directed at the usual procedure in analysis and set theory.13.

Thus Hilbert begins his first communication about his “New foundation
of mathematics”14 by discussing the objections of Weyl and Brouwer. It is
noteworthy in this dispute that Hilbert, despite his energetic rejection of the

levels, already to be found in Frege, is sufficient.
12[1] To collaborate on this enterprise Hilbert then invited P. Bernays with whom he has

regularly discussed his investigations since then.
13[2] H. Weyl, The Continuum. Critical Investigations Into the Foundations of Analysis,

“The vitious circle in the current founding of analysis,” “On a new foundational crisis in
mathematics” (vide [?], [?], [?]). – L. E. J. Brouwer, “Intuitionism and formalism”, “Foun-
dation of set theory independent of the principle of excluded middle. I–II,” “Intuitionistic
set theory,” “Has every real number a decimal expansion” (vide [?], [?], [?], [?], [?]).

14[3] Talk, given in Hamburg 1922 (vide [?]).
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objections that have been raised against analysis, and despite his advocacy
for the legitimacy of the usual inferences, agrees with the opposing standpoint
that the usual treatment of analysis is not immediately evident and does
not conform to the requirements of mathematical rigor. The “legitimacy”
that Hilbert, from this point of view, grants to the usual procedure is not
based on evidence, but on the reliability of the axiomatic method, of which
Hilbert explains that if it is appropriate anywhere at all, then it is here.
This is a conception from which the problem of a proof of consistency for the
assumptions of analysis arises.

Moreover, as for the methodical attitude on which Hilbert bases his proof
theory and which he explains using the intuitive treatment of number theory,
there is a great drawing near to the standpoint of Kronecker15—despite the
position Hilbert took against Kronecker. This consists in particular in the
application of the intuitive concept of number, and also in the fact that the
intuitive form of complete induction (i. e., the inference which is based on the
intuitive idea of the “setup” of the numerals) is regarded as acceptable and
as not requiring any further reduction. By deciding to adopt this methodical
assumption Hilbert also got rid of the basis of the objection that Poincaré had
raised at that time against Hilbert’s enterprise of the foundation of arithmetic
based on the exposition in the talk in Heidelberg.16

The beginning of proof theory, as it is laid down in the first communica-
tion, already contains the detailed formulation of the formalism. In contrast
to the Heidelberg talk, the sharp separation of the logical-mathematical for-
malism and the contentful “metamathematical” consideration is prominent,
and is expressed in particular by the distinction of signs “for communication”
and symbols and variables of the formalism.

But the formal restriction of negation to inequalities appears as a rem-
nant of the stage when this separation had not yet been performed, while
a restriction is really only needed in the metamathematical application of
negation.

A characteristic of Hilbert’s approach, the formalization of the tertium

15[1] In a later talk “The founding of elementary arithmetic” (held in Hamburg, vide [?]),
Hilbert has spoken more clearly about this. After mentioning Dedekind’s investigation
The meaning and nature of numbers he explains: “Around the same time, thus already
more than a generation ago, Kronecker clearly articulated a view which today in essence
coincides with our finite attitude, and illustrated it with many examples.”

16[2] H. Poincaré, “Mathematics and logic” (vide [?]).
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non datur by transfinite functions, appears already in the first communica-
tion. In particular, the tertium non datur for the whole numbers is formalized
with the function function χ(f), whose argument is a number theoretic func-
tion, and which has the value 0 if f(a) has the value 1 for all number values
a, but otherwise represents the smallest number value a for which f(a) has
a value different than 1.

The leading idea for the proof of the consistency of the transfinite func-
tions (i. e., of their axioms), which Hilbert already possessed, is not presented
in this communication. A proof of consistency is rather provided here only
for a certain part of the formalism; but this proof is only important as an
example of a metamathematical proof.17

In the Leipzig talk “The logical foundations of mathematics,”18 which
followed soon after the first communication, we find the approach and re-
alization of proof theory developed further in various respects. I want to
mention briefly the main respects in which the presentation of the Leipzig
talk goes beyond those of the first communication:

1. The fundamental way in which ordinary mathematics goes beyond
the intuitive approach (which consists in the unrestricted application of the
concepts “all,” “there exists” to infinite totalities) is pointed out and the
concept of “finite logic” is elaborated. Furthermore, a comparison between
the role of “transfinite” formulas and that of ideal elements is carried out
here for the first time.

2. The formalism is freed from unnecessary restrictions (in particular the
avoidance of negation).

3. The formalization of the tertium non datur , and also of the principle
of choice using transfinite functions, is simplified.

4. The main features of the formalism of analysis are developed.

5. The proof of consistency is provided for the elementary number theo-
retic formalism that results from the exclusion of bound variables. The task
of proving the consistency of number theory and analysis is then focused on
the treatment of the “transfinite axiom”

A(τ(A)) → A(a),

17[1] The method of proof rests here mainly on the fact that the elementary inference rules
for the implication, which are formalized by the “Axioms of logical inference” (numbered
10 through 13), are not included in the part of the formalism under consideration.

18[2] Held at the Deutscher Naturforscher-Kongreß 1922 (vide [?]).
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which is employed in two ways, since the argument of A is related on the
one hand to the domain of ordinary numbers and on the other hand to the
number series (functions).

6. A method (which is successful at least in the simplest cases) is stated
for the treatment of the “transfinite axiom” in the consistency proof.

The basic structure of proof theory was reached with its formulation as
presented in the Leipzig talk.

Hilbert’s next two publications on proof theory, the Münster talk “On
the infinite”19 and the (second) talk in Hamburg “The foundations of mathe-
matics,”20 in which the basic idea and the formal approach of proof theory is
presented anew and in more detail, still show various changes and extensions
in the formalism. However, they serve only in smaller part the original goal
of proof theory; they are used mainly with respect to the plan to solve Can-
tor’s continuum problem, i. e., the proof of the theorem that the continuum
(the set of real numbers) has the same cardinality as the set of numbers of
the second number class.

Hilbert had the idea of ordering the number theoretic functions, i. e., the
functions that map every natural number to another—(the elements of the
continuum surely can be represented by such functions)—in accordance with
the type of the variables which are needed for their definition, and to achieve
a mapping of the continuum to the set of numbers of the second number class
on the basis of the ascent of the variable types, which is analogous to that
of the transfinite ordinal numbers. But the pursuit of this goal did not get
beyond a sketch, and Hilbert therefore left out the parts which refer to the
continuum problem in the reprints of both mentioned talks in Foundations
of Geometry.21

Hilbert’s considerations about the treatment of the continuum problem
have nevertheless produced various fruitful suggestions and viewpoints.

Thus W. Ackermann has been inspired to his investigation “Concerning
Hilbert’s built-up of the real numbers”22 by the considerations regarding the

19[1] Presented in 1925 on the occasion of a meeting organized in honor of the memory
of Weierstrass (vide [?]).

20[2] Presented in 1927 (vide [?]).
21[3] Both talks are included in the seventh edition of Foundations of Geometry as ap-

pendix VIII and IX. Other than the omissions also small editorial changes have been made,
in particular with respect to the notation of the formulas.

22[4] Vide [?].
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recursive definitions. Hilbert lectures in his talk in Münster on the question
and the result of this paper (which had not been published at the time):

Consider the function

a + b;

by iterating n times and equating it follows from this:

a + a + · · · + a = a · n.

Likewise one arrives from

a · b zu a · a · · · a = an,

further from

ab to a(aa), a(a(aa)), . . . .

So we successively obtain the functions

a + b = ϕ1(a, b),

a · b = ϕ2(a, b),

ab = ϕ3(a, b).

ϕ4(a, b) is the bth value in the series:

a, aa, a(aa), a(a(aa)), . . . .

In analogous way one obtains ϕ5(a, b), ϕ6(a, b) etc.
It would now be possible to define ϕn(a, b) for variable n by

substitution and recursion; but these recursions would not be or-
dinary successive ones, but rather one would be led to a crossed
recursion of different variables at the same time (simultaneous),
and it is only possible to resolve this into ordinary successive re-
cursions by using the concept of a function variable: the function
ϕa(a, a) is an example for a function of the number variable a,
which can not be defined by substitution and ordinary successive
recursion alone, if one allows only for number variables.23 How

23[1] W. Ackermann has provided a proof for this claim. (Footnote in Hilbert’s text.)
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the function ϕa(a, a) can be defined using function variables is
shown by the following formulas:

ι(f, a, 1) = a,

ι(f, a, n + 1) = f(a, ι(f, a, n));

ϕ1(a, b) = a + b,

ϕn+1(a, b) = ι(ϕn, a, b).

Here ι stands for an individual function with two arguments, of
which the first one is itself a function of two ordinary number
variables.

The investigation of recursive definitions has been recently carried forward
by Rozsa Péter. She proved that all recursive definitions which proceed only
after the values of one variable and which do not require any other sort
of variables than the free number variables, can be reduced to the simplest
recursion schema. Using this result she also simplified substantially the
proof of the paper of Ackermann just mentioned.24

These results concern the use of recursive definitions to obtain number
theoretic functions. In Hilbert’s proof plan recursive definitions also occur
in a different way, namely, as a procedure for constructing numbers of the
second number class and also types of variables. Here Hilbert presupposes
certain general ideas concerning the sorts of variables, of which he gives the
following short summary in the talk “The foundations of mathematics:”

The mathematical variables are of two sorts:
1. the basic variables,
2. the types of variables.

1. While one gets by with the ordinary whole number as the
only basic variable in all of arithmetic and analysis, now a basic
variable for each one of Cantor’s transfinite number classes is
added, which is able to assume the ordinal numbers belonging to
this class. To each basic variable there accordingly corresponds a
proposition that characterizes it as such; this is defined implicitly
by axioms.

24[1] See R. Péter, “On the relation between the different notions of the recursive func-
tions” and “Construction of non-recursive functions” (vide [?], [?]).
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To each basic variable belongs a kind of recursion, which is
used to define functions whose argument is such a basic variable.
The recursion belonging to the number variable is the “usual
recursion” by which a function of a number variable n is defined
by specifying which value it has for n = 0 and how the value for
n′ is obtained from the value at n.25 The generalization of the
usual recursion is transfinite recursion, whose general principle is
to determine the value of the function for a value of the variable
using the previous values of the function.

2. We derive further kinds of variables from the basic vari-
ables by applying logical connectives to the propositions for the
basic variables, e. g., to Z.26 The so defined variables are called
types of variables, and the statements defining them are called
type-statements; for each of these a new individual symbol is in-
troduced. Thus the formula

Φ(f) ∼ (x)(Z(x) → Z(f(x)))

yields the simplest example of a type of variables; this formula de-
fines the type of function variables (being a function). A further
example is the formula

Ψ(g) ∼ (f)(Φ/ /Ψ(f) → Z(g(f)));

it defines “being a function-function;” the argument g is the new
function-function variable.

For the construction of higher variable types the type-statements
have to be equipped with indices which enables a method of re-
cursion.

These concept formations are applied in particular in the theory of num-
bers of the second number class. Here a new suggestion emerged from
Hilbert’s conjecture that every number of the second number class can be
defined without transfinite recursion, but using ordinary recursion alone—
assuming a basic element 0, the operation of progression by one (“stroke-
function”) and the limit process, as well as the number variable and the
basic variable of the second number class—.

25[2] Here n′ is the formal expression for “the number following n.”
26[3] The formula Z(a) corresponds to the proposition “a is an ordinary whole number.”
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The first examples of such definitions that go beyond the most elementary
cases, namely the definition of the first ε-number (in Cantor’s terminology)
and the first critical ε-number,27 have already been given by P. Bernays and
J. v. Neumann. Hereby already recursively defined types of variables are
used.28

But these various considerations, which refer to the recursive definitions,
already go beyond the narrower domain of proof theoretic questions. Since
Hilbert’s Leipzig talk it was the task of this narrower field of investigation of
proof theory to prove consistency according to Hilbert’s approach, including
the transfinite axiom. Shortly after the talk in Leipzig the transfinite axiom
was brought into the form of the logical “ε-axiom”

A(a) → A(εxA(x))

by the introduction of the choice function ε(A) (in detail: εxA(x)) replacing
the earlier function τ(A). The role of this ε-axiom is explained by Hilbert in
his talk in Hamburg with the following words:

The ε-function is applied in the formalism in three ways.

1. It is possible to define “all” and “there exists” with the
help of ε, namely as follows:29

(x)A(x) ∼ A(εxA(x)),

(Ex)A(x) ∼ A(εxA(x)).

27[1] An ε-number is a transfinite ordinal number α with the property α = ωα. The first
ε-number is the limit of the series

α0, α1, α2, . . . ,

where α0 = 1, αn+1 = ωαn ; the first critical ε-number is the limit of the series

β0, β1, β2, . . . ,

where β0 = 1, βn+1 is the βn-th ε-number.
28[2] Cf. the statement in Hilbert’s talk “The foundations of mathematics” ([?],

pp. 81.).—The examples mentioned have not been published yet.
29[1] Instead of the double arrow used by Hilbert the symbol of equivalence ∼ is applied

in both of the following formulas; the remarks on the introduction of the symbol ∼ in
Hilbert’s text are thus dispensable.
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Based on this definition the ε axioms yields the valid logical
notations for the “for all” and “there exists” symbols, like

(x)A(x) → A(a) (Aristotelian axiom),

(x)A(x) → (Ex)A(x) (Tertium non datur).

2. If a proposition A is true of one and only one thing, then

ε(A) that thing, for which A holds.

Thus, the ε-function allows one to resolve such a proposition
A that holds of only one thing into the form

a = ε(A).

3. Moreover, the ε plays the role of a choice function, i. e., in
the case that A holds of more than one thing, ε(A) is any of the
things a of which A holds.

The ε-axiom can be applied to different types of variables. For a formal-
ization of number theory the application to number variables suffices, i. e.,
the type of natural numbers. In this case the number theoretic axioms

a′ �= 0,
a′ = b′ → a = b,

as well as the recursion equations for addition and multiplication30 and the
principle of inference of complete induction, have to be added to the the
logical formalism and the axioms of equality. This principle of inference can
be formalized using the ε symbol by the formula

εxA(x) = b′ → A(b)

in connection with the elementary formula

a �= 0 → a = (δ(a))′.

The additional formula for the ε symbols corresponds to a part of the state-
ment of the least number principle 31 and the added elementary formula

30[2] Cf. footnote 1 on p. 197 of this report.
31[1] That is, the principle of the existence of a least number in every nonempty set of

numbers.
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represents the statement that for every number different than 0 there is a
preceeding one.

For the formalization of analysis one has to apply the ε-axiom also to a
higher type of variables. Different alternatives are possible here, depending
on whether one prefers the general concept of predicate, set, or function.
Hilbert chooses the type of function variables, i. e., more precisely, of the
variable number theoretic function of one argument.

The introduction of higher types of variables allows for the replacement
of the inference principle of complete induction by a definition of the concept
of natural number following the method of Dedekind.

The essential factor in the extension of this formalism is based on the
connection between the ε-axiom and the replacement rule for the function
variable, whereby the “impredicative definitions” of functions, i. e., the defi-
nitions of functions in reference to the totality of functions, are incorporated
into the formalism.

The task of proving consistency for the number theoretic formalism and
for analysis is hereby mathematically sharply delimited. For its treatment
one had Hilbert’s approach at one’s disposal, and at the beginning it seemed
that only an insightful and extensive effort was needed to develop this ap-
proach to a complete proof.

However, this vision has been proved mistaken. In spite of intensive ef-
forts and a multitude of contributed proof ideas the desired goal has not
been achieved. The expectations that had been entertained have been disap-
pointed step by step, and in the same process it also became apparent that
the danger of mistake is particularly great in the domain of metamathemat-
ical considerations.

At first the proof of the consistency of analysis seemed to succeed, but
this appearance soon revealed itself as an illusion. Thereafter it was believed
that the goal had been reached at least for the number theoretic formalism.
Hilbert’s talk in Hamburg “The foundations of mathematics” falls in this
stage, where at the end he cites a report on a consistency proof by Acker-
mann, as well as the talk “Problems in founding mathematics,”32 held in
1928 in Bologna, where Hilbert gave an overview of the situation in proof
theory at that time and put forward in part problems of consistency and in
part problems of completeness.

32[2] Vide [?].
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Here Hilbert connects all problems of consistency to the ε-axiom, present-
ing the mathematical domains that are encompassed in place of the various
formalisms.

In this presentation is expressed the view, shared at that time by all
parties, that the proof for the consistency of the formalism of number theory
had been given already by the investigations of Ackermann and v. Neumann.

That in fact this goal had not yet been achieved was only realized when
it became dubious, based on a general theorem of K. Gödel, whether it was
at all possible to provide a proof for the consistency of the number theoretic
formalism with elementary combinatorial methods in the sense of the “finite
standpoint.”

The theorem mentioned is one of the various important results of Gödel’s
paper “On formally undecidable propositions of Principia Mathematica and
related systems I,”33 which has clarified in a fundamental way the relation
between content and formalism—the investigation of which was mentioned
by Hilbert in “Axiomatic thinking” as one of the aims of proof theory.

The basic message of the theorem is that a proof of the consistency of
a consistent formalism encompassing the usual logical calculus and number
theory cannot be represented in this formalism itself; more precisely: it is
not possible to deduce the elementary arithmetical theorem which represents
the claim of the consistency of the formalism—based on a certain kind of
enumeration of the symbols and variables and an enumeration of the formulas
and of the finite series of formulas derived from it—in the formalism itself.

To be sure, nothing is said hereby directly about the possibility of finite
consistency proofs; but a criterion follows, which every proof of the consis-
tency for a formalism of number theory or a more comprehensive formalism
has to meet: a consideration must occur in the proof which can not be
represented—based on the arithmetical translation—in the given formalism.

By means of this criterion one became aware that the existing consistency
proofs were not yet sufficient for the full formalism of number theory.34

Moreover, the conjecture was prompted that it was in general impossi-
ble to provide a proof for the consistency of the number theoretic formal-
ism within the framework of the elementary intuitive considerations that

33[1] Vide [?].
34[2] The proof by v. Neumann referred to a narrower formalism from the outset; but it

appeared that the extension to the entire formalism of number theory would be without
difficulties.
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conformed to the “finite standpoint” upon which Hilbert had based proof
theory.

This conjecture has not been disproved yet.35 However, K. Gödel and
G. Gentzen have noticed36 that it is rather easy, assuming the consistency of
intuitionistic arithmetic as formalized by A. Heyting37, to prove the consis-
tency of the usual formalism of number theory.38

From the standpoint of Brouwer’s Intuitionism the proof of the consis-
tency of the formalism of number theory has hereby been achieved. But this
does not disprove the conjecture mentioned above, since intuitionistic arith-
metic goes beyond the realm of intuitive, finite considerations by having also
contentful proofs as objects besides the proper mathematical objects, and
therefore needs the abstract general concept of an intelligible inference.—

A brief compilation of various finite consistency proofs for formalisms of
parts of number theory that have been given will be presented here. Let the
formalism which is obtained from the logical calculus (of first order) by adding
axioms for equality and number theory, but where the application of complete
induction is restricted to formulas without bound variables, be denoted by F1;
with F2 we denote the formalism that results from F1 by adding the ε-symbol
and the ε-axiom,—whereby the formulas and schemata for the universal and
existential quantifiers can be replaced by explicit definitions of the universal
and existential quantifiers.39 A consistency proof for F2 immediately results

35[1] But see postscriptum on p. 184.
36[2] K. Gödel, “On intuitionistic arithmetic and number theory” (vide [?]). G. Gentzen

has withdrawn his paper about the subject matter which was already in print because of
the publication of Gödel’s note.

37[3] A. Heyting: “The formal rules of intuitionistic logic” and “The formal rules of
intuitionistic mathematics” (vide [?] and [?]).

38[4] Namely, it is possible to show that every formula that is deducible in the usual
formalism of number theory, which does not contain any formula variable, disjunction, or
existential quantifier, can be deduced also in Heyting’s formalism.

39[5] See in this paper p. 176.—With regard to the axioms of equality it is to be observed
that they appear in the formalism in the more general form

a = a, a = b → (A(a) → A(b)) |
so that in particular the formula

a = b → εxA(x, a) = εxA(x, b)
can be deduced. In the formalism F1 the formula

a = b → (A(a) → A(b))
can be replaced by the more special axioms
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in the consistency of F1.
The consistency of F2 is shown:
1. by a proof of W. Ackermann, which proceeds from the approach pre-

sented in Hilbert’s Leipzig talk “The logical foundations of mathematics”40;
2. by a proof by J. v. Neumann, who proceeds from the same assump-

tions41;
3. using a second so far unpublished approach of Hilbert’s executed by

Ackermann; the idea behind this approach consists in applying a disjunctive
rule of inference to eliminate the ε symbol instead of replacing the ε by
number values.42

The consistency of F1 is shown:
1. by a proof of J. Herbrand which rests on a general theorem—which was

stated for the first time and proved by Herbrand in his thesis “Investigations
in proof theory”43—about the logical calculus44;

2. by a proof of G. Gentzen, which results from a sharpening and exten-
sion of Herbrand’s theorem mentioned above found by Gentzen.45

For the time being one has not gone beyond these results, which are
important mainly for theoretical logic and elementary axiomatics, and for
the uncovering mentioned above of the relation between the usual number
theoretic formalism and that of intuitionistic arithmetic.

But all the problems of completeness which Hilbert posed in his talk
“Problems in founding mathematics” have been treated in various directions.

One of these problems deals with the proof of the completeness of the
system of logical rules which are formalized in the logical calculus (of first

a = b → (a = c → b = c), a = b → a′ = b′.
40[1] The concluding portion of the proof is not yet carried out in detail in Ackermann’s

dissertation “Justification of the tertium non datur by Hilbert’s theory of consistency”
(vide [?]). Later Ackermann provided a complete and at the same time more simple
proof. This definitive version of Ackermann’s proof has not been published yet; so far only
Hilbert’s already mentioned report in his second talk in Hamburg “The foundations of
mathematics” and the more detailed “Appendix” by P. Bernays which appeared with the
talk are available (vide [?], [?] (this edition ch. 4, pp. 43 seqq.)). (The remark at the end
of the appendix with regard to the inclusion of complete induction has to be abandoned.)

41J. v. Neumann, “Concerning Hilbert’s proof theory” (vide [?]).
42[3] Cf. the statement in the talk “Methods for demonstrating consistency and their

limitations” by P. Bernays (vide [?], (this edition ch. 9, pp. 123 seqq.)).
43[4] Vide [?].
44[5] J. Herbrand, “On the consistency of arithmetic” (vide [?]).
45[1] G. Gentzen, “ Investigations in logical reasoning” (vide [?]).
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order). This proof has been given by K. Gödel in the sense that he showed46:
if it can be shown that a formula of the first order logical calculus is not
deducible, then it is possible to give a counterexample to the universal validity
of that formula in the framework of number theory (using tertium non datur ,
in particular in the form of the least number principle).

The other problem of completeness regards the axioms of number theory;
it is to be shown: If a number theoretic statement can be shown to be
consistent (on the basis of the axioms of number theory), then it is also
provable. This claim contains also the following: “If it can be shown that
a sentence47 S is consistent with the axioms of number theory, then the
consistency with those axioms cannot also be shown for the sentence S (the
converse of S).”

This problem is so far indeterminate, in that it is not specified on which
formalism of logical inference it should be based. However, it was shown that
the claim of completeness is justified for all logical formalisms, as long as one
maintains the requirement of the rigorous formalization of the proofs.

This result stems again from K. Gödel, who proved the following general
theorem in the paper mentioned above “On formally undecidable proposi-
tions of Principia Mathematica and related systems I:” If a formalism F is
consistent in the sense that it is impossible to deduce the negation of a for-
mula (x)A(x) provided that the formula A(z) can be deduced in F for all
numerals z, and if the formalism is sufficiently comprehensive to contain the
formalism of number theory (or an equivalent formalism), then it is possible
to state a formula with the property that neither it itself nor its negation is
deducible.48 Thus, under these conditions, the formalism F does not have
the property of deductive completeness (in the sense of Hilbert’s claim for
the case of number theory).49

46[2] K. Gödel, “The completeness of the axioms of the functional calculus of logic” (vide
[?]).

47[3] A sentence is meant which can be represented in the formalism of number theory
without free variables.

48[1] Moreover this formula has the special form
(x)(ϕ(x) �= 0),

where ϕ(x) is a function defined by elementary recursion, and the non-deducibility of
this formula as well as the correctness and deduciblity of the formula ϕ(z) �= 0 for every
given numeral z follows already from consistency in the ordinary sense without the more
restricted requirement mentioned above.

49[2] A different kind of incompleteness has been shown recently by Th. Skolem for the
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Even before this result of Gödel was known Hilbert already had given up
the original form of his problem of completeness. In his talk “The founding
of elementary arithmetic”50 he treated the problem for the special case of
formulas of the form (x)A(x), which do not contain any bound variables
other than x. He modified the task by adding an inference rule which says
that a formula (x)A(x) of the kind under consideration can be always taken
as a basic formula if it is possible to show that the formula A(z) represents
a true statement (according to the elementary arithmetic interpretation) for
all numerals z.

With the addition of this rule the result follows very easily from the fact
that if a formula of the special form under consideration is consistent, then
it is also true under the contentful interpretation.51

The method by which Hilbert enforces, so to speak, the positive solution
of the completeness problem (for the special case that he considers) means a
deviation from the previous program of proof theory. In fact, the requirement
for a complete formalization of the rules of inference is abandoned by the
introduction of the additional inference rule.

One does not have to regard this step as final. But in light of the dif-
ficulties that have arisen with the problem of consistency, one will have to
consider the possibility of widening the previous methodical framework of
the metamathematical considerations.

This previous framework is not explicitly required by the basic ideas of

formalism of number theory (“On the impossibility of a complete characterization of the
number series by a finite axiom system” (vide [?])). The formalism is not “categorical”
(the term is used in analogy to O. Veblen’s expression), as it is possible to state an
interpretation of the relations =, < and of the functions a′, a+b, a·b in relation to a system
of things (they are number theoretic functions)—using tertium non datur contentually for
whole numbers—, such that on the one hand every number theoretic theorem that can
be deduced in the formalism of number theory remains true also for that interpretation,
but on the other hand that the system is by no means isomorphic to the number sequence
(with regard to the relations under consideration), but that it contains in addition to the
subset that is isomorphic to the number sequence also elements that are greater (in the
sense of the interpretation) than all elements of that subset.

50[3] Held 1930 in Hamburg (vide [?]).
51[1] Hilbert had already mentioned earlier this fact in his second Hamburg talk “The

foundations of mathematics” (vide [?], p. ). There he used it to show that the finite
consistency proof for a formalism also yields a general method for obtaining a finite proof
from a proof of an elementary arithmetical theorem in the formalism, for example of the
character of Fermat’s theorem.
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Hilbert’s proof theory. It will be crucial for the further development of proof
theory if one succeeds in developing the finite standpoint appropriately, such
that the main goal, the proof of the consistency of usual analysis, remains
achievable—regardless of the restrictions of the goals of proof theory that
follow from Gödel’s results—.

During the printing of this report the proof for the consistency of the
full number theoretic formalism has been presented by G. Gentzen,52 using a
method that conforms to the fundamental demands of the finite standpoint.
Thereby the mentioned conjecture about the range of the finite methods
(p. 180) is disproved.

52This proof will be published soon in the Mathematische Annalen (vide [?]).
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Abstract. – I. Scientific philosophy and logical syntax. Necessity
of an interpretation. – II. Logic and mathematics. The Kantian
“analytic”-“synthetic” distinction is replaced by a distinction be-
tween “formal” and “objective.” Concerning mathematics and
logic we focus especially on the objective side: in mathematics
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it consists in the existence of mathematical results independent
of any formulation as a proposition and in the verificability of
the arithmetical laws, in logic it consists in the hidden relation
between expressions and principles and certain traits of reality.
– III. Arithmetic and geometry are distinguished in respect to
considerations of what is discrete and what continuous. Formal
precision of intuitive mathematical concepts. – IV. On the prob-
lematic of the foundations. Reflections and remarks concerning
the current state of research.

I. Philosophy and syntax

1. Scientific philosophy consists of fundamental considerations of the or-
ganization resp. reorganization of the language of science and considerations
concerning the possible fundamental interpretations and conceptions of the
scientific enterprises.

2. Syntax, as it is developed in Carnap’s book Logical Syntax of Lan-
guagea following Hilbert’s meta-mathematics, the investigations by the Pol-
ish logicians, and those by Gödel on formalized languages, considers the
mathematical properties of formalized languages of science.

3. If the syntax is to contain assertions, it must take place in an inter-
preted language.

If a formal definition is to serve to make a philosophical concept forma-
tion precise, then either the formal definition has to be provided with an
interpretation or this more precise rendering is achieved indirectly by de-
manding a syntactic property of the formal definition which itself has then
to be determined in a way that can be interpreted.

4. That a formal language functions as a syntax-language using, for in-
stance, Gödel’s method of arithmetization, is based on the intuitive-concrete
validity of arithmetic.

II. Logic and mathematics

its general formulation suffers from fundamental problems, the introduc-

aVide [?].
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tion of a different kind of distinction recommends itself, a distinction between
“formally” and “objectively” motivated elements of a theory, i. e., between
elements (terms, axioms, modes of inference) that are introduced for the
sake of the elegance, the simplicity, and the rounding off of the system, and
those that are introduced with regard to the matters of fact of the domain
in question.

Remark. This distinction admittedly does not yield a sharp classification,
since formal and objective motives can overlap.

2. Systematic logic forms a domain of application for mathematical con-
siderations. The connection between logic and mathematics in the systems
of logistic corresponds to that of physics and mathematics in the systems of
theoretical physics.

3. What is mathematical can not only be found in connection with the
sentential formalism of logic, rather we find mathematical relations also in
intuitable objects; in particular, we find mathematical relationships in all
domains of the physical and the biological.—The independence of the math-
ematical from language has been emphasized in particular by Brouwer.

4. We must acknowledge that numerical relations express objective facts.
This becomes particularly clear in syntax: e. g., if a formula A is derivable in
a formalism F , then this is a fact which as such can be exhibited and verified
explicitly. On the other hand, this derivability is represented in the language
of syntax by a numerical relation.

We also have a way of checking arithmetical statements of general form,
e. g., the statement that every whole number can be represented as the sum
of four or fewer squares can be confirmed in a sense analogous to physical
laws, except that in the former case one is confronted with a computational
situation and in the latter case with an experimental one; in both cases a
particular result to be obtained is predicted by the law.

5. In both the logic of ordinary language and symbolic logic we have
formally and objectively motivated elements side by side. An objective mo-
tivation is present in so far as the logical terms and principles refer in part to
certain very general characteristics of reality. In particular, Paul Hertz has
pointed out this objective side of logic. F. Gonseth also speaks of logic as a
general “théorie de l’objet.”

On the other hand, the fact remains that the scope and the problems
of logic are oriented according to certain basic features of the structure of
language.
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III. On the question of mathematical intuition

intuition is afflicted with various questionable additional aspects. We can
leave aside all these additions, such as the claim that the intuition of space
and time is required for physics and the distinction between “sensible” and
“pure” intuition, and still acknowledge, however, that spacial relationships
can be represented in an intuitive mathematical way, and we can, at least to
a certain extent, read off the properties of configurations, as it were, from
their intuitive representation. The kind of imagery involved does not have to
be fundamentally different from that which a composer uses in the domain
of sounds when he calls up combinations of tones in his imagination.

2. It is advisable to distinguish between “arithmetical” and “geometri-
cal” intuition not according to spatial or temporal moments, but with regard
to the distinction between discrete and continuous. Accordingly, the repre-
sentation of a figure that is composed of discrete parts, in which the parts
themselves are considered either only in their relation to the whole figure or
according to certain coarser distinctive features that have been specially sin-
gled out, is arithmetical; furthermore, the representation of a formal process
that is performed with such a figure and that is considered only with regard to
the change that it causes is likewise arithmetical. By contrast, the represen-
tations of continuous change, of continously variable magnitudes, moreover
topological representations, like those of the shapes of lines and plains, are
geometrical.

3. The boundaries of what is intuitively representable are blurred. This
is what has led to the systematical sharpening of the arithmetical and geo-
metrical concepts that are obtained by intuition, as it has been done in part
by the axiomatic method, in part by the introduction of formally motivated
kinds of judgments and rules of inference. What is methodically special in
this case is that the formally motivated elements that were to be introduced
had already been provided largely by logic, like the principle of tertium non
datur , which is synonymous with the assumption that every statement can
be negated in the sense of a strict contradictory opposite; and in addition
the objectification of the concepts (predicates, relations) and extensions of
concepts.

Remark. It is noteworthy historically, that in Aristotelian logic the terti-
um non datur is nowhere required in the well-known 19 modes of inference,
because the general affirmative judgment must be understood as asserting
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the existence of objects that fall under the concept of subject. (Note the rule
ex mere negativis nihil sequiturb from this point of view.)

IV. On the problematic of the foundations

applied in analysis and set theory has been opposed by some mathemati-
cians, as is well known, from the very beginning. In its most distinctive
form this opposition has the goal to replace the usual method of introducing
formally motivated elements by one that is performed completely within the
framework of arithmetical evidence; geometric intuitiveness is to be elimi-
nated and, on the other hand, all abstract concept formations and modes of
inference that do not possess arithmetical intuitiveness are to be avoided.

2. The grounding of a substantial part of existing mathematics that was
begun by Kronecker and has been carried out by Brouwer according to the
goal (of a mathematics aiming at arithmetical evidence) mentioned in 1. has
not converted the mathematicians to accept the standpoint of arithmetical
evidence. The reasons for this may be the following:

a) Those who are looking for intuitiveness in mathematics will feel the
complete elimination of geometrical intuition to be unsatisfying and artificial.
In fact, the reduction of the continuous to the discrete succeeds only in an
approximate sense. On the other hand, those who are striving for sharp con-
cepts will prefer those methods that are most beneficial from the systematic
standpoint.

b) In Brouwer’s method, distinctions are introduced into the language of
mathematics and play an essential role, whose importance is only apparent
from the standpoint of the syntax of this language. That the tertium non
datur is invalid, as Brouwer claims, can only be stated as a syntactic matter
of fact, but not as one of mathematical objectiveness itself.

Comment. Brouwer’s idea of characterizing the continuum as a set of
choice sequences is in itself independent of the rejection of the tertium non
datur . Certainly no tertium non datur can hold with regard to indefinite
predicates of choice sequences. But one could nevertheless choose a stand-
point such that the tertium non datur is retained for number theoretic prop-
erties of lawlike sequences. In this manner one would obtain an extension of
Weyl’s theory of the continuum of 1918.

bTranslation: nothing follows from only negative (judgments).
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3. The standpoint that Hilbert adopts in his proof theory is characterized
by the fact that it meets both the requirements of formal systematic and those
of arithmetical evidence. As a means to unify these goals he employs the
distinction between mathematics and meta-mathematics, which is modeled
after the Kantian partitioning of philosophy into “critique” and “system.”
As is well known, the main task that Hilbert assigns to meta-mathematics
as a critique of proof is to show the consistency of the usual practice of
mathematics. The problem is intended to be tackled in stages.

In the course of accomplishing this task, however, considerable difficulties
arise, which are in part unexpected. An essential reason for difficulties which
have not yet been overcome is that the difference between a formalism of
intuitive arithmetic and that of usual mathematics is greater than Hilbert
had presumed.

In the formalism of number theory the tertium non datur can be elimi-
nated in a certain sense. The proofs of the consistency of the number the-
oretic formalism by Gödel and Gentzen are based on this fact. But as soon
as one passes over to number-functions such an elimination is no longer pos-
sible. This follows in particular from a theorem which has been proved by
S. C. Kleene after the concept of a “computable” function had been made
more precise; it says that there are number-functions which are definable
with the symbols of the number theoretic formalism (including a symbol for
“the smallest number x that has the property P(x)”), but which are not
computable.

Comment.—The concept of a computable function was made more precise
in two independent ways: using the concept of a “generally recursive” func-
tion due to Herbrand and Gödel and by Church’s concept of a “λ-definable”
function; both concepts have been shown to be co-extensional by A. Church
and Kleene.

4. While the task of a consistency proof for analysis is still an un-
solved problem, in a different direction, namely in the domain of untyped
formalisms of combinatory logic, proofs of consistency have succeeded. The
theory of “combinators” which has been formulated by H. B. Curry, following
Schönfinkel, is such an untyped calculus; and so is the theory of “conversions”
established by Church. Both these formal theories, whose close connection
has been shown by J. B. Rosser, yield a far-reaching and logically satisfying
formalism for definitions. The consistency of operating with combinators (in
the sense of unambiguousness) has been proved a while ago by Curry, that
of the formalism of conversions recently by Church and Rosser.
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The untyped combinatory formalisms also yield a new suggestion clue
as to how systems of logistic may be constructed. An integration of these
domains may perhaps lead to a reform of the whole of logistic. To be sure,
an adequate approach to such an integration is not available yet.
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In epistemological discussions, two doctrines oppose each other: that of
a priori knowledge, and that of exclusive empiricism. The a priori view
is characterized by the claim that we possess knowledge about nature that
is originally contained in reason but comes to actuality only through sen-
sory stimulation. This knowledge, when brought to full consciousness, can
be expressed in the form of general laws in a definite way. This doctrine
furthermore claims that those general laws that are knowable a priori in-
clude the principles of the exact natural sciences and that, in particular, the
method of the construction of physical theories is determined by them in an
unambiguous and definite way, so that, after having found these principles,
no further development of theoretical physics occurs in any essential sense.
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Thus, according to Kant, classical kinematics constitutes the necessary
framework for all of physics. Kant also regards the principles of Newtonian
dynamics as final principles of physics, and in this way the task of research in
physics is restricted to finding mechanical models for explaining the different
phenomena.

(There are even further restricting conditions which, according to Kant,
can be inferred: thus, e. g., that each fundamental force has to be a central
force, and also that there must be immediate action at a distance.)

In any case, in this extreme form the a priori doctrine cannot be brought
into harmony with today’s physics. To adopt it, one must either reject the
ideas of today’s physics in principle, or one must weaken the a priori stand-
point by giving the principles maintained to be a priori valid such a liberal
interpretation that they become compatible with present-day physics.

The former attitude appears to be a doubtful dogmatism. The following
reasons, however, speak against the other procedure.

1. Even if the formulation of the principles can be maintained using
a liberal interpretation, by doing so one will, for the most part, loose an
essential element of the persuasiveness of the principle.

Thus, for instance, the principle of the conservation of substance is con-
nected to the idea that substance is that of which a concrete thing consists.
If one now interprets this principle so that it only expresses the validity of
conservation laws, then the idea is surrendered, and the principle has no a
priori persuasiveness at all.

We can illustrate this state of affairs with the law of the conservation of
electric charge. As a consequence of the idea of substance this law would have
to say that the positive and the negative charge are preserved individually.
According to today’s physics, however, the law is valid only in the sense that
the algebraic sum of positive and negative charge remains constant. This is
certainly a conservation law as well, but it has nothing to do with the idea
of substance and has no a priori plausibility at all.

2. The possibility of retaining the wording of a principle in the face of
changes in basic physical attitudes depends on the particular property of
the (at the time) new theories, and it can hardly be assumed as certain in
advance that it is always possibile to preserve the formulation.

In view of this situation, one seeks a philosophical view that releases us
in a radical way from the necessity of retractions or unsatisfying defenses.

An extreme empiricism aiming at completely reducing science to the im-
mediate data of perception presents itself as such a radical standpoint. Ac-
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cording to this view, once one discards all the unnecessary and doubtful
components, science consists of nothing else than an arrangement and com-
bination of sense data according to the criterion of greatest possible clarity.

One should, however, point out against this position that mere classifica-
tions of sense data do not immediately result in objective states of affairs and
connections. The mental process that leads from immediate sense data to
the determination of objective facts is anyway not so simple. This has been
emphatically asserted by Kant, and we must agree completely with him in
this case.

Moreover, such extreme empirism is totally incapable of making the
method of testing scientific claims by means of new experiments intelligi-
ble. Especially the fact that very small effects of observation can cause a
revolutionary change in scientific theories shows how far the procedure of
natural science is from a mere registering of sense perceptions.

A moderate empiricism takes these facts, which speak against extreme
empiricism, into account. On the one hand, it presupposes as given the kind
of objectivity with which we deal in everyday life, but also in experimenting.
Furthermore, it does justice to the essential role of the assumptions by means
of which statements are conjectured which, according to their form, make
claim to universal validity.1

However, a moderate empiricism of this kind leaves open the epistemo-
logical questions concerning, on the one hand, the formation of the everyday
view of nature (the “morphological world view,” according to the designation
by Fries and Apelt) and, on the other hand, the formation of hypotheses and
theories.

In this way we are led back to our previous formulation of the problem:
to look for a philosophical position concerning empirical knowledge which
fundamentally excludes the conflicts with the progressive scientific concep-
tions to which we are led by the Kantian theory of a priori knowledge. We
can formulate the question somewhat more precisely as follows: is a radical
detachment from such restrictions, as they follow from Kant’s apriorism for
the methodology of science, compatible with the preservation of the essential
ideas of the Kantian critique of reason?

This formulation of the problem suggests a separation between two es-

1Most scientifically oriented philosophers today advoate a moderate empiricism. Rudolf
Carnap, who initially maintained an extreme empiricism, has recently turned towards a
moderate empiricism.
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sential aspects in the conception of Kant’s theory of experience: the idea of
considering our empirical knowledge not as a mainly receptive procedure, and
also not as an immediate observation, but rather as a product of our mind
stimulated by sense impressions; and on the other hand, the assumption that
in this product of the mind everything essential is determined by invariable
fundamental properties of the mind.

This last assumption comes from the fact that Kant’s conception of his
theory was guided by the following consideration: the principles of the exact
sciences are knowledge a priori . As such, they are understandable, however,
only if they express conditions of the possibility of experience. At work here
is, on the one hand, the conviction of the a priori epistemological character
of the principles of geometry and mechanics, i. e., exactly the aspect that we
had considered as problematic, and furthermore, the view that there could
not be knowledge a priori of how things that are independent of us are “in
themselves,” the argument that constitutes “formal idealism” as it is called
by Fries in his criticism of it. This Friesian criticism is correct. Regardless
of it, however, Fries upheld the essentials of the Kantian theory, and indeed
almost strengthened the subjective turn in epistemology. Like Kant, he was
concerned with understanding the standpoint of classical mechanics, which
he also took to be the final scientific view of nature, as philosophically nec-
essary, and at the same time tried to differentiate it, in its jurisdiction, from
the religious world view. Both goals seemed to have been realized most suc-
cessfully by Kant’s change of perspective in his notion of the “Copernican
revolution.”

If we now allow the principles of Newtonian mechanics not to be a priori
knowledge, then we give up the Kant-Friesian formulation of the problem,
and we will—while keeping the idea of the productive role of mental activity
in the knowledge of nature—replace the extreme position according to which
“intellect prescribes nature its laws” with a more unprejudiced one.

Such an unprejudiced position seems to be given in the first place through
the doctrine of mathematical knowledge and its relation to physics. It is
obvious that the laws of geometry go beyond what can be determined by
or inferred from observations. On the other hand, a view which ignores
the essential role played by our experiences of the motion of rigid bodies
for the formulation of the axioms of geometry cannot be satisfactory (as
already shown in particular by von Helmholtz). We can do full justice to
the special character of the intuitive formation of ideas in geometry (i. e.,
formation guided by intuition) without in the process excluding the very
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plausible thought that this formation of geometrical ideas takes place in
connection with the mental processing of basic observations given by the
handling of rigid bodies. Furthermore, it must absolutely be granted that
the idea of space, and more so the idea of time, constitutes a form of our
intuition, and that it cannot be reduced to sensations and concept formations.
The recognition of this state of affairs by no means forces us to assume
that physical spatiality and temporality are only derivable from our forms of
intuition, and that their lawfulness is determined by these forms of intuition.

In freeing ourselves from this presupposition, physics gains a considerable
freedom of speculation; the narrow mechanistic framework is replaced by the
framework of the mathematical as such. Accordingly we can conceive the
task of physics generally as enquiring into the facts of nature with respect to
how far mathematical laws can be discovered in them, and how far through
such laws a homogeneous understanding of the connections becomes possible.

In a certain sense we come back in this way to the old program of the
Pythagoreans. Admittedly we have to aviod hypostatizing the mathemati-
cal in a mystical way, as they supposedly did. According to its nature the
mathematical cannot be the actual itself but only something connected to
the actual.

On the other hand, we are not prevented from acknowledging that this
element of the mathematical can be found in reality, even independently
of our cognitive constitution. Therefore we also need not understand the
doctrine of a “division of truth under different worldviews” (according to
an expression of Apelt) as reducing the significance of physical knowledge.
Such a limitation of validity is unavoidable if mechanistic physics is taken as a
basis, because of the claims of exclusiveness and completeness inherent in the
mechanistic view of nature. For our view of physics, in contrast, in which only
the mathematical form of concept formation and of the connection counts as
a general characteristic feature, but not the carrying out of a specific view of
nature taken as a basis, those claims become invalid.

As a further consequence of this way of looking at things, it turns out that
the naive view—we will briefly call it our “ordinary view of nature”2—gains
in importance. In the Kantian philosophy, and also in Fries, it appears as a
simple preliminary stage of the scientific view. In dropping the assumption

2The expression “morphological world view” is a bit misleading because it evokes the
understanding that the characteristic feature of this standpoint can be found in its restric-
tion to shapes.
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of a specific physical view of nature, our ordinary view of nature gains the
role of a fixed starting point to which even theoretical research has to return
again and again in experimentally motivating its concept formations and
assumptions. In particular, this ordinary view of nature has the following
characteristics.

1. In it the complete constitution of the idea of object is already carried
out; it contains therefore also the intuitive geometrical representation
and the intuitive “construction” of the spatial order of objects, as well
as everything that is necessary for handling things in experiments.

2. It encompasses all those concept formations for describing and explain-
ing the external and the internal world which are laid down the ordinary
colloquial language. In particular fundamental concepts like matter,
life, consciousness, cause, chance, etc. find an unproblematic applica-
tion.

3. In it there are neither reductions (e. g., from the qualitative to the non-
qualitative), nor isolations of domains of objects. Everything given is
regarded as connected. The heterogeneity of the material and the men-
tal does have detrimental effects because the connections are pursued
only insofar as they present themselves empirically. Nor does the re-
lation of sense qualities to perception and the resulting illusions cause
fundamental problems for this view; everywhere the concept formation
and the language adapt to the given circumstances. (We say, e. g., “this
dress looks yellow in daylight,” or “this piece of cloth feels soft.”)

well into the ordinary view of nature. Some philosophers do not grant the
possibility of transcending our ordinary view of nature by physics at all. In
this sense, Ernst Mach, for example, was opposed to atomism.

The tendency to such a restriction to the framework of our ordinary
view of nature is very understandable, since that view brings with it the
advantages of intuitiveness and formal coherence. On the other hand, we have
to realize that the coherence, however important it might be for our practical
life and for our emotional disposition towards the world, nevertheless has a
perspectival nature comparable to the unity of a landscape. And we must
furthermore recognize that the procedure adopted by speculative physics,
when it goes beyond the ordinary view of nature, is a consistent continuation
of the methods by which we achieve our objective grasp of the world around
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us and our knowledge of causal connections, already within the ordinary view
of nature. We shall demand of a philosophical conception of knowledge of
nature that it account for the basic methodological conformity of the process
of physics, both in its early stages and in the newer speculative physics.

If we look for a suitable epistemological standpoint with respect to this
task, the following complementary aspects appear on the basis of the former
considerations.

1. The standpoint has to be chosen in such a way that it grants research
the necessary speculative freedom. The activity of research should not
be regarded as a mere application of a fixed schema in advance but as
a continually renewed intellectual production.

2. On the other hand, speculative freedom cannot be understood as arbi-
trariness; one must do justice to the rational element in research, which
presents itself to us especially in the complete and fully developed parts
of physics. The formation of a new physical view must be understood
as an interpretation in which reason, so to speak, reacts to a given
situation of experience; whereby, in each case, the interpretations ob-
tained in earlier stages of research, in so far as they have proven to be
successful and have become fixed, appear as something belonging to
the situation.

According to such a conception we are admittedly not in a position to de-
termine the contribution made by reason in the form of a priori principles
to empirical knowledge. At best one can be successful in characterizing it by
formulating regulative maxims of research; but this is doubtful as well.

In any case, however, we consider rational interpretation to be an essen-
tial element in the development of empirical science—of course, not in those
specious proofs (which are in a bad sense rationalistic and which Mach justly
criticizes) where, in a situaiton where experimental experience is needed,
one instead tries to obtain a result by a clever deduction, but rather in the
heuristic mode of thought and wherever one introduces new interpretative
general concepts, thereby preparing the ground for new types of understand-
ing. Examples of such general concepts are found in the idea of atomism;
in the method of explaining regularity with the help of the concept of prob-
ability; in the modification of the concept of matter with the help of the
concept of field; in the introduction and application of the concept of energy.
Furthermore, examples are also found that make possible the integration
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of different fields to a unified theory: the integration of the phenomena of
gravity and astronomical processes of motion; the integration of optics and
electrodynamics; the integration of geometrical mass measurements and phe-
nomena of inertia with gravity; and finally the latest conception of wave and
corpuscular phenomena as two aspects of one and the same reality.

If we compare the view presented here with the two antagonistic opinions
of pure apriorism and pure empiricism described at the outset, we find that
it differs from these opinions by dropping a presupposition common to both,
namely, the presupposition that reason, insofar as it is important in empirical
knowledge, would have to play a role through a priori knowledge. We can
represent this connection, following Leonard Nelson, with the help of a logical
schema:

• Dogmatic assumption A: if reason is essential for physical knowledge
it must play a role through principles that are recognized a priori .

• Fact F1: The rational element is not dispensable in research in physics.

• Fact F2: There are no a priori determined principles in physics.

• Apriorist consequence of F1 and A: There are a priori recognizable
principles of physics.

• Empiricist consequence of F2 and A: The rational element is dispens-
able in physics.

• Solution: Reason plays a role in physical research, not through a priori
principles, but in the progress of concept formation and explanatory
methods.

On closer inspection, abandoning traditional rationalism in this way proves
to be not only compatible with acknowledging the significance of the ratio-
nal, but also favorable to it. Kantian philosophy resulted in a devaluation
of the scientific view of nature as a consequence of its restriction of natural
research with respect to its method and its validity.

Schiller facetiously sums up the Kantian view as follows: “In the theoret-
ical field there is nothing more to find.”
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We will do better justice to the significance of the rational by not treating
as final a specific temporal conception of nature, but rather by accounting
for the kind of development that occurs when a creature mentally confronts
its environment, as well as all other living things.
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My report on the current situation of Hilbert’s proof theory comes with
principled observations. At the outset I remark that, concerning the state-
ment on the existing situation, the views presented here cannot claim to
represent without qualification the standpoint of Hilbert’s school.

The combination of principled observations with the exposition of the
current situation of proof theory is provoked by this situation itself. As you
probably know, proof theory has recently suffered from a kind of crisis, and
some have already declared the Hilbertian enterprise as almost foundered.
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This assessment of the situation is based on the circumstance that the pro-
gram as Hilbert proposed it for proof theory in his publications from 1922–
1927 is, to all appearances, in need of revision, namely, in respect to the
methodical standpoint to be assumed.

Technically speaking, it concerns the following: For the metamathemat-
ical reasonings one needs stronger methods of inference than those Hilbert
originally thought he could confine himself to in the sense of his “finitary
attitude.” This need was felt already on occasion of a problem, which was
thought to be already solved: the demonstration of the consistency for the
full arithmetical formalism.

In connection herewith it became also clear, that the finitary standpoint
as intended by Hilbert is not—as it first had seemed—on par with Brouwer’s
intuitionism. Gödel could show that, within the realm of the number theo-
retical formalism and with help of a rather simple interpretation, all modes of
inference of classical mathematics can be transformed into intuitionistically
admissable modes of inference. Hence the consistency of the number theoret-
ical formalism follows thereby directly from the standpoint of intuitionism.

Here we call the number theoretical formalism that formal deductive sys-
tem, which is obtained from the logical calculus of first order (called “pred-
icate calculus” or “restricted functional calculus”), the axioms of equality,
the number theoretical axioms:

a′ �= 0, a′ = b′ → a = b
(a′ denotes the number succeeding a)
as well as the schema of complete induction and the elementary recursive
definitions. (The notion of the least number of a certain property, which
occurs in number theoretical deductions, can be avoided in the investigation
into consistency by the elimination procedure for the notion “that, which.”)

This formalism exceeds already a little what is absolutely necessary to
formalize the number theoretical proofs. In fact, as Skolem was first to show,
for this purpose a more restricted formalism of “recursive number theory”
suffices, which is still capable of a direct finitary interpretation.

The number theoretical formalism here considered differs from recursive
number theory as well as from intuitionistic number theory by the unre-
stricted employment of the notions “all” and “there is.”

However, in the domain of the inferences which admit of representation in
the number theoretical formalism, an agreement can be established between
the adherent of the usual mathematical standpoint (who regards as legitimate
all these modes of inference) and the intuitionist (who does not in general
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acknowledge the principle of excluded middle). This can be accomplished in
the following manner: The first has to declare that a proposition “there is a
x such that A(x) holds” should merely be another mode of expressing that in
any case the opposite of A(x) does not hold for all x. Likewise, a proposition
“A or B” should say nothing else than that not both, the opposite of A and
the opposite of B, hold. With this interpretation of the existential judgement
and the disjunction, the intuitionist must acknowledge as legitimate all modes
of inference in the mentioned domain of classical mathematics—at least, if
she accepts the rules of intuitionistic inference devised by Heyting.

Now, this discovery that the intuitionistic modes of inference in number
theory are so close to the “classical” ones, results, on the one hand, im-
mediately in a demonstration of the consistency of the number theoretical
formalism from the standpoint of intuitionism. On the other hand, this dis-
covery shows that the intuitionistic standpoint differs essentially from the
finitary. In particular, one will note the following difference as to general
propositions (propositions of general form): While intuitionism only contests
the application of the law of the excluded third to such general propositions,
the finitary standpoint avoids, in principle, the negation of general proposi-
tions as well as their employment as premisses in conditional sentences.

A negation of a proposition has a finitary meaning only if it is equivalent
to a claim with positive contents. Thus, e. g., the negative proposition “the
numeral a is not identical with the numeral b” denotes the same as the posi-
tive claim that the numeral a is different from the numeral b. And a condition
or an assumption is finitary only if it has as its content either an intuitively
determined configuration or an intuitively determined operation (respectively
the result of such operations). Thus, e. g., the assumption that Fermat’s last
theorem is true is not finitary. The assumption, however, that a, b, c, n are
four positive integers (numerals) such that n > 2 and an + bn = cn—i. e.,
the assumption that the four numbers a, b, c, n provided a counterexample
to Fermat’s great theorem—is finitary. Furthermore, the assumption that
this theorem is deducible in the formalism of number theory is finitary in the
following sense: One assumes as given a figure of formulae—with a terminal
formula representing Fermat’s theorem—having the properties of a deduc-
tion within the number theoretical formalism. The assumption, however,
that some intuitively compelling proof of Fermat’s great theorem is given, is
not finitary.

Negations and hence the negations of general propositions in particular
can of course be eliminated in intuitionism. By an arbitrary choice of an
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elementary false proposition, e. g., 0 = 1, one is able to interpret the negation
A of a proposition A by A → 0 = 1 (“the assumption A results in 0 = 1”).
With this interpretation, the intuitionistic modes of inference which employ
negation transform themselves into intuitionistically admissable inferences.
But the elimination of negation thus gained is only apparent, in that we
find ourselves forced to operate with unreal conditional sentences. That is,
implications A → B occur, which are to be interpreted in an unreal sense:
“Suppose A held, B would result.” In fact, those indirect arguments are
used not only for elementary propositions A—for which they are admissable
in finitary reasoning as well—but in an essential way also for general sentences
and for implications with general (or logically even more complex) sentences
as premisses.

In any case, the use of the notion “absurdity” for arbitrary propositions
remains an essential means for intuitionistic reflections.

Now, considering the fact that the finitary standpoint has proven to be
too narrow for proof theory, the following question occurs: Is it necessary to
take over all the methodic presuppositions of intuitionism?

At the moment, we can give at least a partial answer to this question.
For Gentzen has delivered a consistency proof for the number theoretical
formalism, whose methodical requirements constitute a kind of intermediate
link between the finitary standpoint and the standpoint of intuitionism.

It recommends itself to refer to the newer version (given by Gentzen) of
his proof. For, in comparison to the version first published, it has not only
the advantage that here the proof idea is made perspicuous, but also the
advantage, that certain methodical complications of the first proof become
unnecessary.

Recently, Gentzen’s newer proof has again been simplified by Kalmár,
where it turned out in particular that one can dispense with Gentzen’s trans-
formation of the number theoretical formalism into a certain equivalent cal-
culus.

Let me shortly outline the logical schema of Gentzen’s consistency proof
in respect to the way the finitary standpoint is transcended—(with certain
insignificant deviations from Gentzen’s presentation).

According to a remark already used in the previous consistency proofs, to
assert the consistency of the number theoretical formalism comes to the same
as to assert that in this formalism the formula 0 = 1—which we indicate
by “f”—is not deducible. That is to assert that each deduction within this
formalism has a terminal formula different from f.
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One can realize in a direct way that this assertion is true for those deduc-
tions in which neither complete induction nor the rules for “all” and “there
is” are employed—which we call, for short, “elementary deductions.”

For the general demonstration “ordinal numbers” are employed, taken
from a domain of Cantor’s first und second number class (they are those
below Cantor’s first ε-number). The introduction of these numbers can be
made in an independent way, i. e., without recourse to Cantor’s theory: The
respective ordinal numbers can be characterized as certain (finite) figures,
for which one can define, intuitively, a “smaller than” relation—with the
properties of a well-ordering—in such a way, that for two different ordinal
numbers it is always decidable which one of the two is the smaller one.

One then assigns, according to a simple calculating precept , to each
deduction of the number theoretical formalism an ordinal number. Based
on this assignment, one can determine for each non-elementary deduction
another deduction with the same terminal formula but a smaller ordinal
number. This results in the following: If each deduction with an ordinal
number smaller than a certain ordinal number α has a terminal formula
different from f, then the same is true of each deduction with the ordinal
number α.

So far the proof remains within the framework of finitary reasoning. Now,
to get from this consequence to the result that generally each deduction in the
number theoretical formalism has a terminal formula different from f—which
is the assertion to be proved—it is still necessary to justify the following
principle of inference: “If a proposition B(α) about an ordinal number α
holds for 0 (the least of the ordinal numbers), and if one can determine for
each ordinal number α a smaller ordinal number β such that, whenever B(β)
holds, also B(α) holds, then B(α) holds for each ordinal number α.” This
mode of inference is in turn taken from the principle: “If a proposition B(α)
about an ordinal number α holds for 0, and if it holds for the ordinal number
α whenever it holds for each smaller ordinal , then it holds for each ordinal
number.”

This principle of inference is a kind of generalisation of complete induc-
tion. In set theory, a generalized induction of this kind is called “transfinite
induction,” because it extends to transfinite ordinal numbers. For our pur-
poses, however, this expression is not appropriate. For we employ the word
“finite” in a methodical sense and the difference between ordinary induction
(inference from n to n + 1) and transfinite induction does not at all coincide
with the difference between finitary and non-finitary modes of inference. In
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general, an ordinary induction is finitary, only if the predicate (and whether
it holds for a number) is elementary. On the other hand, there are (according
to the usual terminology) transfinite inductions, which are still of a finitary
character.

What matters for us here is not so much to fix the exact limit up to which
inductions are finitary. Rather, it is to make clear to ourselves, from the intu-
itive standpoint, upon what the legitimacy of the principle of inference under
consideration rests and in what way it constitutes a proper generalisation of
the ordinary induction.

Let us recall how the finitary motivation for the ordinary induction pro-
ceeds: We have the assumption that A(0) holds and that we can infer A(n+1)
from A(n). Because we can, by an iterated progression of 1 starting at 0,
arrive at each finite number, we can likewise infer from A(0) that A(n) holds
for each finite number n.

Now, the ordering of the ordinal numbers under consideration is analogous
to that of the ordinary number series. This holds insofar that also the former
has the property of a well-ordering—every initial segment has an element
which immediately succeeds it—and, even more, the order type of this well-
ordering can be reduced, in a recursive manner, to the natural order of the
number series. Thereby an intuitive kind of “running through” is made
possible. With reference to this, Cantorian set theory speaks of a “counting
beyond the infinite.”

This counting beyond the infinite does of course not mean to operate with
the representation of an actual infinite. Rather, it means the transition from
a progressive process to its metamathematical consideration. This transition
is of the kind which takes place already in ordinary induction, with which
we go beyond getting the particular propositions A(0), A(1), A(2), . . . , by
means of the general metamathematical observation that we can arrive at
the proposition A(n) for all n.

While running through the order type under consideration, superposed
inductions occur. That is, we obtain higher inductions from the ordinary in-
duction by employing the metamathematical consideration to the processes
of iterating inductions. Now, to this superposition of inductions corresponds,
as the logical form of expressing it, a superposition of conditional sentences
in which general sentences enter as premisses. But these are always those
general sentences which are seen to be true by means of the mentioned meta-
mathematical consideration, so that here the conditional form has the mean-
ing of anticipating one stage in a progressive process of inference.
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Hence, the use of the principle of transfinite induction under considera-
tion amounts to an extension of the methodical framework of proof theory,
though not to a complete acceptance of the intuitionistic modes of inference.
The procedure of this extension is also capable of being generalized. For it
is possible to intuitively master the “running through” even for well-order
types higher than those employed in Gentzen’s consistency proof (the ordinal
numbers below Cantor’s first ε-number) and to intuitively justify thereby the
principle of transfinite induction related to this well-order type.

At the moment, there is no way to determine whether such a higher
induction principle, taken as an additional means (i. e., added to the finitary
methods), suffices for a consistency proof of analysis.

According to Gödel’s general theorem on formally undeducible sentences,
the induction principle in question—which would in any case be expressible as
a theorem about a certain well-order of the ordinary numbers—had to be such
that its proof cannot be formalizable within the framework of analysis. At
first, it seems impossible to satisfy this requirement; for the general theory of
well-orders of the number series, including the general theorem on transfinite
induction, can be developed in the formalism of analysis. However, one has
to keep in mind that the general theorem of transfinite induction does not
determine whether a certain defined ordering of the number series is a well-
ordering; and the higher principle of induction in question could just amount
to such an assertion. –

Anyway, in view of these considerations it does not seem to be expedient
to fix in advance the methodical framework for proof theoretical investiga-
tions. The expectation, that the finitary standpoint (in its original sense)
would suffice for the whole of proof theory, was aroused by the fact that the
problems of proof theory can already be formulated from this standpoint.
But there is no simple relationship between the ability to express and to
prove sentences and therefore neither between the ability to formulate and
to solve problems.

But now the question arises: What, then, is the characterization of the
methodological limitation of proof theory, if not the demand for that elemen-
tary evidence which distinguishes the finitary standpoint. The answer is as
follows. The tendency to limit methods remains basically the same; but, if
we want to keep us open the possibility of extending the methodical frame-
work, then we must avoid using the concepts of evidence and security in too
absolute a sense. On the other hand, we thereby gain the principal advantage
of not being obliged to question as unjustified or doubtful the usual methods
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of analysis.
One has to regard what is generally characteristic of Hilbert’s methodical

attitude as the following: One puts here the stress on sticking to an, in the
strict sense, arithmetical mode of thinking, while the usual methods of analy-
sis and set theory are, for an essential part, inspired by geometrical ideas
(especially by that of a point set) and draw their evidential force therefrom.
In fact, one can say—and this surely is the main point of the finitistic and
the intuitionistic critique of the usual procedure in mathematics—that the
arithmetization of geometry in analysis and set theory is not complete.

The methodical orientation of Hilbert’s proof theory can contribute to a
forceful development of the specifically arithmetical mode of thinking and to
bringing out more clearly the stages in the formation of arithmetical concepts.

As for the rest one has to emphasize, concerning the achievements of proof
theory, that the demonstrations of the consistency of the number theoretical
formalism in no way represent the only progress the metamathematical inves-
tigation of recent years has to show. Especially with regard to the questions
of the decidability of problems and the effective calculability of functions, re-
markable results have been achieved by the investigations of Gödel, Church,
Turing, Kleene, and Rosser. Already today, metamathematics is left in a
such shape that its appreciation is independent of any position taken on the
philosophical questions of foundational research. –
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The aim of this book is to provide a thorough orientation to the current
content of Hilbert’s proof theory. Despite the fact that the achievements to
date have been modest in comparison to the goals of the theory, there are
still plenty of suggestive results, viewpoints, and proof ideas that seem worth
reporting on.

The purpose of the book has resulted in two main themes for the contents
of this second volume. On the one hand, to present in detail the principal
proof-theoretic approaches of Hilbert that follow from the ε-symbol together
with their implementations.

A substantial part of the investigations presented here have not yet been
published at all, aside from some brief hints. Thus, not only is there interest
in the subject matter, but there is also a scientific obligation on the part of
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the Hilbert-school to justify the various previous announcements of proofs
by actually providing these proofs. This demand is all the more pressing in
this case, since there was initially (until the year 1930) some error about the
scope of the proofs by Ackermann and v. Neumann, which resulted from one
of the approaches of Hilbert mentioned above.

These hitherto unpublished proofs are now presented in detail in §§ 1 and
2. In particular, the restriction which is here still imposed on the consistency
proof for the number-theoretic formalism is made clearly apparent.

With the help of one of the methods presented here, a simple approach
to a series of theorems also arises by which the proof-theoretic investigation
of the predicate calculus is satisfactorily rounded off and which also allows
for remarkable applications to axiomatics. A theorem of theoretical logic
that was first formulated and proved by J. Herbrand, for which we obtain a
natural and simple proof by the mentioned route, lies at the center of these
considerations.

The discussion of the applications of this theorem also offers the oppor-
tunity for consideration of the decision problem. Following this, a proof-
theoretic sharpening of Gödel’s completeness theorem is proved in § 4.

The second main theme is represented by the considerations leading to the
necessity of extending the limits of the contentual forms of inference allowed
in proof-theory, beyond the previous demarcation of the “finite standpoint.”
Gödel’s discovery that every sharply delineated and sufficiently expressive
formalism is deductively incomplete stands at the center of these consider-
ations. Both of Gödel’s theorems which express this fact are discussed in
detail with respect to their relation to the semantic paradoxes, to the condi-
tions for their validity, and the implementation of their proofs—Gödel only
hints at the proof for the second theorem—and to their applicability to the
full number-theoretic formalism.

The discussion regarding the extension of the finite standpoint is fol-
lowed by consideration of Gentzen’s recent consistency proof for the number-
theoretic formalism. Of course, only what is methodologically novel in this
proof is presented in detail and discussed, namely the application of a par-
ticular kind of Cantor’s “transfinite induction.”

The mainly external reason for not presenting the entire proof was that
the newer, first really clear version of Gentzen’s proof had not been published
at the time of the printing of this volume. By the way, Gentzen’s proof
does not relate directly to the number-theoretic formalism discussed in the
book. L. Kalmár recently succeeded in modifying this proof so that it became
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directly applicable to the number-theoretic formalism developed in our book
(in § 8 of the first volume), whereby also certain simplifications arise.

W. Ackermann is currently extending his earlier consistency proof (pre-
sented in § 2 of the present volume) by applying the kind of transfinite in-
duction that is used by Gentzen in order to make it valid for the full number-
theoretic formalism.

If this succeeds—which seems quite likely—Hilbert’s original approach
would be rehabilitated with respect to its effectiveness. In any case, Gentzen’s
proof already justifies the view that the temporary fiasco of proof theory was
merely due to the fact that methodological requirements had been imposed
on the theory which were too strong. To be sure, the final decision about
the fate of proof theory will be based on the task of proving the consistency
of analysis.

A few considerations that are distinct from to the train of thought devel-
oped in §§ 1–5 of the present volume are added as “supplements.” Two of
these complement the considerations in § 5: Supplement II is about making
precise the notion of computable function (as has been successfully imple-
mented recently with various methods) and presents the facts related to this
circle of problems, and can be easily developed following the remaining con-
siderations of the book. A. Church’s theorem about the impossibility of a
general solution to the decision problem for the predicate calculus is ap-
plied in this connection. In Supplement III some questions pertaining to the
deductive propositional logic are discussed, and it also contains additional
remarks to the considerations about the “positive logic” formulated in § 3 of
the first volume.

Various deductive formalisms for analysis are set up in Supplement IV,
and it is shown how the theory of the real numbers and also that of the
numbers of the second number class are obtained from them.

Supplement I contains an overview of the rules of the predicate calculus
and its application to formalized axiom systems, as well as remarks about
possible modifications of the predicate calculus, and a compilation of various
definitions and results from the first volume.

In view of the already enormous amount of material, various proof-theoretic
themes could not be addressed in this book: in particular, the topic of multi-
sorted predicate calculus, which was dealt with first in Herbrand’s thesisa

aVide [?].
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and recently in more detail by Arnold Schmidt (vide [?]).
Certain considerations that could be found in Hilbert’s lectures and in

discussions with Hilbert, but that only remained isolated remarks or that had
not been sufficiently clarified, are not presented: in particular, the approaches
regarding the definitions of numbers of the second number class by common
(i. e., not transfinite) recursion, and those concerning the use of type symbols,
in particular those that are introduced by explicit or recursive definitions.

The the present volume follows the first volume closely; this connection
is also strengthened by frequent references to page numbers. On the other
hand, the compilation of terms and theorems from the first volume given
in Supplement I and the recapitulation in part b), section 1 is intended to
render the reading of the second volume largely independent of the first
one. The reader who is already somewhat familiar with logical formalization
and with the questions addressed by proof theory will be able to follow the
considerations of the second volume without knowledge of the first one.

In any case, it is recommended that the reader of the present volume
start with § 1 of Supplement I. Furthermore, he should make use of the page
references only when he feels the need to do so in the particular passages.

In addition to the remarks given in § 2 about possible omissions in the
course of study, it may also be remarked here that the rather tedious section 2
of § 4 can be left out.

Regarding references to paragraphs, the numbers from 1 to 5 refer to the
present second volume if nothing else is indicated, while the numbers from 6
to 8 occur only in the first volume.
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The importance for philosophy of the question of the evident is hardly
put in doubt. But it does not always happen that justice is done to the
complexity of the problem. Evidence is often regarded as a quality that can
simply be attributed or not to an axiom, a principle, or a mode of reasoning,
and then the problem of evidence seems simply to be to decide where evidence
is in fact to be found.

This simple aspect of the problem arises particularly under the influence
of the idea of absolute evidence, which is substituted for the empirical concept
of de facto evidence.
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Refraining from introducing here an a priori postulate, we limit ourselves
to de facto evidence – in other words we do not take as point of departure
the idea of an absolute guarantee of truth, but we are content to observe
that there are certain cases in our judgments and reasonings where we find
a satisfying purchase or a point of departure given by a direct representa-
tion (which sometimes comes up spontaneously and sometimes requires some
effort of the imagination). The object of evidence in this sense can be an
existence or a relation. We know the distinction made in this respect by
Leibniz, Hume, and others.

In taking account of the concrete character of evidence, we are led to
recognize that evidence, originating from a mental situation, is relative to
the implicit suppositions that such a situation includes. Please note: the
expression “relative” does not mean that there is here a sort of indifference of
point of view. The mental situations at issue are those that knowledge passes
through in its development, and it can very well happen that in reaching a
position superior to a preceding one, we discover an implicit supposition that
at the same time we find ourselves obliged to give up. In this way an evidence
relating to a stage of the intellectual process can be lost at a more advanced
stage.

In particular, this is the case for the evidence of outer sensation, such as
it is found in the position of naive realism. At a more advanced stage we
discover suppositions relative to that position that we must abandon because
it turns out that:

1. Sensible qualities do not apply directly to reality;

2. The information that outer sensation gives us from objects does not
have a character of immediacy.

It is known that the first theory to have taken account of this discovery
is that of Democritus, revived by John Locke, a theory that introduces the
distinction between real and apparent qualities. At this level a large part of
the evidences of naive realism are still preserved. And one can say that it
is the intention of the system of Kant to give a comprehensive philosophical
interpretation to the situation as it thus presented itself.

As you know, there are theories that are opposed in a more radical way to
naive realism: that of the phenomenalism of Mach and Avenarius and that of
the philosophers of the school of Brentano, who deny completely the evidence
of outer sensation, only recognizing the evidence of inner intuition. It seems
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that this opposition to naive realism goes too far; in fact it is certainly not an
adequate description of the facts simply to contest the evident experience of
a reality surrounding us – “reality” taken here in a sense still unexplicated,
and it must be observed that this primitive evidence is not shaken at all by
the criticisms to which naive realism is subjected.

Looking at the matter more closely, it seems that the superiority of inner
intuition over outer sensation does not in the first instance relate to the
moment of existence: the existence of our Ego has originarily scarcely more
certitude and evidence than that of an external world. What constitutes
the superiority of inner intuition is that the categories that it produces are
immediately applicable to reality, which is not the case for those that derive
from outer sensation. In fact it is evident that to feel, to see, to meditate, to
doubt, to be glad, to be afraid, to feel pride or jealousy are possible states of
a mental being; inner intuition, in supplying us with such categories, has a
character less of sensation than of reason. (That is why it is almost impossible
to separate the role of interpretation from that of perception in observations
by inner intuition.)

Nevertheless you know that inner intuition, besides its qualities of evi-
dence and rationality, also has its weaknesses:

1. There are also cases in experience of the mental where we are deceived
by a direct impression.

2. Here as well, there is a kind of perspective, which distorts quantitative
relations and hides important constituents of mental states.

3. Finally, an essential deficiency specific to inner intuition is that the
attribution of mental states to the subject (that is to say to the Ego)
is not made in an intuitive way.

Let us return to the main point: it was to determine the position resulting
from the critique carried out on naive realism. Although one must give up
almost all the realist evidence of outer sensation, something still remains:
the indication of the existence of a reality that surrounds us, manifesting
the variety of its content by the forms of contact that are revealed in our
sensations.

We have here an important example of loss of evidence. But in the course
of the intellectual process there are also evidences gained. At the outset naive
realism is also an example, since the position of even this realism represents
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a stage in the acquisition of knowledge. But it isn’t necessary to go so far
back: in fact the evidences arising in mathematics are certainly almost all
acquired evidences.

At issue here is evidence of relations, and the way in which they are
formed is a special case of the general process of the origin of a dialectic, in
the sense that Ferdinand Gonseth gives to that term.1

What distinguishes this case is that the dialectic is established in our mind
in such a penetrating manner that it influences our intuitive imagination,
that is to say that it influences the way in which we represent intuitively
certain categories of objects. Thus the intentions of the dialectic find a sort of
intuitive realization lying in spontaneous interpretations. In this way one also
understands that intuition can derive notions that surpass the possibilities
of a complete effective control and whose conceptual analysis gives rise to
infinite structures. In particular this is the case for geometric intuition, which
engenders notions like that of symmetry, encompassing that of the middle,
as well as the distinction between straight and curved lines. I believe that
that way of looking at things is not in disagreement with the results to which
Gerrit Mannoury was led by following out his distinction between choice
and exclusion negation: one must concede that there are geometric notions
that are not directly intuitive, such as that of straight lines that do not ever
intersect - which is precisely the usual definition of parallels. In general, it
seems that geometric intuition has for its object only configurations of finite
extension. (As is known, in the Euclid’s Elements the axioms are formulated
so as always to refer to finite figures; in the axiomatic system of Pasch, the
rule to limit oneself to finite figures is observed intentionally.)

Concerning the theory of parallels, it must be noted nonetheless that the
characteristic properties of Euclidean geometry can be expressed without in-
troducing the negative notion of parallelism mentioned above. For example,
the possibility, which children’s games have made familiar to us, of juxta-
position of cubes (in such a way as to fill a portion of space without gaps)
provides us with a formulation.

Thus our point of view permits us to recognize that the dialectic of Euclid-
ean geometry has an intuitive evidence such that it is not found again in any
other metric geometry. But one must also make the following remarks:

1. It should be understood that geometric evidence can no longer be

1(Note added in the German version.) In the meantime this use of the term in Gonseth’s
philosophy has been pushed into the background by another use.
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considered – as was the case in Locke’s philosophical position – as relating
immediately to physical reality (that is to say as expressing properties of
physical space); rather, it is a case of phenomenological evidence, for whose
genesis one can nonetheless assume external causes that lie in the structure
of physical space.

2. It seems that there is a part of geometric evidence that has a more
primitive and fundamental character: that is the evidence of topological
relations. Let us observe in particular that in carrying out reasoning in ele-
mentary axiomatic geometry one uses in general more or less crude sketched
figures; here what we represent to ourselves intuitively are only the topologi-
cal properties of figures, while for the rest we proceed according to conceptual
rules. It is clear that for this semi-intuitive manner of reasoning, Euclidean
geometry has no privilege over the geometry of Lobachevsky.

3. It must be recognized that for the construction of mathematical theo-
ries in their present form one can do without geometrical evidence; in effect,
it is eliminated from the mathematics of today as far as the foundations are
concerned; the role that still devolves on it is on the one hand that of an in-
terpretation of great value, and on the other hand, for topological evidence,
that of giving directives for the conceptions of the general theory of spaces.
But, so it seems, the tendencies of intuition can here only be satisfied ap-
proximately, in the sense of a compromise – and that whatever system of
arithmetic one also uses.

We have envisaged geometric evidence as an example of acquired evidence.
The same holds for the evidences guiding arithmetical methods; they are
acquired at a certain stage of intellectual development.

It is true that there are, in the domain of purely formal relations, com-
pletely primitive statements, for example to the effect that, in applying the
usual rules of elementary algebra, from the expression (a + b) ∗ (a − b) one
arrives at the different expression (a ∗ a) − (b ∗ b). (That is not a tautology;
in fact the indication of an operation to be carried out does not contain the
indication of the result.)

These are the purest forms of evidence that we have at our disposal. But
already the elementary theory of numbers goes beyond these primitive state-
ments. There we encounter the general intuitive concept of natural number
and the procedures of reasoning by complete induction and by recursive de-
finitions that are connected with it. We have there already a full dialectic,
which certainly did not exist from the beginning for the mind but which had
to be tried out and dared at a certain stage.



220 CHAPTER 17. PROBLEM OF THE EVIDENT (1946)

Surely there is still a great distance between this dialectic of natural
numbers and that by which we reason in the usual infinitesimal analysis.
It must be conceded to Brouwer that this last dialectic does not have as
fundamental an evidence as the former; moreover it must be admitted that it
is not of a purely arithmetical character. Nevertheless we can state that it has
succeeded quite well, that it constitutes a satisfying solution to the problems
for which it was conceived, and that it too has engendered an evidence sui
generis . What it lacks is only, with respect to the possible extensions of its
methods, a leading idea appropriate for obtaining a delimitation that can be
made without a conventional element.

The philosophy of intuitionism would suggest to us that we eliminate the
usual dialectic in favor of a more strictly arithmetical procedure, as geometric
evidence was eliminated. But in order that this idea should be accepted, it
would be necessary, according to the rules of knowledge, that the intuition-
istic method should be shown to be superior in every respect to the usual
method.

In any case, the possibility of eliminating an evidence in the foundation
of a science is a remarkable fact. – Moreover, from our analysis of acquired
evidences it follows that it is not an essential condition for the efficacy of a
dialectic that it should be equipped with a specific mode of evidence.

One could conceive the idea of eliminating evidence completely from the
foundations of the sciences, only keeping for it the role that it has in heuris-
tics, analogy, and interpretation.

Nonetheless one notices soon enough that, for the foundations, one cannot
do without primitive evidences concerning formal relations, because these are
necessary to check the functioning of a dialectic and for noting contradictions.
Moreover it is certain that for experimental sciences we need evidences from
observation, that is to say some psychological evidences, but it must be
pointed out that these evidences are not valid here in a direct way but are
inserted in a complicated manner into the total process of empirical research.

As you know, one meets in the modern social sciences with the “behav-
iorist” tendency to eliminate the evidences of internal intuition as much as
possible. It is pointed out that for the investigation of psychological facts
indirect indication is often more reliable than the direct indication of internal
intuition. Certainly one cannot reasonably dispute that, but this preference
for external indications surely goes only up to a certain point, and in any case
a psychology in terms of external objects and relations such as the extreme
defenders of the behaviorist tendency contemplate has little chance of being
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sufficient.
In mathematics there was the tendency of Hilbert, with his original con-

ception of a theory of proof, to reduce all mathematical knowledge to prim-
itive formal evidences. It was already a compromise to make use of the full
finitist dialectic (incorporating the general concept of numeral), and it is
[well] known that even that basis has been shown to be insufficient. Yet it is
still possible that we might succeed in establishing a dialectic of constructive
mathematics that would be equal to the requirements of proof theory.

But whatever the fate of these different attempts might be, in any case
we are led to discuss the possibility of kinds of dialectic that do not have a
character of evidence of their own. In order to work with such a dialectic
a certain understanding is needed; we need to be in a position to attribute
a sense to certain terms and to grasp relations resulting from the sense of
these terms. (And the requirements of working with the dialectic are surely
not the only ones!)

In this way we recognize the necessity of something like intelligence or
reason, which will not be regarded as a container of [items of] a priori knowl-
edge, but as a mental activity consisting in reacting to given situations by
the formation of categories applied on a trial basis.

That reminds us of the tendency of Leonard Nelson, who (following the
example of Kant and even more that of Fries) opposed making evidence the
sole authority for knowledge. It was necessary to free this tendency from
its subjection to traditional apriorism. That has just been attempted in the
foregoing, in accordance with the ideas of the idoneism of Gonseth. It is also
by this same idoneistic philosophy that we are led to recognize that it does
not suffice to have evidence, but reason in its totality is needed.



222 CHAPTER 17. PROBLEM OF THE EVIDENT (1946)



Chapter 18

Bernays Project: Text No. 19

Mathematical Existence and Consistency

(1950)

Mathematische Existenz und Widerspruchsfreiheit

(Etudes de Philosophie des sciences en hommage à Ferdinand Gonseth,
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It is a familiar thesis in the philosophy of mathematics that existence, in
the mathematical sense, means nothing but consistency; this thesis is used
to describe the specific character of mathematics. The claim is that there is
no philosophical question of existence for mathematics. However, this thesis
is neither as simple nor as self-evident as it may seem, and reflecting on it
may shed light on several issues current in philosophical discussions.

Let us begin by describing what the thesis is directed against. It opposes
quite obviously the view that attributes to mathematical entities an ideal
being (i. e., a manner of existence that is independent on the one hand of
being thought or imagined and also on the other hand of appearing as the
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determination of something real); this view claims furthermore that the ex-
istential statements of mathematics are to be understood with reference to
this ideal being. One fact speaks from the very outset against this view;
namely, that without apparent necessity an assumption is introduced here
which does not do any methodological work. To make things clear, it may
be advantageous to compare this with existential claims in the natural sci-
ences. It is well known that an extreme phenomenalistic philosophy sought
to eliminate the assumption of objects that exist independently of perception
even from the representation of relations in nature. However, even a rough
orientation about our experience suffices to show that such an undertaking—
apart from the manifold obstacles that confront its implementation—is also
inappropriate from a scientific perspective. In terms of perception alone, we
do not gain any perspicuous laws. The world of our experience would have to
be completely different in order for a theory—founded on notions concerning
the purely perceptual—to be successful. Hence, positing the objective exis-
tence of entities-in-nature is by no means solely an effect of our instinctive
attitude, but is appropriate from the standpoint of scientific methodology.
(This is also true for contemporary quantum physics, even though according
to it states cannot be specified with complete precision.)

When comparing this case with that of mathematical entities, we find the
following obvious difference. In the theoretical and concrete use of mathe-
matical objects an independent existence of these objects plays no role (i. e.,
an existence independent of their respective appearance as determinations of
something otherwise objective). The assumption of objective physical enti-
ties, by contrast, has explanatory value only because the entities and states
in question are posited as existing at particular times and in particular loca-
tions.

What we find here concerning mathematical objects holds in general for
all those entities that can be called “theoretical objects.” Meant are those
entities of reflection to which we cannot ascribe, at least not directly, the char-
acter of the real, or more precisely, of the independently real; e. g., species,
totalities, qualities, forms, norms, relations, concepts. All mathematical en-
tities belong to this realm.

One can hold the view—and this view has indeed been defended by some
philosophers—that all statements about theoretical entities are reducible, if
made precise, to statements about the real. This kind of reduction would
yield, in particular, an interpretation of existence statements in mathematics.
However, at this point fundamental difficulties arise. On a somewhat closer
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inspection, it turns out that the task of reduction is by no means uniquely
determined, since several conceptions of the real can be distinguished: The
“real” may refer, e. g., to what objectively real, or to what is given in expe-
rience, or to concrete things. Depending on the conception of the real, the
task of reduction takes on a completely different form. Furthermore, it does
not seem that in any one of these alternative ways the desired reduction can
be achieved in a satisfactory way.

One has to mention in this connection especially the efforts of the school of
logical empiricism towards a “unified language” for science. It is noteworthy
that recently the attempt to reduce all statements to those about the concrete
has been abandoned. This was prompted in particular by the requirements
in the field of semantics (an analysis of meaning of the syntactic forms of
language).

We will not base our discussion on any presuppositions regarding the
possibility in principle of avoiding the introduction of theoretical entitites in
the language of science. In any event, the existing situation is that in areas
of research (and even in the approaches of everyday life) we are constantly
dealing with theoretical entities, and we adopt this familiar attitude here.

As yet this attitude in no way includes an assumption about an inde-
pendent existence of ideal entities. It is understandable though that such
an assumption has, in fact, often been connected with theoretical entities—
particularly if we agree with Ferdinand Gonseth, according to whom the
more general concept of an entity arises from a primary cruder notion of an
entity that is expressed in a “physics of arbitrary objects.” As regards the
cruder objecthood, the character of the objective is most intimately tied to
existence independent of our perception and representation. Thus it is easy
to understand that for entities of a general kind we are inclined to attribute
their objective character to an independent existence. It is not at all neces-
sary to do so, however. Here it is especially significant that refraining from
an assumption of ideal existence does not prevent us from using existence
statements about theoretical entities: such statements can be interpreted
without this particular assumption. Let us bring to mind the main cases of
such interpretations:

a) Existence of a theoretical entity may mean the distinct and complete
representability of the object.

b) Existence of a theoretical entity of a particular kind may mean that
it is realized in something that is objectively given in nature. Thus, for
instance, the observation that a certain word has different meanings in a
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language tells us that in the use of this language, the word is employed with
different meanings.

c) An existence claim concerning theoretical entities can be made with
reference to a structured object of which that entity is a constituent part.
Examples of this are statements about constituent parts of a figure, as when
we say, “the configuration of a cube contains 12 edges,” or statements about
something that occurs in a particular play, or about provisions that are part
of Roman law. We are going to call existence in this sense, i. e., existence
within a comprehensive structure, “relative existence.”

d) Existence of theoretical entities may mean that one is led to such
entities in the course of certain reflections. For example, the statement that
there are judgments in which relations appear as subjects expresses the fact
that we are also led to such “second order” judgments (as they are called)
when forming judgments.

In case a) the existence of the theoretical entity is nothing but the rep-
resentational objectivity (in the sense of representation proper); in case b)
existence amounts to a reality in nature; case c) is concerned with an imma-
nent fact of a total structure that is under consideration.

In these three cases the interpretation of the existence statement provides
a kind of immediate contentual reduction. Case d) is different in that “being
led” to entities is not to be understood as a mere psychological fact but as
something objectively appropriate. Here reference is made to the develop-
ment of intellectual situations with the factors of freedom and commitment
operative therein—freedom in the sense in which Gonseth speaks of a “char-
ter of our liberties” (for example, the freedom to add in thought a further
element to a totality of elements represented as surveyable) and, on the other
hand, commitment which consists, e. g., in the fact that the means we use for
the description and intellectual control of entities yield, on their part, new
and possibly even more complex entities.

Yet even this interpretation of existence statements does not introduce
an assumption of independent existence of theoretical entities. The existence
statement is kept within the particular conceptual context, and no philo-
sophical (ontological) question of modality, which goes beyond this context
is entered into. Whether such a question is meaningful at all is left open.

These considerations apply to theoretical entities in general. But what
of the specific case of mathematical entities, which, as has been noted, are
theoretical entities? If we apply our preceding reflections to the case of
mathematical entities, we notice that we already have a kind of answer to the
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question of what existence may mean in mathematics. However, the thesis
under discussion—that existence for mathematical entities is synonymous
with consistency—is intended to offer a simpler answer. For the discussion
of this claim we have already gained several clarifying points. Let us now
turn to this discussion.

For this purpose let us first replace the obviously somewhat abbreviated
formulation of the claim by a more detailed one. What is meant is surely
this: Existence of an entity (of a complex, a structure) with certain required
properties means in the mathematical sense nothing but the consistency of
those required properties. The following simple example may illustrate this.
There is an even prime number, but there is no prime number divisible
by 6. Indeed, the properties “prime number” and “even” are compatible, but
the properties “prime number” and “divisible by 6” contradict each other.
Examples like this give the impression that the explanation of mathematical
existence in terms of consistency is entirely satisfactory. It must be noted,
however, that these examples do not show what this explanation is capable
of; they only demonstrate how one infers consistency from the existence of
an example and, on the other hand, non-existence from inconsistency, but
not how one infers existence from an already established consistency; and
that, after all, would be the decisive case.

This one remark suffices to make us hesitate. It draws attention to the
fact that in mathematics existential claims are usually not inferred from
proofs of consistency but, conversely, that proofs of consistency are given
by exhibiting models; the satisfaction of the required properties is always
verified in the sense of a positive assertion. In other words, the usual proofs
of consistency are proofs of the satisfiability of conditions, or more precisely:
they are proofs of the satisfaction of conditions by a theoretical entity.

An unaccustomed innovation was brought about by Hilbert’s proof theory
in that it demanded consistency proofs in the sense of showing the impossibil-
ity of arriving deductively at an inconsistency. A preconditon of such a proof
is that the pertinent methods of deduction to be considered can be clearly
delimited. The methods of symbolic logic provide the technique for making
the process of logical inference more precise. We are thus in a position to
delimit the methods of inference used in mathematical theories, especially
in number theory and the theory of functions, by an exactly specified sys-
tem of rules. This is, however, only a delimitation of the inferences used
de facto in the theories. In general this does not lead to making an unre-
stricted concept of consistency more precise, but only consistency in a certain
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relatively elementary domain of logico-mathematical concept-formation. In
this domain the concept of mathematical proof can be delimited in such a
way that one can show: each requirement that does not lead deductively to
an inconsistency can (in a more precisely specified sense) be satisfied. This
completeness theorem of Gödel’s makes particularly clear that the claimed
coincidence of consistency with satisfiability is far from obvious, but is sub-
stantially dependent on the structure of the domain of statements and infer-
ences considered. If one goes beyond this domain, making the methods of
proof precise no longer yields the coincidence of consistency and satisfiability.
This coincidence—as shown again by Gödel—cannot be achieved in general
(if certain natural requirements are imposed on the concept of provability).

It is, of course, possible to extend the concept of proof by means of a
more general concept of “consequence,” following a method developed by
Carnap and Tarski, so that for the resulting concepts of logical validity and
contradictoriness (leading to a contradiction) we have the alternative that
every purely mathematical proposition is either logically valid or contradic-
tory. Consequently, every requirement on a mathematical entity is either
inconsistent or satisfied by an entity.

Thus the identification of existence with consistency appears to receive
exact confirmation. On closer inspection, however, one notices that the de-
cisive factor is anticipated, so to speak, by the definitions. For, on the basis
of the definitions, a mathematical requirement on a mathematical entity is
already contradictory if it is not satisfied by any entity. Accordingly, in the
field of mathematics the coincidence of consistency of a requirement and
satisfaction by an entity says no more than that an entity of species G satis-
fying a condition B exists if and only if not every entity of species G violates
condition B.

Of course—from the standpoint of classical mathematics and logic—this
is a valid equivalence. But using this equivalence to interpret existence state-
ments is surely unsatisfactory: If the claim that there is an exception to a
universal proposition is considered to be in need of a contentual explanation,
since it is an existential statement, then the negation of that universal propo-
sition certainly is not clearer as to its content. The equivalence between the
negation of a universal proposition and an existential proposition serves (in
classical mathematics), among other things, to explicate more clearly the
sense of the negation of a universal proposition. This is also indicated by
Brouwer’s intuitionism, which does not recognize this equivalence. At the
same time, it denies that simple negation of a universal mathematical propo-
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sition has any sense at all, and introduces a sharpened negation—absurdity—
which contains an existential aspect (since “absurdity” is to be understood
as an effective possibility of a refutation).

The difficulties to which we have been led here ultimately arise from the
fact that the concept of consistency itself is not at all unproblematic. The
common acceptance of the explanation of mathematical existence in terms of
consistency is no doubt due in considerable part to the circumstance that on
the basis of the simple cases one has in mind, one forms an unduly simplistic
idea of what consistency (compatibility) of conditions is. One thinks of the
compatibility of conditions as something the complex of conditions wears on
its sleeve, as it were, such that one need only sort out the content of the
conditions clearly in order to see whether they are in agreement or not. In
fact, however, the role of the conditions is that they affect each other in
functional use and by combination. The result obtained in this way is not
contained as a constitutent part of what is given through the conditions. It
is probably the erroneous idea of such inherence that gave rise to the view of
the tautological character of mathematical propositions.

Leaving aside the difficulties connected with the concept of consistency
and with the relation between consistency and satisfiability, there is another
aspect which points to the fact that it is not always appropriate to interpret
existence as consistency in mathematics. Let us consider the case of exis-
tence axioms of an axiomatic mathematical theory. Interpreting the existence
statement as an assertion of consistency in this case, yields confusion insofar
as in an axiomatic theory consistency relates to the system of axioms as a
whole. The condition of consistency may well function as a prior postulate
for the design of any axiom system. The axioms themselves, however, are
intended to generate commitments, at least in the usual form of axiomatics.
An existence axiom does not say that we may postulate an entity under cer-
tain circumstances, but that we are committed to postulate it under these
circumstances.

On the basis of our initial reflections, we also have an appropriate under-
standing of axiomatic existence statements available. That is to say, if we
consider that an axiom system as a whole may be regarded as a description
of a certain structured complex—for example, an axiom system of Euclid-
ean geometry may be regarded as describing the structure of a Euclidean
manifold—then we recognize that the existence claims within an axiomatic
theory can be understood as statements about relative existence: Just as each
corner in the configuration of a cube is incident to three edges, so through
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any two distinct points in the manifold of Euclidean space passes a straight
line; and the theorem of Euclidean geometry which states that for any two
points there exists a straight line through both expresses this fact of relative
existence.1

It must be admitted, to be sure, that the perspective of relative existence,
as appropriate as it is for the practical application of the existence concept in
mathematics, only shifts, as it were, the philosophical question of mathemat-
ical existence. For relative existence is scientifically significant only insofar
as the particular total structure, on which the relativeness is based, is to be
regarded as mathematically existent. The question thus arises: what is the
status of the existence of those total structures; for example, the existence
of the number series, the existence of the continuum, the existence of the
Euclidean space-structure and also of other space-structures?

Here we encounter examples where the identification of existence with
consistency is justified. Thus it is justified when we say that the existence
of non-Euclidean (Bolyai-Lobachevsky) geometry lies in its consistency. But
even in such a case, the situation surely is that the consistency proof is given
by exhibiting a model and that thereby the consistency claim is strength-
ened to the assertion that a model satisfying the axioms exists—“exists”
understood here relative to the domain of the arithmetic of real and complex
numbers. In analogous ways many consistency proofs in the sense of estab-
lishing satisfiability can be given; for example, the proof of the consistency
of a non-Archimedean geometry (i. e., a geometry with infinitely small seg-
ments); further, the consistency of calculating with imaginary magnitudes,
taking the theory of real numbers as a basis. Most model constructions of
this sort are carried out within the framework of the theory of the math-
ematical continuum (the theory of real numbers). The satisfiability of the
axioms of the continuum itself can again be seen, starting from the number
series, by essential use of set-theoretical construction processes.

But where do all these reductions lead? We finally reach the point at
which we make reference to a theoretical framework. It is a thought-system

1Bruno von Freytag-Löringhoff has emphasized what is unproblematic, so to speak,
about relative existence in his work, The Ontological Foundations of Mathematics (vide
[?]), to which the present investigation owes a number of suggestions. In this connection
the author speaks of the “small existence problem.” His point of view, however, differs from
the one presented here in that he regards the identification of existence with consistency as
appropriate for the small existence problem, whereas in this presentation the viewpoint of
relative existence is offered as a correction of the view equating existence with consistency.
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that involves a kind of methodological attitude; in the final analysis, the
mathematical existence posits relate to this thought system.

We can state descriptively that the mathematician moves with confidence
in this theoretical framework and that here he has at his disposal a kind of
acquired evidence (for which constructions, even of a more complicated na-
ture, such as infinite sequences of numbers, present themselves as something
objectual). The consistency of this methodology has been tested so well in
the most diversely combined forms of application that there is de facto no
doubt about it; it is, of course, the precondition for the validity of the ex-
istence posits made within the theoretical framework. But we notice here
again that we cannot simply identify existence with consistency, for consis-
tency applies to the framework as a whole, not to the individual thing being
posited as existent.

Let us consider the situation more closely, using the example of the num-
ber sequence. The postulation of the number sequence is included in the
framework of our operating mathematically. But what does consistency of
the number sequence mean? If we are content with an answer to this ques-
tion that appeals to conceiving the unbounded continuation of the process
of counting in an idealizing form of representation, then we understand ex-
istence in an objectual way. We view it in this way, whether we regard the
number sequence merely as a domain of theoretical entities or, in accordance
with a stronger idealization, as a structured complex in itself. And only from
this objectual understanding do we infer consistency. If, however, consistency
is to be recognized from the point of logic, then, on the one hand, the con-
ditions contained in the idea of the number sequence must be understood
conceptually and, on the other hand, we must base our considerations on a
more precise notion of logical consequence.

In this connection we also come to realize that the concept of logical con-
sequence gives rise to an unbounded manifold similar to that of the number
sequence; that is due to the possibilities of combining inference processes.
Furthermore, it becomes apparent that the domain of logic can be under-
stood in a narrower or a wider sense, and that therefore its appropriate
delimitation is problematic.

At this point we come to the area of mathematical-logical research in
foundations. Its controversial character contrasts sharply with the aforemen-
tioned confidence in operating mathematically within the framework of the
usual methods.

The difficulties we are facing here are as follows: The usual framework for
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operating mathematically is adequately determined for use in the classical
theories; at the same time, however, certain indeterminacies with regard to
the demarcation and the method of giving a foundation remain. If one tries to
eliminate these, one faces several alternatives, and in deciding between them
different views emerge. The differences of opinion are reflected in particular
in the effort to obtain the foundation of mathematics from a standpoint
without any substantive assumptions, such that one relies solely on what is
absolutely trivial or absolutely evident. It becomes apparent here that there
is no unanimity concerning the question of what is to be considered obvious
or completely evident.

To be sure, these differences of opinion are less irritating if one frees
oneself from the idea that an assumptionless foundation, obtained from a
starting point determined entirely a priori , is necessary. Instead, one can
adopt the epistemological viewpoint of Gonseth’s philosophy which does not
restrict the character of a duality—due to the combination of rational and
empirical factors—to knowledge in the natural sciences, but rather finds it
in all areas of knowledge. For the abstract fields of mathematics and logic
this means specifically that thought-formations are not determined purely a
priori , but grow out of a kind of intellectual experimentation. This view is
confirmed when we consider the foundational research in mathematics. In-
deed, it becomes apparent here that one is forced to adapt the methodological
framework to the requirements of the task at hand by trial and error. Such
experimentation, which must be judged as an expression of failure according
to the traditional view, seems entirely appropriate from the viewpoint of in-
tellectual experience. In particular, from this standpoint experiments that
turned out to be unfeasible cannot eo ipso be considered methodological
mistakes. Instead, they can be appreciated as stages in intellectual exper-
imentation (if they are set up sensibly and are carried out consistently).
Seen in this light, the variety of competing foundational undertakings is not
objectionable, but appears in analogy with the multiplicity of competing the-
ories encountered in several stages of development of research in the natural
sciences.

If we now examine more closely the—at least partial—methodological
analogy between these foundational speculations and theoretical research in
the natural sciences, we are led to think that with each more precise delim-
itation of a methodological framework for mathematics (or for an area of
mathematics) a certain domain of mathematical reality is intended, and that
this reality is to a certain degree independent of the particular configuration
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of that framework. This can be made clear by means of the geometric ax-
iomatics. As we know, the theory of Euclidean geometry can be developed
axiomatically in various ways. The resulting structural laws of Euclidean
geometry, however, are independent of the particular way in which this is
done. The relations in the theory of the mathematical continuum and the
disciplines associated with it are in a similar sense independent of the par-
ticular way in which the real numbers are introduced, and even more so of
the particular method of a theoretical foundation. In a foundational investi-
gation those relations, which are, as it were, forced on us as soon as we settle
on certain versions of the calculus and of operating mathematically, have the
role of the given, and it more precise theoretical fixation is the task at hand.
The method of this fixation can contain problematic elements which do not
affect what is, so to speak, given.

The viewpoint gained in this way places a mathematical reality face to
face with a methodological framework constructed for the fixation of this
reality. This is also quite compatible with the results of the descriptive
analysis to which Rolin Wavre has subjected the relationship of invention
and discovery in mathematical research. He points out that two elements
are interwoven, the invention of concept formations, and the discovery of
lawlike relations between the conceived entities, and furthermore that the
conceptual invention is aimed at discovery.

With respect to the latter, it is frequently the case that the invention
is guided by a discovery already more or less clearly available and that it
serves the purpose of making it conceptually definite, thereby making it also
accessible to communication. The necessity of adapting the concepts to the
demands of giving expression to something objective exists in this situation
as much as it does in similar situations in the theoretical natural sciences.
Thus the concepts of the differential quotient and of a field were introduced
with a view to giving expression to something objective in the same way as
the concepts of entropy and the electrical field.

In the constitution of a framework for mathematical deduction we as-
sume to have a case of the same methodological type, when we speak of a
mathematical reality that is to be explicated by that framework.

If we now apply this perspective to our question of mathematical exis-
tence, we obtain an essential addition to our earlier observation that the
existence statements in our mathematical theories are, in the final analysis,
relative to a system of thought that functions as a methodological frame-
work. This relativity of the existence statements now seems compensated to
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a large extent by the fact that the essential properties of the reality intended
by the methodological framework are invariant, so to speak, with respect to
the particulars (the invented aspects) of that framework.

Furthermore, it must be noted here that the mathematical reality also
stands out from any delimited methodological framework insofar as it is
never fully exhausted by it. On the contrary, the conception of a deductive
framework always results in further mathematical relations which go beyond
that framework.

Do we not—so one may ask—return with such a view of mathematical
reality to the assumption of an ideal existence of mathematical entities which
we rejected as unmotivated at the outset of our reflections? To respond to
this question we must recall the limits of the analogy between mathematical
and physical reality. We are dealing here with something very elementary.

It is inherent in the purpose of scientific concept formation that it seeks to
provide us with an orienting interpretation of the environment. In the natural
sciences the modality of the factually real plays therefore a distinguished role,
and in comparison with this reality all other existence one can talk about
appears as mere improper existence—as when we speak of the existence of
the relations given by laws of nature. This is, in fact, true even though the
statements concerning the existence of laws of nature contentually go beyond
what can be ascertained in the domain of the factual.

In mathematics we do not have such a marked difference in modality.
¿From the viewpoint of the mathematician, the individual mathematical en-
tity does not present itself as something that exists in a more eminent sense
than the relations given by laws. Indeed, one can say that there is no clear
difference at all between something directly objectual and a system of laws
to which it is subject, since a number of laws present themselves through
formal developments which possess the character of the directly objectual.
Even axiom systems may be considered as structured objects. In mathemat-
ics, we therefore have no reason to assume existence in a sense fundamentally
different from that in which we assume the existence of relations given by
laws.

This eliminates the various reservations that seem to oppose our view of
the relativity of mathematical existence statements to a system of the con-
ceptual (to a deductive framework): Irrespective of the various possibilities
of constructing such a system of the conceptual, this view does not amount
to relativism. On the contrary, we can form the idea of a mathematical re-
ality that is independent in each case of the particulars of the construction
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of the deductive framework. The thought of such a mathematical reality, on
the other hand, does not mean a return to the view of an independent exis-
tence of mathematical entities. It is not a question of being but of relational,
structural connections and of the emergence (being induced) of theoretical
entities from other such entities.

In order not to be one-sided, however, our reflection on mathematical
existence still requires a complementary prespective. We have carried out
this reflection in accord with the attitude of the mathematician who directs
his attention purely toward the objectual. If we bear in mind, however, our
methodological comparison between the mathematical (foundational) start-
ing points and those of physics, then we might realize that this analogy also
applies to a point we have not noted yet: Just as the theoretical language
and the theoretical attitude of physics is substantially complemented by the
attitude and language of the experimentalist, so is the theoretical attitude in
mathematics also complemented by a manner of reflection that is directed to-
ward the procedural aspect of mathematical activity. Here we are concerned
with existence statements that do not refer to abstract entities but to arith-
metical expressions, to formal developments, operations, definitions, methods
for finding solutions, etc. The significance of such a constructive mode of re-
flection and expression—as it comes to the fore especially in Brouwer’s intu-
itionism and for the method of Hilbert’s proof theory—is also acknowledged
by mathematicians who are not willing to be content with an exclusively con-
structive mathematics and, therefore, just as little with an action-language
of mathematics as the only form of mathematical expression.

In this context it should be emphasized with respect to Hilbert’s proof
theoretic project which is based on an operative (constructive) standpoint:
the interest of this project for the philosophy of science is not at all tied
to that philosophical doctrine of “formalism” which arose from the original
formulation of the aim of proof theory. In order to appreciate the method-
ological fruitfulness of proof theory, there is in particular no need to take the
position that the theories subjected to symbolic formalization (for proof the-
oretic purposes) should be simply identified from then on with the schema of
their symbolic formalism and thus should be considered merely as a technical
apparatus.

We must also bear in mind that the motivation for the conceptual sys-
tem of contemporary mathematics does not lose its significance through the
proof theoretic investigation of consistency; this motivation results from the
connection to the problems that gave rise (in several stages) to the concep-
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tual system in the first place. Such a motivation is indeed assumed to have
already been obtained before the proof theoretic investigation begins.2

Finally it should be remembered—as regards the methods of constructive
proof theory and also those of Brouwer’s intuitionism—that with these meth-
ods one does not remain in the domain of the representationally objectual,
properly so called. The concept of the effective is idealized and extended
here in the sense of an adaptation to theoretical demands—of course in a
way which is in principle more elementary than it is done in ordinary math-
ematics. The methodological standpoint also in this case is thus not without
pre-conditions, but we are concerned, once again, with a theoretical frame-
work that includes general kinds of positing. Our preceding reflections are,
therefore, also applicable to this constructive mathematics.

On the whole our considerations point out that it is not indicated either
to exaggerate the methodological difference between mathematics and the
sciences of the factual, which undeniably exists, or to underestimate the
philosophical problems associated with mathematics.

2[1] As regards the task of a systematic motivation of the concept formations of classical
mathematics, we are led to the problem already mentioned for obtaining a deductive
framework that is as appropriate and as satisfactory as possible. This problem constitutes
a major topic of contemporary foundational research in mathematics.
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When I speak here in brief about the situation in proof theoretic research,
it appears appropriate to remind ourselves of what is characteristic of this
research: it is the systematic investigation of the kinds of applications and the
consequences of logical reasoning in the mathematical disciplines, in which
the concept formations and the assumptions are fixed in such a way that a
strict formalization of the proofs is possible with the help of the means of
expression of symbolic logic.

As you know, Hilbert stimulated this kind of investigation mainly with
regard of the questions of consistency. But he had also envisaged from the
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beginning the treatment of questions regarding the completeness and decid-
ability in the framework of these investigations, for example already in the
lecture “Axiomatic thinking” (1917, vide [?]). He formulated in more detail
questions regarding completeness in the lecture “Problems of the founding
of mathematics” in Bologna (1928, vide [?]).

To be sure, Hilbert imagined many things regarding both the results to
be obtained and the method to be simpler than they eventually turned out to
be. The knowledge of these major difficulties awakened in many the idea that
proof theoretic research has led to a definitive failure. But a glance at the
actual state of affairs shows that there is no question of this: the methods of
proof theoretic considerations find themselves in a rich state of development
and considerable results have been obtained in various directions. Let me
list some noteworthy successes regarding the problems Hilbert formulated:

1. Gödel’s Completeness Theorem (proof of the completeness of the first
order predicate calculus) together with its related extensions.

2. One succeeded in making the concept of decidability precise in such
a way that systematic results could be obtained on the basis of this defini-
tion, in particular the proof of the unsolvability of the decision problem for
predicate calculus by Church and, in a second way, by Turing.

3. While the aforementioned methods lead only to conclusions concerning
undecidability, Tarski succeeded, on the other hand, to specify decision pro-
cedures for certain mathematically non-trivial domains. In connection with
these results as well as through results supplementing Gödel’s completeness
theorem, there have been applications in mathematics which are also of in-
terest to mathematicians not concerned with foundations.

4. Regarding the questions of consistency, a consistency proof for full
analysis has not been achieved from the finite standpoint, but one has been
obtained for restricted analysis (for example in Weyl’s sense or in the sense of
ramified type theory) from a constructive standpoint. Gentzen first supplied
such a proof for the number theoretic formalism; but Gentzen already had in
mind the extension of his method to ramified analysis. This has been carried
through by Lorenzen, Schütte, and Ackermann, whereby the method of proof
also became more transparent. Also to be mentioned is a new transparent
consistency proof for number theory by Stenius. Furthermore, it is remark-
able that the extension of the finite standpoint to the constructive standpoint
in a freer sense makes it possible to consider proofs that do not have to be for-
malized in the full sense, but can contain parts in which metamathematical
derivations can be specified which sometimes depend on a syntactical numer-
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ical parameter. In this way, one transcends the domain of those systems to
which Gödel’s incompleteness theorem applies.

By the way, this important theorem is by no means to be judged only as
a negative result; rather it plays a role for proof theory similar to that of the
discovery of the irrational numbers for arithmetic.

5. Finally, efforts have been made to supplement the statement of consis-
tency with a more general form of question: what can be extracted from the
formal provability of a theorem from the constructive standpoint? Kreisel’s
investigations move in this direction.

Given all this it would obviously be totally inappropriate to speak of a
general fiasco of proof theory. On the other hand it must be acknowledged
that not only has the most essential work in this domain still to be done,
but also that, regarding the methodology, there is no clear resolution and no
unanimity. I would like to raise a few points in this connection.

One speaks today a bit condescendingly about the “naive set theory.”
We must, however, remind ourselves that it is, in any case, naive to think
that, by a retreat to the axiomatic standpoint, without any contentual ap-
proach supporting it, we have at our disposal anything like what we started
with. The retreat to the axiomatic in the case of non-Euclidean geometry is
less problematic, because there we take arithmetic and set theory, as given
knowledge, as a foundation. The discussions about possible geometries, in
particular the model theoretic considerations, take place within the frame-
work of arithmetic (analysis). By challenging this framework and assigning
to set theory itself the role of an axiomatic theory, it becomes necessary to
determine a different underlying framework which has to act as the arith-
metic proper. Different views are possible with regard to the choice of this
methodological framework.

The minimal requirement for a sharpened axiomatization is that the ob-
jects not be taken from a domain that is regarded as being antecedent, but
that they be constituted by generating processes. But one could take the
meaning of this to be that these generating processes determine the exten-
sions of the objects; this point of view motivates the tertium non datur . In
fact, the openness of a domain can be understood in two senses: on the one
hand, that the processes of construction lead beyond any single element, and
on the other hand, that the resulting domain does not represent a math-
ematically determined manifold at all. Depending on whether the number
sequence is understood in the first sense or in the second, one obtains the
acknowledgment of the tertium non datur with respect to the numbers or
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the intuitionistic standpoint. For the finite standpoint the requirement is
added that the considerations have to be made by means of investigating
finite configurations, thus in particular assumptions in the form of general
statements are excluded.

The maximal requirement for the methodical framework goes beyond even
that of the finite standpoint. This standpoint in fact contains existence as-
sumptions, required for the possibility of systematic considerations, which
are not self-evident from the standpoint of the properly concrete. For exam-
ple, the application of such existence assumptions is necessary, if we want
to show the eliminability of complete induction in the sense of Lorenzen.
Originally, Hilbert also wanted to adopt the narrower standpoint which does
not presuppose the intuitive general concept of numeral. This can be seen
from his lecture in Heidelberg (1904) among others. It was already a kind of
compromise that he decided in favor of adopting the finite standpoint in his
publications. If we make ourselves clear on this, then the need for transition
from the finite standpoint to an extended constructive standpoint does not
appear to be so catastrophic.

To be sure, this requires a philosophical adjustment. Many think that
one either has to accept only absolute evidence, or that evidence has to be
generally abandoned as a feature of the sciences. Instead of this “all or
nothing” attitude, it appears to be more appropriate to understand evidence
as something that is acquired. The human being obtains evidences in the
way he learns to walk, or as the birds learn to fly. Hereby one comes to the
Socratic acknowledgment of our basic inability to know in advance. In the
theoretical realm we can only try out points of view and standpoints and
possibly have intellectual success with them.

This does not mean that, with these points of view, the problem of the
foundations is already solved in principle. But at least such modesty allows
that we not be completely disconcerted whenever new antinomies are dis-
covered. Such antinomies then appear rather to be instructive clues for the
right choice of our approaches and methods.

The problematic in the foundational research that has still not yet been
overcome consists of different aspects: on the one hand, in respect to the
choice of the methodical standpoint in the foundational research, as well as
the choice of the deductive framework, and on the other hand, in respect
to the understanding of mathematics. With regard to this second point a
decision is maybe not to be expected by means of the foundational research,
but in respect to the first questions it is not too immodest to hope that the
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comparison of the results of the different directions of research will yield a
clear advantage to one of the ways of proceeding in the foreseeable future.

DISCUSSION

Arnold Schmidt. — My introduction of degrees of consistency, which has
been mentioned by Mr. Bernays, was merely meant to emphasize the problem
of the role that consistency plays epistemologically. [. . . ]

With regard to the extensions that the finite standpoint has experienced
in the course of its development I would like to remark that tertium non
datur remains excluded at all stages of this development.

With respect to the problem of evidence one can say the following, in a
certain analogy to the interpretation of the Kantian a priori The individual
can obtain evidence through reflection, but the criteria for the evidence must
be independent of such experience in order to rule out deceptive evidence
which can arise by habituation. As much as I acknowledge that the matters
of fact which are not evident at first sight can become evident by a thorough
clarification, I want to emphasize, on the other hand, that in my opinion
there can be only one kind of evidence, thus no relative or graduated ev-
idence. From this point of view the task of the proof consists in reducing
something that is not evident to something that is evident.
Paul Bernays. — There is no disagreement with regard to the first point.
With respect to the second remark I’d like to call attention to the fact that
I did not intend to write history. Had this been the case, I would have
distinguished five stages of metamathematics: 1. the finite standpoint, 2.
the definite standpoint ( (1) with existence assumptions), 3. Intuitionism,
4. tertium non datur , 5. impredicative concept formation. This ordering
gives more and more freedom. While it was possible to point out intimate
agreements between Intuitionism (3) and the classical standpoint (4), this
has not succeeded for (4) and (5) although Gentzen struggled with it. Thus
the decisive point lies beyond the introduction of tertium non datur . Finally
I wouldd like to say that one should not merely construe evidence objectively,
forgetting about subjective determinations.
[. . . In response to Behmann, who adduced Helmholtz’s argument for the
“evidence” of non-Euclidean geometries, Bernays added:] Although differ-
ently constituted beings could have a different conception of evidence, it is
our concern to determine what counts as evident for us. [. . . ]
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Alfred Tarski. — [. . . ] Furthermore I should like to remark that there seems
to be a tendency among mathematical logicians to overemphasize the im-
portance of consistency problems [. . . ]. Gentzen’s proof of the consistency of
arithmetic is undoubtedly a very interesting metamathematical result, which
may prove very stimulating and fruitful. I cannot say, however, that the con-
sistency of arithmetic is now much more evident to me (at any rate, perhaps,
to use the terminology of the differential calculus, more than by an epsilon)
than it was before the proof was given.
Paul Bernays. — My thought has not been rightly interpreted. I did not
wish to say that Gentzen’s proof made arithmetic or truths about arith-
metic more evident. But I tried to stress that some mathematical methods
simultaneously show deducibility and validity. [. . . ]
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When the mind feels weighed down or oppressed by the many mysteries of ex-
istence, by the impression of our extensive ignorance in so many areas, by the
inadequacies of linguistic representation and communication, it often turns
gladly to mathematics, where objects can be grasped clearly and precisely,
and where gratifying insight can be attained through appropriate concepts.
Here the human mind feels at home; here it experiences the triumph that
the application and combination of quite elementary ideas—familiar to us
from childhood play—yield significant, unexpected, and far-reaching results.
Taking concrete matters as the starting-point, mathematical thinking is oc-
cupied in fixing its objects intuitively and imagining them; from there, by
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forming concepts and by mentally interweaving its findings, it goes on to
results, which in turn can be applied to the concrete and show themselves
impressively successful.

As a consequence, mathematical activity reveals its power and produc-
tivity in three ways. First of all, we have here a striking form of an original
representation as a source for cognition, as well as for concept formation con-
nected with it. Second, logical reasoning is here a powerful cognitive tool,
indeed one that functions in a truly essential way only in this domain. But
there is still a third respect: in mathematics we have not only the activity of
intuition and logical reasoning, an activity which allows these powers resid-
ing in our inner nature to develop freely and productively; we also have the
connection to familiar objects of everyday perception, and, beyond that, we
have the remarkable confirmation which mathematics finds in the extended
domain of experience where our ordinary perception no longer suffices for
orientation.

These three kinds of success and satisfaction evinced by mathematics
correspond roughly to the three aspects distinguished by Ferdinand Gonseth:
to the intuitive, the theoretical, and the experimental aspect.

If we take a closer look at the development of mathematics and its ap-
plications, we do, of course, soon come to problematic features. If we begin
with the application of mathematics to the explanation of nature, the histor-
ical development shows us a twofold disappointment in the following respect:
mathematics was believed to yield a kind of familiarity with reality that it
de facto does not provide.

This happened first in connection with the doctrine of the Pythagoreans,
who discovered the reducibility of qualitative differences in perceptual ob-
jects to numerical relations as carried through in theoretical physics. The
pursuit of this discovery gave rise to the hope that the concept of number
might bring about an ultimate, penetrating understanding of, and thus, in-
tellectual familiarity with, what is real. As is well known, this doctrine was
fundamentally shaken by the discovery of irrational magnitudes. The Greeks
soon learned to deal with irrational magnitudes in a correct deductive man-
ner; but Eudoxus’ procedure was quite abstract, and Euclidean geometry,
which built on it, was in its axiomatic attitude much more restrained than
the Pythagorean doctrine. It is here, too, that the purely mathematical was
for the first time strictly separated from the natural sciences.

Hope for a mathematical understanding of reality arose for a second time
at the beginning of the modern era. Under the influence of the powerful devel-
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opment of the theoretical natural sciences, and especially also of mathematics
itself, that mechanistic view of nature emerged that captured many minds.
Although this view of nature was paradoxical from the outset, Kantian phi-
losophy then provided a mode, by opposing the real in itself to appearances,
to carry through the mechanistic viewpoint for the domain of appearances
and to view this domain as something governed by the manner of our intu-
itive representation. Thus nature, governed by our forms of intuition and
structured mathematically, acquired the character of something familiar to
us.

I need not speak about the fact, discussed so often and so much, that the
contemporary development of theoretical physics has moved fundamentally
away from this view. To be sure, in today’s theoretical physics mathematical
tools are used extensively and with great success. But we are no longer
talking about a perspective of intuitive familiarity.

However, these difficulties concern the theoretical sciences, not mathe-
matics itself. A brief survey of the development of mathematics presents us
initially with the picture of an impressive triumphal march. It begins with the
formal development of the infinitesimal calculus, which caused the so-called
irrational in the theory of magnitudes to lose its character as an apeiron. The
numerous beautiful and, in terms of laws, simple presentations of irrational
magnitudes then moved them into the domain of the familiar. Yet initially
the procedure of the infinitesimal calculus lacked sufficient methodological
precision; this was achieved in the nineteenth century.

This time was also a period of massive expansion in mathematics, which
deserves to be emphasized all the more since it has never come sufficiently to
the consciousness of educated humanity. What developed was a freer mode of
abstraction and a strengthened way of forming concepts. Consequently, new
methods were developed, and a whole series of new mathematical disciplines
emerged. In these disciplines the operation with mathematical concepts be-
gan to display great power, beauty, and an impressive richness of thought.
A high level of rational understanding was reached here, and a new way of
being intellectually familiar with enitities was gained.

Two important events in the history of ideas took place in connection with
this development. The first was the discovery of non-Euclidean geometry.
The second was the realization of the Leibnizian program in the domain of
logic by establishing a logical calculus. This calculus might have appeared
playful in its initial form, but it was later extended in such a way that it
allowed for the formal representation of mathematical proofs.
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While mathematics was reaching up to new forms and spheres of under-
standing, its character of familiarity was lost in some respects, especially
since what was once the starting point and center lost this position. Not
only did Euclidean geometry lose its privileged position, and thus its role
as the evident theory of space, but the arithmetical theory of magnitudes,
too, now seemed to be just the theory of one structure among others. The
dominant point of view had become that of the general formal theory of
structures. But this led to difficulties in two different ways: first, in terms
of antinomies, which resulted from the fact that some totalities of possible
structures, while presenting themselves as mathematical entities in a man-
ner analogous to the number series, cannot be understood in that way on
pain of contradiction; second, in terms of the strange aspect of Cantor’s set
theory that an immense progression of infinite cardinal numbers appeared
that dwarfed both the infinite number series and the manifold of the math-
ematical continuum, indeed to a fundamentally greater extent than that in
which the size of our earth is dwarfed by astronomical expansions. This led
many to begin to doubt the justification and meaningfulness of the meth-
ods applied, and the call could be heard “Back to the concrete!” Concepts
and modes of inference which had previously been recognized and used were
no longer accepted. Various developments of new frameworks in mathemat-
ics were undertaken. A particular example of such a new framework is, of
course, that of Brouwer’s intuitionism. Hilbert, on the other hand, had the
idea of connecting mathematics more strongly to concrete representation by
utilizing the formalization of mathematical reasoning.

In his recent talk at the Brussels Congress, Mr. Heyting discussed the
current state of research concerning the foundations of mathematics. In ad-
dressing the question of the object of mathematics, he found that it cannot
be answered in a satisfying way for classical mathematics (i. e., the math-
ematics developed in the nineteenth century). The reason is, according to
Heyting, that in classical mathematics intuitive and formal elements are com-
bined without clear distinction. Then again, he believes that a more precise
working out of these two elements, as given in Brouwer’s intuitionism for
the intuitive element and in Hilbert’s proof theory for the formal element,
is also not satisfactory for an exhaustive treatment of the epistemological
problems at hand. This, he believes, indicates that the question of the ob-
ject of mathematics is ill-phrased and has to be replaced by a more adequate
formulation.

We can certainly agree with that conclusion. Indeed, it is easy to tie the
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question of the object of mathematics to a non-trivial presupposition, namely,
that in scientific inquiry the object must be given to us prior to it. A study
of the sciences shows, however, that an exact determination of the objects
of theoretical disciplines generally grows only out of their conceptualization.
We also do not need to view the combination of intuitive and formal elements
in classical mathematics, noted by Mr. Heyting, as a defect. Indeed, often the
role of important conceptual and methodical approaches lies exactly in the
fact that they offer a kind of balance between intuitive and theoretical-formal
intentions.

Such a balance is already present in the basic perspective of number the-
ory, even in an elementary (“finitist”) treatment of it. We should be clear
here that even in finitist number theory we are no longer in the sphere of
the genuinely concrete; large numbers cannot be exhibited in imagination
or perception. From the standpoint of an approach which aims to remain
in the genuinely concrete, it is then in particular not clear what a universal
statement ranging over arbitrary numbers could mean. The attempt to in-
terpret such a universal statement by appealing to the existence of a proof
does not lead to its objective. Indeed, if a contentual proof, for instance in
the intuitionistic sense, is intended, it consists of a certain procedure that
must be exhibited. But then it must be clear that this procedure realizes
the desideratum in each individual case; and such a claim is again a univer-
sal number-theoretic statement. If, on the other hand, a formal derivation
within a deductive system is intended, then one must convince oneself that
the deductive formalism functions appropriately; and this leads again to a
claim that takes the form of a universal number-theoretic statement.

We can think about the intellectual steps which lead to the specifically
number-theoretic point of view roughly in the following way: First we are
conscious of the freedom we have to advance from one position arrived at
in the process of counting to the next one. But then we take the step of a
connection, through which a function that associates a successor with each
and every number is posited. Hence a progressus in infinitum replaces the
progressus in indefinitum. But it is not immediately obvious that this idea
of the infinite number series can be realized; the intellectual experience of its
successful realization is then essential for developing a feeling of familiarity,
even of obviousness, as an acquired evidence.

The philosophy of mathematics generally tends not to appeal to such ac-
quired evidence, but replaces it with a evidence ab ovo. Thus one is misled to
make one of two mistakes: either to exaggerate the reach of this evidence by
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trying to include all possibly attainable levels, which leads to the antinomies;
or to posit a particular level of evidence as absolute, which results in requir-
ing a restriction of mathematics in such a way that we unnecessarily lose the
freedom of making intellectual decisions.

We can avoid these unacceptable consequences if we give up the view
that mathematics is something obvious. The element of familiarity that we
find in mathematics, especially in elementary mathematics, is an acquired
familiarity. To be sure, mathematics is above all a grasping, not something to
be grasped. But the possibility of successfully extrapolating, by way of strict
mathematical laws, intuitive relations of numbers and figures is basically as
non-obvious as the possibility of discovering physical laws of nature. In this
respect we must return to the wisdom of Socrates, that is, we must recognize
our own ignorance. Kant’s belief that the structure of our own cognition
must be determinable a priori for us is clearly based on an illusion. The
structure of our mental organization is as transcendent for our consciousness
as is the character of external nature.

It is also hardly true that a mathematical element enters into our inves-
tigation of nature only through the manner of our intuitive representation.
Yet we can clearly accept that the world of mathematics confronts us as a
phenomenal realm. Consequently one can speak in relation to mathematics
of a phenomenology of the mind, in a sense different from Hegel’s. However,
the phenomenal in this sense goes certainly beyond what we may assume to
be innate in the individual, if for no other reason than that it is structurally
open. And if one speaks of “mind,” “reason,” or “form of intuition” in the
sense of something that goes beyond concrete psychic constitution, there is
no longer a clear difference between what belongs to the subject and any
element of the world order.

Philosophical speculation about mathematics leads, indeed, to such lofty
regions. When we consider mathematics not from the standpoint of its im-
mediate application, where it provides us with the experience of the familiar
and evident, but want to pursue its roots philosophically instead, we must
avoid too simplistic a conception of mathematics.
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About 35 years ago, on the occasion of a congress in Helsingfors, Tho-
ralf Skolem pointed out a paradoxical consequence of a theorem by Leopold
Löwenheim, for which he had presented a simplified proof two years earlier
using the logical normal form named after him.

This well-known theorem by Löwenheim says that for every mathemati-
cal theory axiomatized in the framework of elementary predicate logic—i. e.,
without bound variables for predicates—there exists a model in which the
individuals are natural numbers, provided that there is a model that satisfies
it at all. The theorem can be extended to the case in which one or more
axiom schemata occur in the axiom system besides the proper axioms. In
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the axiom schema an arbitrary predicate that can be constructed using the
formation rules of the axiom system, resp. a set or function that is arbitrary
in the same sense, occurs as parameter.

Now Skolem realized that this theorem can be applied to axiomatic set
theory, provided it has been sharpened by a more precise concept of definite
property over the original formulation of Ernst Zermelo. That it is possible
to sharpen it in such a way, whereby the axiom system can be represented
as a calculus by axioms and schemata, had been realized shortly before by
Skolem and, in a different way, by Abraham Fraenkel. By the way, John
von Neumann even succeeded in setting up a system of finitely many axioms
(without schemata) for set theory.

Thereby the possibility of such models for set theory arose in which sets
are represented by natural numbers. This possibility is quite paradoxical,
because the cardinal numbers of the sets that occur rise to such dizzying
heights according to the theorems of set theory that the infinity of the number
sequence (the countably infinite) is exceeded by far.

That this does not constitute a proper contradiction follows, as is well-
known, from the fact that the enumerations which work as such in the ax-
iomatic framework do not yet exhaust all possible enumerations. The concept
of set is restricted by the axiomatic specification in such a way that one can
speak of “set” only relative to a particular framework, if one generally insists
on the requirement of axiomatic precision. This relativization is extended
to a series of other concepts that are closely connected to the concept of
set, in particular the concept of a uniquely invertible mapping between two
totalities and thereby also the concept of cardinality (generalized concept of
number), and especially that of denumerability.

At first the impression arises that the detected paradox shows above all
that differences of magnitudes are apparent and especially that the properly
uncountable is an illusion. At the same time the thought is suggested that an
operative construction of mathematics, and in particular of analysis, might
be preferable to an axiomatic formulation, in the light of the ascertained
relativity.

An operative understanding of mathematics is championed by many. It is
characteristic that it does not regard the object of mathematics as something
that is given in advance and that should be made accessible to our thought by
formation of concepts and axiomatic descriptions, but that the mathematical
operations themselves and the objects that are brought about by them are
regarded as the topic of mathematics. Mathematics should, to some extent,
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create its own objects. Thereby the character of arithmetic is prescribed eo
ipso, since the structures of the operative creation are not fundamentally
more general than those of the number sequence.

Herein lies a strength of this standpoint on the one hand, and a weakness
on the other. It possesses a strength insofar arithmetical (constructive, com-
binatorial) thinking has the methodical distinction of being elementary and
intuitive. However, it is doubtful whether we can get by with it for math-
ematics and whether a, so to speak, monistic conception of mathematics in
the sense of the operative view can do full justice to its content—even as it
is now.

This idea is especially reinforced when we consider the enterprises of an
operative construction of analysis as they have been pursued in more recent
times, following different programmatic points of view. All these kinds of
constructions have in common that we are hindered by distinctions which
are of no relevance for the geometrical idea of the continuum and are not
necessary for the consistent functioning of the concepts. The usual procedure
of classical analysis proves to be vastly superior in this respect; and if the
treatment of analysis had historically begun with an operative procedure, the
detection of the possibility of the so much simpler classical methods would
have been an eminent discovery, hardly less as it meant a de facto eminent
progress in a different direction, namely compared to the vagueness of the
former operations in analysis.

The sense of an appropriate formation of concepts for analysis apparently
lies in a suitable compromise. We can make that plausible by the following.
The conflicting aspects of the concept to be determined are, on the one
hand, the intended homogeneity of the idea of the continuum and, on the
other hand, the requirement of conceptual distinctness of the measures of
magnitudes. From an arithmetical point of view, every element of the number
sequence is an individual with its very specific properties; from a geometric
point of view we have here only the succession of repeating similar things.
The task of formulating a theory of the continuum is not simply descriptive,
but a reconciliation of two diverging tendencies. In the operative treatment
one of them is given too much weight, so that homogeneity comes up short.

The investigations about the effectiveness and the fine structure in the for-
mation of number series and sets of numbers have an unquestionable impor-
tance for their specific aspects of the general question. But the insights that
have been gained here do not constitute a definite indication that the usual
procedure of analysis should be replaced by the more arithmetical methods.
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The method on which the procedures in classical analysis are based con-
sists, in its logical means, in the application of a contentful “second-order”
logic, in which the general concepts like “proposition,” “set,” “series,” “func-
tion” etc. are used in an unbounded way that is not further specified. This
second order logic shows its strength not only in its application to the the-
ory of the continuum, but that it generally allows for the characterization of
mathematical structures, that may even be uncountable, by explicit defini-
tions. Namely, to what is usually called an “implicit definition” of mathe-
matical objects there corresponds an explicit definition of a whole structure
wherein those objects occur as dependent components. The model theoretic
concepts of satisfiability and categoricity also find here their unproblematic
application.

To be sure, second order logic is reproached for having a certain impre-
cision in the concepts, and it is the aim of the new sharper form of the
axiomatic approach to repair this defect. Logic and axiomatic set theory
have developed the methods for this. The phenomena of the relativity of
the higher general concepts discussed above is evidence that this has not
succeeded in a completely adequate way to make the concepts precise.

Let us again consider this with an example. The property that an ordering
has no gaps is expressed in second-order logic by the condition that every
proper initial segment of the ordering which has no last element possesses
an immediately succeeding one. The general concept of set appears here by
means of the proper initial segment. If this is now made precise by giving
certain conditions on how to obtain sets, the manifold of the initial segments
under consideration is narrowed, and thereby the condition is weakened. This
means that some orderings are admitted as being gapless that can no longer
count as being such if the concept of set is sufficiently expanded (i. e., if
further processes are admitted for the formation of sets).

The difficulty considered here which, is related to the task of making a
theory formally precise, not only occurs in the characterization of uncount-
able structures, but especially also in the characterization of the structure
of the sequence of numbers. We can explain, in Dedekind’s sense, that a set
M has the structure of the sequence of numbers with regard to a mapping ϕ
(from M to itself) if ϕ is uniquely invertible and there is an element a of M
which is not in the image of ϕ, and which has the property that no proper
subset of M exists that contains a as well as ϕ(c) for every element c. Here
again to stipulate a narrower concept of subset can have the consequence that
the above condition is satisfied by models to which we would not attribute
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the structure of the number sequence based on the unrestricted condition.
This state of affairs results likewise if we use an axiom system to characterize
the number sequence instead of the explicit definition of structure. In the
usual form of such an axiom system one has the axiom of complete induction
in which the general concept of proposition (or predicate) occurs. If the ax-
iomatics are formally sharpened this axiom is replaced by a formal inference
principle in which the range of the allowed predicates is formally delimited
by a substitution rule. This restriction also allows for the possibility of mod-
els for number theory that satisfy all statements provable within the formal
framework, but that deviate from the structure of the number sequence when
they are considered on their own. Again it was Skolem who pointed out this
state of affairs of the “non-characterizability” of the number sequence by a
formalized axiom system, using drastic examples.

On the whole, after what has been said so far the success of attempt-
ing to make a theory sharper and more precise using axioms might appear
highly questionable. But the circumstance is not taken into consideration
thereby that there are frameworks that classical mathematics has no reasons
to transgress – as has been shown by the axiomatic and logical analysis of
mathematical theories. The domain of sets and functions, e. g., as it is pro-
vided by the axioms of set theory, is closed in such a way that the formal
axiomatic restriction is hardly palpable when forming concepts and conduct-
ing proofs.

Furthermore, the set theoretic theorems are not affected by the relativity
that holds for the general concepts. This relativity of course does not mean
that the continuum is shown to be uncountable in one framework for set
theory and countable in another. The discrepancy consists rather only in the
fact that the totality of things that are represented in a set theoretic system,
e. g., the set of subsets of the number sequence, can be countable in a more
comprehensive system; but then it does not act there as a representation of
that set of subsets, and thus it is impossible to map the numbers uniquely
to the sets of numbers. In such a way the cardinality theorems of Cantor’s
set theory are invariant with respect to the axiomatic framework, despite the
relativity of the set concepts.

Of course, it must be conceded that this relativity brings the circumstance
more forcefully into our consciousness that the higher cardinalities in set
theory are only intended, so to speak, but not properly constructed. In this
sense the levels of cardinalities are in a certain way unreal.

The awareness of this state of affairs is often explained by saying that
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everything in mathematics is countable in “actuality.” But this formulation
is misleading in so far as it does not take into account the fundamental fact
which is expressed both in operative mathematics and in the consideration
of formal axiom systems, namely that mathematical thinking in principle
transcends every countable system. The framework for the mathematical
formation of concepts is the open, contentual second number class both when
proceeding constructively and within a theory of types, if these are not re-
stricted in an arbitrary fashion, or also in the sequence of the ascending sys-
tems of axiomatic set theory. It represents something that is in the proper
sense uncountable, and sure enough it cannot be addressed as a particular
mathematical structure.

We are reminded here of the fact that also the number sequence is pre-
sented to us originally as an open domain compared to which the number
sequence that we address as a structure is somehow unreal. The difference
with respect to the second number class is that the openness of the num-
ber sequence is only due to the incompletedness of the iterations of a single
process, whereas the openness of the second number class is due to the in-
completedness of the formations of concepts.

That the unreal character of particular uncountable structures is much
more noticeable than the unreal character that lies in the conception of the
number sequence as a structure is due to the fact that our concept of a
formal theory intends exactly the same kind of infinity as that of the number
sequence.
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The following comments are concerned with a book that is the second part
of the posthumous publications of selected fragments from Wittgenstein in
which he sets forth his later philosophy.1 The necessity of making a selection

1The book was originally published in German, with English translation attached. All
pages and numbers quoted refer to [?].
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and the fragmentary character noticeable at points are not overly problem-
atic, since in his publications Wittgenstein refrains from a systematic presen-
tation anyway and expresses his thoughts in separate paragraphs—jumping
frequently from one theme to another. In fairness to the author it has to be
admitted, however, that he would doubtlessly have made extensive changes
in the arrangement and selection of the material had he been able to com-
plete the work himself. The editors of the book have, by the way, greatly
facilitated an overview over the book by providing a very detailed table of
contents and an index. The preface provides information about the origins
of the different parts I–V.

Compared with the viewpoint of the Tractatus, which considerably influ-
enced the initially rather extreme doctrine of the Vienna Circle, Wittgen-
stein’s later philosophy represents a rectification and clarification in essential
respects. In particular, the very schematic conception of the structure of sci-
entific language—especially of the composition of statements out of atomic
propositions—is here dropped. What remains, however, is the negative atti-
tude towards speculative thinking and the constant tendency to disillusionize.

Thus Wittgenstein himself says, evidently with his own philosophy in
mind (p. 63, No. 18): “Finitism and behaviorism are quite similar trends.
Both say, but surely, all we have here is . . . . Both deny the existence of
something, both with a view to escaping from a confusion. What I am doing
is, not to show that calculations are wrong, but to subject the interest of
calculations to a test.” Later on he explains (p. 174, No. 16): “It is my task,
not to attack Russell’s logic from within, but from without. That is to say:
not to attack it mathematically—otherwise I should be doing mathematics—
but its position, its office. My task is, not to talk about (e. g.) Gödel’s proof,
but to pass it by.”

As one can see, a certain jocularity of expression is not missing in Wittgen-
stein; and in the numerous parts written in dialogue form he often enjoys
acting the rogue.

On the other hand, he does not lack esprit de finesse, and his remarks
contain many implicit suggestions, in addition to what is explicitly stated.

Throughout, however, two problematic tendencies play a role. The first
is to explain away the actual role of thinking—of reflective intending—along
behavioristic lines. It is true that David Pole, in his interesting account
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and exposition of Wittgenstein’s later philosophy,2 denies that Wittgenstein
is a supporter of behaviorism. And this contention is justified insofar as
Wittgenstein certainly does not deny the existence of mental experiences of
feeling, perceiving and imagining. Still, with regard to thinking his attitude
is behavioristic after all. In this connection he tends towards a short circuit
everywhere. Images and perceptions are, in each case, supposed to be fol-
lowed immediately by behavior. “We do it like this,” that is usually the last
word of explanation—or else he appeals to some need as an anthropological
fact. Thought, as such, is left out. Along these lines, it is characteristic that a
“proof” is conceived of as a “picture” or “paradigm;” and although Wittgen-
stein is critical of the method of formalizing proofs he keeps using the formal
method of proof in Russell’s system as an example. Instances of mathemati-
cal proofs proper, which are neither just calculations nor result merely from
exhibiting a figure or a formal procedure, do not occur at all in this book on
the foundations of mathematics, a book a major part of which addresses the
question as to what proofs really are; and that in spite of the fact that the
author has evidently concerned himself with many mathematical proofs.

One passage may be mentioned as characteristic for Wittgenstein’s be-
havioristic attitude, and as an illustration of what is meant here by a short
circuit. Having rejected as unsatisfactory various attempts to characterize
inference, he continues (p. 8, No. 17): “This is why it is necessary to look
and see how we carry out inferences in the practice of language; what kind
of procedure in the language-game inferring is. For example: a regulation
says: ‘All who are taller than five foot six are to join the . . . section.’ A
clerk reads out the men’s names and their heights. Another allots them to
such-and-such sections. ‘N. N. five foot nine.’ ‘So N. N. to the . . . section.’
That is inference.” It is evident here that Wittgenstein is satisfied only with
the characterization of an inference in which one passes directly from a lin-
guistic specification of the premises to an action; one in which, therefore, the
specifically reflective element is eliminated. Language, too, appears under
the aspect of behavior (“language-game”).

The other problematic tendency has its source in the program—already
present in Wittgenstein’s earlier philosophy—of separating strictly the lin-
guistic and the factual, a separation also present in Carnap’s Logical Syntax
of Language. That this separation should have been retained in the new

2Vide [?].
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version of Wittgenstein’s doctrine does not go without saying because here
the approach, compared with the earlier one, is in many respects less rigid.
Some signs of change are, in fact, apparent, as for instance on p. 119, No. 18:
“It is clear that mathematics as a technique for transforming signs for the
purpose of prediction has nothing to do with grammar.” Elsewhere (p. 125,
No. 42), he even speaks of the “synthetic character of mathematical proposi-
tions.” As he puts it: “It might perhaps be said that the synthetic character
of propositions of mathematics appears most obviously in the unpredictable
occurrence of the prime numbers. But their being synthetic (in this sense)
does not make them any the less a priori . . . . The distribution of primes
would be an ideal example of what could be called synthetic a priori , for one
can say that it is at any rate not discoverable by an analysis of the concept of
a prime number.” As we can see, Wittgenstein turns here from the Vienna
Circle concept of “analyticity” back to a conception that is more Kantian.

A certain rapprochement to Kant’s conception can also be found in Wittgen-
stein’s view that mathematics first determines the character or “creates the
forms of what we call facts” (see p. 173, No. 15). Along these lines, Wittgen-
stein strongly opposes the view that the propositions of mathematics have
the same function as empirical propositions. At the same time, he emphasizes
on a number of occasions that the applicability of mathematics, in particular
of arithmetic, depends on empirical conditions; e. g., on p. 14, No. 37 he says:
“This is how our children learn sums; for one makes them put down three
beans and then another three beans and then count what is there. If the
result at one time were five, at another seven . . . , then the first thing we
said would be that beans were no good for teaching sums. But if the same
thing happened with sticks, fingers, lines and most other things, that would
be the end of all sums.—’But shouldn’t we then still have 2 + 2 = 4?’—This
sentence would have become unusable.”

Nevertheless, statements like the following remain important for Wittgen-
stein’s conception (p. 160, No. 2): “If you know a mathematical proposition,
that’s not to say that you yet know anything.” He repeats this twice, at
short intervals, and adds: “I. e., the mathematical proposition is only to sup-
ply a framework for a description.” In the manner of Wittgenstein one could
ask back here: “Why is the person in question supposed to still know noth-
ing? What need is expressed by this ‘supposed to’?” It appears that only
a philosophical preconception leads to this requirement, the view, namely,
that there can exist only one kind of factuality: that of concrete reality.
This view corresponds to a kind of nominalism that also plays a role else-
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where in discussions on the philosophy of mathematics. In order to justify
such a nominalism Wittgenstein would, at the very least, have to go back
further than he does in this book. In any case, he cannot appeal to our actual
attitudes here. And indeed, he attacks our tendency to regard arithmetic,
say, “as the natural history of the domain of numbers” (see p. 117, No. 13,
and p. 116, No. 11). Then again, he is not fully definite on this point. He
asks himself (p. 142, No. 16) whether it already constitutes “mathematical
alchemy” to claim that mathematical propositions are regarded as statements
about mathematical objects. But he also notes: “In a certain sense it is not
possible to appeal to the meaning of signs in mathematics, just because it
is only mathematics that gives them their meaning. What is typical of the
phenomenon I am talking about is that a mysteriousness about some mathe-
matical concept is not straight away interpreted as an erroneous conception,
as a mistake of ideas; but rather as something that is at any rate not to
be despised, is perhaps even rather to be respected. All that I can do, is
to show an easy escape from this obscurity and this glitter of the concepts.
Strangely, it can be said that there is so to speak a solid core to all these
glistening concept-formations. And I should like to say that that is what
makes them into mathematical productions.”

One may doubt whether Wittgenstein has indeed succeeded in exhibiting
“an easy escape from this obscurity;” one may even be inclined to think that
the obscurity and the “mysteriousness” really have their origin in a philo-
sophical conception, or in the philosophical language used by Wittgenstein.

His fundamental separation of the sphere of mathematics from the sphere
of the factual comes up in several passages in the book. In this connection,
Wittgenstein often speaks with a matter-of-factness that contrasts strangely
with his readiness to doubt so much of what is generally accepted. A passage
on p. 26, No. 80 is typical for this; he says: “But of course you can’t get to
know any property of the material by imagining.” Again on p. 29, No. 98,
we can read: “I can calculate in the imagination, but not experiment.” From
the point of view of common experience, all of this is certainly not obvious.
An engineer or technician has, no doubt, just as lively a mental image of
materials as a mathematician has of geometrical curves; and the mental im-
age which any one of us may have of a thick iron rod is doubtlessly such as
to make it clear that the rod could not be bent by a light pressure of the
hands. Moreover, in the case of technical invention a major role is definitely
played by experimenting in the imagination. It seems that Wittgenstein
simply, without critical reflection, uses a philosophical schema which distin-
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guishes the a priori from the empirical. To what extent and in which sense
this distinction—so important particularly in the Kantian philosophy—is
justified will not be discussed here; but its introduction, particularly at the
present moment, should not be taken very lightly. With regard to the a
priori , Wittgenstein’s viewpoint differs from Kant’s, incidentally, insofar as
it includes the principles of general mechanics in the sphere of the empirical.
Thus he argues, e. g. (p. II 4, No. 4): “Why are the Newtonian laws not
axioms of mathematics? Because we could quite well imagine things being
otherwise . . . To say of a proposition: ‘This could be imagined otherwise’
. . . ascribes the role of an empirical proposition to it.” The notion of “being
able to imagine otherwise,” also used by Kant, has the unfortunate difficulty
of being ambiguous; the impossibility of imagining something may be meant
in various senses. This difficulty occurs particularly in the case of geometry,
as we will discuss later.

The tendency of Wittgenstein, mentioned earlier, to recognize only one
kind of factuality becomes evident not only with regard to mathematics, but
also with respect to any phenomenological consideration. Thus he discusses
the proposition that white is lighter than black (p. 30, No. 105), and explains
it by saying that black serves us as a paradigm for what is dark, and white as
a paradigm for what is light, which makes the statement one without content.
In his opinion statements about differences in brightness have content only
when they refer to specific visually given objects; and for the sake of clarity
one should not even talk about differences in the brightness of colors. This
attitude obviously precludes a descriptive theory of colors.

Actually, phenomenological considerations should be congenial to Wittgen-
stein, one might think. This is suggested by the fact that he likes to draw
examples, for the purpose of comparison, from the field of art. It is only his
philosophical program, then, that prevents the development of an explicitly
phenomenological viewpoint.

This aspect is an example of how Wittgenstein’s methodology is aimed at
eliminating a very great deal. He sees himself in the part of the free thinker
who combats superstition. However, the latter’s goal is freedom of the mind,
whereas it is exactly the mental that Wittgenstein restricts in many ways—
by means of a mental asceticism in the service of an irrationality whose goal
is quite indeterminate.

Yet this tendency is by no means as extreme in the later philosophy of
Wittgenstein’s as it was in the earlier form. One may already gather from
the passages quoted above that he was probably on the way to giving mental
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contents more of their due.
A related fact may be that, in contrast to the simply assertoric form

of philosophical statements in the Tractatus, a largely aporetical attitude
prevails in the present book. With respect to philosophical pedagogics this
presents a danger, however, especially as Wittgenstein’s philosophy is exert-
ing such a strong attraction on younger minds. The old Greek observation
that philosophical contemplation often begins in philosophical wonder3 mis-
leads many philosophers today into believing that the cultivation of aston-
ishment is in itself a philosophical achievement. One may surely have one’s
doubts about the soundness of a method which trains young philosophers in
wondering, as it were. Wondering is heuristically fruitful only when it is the
expression of an instinct for research. Clearly it cannot be demanded of any
philosophy to make comprehensible everything that is astonishing. But per-
haps it is characteristic for the various philosophical viewpoints what they
accept as ultimate that which is astonishing. In Wittgenstein’s philosophy
it is, as far as epistemological questions are concerned, sociological facts. A
few quotations may serve as illustrations of this point (p. 13, No. 35): “. . .
how does it come about that all men . . . accept these patterns as proofs of
these propositions?—It is true, there is a great—and interesting—agreement
here.” (p. 20, No. 63): “. . . it is a peculiar procedure: I go through the
proof and then accept its result.—I mean: this is simply what we do. This is
use and custom among us, or a fact of our natural history.” (p. 23, No. 74):
“If you talk about essence—, you are merely noting a convention. But here
one would like to retort: there is no greater difference than that between
a proposition about the depth of the essence and one about—a mere con-
vention. But what if I reply: to the depth that we see in the essence there
corresponds the deep need for the convention.” (p. 122, No. 30): “Do not
look at the proof as a procedure that compels you, but as one that guides you
. . . But how does it come about that it guides each one of us in such a way
that we agree in the influence it has on us? Well, how does it come about
that we agree in counting? ‘That is just how we are trained’ one may say,
‘and the agreement produced in this way is carried further by the proofs.’ ”

II

So much for a general characterization of Wittgenstein’s observations.

3θαυµάζειν.
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But their content is by no means exhausted by the general philosophical
aspects that have been mentioned; various specific questions of a basic philo-
sophical nature are also discussed in detail. In what follows, we shall deal
with their principal aspects.

Let us begin with a question that is connected with a problem previously
touched on, namely the distinction between the a priori and the empirical:
the question of geometrical axioms. Wittgenstein does not deal specifically
with geometrical axioms as such. Instead, he raises the general question as
to how far the axioms of an axiomatized mathematical system should be self-
evident; and he takes as his example the parallel axiom. Let us quote a few
sentences from his discussion of this subject (p. 113, No. 2ff): “What do we
say when we are presented with such an axiom, e. g., the parallel axiom? Has
experience shown us that this is how it is? . . . Experience plays a part; but
not the one we would immediately expect. For we haven’t made experiments
and found that in reality only one straight line through a given point fails
to intersect another. And yet the proposition is evident.—Suppose I now
say: it is quite indifferent why it is evident. It is enough that we accept it.
All that is important is how we use it . . . . When the words for e. g. the
parallel axiom are given . . . the kind of use this proposition has and hence
its sense are as yet quite undetermined. And when we say that it is evident,
this means that we have already chosen a definite kind of employment for
the proposition without realizing it. The proposition is not a mathematical
axiom if we do not employ it precisely for this purpose. The fact, that is, that
here we do not make experiments, but accept the self-evidence, is enough to
fix the employment. For we are not so naive as to make the self-evidence
count in place of the experiment. It is not our finding the proposition self-
evidently true, but our making the self-evidence count, that makes it into a
mathematical proposition.”

In discussing these remarks, it must first be realized that we need to dis-
tinguish two things: whether we recognize an axiom as geometrically valid,
or whether we choose it as an axiom. The latter is, of course, not determined
by the wording of the proposition. But here we are concerned merely with
a technical question concerning the deductive arrangement of propositions.
What interests Wittgenstein, on the other hand, is surely the recognition of
the proposition as geometrically valid. It is along these lines that Wittgen-
stein’s assertion (“that the recognition is not determined by the words”)
must be considered; and its correctness is at the very least not immediately
evident. He says simply: “For we have not made experiments.” Admittedly,
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there has been no experimenting in connection with the formulation of the
parallel axiom considered by him; this formulation does not lend itself to this
purpose. However, within the framework provided by the other geometrical
axioms the parallel axiom is equivalent to any one of the following statements
of metrical geometry: “In a triangle the sum of the angles is equal to two
right angles. In a quadrilateral in which three angles are right angles the
fourth angle is also a right angle. Six congruent equilateral triangles with a
common vertex P (lying consecutively side by side) exactly fill up the neigh-
borhood of point P .” Such propositions—in which, it should be noted, there
is no mention of the infinite extendibility of a straight line—can definitely
be tested by experiment. And as is well known, Gauss did in fact check
experimentally the proposition about the sum of the angles of a triangle,
thereby making use of the assumption of the linear propagation of light, to
be sure. In addition, this is not the only possibility for an experiment. Hugo
Dingler, in particular, has shown that for the concepts of straight line, plane,
and right angle there exists a natural and, as it were, compulsory kind of
experimental realization. By means of such an experimental realization of
geometrical concepts, statements like the second one above, especially, can
be experimentally tested with great accuracy. Moreover, in a less accurate
way they are checked by us all the time implicitly in the normal practice
of drawing figures. Our instinctive estimations of lengths and of the sizes
of angles, too, can be regarded as the result of manifold experiences; and
propositions such as those mentioned above must, after all, agree with those
instinctive estimations.

It cannot be upheld, therefore, that our experience plays no role in the
acceptance of propositions as geometrically valid. But Wittgenstein does not
mean that either, as becomes clear from what follows immediately after the
passage quoted (p. 114, Nos. 4 and 5): “Does experience tell us that a straight
line is possible between any two points? . . . It might be said: imagination
tells us. And the germ of truth is here; only one must understand it right.
Before the proposition the concept is still pliable. But might not experience
force us to reject the axiom?! Yes. And nevertheless it does not play the role
of an empirical proposition. . . . Why are the Newtonian laws not axioms of
mathematics? Because we could quite well imagine things being otherwise.
. . . Something is an axiom, not because we accept it as extremely probable,
nay certain, but because we assign it a particular function, and one that
conflicts with that of an empirical proposition. . . . The axiom, I should like
to say, is a different part of speech.” Further on (p. 124, No. 35), he says:
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“What about e. g. the fundamental laws of mechanics? If you understand
them you must know how experience supports them. It is otherwise with the
propositions of pure mathematics.”

In support of these remarks, it must certainly be conceded that experience
alone does not force the theoretical acceptance of a proposition. An exact
theoretical approach must always go beyond the facts of experience in its
conception.

Nevertheless, the view that in this respect there exists a sharp dividing
line between mathematical propositions and the principles of mechanics is
by no means justified. In particular, the last quoted assertion that, in order
to understand the basic laws of mechanics, the experience on which they are
based must be known can hardly be upheld. Of course, when mechanics is
taught at the university it is desirable that the empirical starting points be
made clear. But this is not done with a view towards the theoretical and
practical manipulation of the laws, but for being epistemologically alert and
with an eye to the possibilities of eventually necessary modifications of the
theory. An engineer or productive technician who wants to become skilled
in mechanics and capable of handling its laws does not have to concern him-
self with how we came upon these laws. With respect to these laws applies,
moreover, the same as what Wittgenstein so frequently emphasizes with re-
spect to mathematical laws: that the facts of experience relevant for the
empirical motivation of these propositions by no means make up the content
of what is asserted in the laws. What is important instead for learning to
handle the mechanical laws is to become familiar with the concepts involved
and to make them intuitive to oneself in some way. This kind of acquisition
is not only practically, but also theoretically significant: the theory is fully
assimilated only in the process of rationally shaping and extending it, to
which it is subsequently subjected. With regard to mechanics, most philoso-
phers and many of us mathematicians have little to say in this connection,
not having acquired mechanics in the said manner.—What distinguishes the
case of geometry from that of mechanics is the (philosophically in a sense
accidental) circumstance that the acquisition of the world of concepts and
of corresponding intuitions is for the most part already completed in an (at
least for us) unconscious stage of mental development.

Ernst Mach’s opposition to a rational foundation of mechanics has its
justification insofar as such a foundation endeavors to pass over the role of
experience in arriving at the principles of mechanics. We must keep in mind
that the concepts and principles of mechanics comprise, as it were, an extract
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of experience. On the other hand, it would be unjustified to simply reject all
efforts at constructing mechanics rationally on the basis of this criticism.

What is special about geometry is the phenomenological character of its
laws, and hence the significant role played by intuition. Wittgenstein points
to this aspect only in passing: “Imagination tells us. And the germ of truth
is here; only one must understand it right” (p. 8). The term “imagination”
is very general, and what he says at the end of the second sentence is a
qualification which shows that the author feels the topic of intuition to be
rather tricky. Indeed, it is very difficult to characterize the epistemological
role of intuition in a satisfactory way. The sharp opposition between intuition
and concepts as it occurs in Kant’s philosophy does not, on closer inspection,
appear to be justified. When considering geometrical thinking in particular it
is difficult to separate sharply the part played by intuition from that played by
the conceptual; since we find here a formation of concepts that is in a certain
sense guided by intuition—one that, in the sharpness of its intentions, goes
beyond what is intuitive in the strict sense, but also cannot be understood
adequately if it is considered apart from intuition. What is strange is that
Wittgenstein assigns no specific epistemological role to intuition in spite of
the fact that his thinking is dominated by the visual. For him a proof is
always a picture. At one time he gives a mere figure as an example of a
geometrical proof. It is also striking that he never talks about the intuitive
evidence of topological facts, such as the fact that the surface of a sphere
divides (the rest of) space into an interior and an exterior part, in such a
way that a curve which connects an inside point with an outside point always
passes through a point on the surface of the sphere.

Questions concerning the foundations of geometry and its axioms belong
primarily to the domain of general epistemology. What is called research
on the foundations of mathematics in the narrower sense today is directly
mainly at the foundations of arithmetic. Here one tends to eliminate, as much
as possible, what is special about geometry by separating the latter into an
arithmetical and a physical side. We shall leave aside the question of whether
this procedure is justified; that question is not discussed by Wittgenstein. In
contrast, he deals in great detail with basic questions concerning arithmetic.
Let us now take a closer look at his remarks concerning this area of inquiry.

The viewpoint from which Wittgenstein looks at arithmetic is not the
usual one of a mathematician. More than with arithmetic itself, Wittgen-
stein is concerned with theories of the foundations of arithmetic (in particular
with Russell’s theory). With regard to the theory of numbers, especially, his
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examples seldom go beyond the numerical. An uninformed reader might well
conclude that the theory of numbers consists almost entirely of numerical
equations—which, actually, are normally not regarded as propositions to be
proved, but as simple statements. Wittgenstein’s treatment is more math-
ematical in the sections where he discusses questions of set theory, such as
concerning denumerability and non-denumerability, as well as concerning the
theory of Dedekind cuts.

Throughout, Wittgenstein advocates the standpoint of strict finitism. In
so doing he considers the various types of problems concerning the infinite
that there are from a finitist viewpoint, in particular the problems of the
tertium non datum and of impredicative definitions. The quite forceful and
vivid account he provides in this connection is well suited for introducing
the finitist’s position to those still unfamiliar with it. However, it hardly
contributes anything essentially new to the debate; and those who hold the
position of classical mathematics in a deliberate way will scarcely be con-
vinced by it.

Let us discuss a few points in more detail. Wittgenstein deals with the
question of whether in the infinite expansion of π a certain sequence of num-
bers φ such as, say, “777,” ever occurs. Along Brouwer’s lines, he draws
attention to the possibility that this question may not as yet have a definite
answer. Along these lines he then says (p. 138, No. 9): “However queer it
sounds, the further expansion of an irrational number is a further develop-
ment of mathematics.” This formulation is obviously ambiguous. If it merely
means that any determination of a not yet calculated decimal place of an ir-
rational number is a contribution to the development of mathematics, then
every mathematician will agree with it. But since the statement is said to
be “queer sounding,” something else is most likely meant. Perhaps it is that
the course of the development of mathematics at a given time is undecided,
and that this undecidedness can have to do with the continuation of the ex-
pansion of an irrational number given by a definition; so that the decision as
to what digit is to be put at the ten-thousandth decimal place of π would be
a contribution to the direction of the history of thought. But such a view is
not appropriate even according to Wittgenstein’s own position, for he says
(p. 138, No. 9): “The question . . . changes its status when it becomes de-
cidable.” Now, it is a fact that the digits in the decimal expansion of π are
decidable up to any chosen decimal place. Hence the suggestion about the
further development of mathematics does not contribute anything to our un-
derstanding of the situation in the case of the expansion of π. One can even
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say the following: Suppose we maintained firmly that the question of the oc-
currence of the sequence of numbers φ is undecidable, then this would imply
that the figure φ occurs nowhere in the expansion of π; for if it did, and if k
was the decimal place that the last digit of φ had on its first occurrence in the
decimal expansion of π, then the question whether the figure φ occurs before
the (k + 1)th place would be a decidable question and could be answered
positively; thus the initial question would be decidable, too. (Incidentally,
this argument does not require the principle of tertium non datur .)

Further on in the text, Wittgenstein comes back repeatedly to the ex-
ample of the decimal expansion of π. At one point in particular (p. 185,
No. 34) we find an assertion that is characteristic for his position: “Suppose
that people go on and on calculating the expansion of π. So God, who knows
everything, knows whether they will have reached a ‘777’ by the end of the
world. But can his omniscience decide whether they would have reached it
after the end of the world? It cannot. . . . Even for him the mere rule of
expansion cannot decide anything that it does not decide for us.”

That is certainly not convincing. If we concede the idea of a divine om-
niscience at all, then we would certainly ascribe to it the ability to survey at
one glance a totality every single element of which is in principle accessible
to us. Here we must pay special attention to the double role the recursive
definition plays for the decimal expansion: as the definitory determination
of decimal fractions, on the other hand; and as the means for the “effective”
calculation of decimal places, on the other hand. If we here take “effective”
in the usual sense, then it is true that even a divine intelligence can effec-
tively calculate nothing other than what we are able to effectively calculate
ourselves (no more than it world be capable of carrying out the trisection of
an angle with ruler and compass, or of deriving Gödel’s underivable proposi-
tion in the corresponding formal system). But it is not to be ruled out that
this divine intelligence would be able to survey in some other (not humanly
effective) manner all the possible calculation results of the application of a
recursive definition.

In his criticism of the theory of Dedekind cuts, Wittgenstein’s main ar-
gument is that in this theory an extensional approach is mixed up with an
intensional approach. This criticism is, in fact, appropriate with respect to
certain versions of the theory, namely those in which the goal is to create
the appearance of a stronger constructive character of the procedure than
is actually achieved. If one wants to introduce the cuts not as mere sets of
numbers, but as defining arithmetical laws for such sets, then either one has
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to use a very vague concept of “law,” thus gaining little; or, if one’s aim is
to clarify that concept, one is confronted with the difficulty which Hermann
Weyl has termed the vicious circle in the foundation of analysis. This dif-
ficulty was sensed instinctively by a number of mathematicians for a while,
who consequently advocated a restriction of the procedure of analysis. Such
a criticism of impredicative formations of concepts plays a considerable role
in discussions on the foundations of mathematics even today. However, the
difficulties disappear if an extensional standpoint is maintained consistently.
Moreover, Dedekind’s conception can certainly be understood in that sense,
and was probably meant that way by Dedekind himself. All that is required
is that one accepts, besides the concept of number itself, also the concept of a
set of natural numbers (and, consequently, the concept of a set of fractions) as
an intuitively significant concept that is not in need of a reduction. This does
bring with it a certain moderation with respect to the goal of arithmetizing
analysis, and thus geometry too. But—as one could ask in a Wittgensteinian
manner—must geometry be arithmetized completely anyway? Scientists are
often very dogmatic in their attempts at reductions. They are often inclined
to treat such an attempt as completely successful even if it does not succeed
in the manner intended, but only to a certain extent or within a certain de-
gree of approximation. Confronted with such attitudes, considerations of the
kind suggested in Wittgenstein’s book can be very valuable.

Wittgenstein’s more detailed discussion of Dedekind’s proof procedure is
not satisfactory. Some of his objections can be disposed of simply by giving
a clearer account of Dedekind’s line of thought.

In Wittgenstein’s discussion of denumerability and non-denumerability,
the reader has to bear in mind that by a cardinal number he always means
a finite cardinal number, and by a series always one of the order type of
the natural numbers. His polemics against the theorem stating the non-
denumerability of the totality of real numbers is unsatisfactory primarily in-
sofar as the analogy between the concepts “non-denumerable” and “infinite”
is not exhibited clearly. Corresponding to the way in which “infinitness of a
totality G” can be defined as the property that to any finite number of things
in G one can always find a further thing in it, the non-denumerability of a to-
tality G is defined as the property that to every denumerable sub-totality one
can always find an element of G not yet contained in the sub-totality. Under-
stood in that sense, the non-denumerability of the totality of real numbers
is demonstrated by means of the diagonal procedure; and there is nothing
foisted in here, as would appear to be the case according to Wittgenstein’s
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argument. The theorem of the non-denumerability of the totality of real
numbers is, as such, independent of the comparison of transfinite cardinal
numbers. Besides—and this is often neglected—, for that theorem there
also exist other, more geometrical proofs than the one involving the diagonal
procedure. In fact, from the point of view of geometry we can call this a
rather gross fact. It is strange, also, to find the author raising a question
like the following: “For how do we make use of the proposition: ‘There is
no greatest cardinal number.’? . . . First and foremost, notice that we ask
the question at all; this points to the fact that the answer is not ready to
hand” (p. 57, No. 5). One should think that one needs not search long for
an answer here. Our entire analysis, with all its applications in physics and
technology, rests on the infinity of the number series. Probability theory and
statistics, too, make constant implicit use of that infinity. Wittgenstein acts
as if mathematics existed almost solely for the purposes of housekeeping.

The finitist and constructive attitude taken on the whole by Wittgen-
stein concerning the problems of the foundations of mathematics conforms
to general tendencies in his philosophy. It cannot be said, however, that he
finds confirmation for his position in the foundational situation in mathe-
matics. All he shows is how this position is to be applied when dealing with
the questions under dispute. In general, it is characteristic for the situa-
tion regarding the foundational problems that the results obtained so far do
not favor either of the two main philosophical views opposing each other—
the finitist-constructive view and the “Platonist”-existential view. Each of
the two sides can advance arguments against the other. Yet, the existential
conception has the advantage that it enables us to appreciate investigations
aimed at the establishment of constructive methods (just as in geometry the
investigation of constructions with ruler and compass has significance even
for a mathematician who admits other methods of construction), while for a
strict constructivist a large part of classical mathematics simply falls by the
wayside.

Wittgenstein’s observations concerning the foundational issues of the role
of formalization, the reduction of number theory to logic, and the question
of consistency are to some degree independent of partisanship in the above
mentioned opposition. His views here show more independence, hence these
considerations are of greater interest.

With regard to the question of consistency, in particular, he asserts what
has meanwhile also been stressed by various other theorists in the field of
foundational studies: that within the framework of a formal system a contra-
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diction should not be seen so exclusively as objectionable, and that a formal
system in itself can still be of interest even if it leads to a contradiction.
It should be noted, on the other hand, that in the earlier systems of Frege
and Russell the contradiction arises already within a few steps, as it were
directly from the basic structure of the system. In addition, much of what
Wittgenstein says in this connection overshoots the mark by a long way. Un-
satisfactory, in particular, is his frequently used example of the derivability
of contradictions by admitting division by zero. (One need only consider the
justification for the rule of reduction in order to see that it is not applicable
in the case of the factor zero.)

In any case, Wittgenstein acknowledges the importance of demonstrat-
ing consistency. However, it is doubtful whether he is sufficiently aware of
the role played by the requirement of consistency in proof-theoretic inves-
tigations. Thus his discussion of Gödel’s theorem of non-derivability and
its proof, in particular, suffers from the defect that Gödel’s quite explicit
premise concerning the consistency of the formal system under consideration
is ignored. A fitting comparison, drawn by Wittgenstein in connection with
Gödel’s theorem, is that between a proof of formal unprovability, on the one
hand, and a proof of the impossibility of a certain construction with ruler and
compass, on the other. Such a proof, says Wittgenstein, contains an element
of prediction. But the remark which follows is strange (p. 52, No. 14): “A
contradiction is unusable as such a prediction.” As a matter of fact, such
impossibility proofs usually proceed via the derivation of a contradiction.

In his remarks on the theory of numbers, Wittgenstein shows a noticeable
reserve towards Frege’s and Russell’s foundation of number theory, such as
was not present in the earlier stages of his philosophy. Thus on one occasion
(p. 67, No. 4) he says: “. . . the logical calculus is only—frills tacked on
to the arithmetical calculus.” This thought has perhaps never been formu-
lated as strikingly as here. It might be good, then, to reflect on the sense in
which the claim holds true. There is no denying that the attempt to incor-
porate arithmetical and, in particular, numerical propositions into logistic
has been successful. That is to say, it has proved possible to formulate these
propositions in purely logical terms and, on the basis of this formulation, to
prove them within the framework of logistic. It is open to question, however,
whether this result should be regarded as yielding a proper philosophical
understanding of arithmetical propositions. If we consider, e. g., the logistic
proof of an equation such as 3 + 7 = 10, we can see that within the proof
we have to carry out quite the same comparative verification that occurs in
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our usual counting. This necessity comes to the fore particularly clearly in
the formalized version logic; but it is also present if we interpret the con-
tent of the formula logically. The logical definition of three-numberedness,
for example, is structurally so constituted that it contains within itself, as
it were, the element of three-numberedness. For the three-numberedness of
a predicate P (or of the class that forms the extension of P ) is defined in
terms of the condition that there exist things x, y, z having the property P
and differing from each other pairwise, and further that everything having
the property P is identical with x or y or z. Now, the conclusion that for a
three-numbered predicate P and a seven-numbered predicate Q, in the case
where these predicates do not apply to anything jointly, the disjunction P∨Q
is a ten-numbered predicate requires for its justification just the kind of com-
parison that is used in elementary calculation—only that here an additional
logical apparatus (the “frills”) comes into play as well. When this is clearly
realized, it appears that the proposition in predicate logic is valid because
3 + 7 = 10 holds, not vice versa.

In spite of the possibility of incorporating it into logistic, arithmetic con-
stitutes thus the more abstract (the “purer”) schema; and this seems para-
doxical only because of the traditional, but on closer examination unjustified,
view according to which logical generality is the highest generality in every
respect.

It might be good to look at the matter from yet another side as well.
According to Frege, a cardinal number is to be defined as the property of a
predicate. This view is already problematic with respect to the normal use
of the number concept; for in many contexts in which a number is deter-
mined the specification of a predicate of which it is the property appears to
be highly forced. It should be noted, in particular, that numbers occur not
only in statements, but also in directions and commands—for example, when
a housewife says to an errand-boy: “Fetch me ten apples.” Moreover, the
theoretical elaboration of this view is not without its complications either.
In general, a definite number does not belong to a predicate as such, but
only relative to a domain of objects, a universe of discourse (even apart from
the many cases of extra-scientific predicates to which no determinate number
can be ascribed at all). Thus it would be more appropriate to characterize
a number as a relation between a predicate and a domain of individuals.
To be sure, in Frege’s theory this complication does not occur because he
presupposes what might be called an absolute domain of individuals. But as
we know now, it it is precisely this approach that leads to the contradiction
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noted by Russell. Apart from that, the Fregean conception of the theory of
predicates, according to which the courses of values of predicates are treated
as things on the same level as ordinary individuals, already constitutes a clear
deviation from customary logic, understood as the theoretical construction of
a general framework. The idea of such a framework has retained its method-
ological importance, and the question as to its most appropriate form is still
one of the main problems in foundational research. However, with regard to
such a framework one can speak of a “logic” only in an extended sense. Logic
in its usual sense, in which it merely means the specification of the general
rules for deductive reasoning, must be distinguished from it.

Yet Wittgenstein’s criticism of the incorporation of arithmetic into logic is
not advanced in the sense that he acknowledges arithmetical propositions as
stating facts that are sui generis . Instead, his tendency is to deny that such
propositions express facts at all. He even declares it to be the “curse of the
invasion of mathematics by mathematical logic that now any proposition can
be represented in a mathematical symbolism, and this makes us feel obliged
to understand it. Although of course this method of writing is nothing but the
translation of vague ordinary prose” (p. 155, No. 46). In fact, he recognizes
calculating only as an acquired skill with practical utility. More particularly,
he seeks to explain away what seems factual about arithmetic as definitional.
He asks, for instance (p. 33, No. 112): “What am I calling ‘the multiplication
13 × 13’? Only the correct pattern of multiplication, at the end of which
comes 169? Or a ‘wrong multiplication’ too?” Elsewhere, too, he raises the
question as to what it is that we “call calculating” (p. 97, No. 73). And
on p. 92, No. 58 he argues: “Suppose it were said: ‘By calculating we get
acquainted with the properties of numbers.’ But do the properties of numbers
exist outside the calculating?” The tendency is, apparently, to take correct
additions and multiplications as defining calculating, thus to characterize
them as “correct” in a trivial sense. But this doesn’t work out in the end,
i. e., one cannot express in this way the general facts that hold in terms of
the arithmetic relations of numbers. Let us take, say, the associativity of
addition. It is certainly possible to fix by definition the addition of single
digits. But then the strange fact remains that the addition 3+(7+8) gives the
same result as (3+7)+8, and the same holds whatever numbers replace 3, 7, 8.
With respect to possible definitions the number-theoretic expressions are, so
to speak, over-determined. It is actually on this kind of over-determinateness
that many of the checks available in calculating are based.

Occasionally Wittgenstein raises the question as to whether the result of
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a calculation carried out in the decimal system also holds for the comparison
of numbers by means of their direct representation as sequences of strokes.
The answer to this question is to be found in the usual mathematical justi-
fication of the method of calculating with decadic figures. But Wittgenstein
does touch upon something fundamental here: the proofs for the justifica-
tion of the decadic rules of calculation rest, if they are given in a finitist way,
upon the assumption that every number that can be formed decadically can
also be produced in the direct stroke notation, and that the operations of
concatenation etc., as well as of comparison can always be performed with
such stroke sequences. What this shows is that even finitistic number theory
is not in the full sense “concrete,” but uses idealizations.

The previously mentioned statements in which Wittgenstein speaks of
the synthetic character of mathematics are in apparent contrast with his
tendency to regard numerical calculation as merely definitional, as well as
with his denial that arithmetical propositions are factual in the first place.
Note in this connection the following passage (p. 160, No. 3): “How can you
say that ‘. . . 625 . . . ’ and ‘. . . 25 × 25 . . . ’ say the same thing?—Only
through our arithmetic do they become one.” What is meant here is closely
related to what Kant had in mind in his argument against the view that 7 +
5 = 12 is a mere analytical proposition. Kant contends there that the concept
12 “is by no means already thought in merely thinking this union of 7 and 5,”
and he adds: “That 7 should be added to 5, I have indeed already thought
in the concept of a sum = 7 + 5, but not that this sum is equivalent to the
number 12” (Critique of Pure Reason, B 14ff.). In modern terminology, this
Kantian argument could be expressed as follows: The concept “7 + 5” is an
individual concept (to use Carnap’s terminology) expressible by means of the
description ιx (x = 7+5), and this concept is different from the concept “12;”
the only reason why this is not obvious is that we involuntarily carry out the
addition of the small numbers 7 and 5 directly. We have here the case, in the
new logic often discussed following the example of Frege, of two terms with a
different “sense” but the same “meaning” (called “denotation”by A. Church);
and to determine the synthetic or analytic character of a judgment one must,
of course, always consider the sense, not the meaning. The Kantian thesis
that mathematics is synthetic does, incidentally, not stand in conflict with
what the Russellian school maintains when it declares the propositions of
arithmetic to be analytic. For we have here two entirely different concepts of
the analytic—a fact which, in recent times, has been pointed out especially
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by E. W. Beth.4

Another intrinsic tension is to be found in Wittgenstein’s position with
respect to logistic. On the one hand, he often tends towards regarding proofs
as formalized. Thus we can read on p. 93, No. 64: “Suppose I were to set
someone the problem: ‘Find a proof of the proposition . . . ’—The answer
would surely be to show me certain signs.” The distinctive and indispens-
able role of everyday language relative to that of a formalized language is not
given prominence in his remarks. He often speaks of “the language game,”
and does not restrict the use of this expression to an artificial formal lan-
guage, for which alone it is really appropriate. Indeed, our natural language
does not have the character of a game at all; it is part of us, almost in the
same way in which our limbs are. Apparently Wittgenstein is here still under
the sway of the idea of a scientific language that encompasses all scientific
thought. In contrast with this stand his highly critical remarks about mathe-
matical logic. Apart from the one already quoted concerning “the curse of the
invasion of mathematics by mathematical logic,” the following is especially
noteworthy (p. 156, No. 48): “ ‘Mathematical logic’ has completely deformed
the thinking of mathematicians and of philosophers, by setting up a super-
ficial interpretation of the forms of our everyday language as an analysis of
the structures of facts. Of course in this it has only continued to build on
the Aristotelian logic.”

We can get clearer about the idea that seems to underlie this criticism if
we keep in mind the following: the logical calculus was intended, by various
of its founders, as a realization of the Leibnizian idea of a characteristica
universalis . With regard to Aristotle, Wittgenstein’s remark, if looked at
more closely, is not a criticism; since all Aristotle wanted to do with his
logic was to fix the usual forms of logical argument and to test their legiti-
macy. The task of a characteristica universalis, on the other hand, was to be
much more comprehensive; it was to establish a conceptual world that would
make it possible to understand all real connections. With respect to an un-
dertaking aimed at that goal it cannot be taken for granted, however, that
the grammatical structures of our language are to function also as the basic
framework for the theory; since the categories of that grammar have a char-
acter that is at least partially anthropomorphic. At the same time it should
be emphasized that, besides our usual logic, nothing even approaching its

4Vide [?].
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value has been devised in philosophy so far. What Hegel, in particular, put
in place of Aristotelian logic when he rejected it consists of a mere comparing
of universals in terms of analogies and associations, without any clear regula-
tive procedure. This method can certainly not pass as even an approximate
fulfillment of the Leibnizian idea.

Unfortunately, from Wittgenstein we do not get any guidance for how
to replace conventional logic by something philosophically more efficient ei-
ther. Most likely, he considered the analysis of the structures of reality to be
a misguided project; his goal was, after all, not to find a procedure that is
somehow determinate. The “logical compulsion,” the “inexorability of logic,”
the “hardness of the logical must” are a constant stumbling-block for him
and, again and again, a cause for consternation. Perhaps he does not al-
ways bear in mind that all these terms merely have the character of popular
comparisons, and are inappropriate in many respects. The strictness of the
logical and the exact does not constrain our freedom. Indeed, it is our very
freedom that enables our intention to be precise in thought while confronted
with a world of imprecision and inexactitude. Wittgenstein speaks of the
“must of kinematics” as being “much harder that the causal must” (p. 37,
No. 121). Is it not an aspect of freedom that we can conceive of virtual mo-
tions that are subject merely to kinematic laws, apart from the real, causally
determined motions, and that we can compare the former with the latter?

Enlightened humanity has sought liberation in rational determination
when confronted with the dominance of the merely authoritative. But at
present awareness of this fact has for the most part been lost, and for many
the validity of science appears to be an oppressive authority.

In Wittgenstein’s case, it is certainly not this aspect that evokes his crit-
ical attitude towards scientific objectivity. Nevertheless, his tendency is to
declare the intersubjective unanimity in the field of mathematics to be an
heteronomous one. Our agreement, he believes, is to be explained by the
fact that we are in the first place “trained” together in basic techniques, and
that the agreement thus created is then continued through the proofs (cf. the
quotation on p. 195). That this kind of explanation is inadequate will occur
to anybody not blinded by the apparent originality of the point. Already the
possibility of our calculating techniques, with their manifold possibilities of
decomposing a problem into simpler parts made possible by the validity of the
laws of arithmetic, cannot be regarded as a consequence of agreement (cf. the
remark three pages earlier). Furthermore, when we think of the enormously
rich and systematic formations of concepts in, e. g., the theory of functions—
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where one can say of the theorems obtained at each stage what Wittgenstein
once said: “We rest, or lean, on them” (p. 124, No. 35)—we see that the
position mentioned above doesn’t in any way explain why these conceptual
edifices are not continually collapsing. Considering Wittgenstein’s point of
view, it is in fact not surprising that he does not feel the contradiction to
be something strange; but what does not become clear in his account is that
contradictions in mathematics are to be found only in quite peripheral ex-
trapolations and nowhere else. In this respect one can say that Wittgenstein’s
philosophy does not make the fact of mathematics intelligible at all.

But what is the source of Wittgenstein’s initial conviction that in the do-
main of mathematics there is no proper objectual knowledge, that everything
consists instead of techniques, measuring devices, and customary attitudes?
He must think: “There is nothing here to which knowledge could be di-
rected.” This is connected with the fact, already mentioned above, that he
does not recognize any role for phenomenology. What probably provokes his
opposition to it are phrases such as when one talks about the “essence” of
a color; where the word “essence” suggests the idea of hidden properties of
the color, whereas colors as such are nothing but what is evident in their
manifest properties and relations. But this does not prevent such properties
and relations from being the content of objective statements; colors are, after
all, not nothing. And even if we do not adopt the pretensions of Husserl’s
philosophy with regard to the “intuition of essences,” this does not preclude
the possibility of an objective phenomenology. The fact that phenomenologi-
cal investigations in the domain of colors and sounds are still in their infancy
is surely connected with the fact that they have no great importance for the-
oretical physics; since in physics we are induced, already at an early stage,
to eliminate colors and sounds as qualities. Mathematics, on the other hand,
can be regarded as the theoretical phenomenology of structures. Indeed,
what contrasts phenomenologically with the qualitative is not the quantita-
tive, as traditional philosophy teaches, but the structural, which consists of
the forms of juxtaposition, succession, and composition, together with all the
corresponding concepts and laws.

Such a conception of mathematics leaves one’s position with respect to
the problems of the foundations of mathematics still largely undetermined.
But it can open the door, for someone starting with Wittgenstein’s views,
for a viewpoint that does greater justice to the peculiar character and the
significance of the mathematical.
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In considering axiomatizations of geometry we have the impression of a
great multiplicity of principles according to which such axiomatizations can
take place, and already have taken place. The original, simple idea, that one
could just speak of the axioms of geometry was not only superseded by the
discovery of non-Euclidean geometries but, moreover, by the insight into the
possibility of different axiomatizations of one and the same geometry. But
substantially different methodological principles have also arisen generally,
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according to which one has undertaken the axiomatization of geometry and
whose purposes are in certain respects even antagonistic.

The seed for this multiplicity can already be found in Euclidean axiomat-
ics. For its formulation was determined by the fact that one was led by
geometry to the general problem of axiomatics for the first time. Here geom-
etry is simply all of mathematics, so to speak. The methodological relation
to number theory is not completely clear. In certain places a bit of number
theory is developed using the intuitive idea of number. Moreover the con-
cept of number is used contentfully in the theory of proportions, even with
an implicit inclusion of the tertium non datur , although it seems that one
attempted to avoid its unrestricted use.

While the special methodological position of the concept of number is
not especially pronounced here, the concept of magnitude is explicitly put
forward as a contentful tool. This is done, incidentally, in a manner that
we can no longer accept today, namely by assuming as a matter of course
that different objects can have the character of magnitudes. The concept of
magnitude is, of course, also subjected to axiomatization; however, in this
regard the axioms are explicitly separated from the remaining axioms as an-
tecedent (κoιναὶ έννoιαι). These axioms are of a similar kind as those which
are used today for Abelian groups. But what remained undone, because of
the methodological standpoint at the time, was to determine axiomatically
which objects were to be regarded as magnitudes.

Thus it is all the more admirable that one was then already sensitive to
the peculiarity of that assumption by which the Archimedean magnitudes, as
we call them today, are characterized. The Archimedean (Eudoxean) axiom
is then, in the medieval tradition that followed the Greeks, used in particular
in the Arabic investigations of the parallel axiom. It also occurs essentially
in Saccheri’s proof of the elimination of the “hypothesis of the obtuse angle.”
This elimination is in fact impossible without the Archimedean axiom, since
a non-Archimedean, weakly-spherical (resp. weakly-elliptical) geometry is in
accordance with the axioms of Euclidean geometry, except for the parallel
axiom.

The second axiom of continuity, which was formulated in the late 19th
century, does not yet occur in any of these investigations. It could be dis-
pensed with in the proofs for which it came into question—like in the de-
termination of areas and lengths—because of the already mentioned use of
the concept of magnitude, according to which it was for example taken for
granted that both the area of the circle and the circumference of the circle
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possess a definite magnitude. In place of the old theory of magnitudes at
the beginning of modern times came, as a predominant and super-ordinated
discipline, the theory of magnitudes of analysis, which developed quite pro-
lifically both formally and contentually still before it reached methodological
clarity.

Of course, analysis at first played no significant role in the discovery of
non-Euclidean geometry, but it became dominant in the following investiga-
tions of Riemann and Helmholz, and later Lie, for the identification of the
three special geometries by certain very general, analyticaL conditions. In
particular it is characteristic for this treatment of geometry that one not only
takes the particular spatial entities as objects, but also the spatial manifold
itself. The enormous conceptual and formal means which mathematics had
obtained in the meantime showed up in the possibility of carrying out such
an investigation. And the conceptual and speculative direction which math-
ematics took in the course of the 19th century is expressed in the formulation
of the general problem.

The differential geometrical treatment of the foundations of geometry was
developed further, until very recent times, by Hermann Weyl, as well as Elie
Cartan and Levi-Civitá, in connection with Einstein’s general theory of rel-
ativity. Despite the impressiveness and elegance of what has been achieved
in this respect, mathematicians were not content with it from a foundational
standpoint. At first one tried to free oneself from the fundamental assump-
tion of the methods of differential geometry of the differentiability of the
mappings. For this the development of the methods of a general topology
was needed, which began at the turn of the century and has taken such
an impressive course of development since then. Moreover one strove for
independence from the assumption of the Archimedean character of the geo-
metrical magnitudes in general.

This tendency is part of that development by which analysis in some sense
lost its previously predominant position. This new stage in mathematical
research followed the consequences of the already mentioned conceptual and
speculative direction of mathematics of the 19th century, which appeared in
particular in the creation of general set theory, in the sharper foundation of
analysis, in the constitution of mathematical logic, and in the new version of
axiomatics.

At the same time it was characteristic for this new stage that one returned
again to the methods of ancient Greek axiomatics, as happened repeatedly in
those epochs in which emphasis was put on conceptual precision. In Hilbert’s
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Foundations of Geometrya we find on the one hand this return to the old ele-
mentary axiomatics, of course with a fundamentally changed methodological
conception, and on the other hand the exclusion, as far as possible, of the
Archimedean axiom as a principal theme: in the theory of proportions, in
the concept of area, and in the foundation of the line segment calculus. For
Hilbert, by the way, this kind of axiomatization was not intended to be ex-
clusive; shortly afterwards he put a different kind of foundation along side
it, in which the program of a topological foundation mentioned above was
formulated and carried out for the first time.

Around the same time as Hilbert’s foundation, the axiomatization of
geometry was also cultivated in the school of Peano and Pieri. Shortly after-
wards the axiomatic investigations of Veblen and R. L. Moore followed; and
by then the directions of research were chosen along which occupation with
the foundations of geometry proceeds also today. As is characteristic of it,
there are numerous methodological directions.

One of them seeks to characterize the multiplicity of congruent trans-
formations by conditions that are as general and succinct as possible. The
second one puts the projective structure of space at the beginning and strives
to reduce the metrical structure to the projective with the methods devel-
oped by Cayley and Klein. And the third aims at elementary axiomatization
of the full geometry of congruences.

Different and fundamentally new points of view were added during the de-
velopment of these directions. Firstly, the projective axiomatization gained
an increased systematization through lattice theory. In addition, one be-
came aware that the set-theoretic and function-theoretic concept formations
can be deemphasized in the identification of the group of congruent trans-
formations by identifying the transformations with structures determining
them. Therewith the procedure approaches that of elementary axiomatics,
since the group relations are now represented as relations between geometric
structures.

But I do not want to speak further of these two directions of research in
geometrical axiomatics, for which more authentic representatives are present
here, and also not of the successes that have been achieved using topolog-
ical methods, about which the newest essays of Freudenthal give a survey.
Instead, I turn to the questions of the direction of axiomatization that was

aVide [?].
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mentioned in the third place.

Even within this direction we find a multiplicity of possible goals. On
the one hand one can aim to manage with as few as possible basic elements,
perhaps only one basic predicate and one sort of individuals. On the other
hand one can especially aim to isolate natural separations of parts of the
axiomatics. These viewpoints lead to different alternatives.

So on the one hand the consideration of non-Euclidean geometry sug-
gests the preliminary investigation of an “absolute” geometry. On the other
hand something is to be said for a procedure that starts off with affine vec-
tor geometry, as is done at the beginning of Weyl’s Space, Time, Matterb.
The demands of both these viewpoints can hardly be satisfied with a single
axiomatic system. Starting with the axioms of incidence and ordering it is a
possible and elegant conceptual reduction to reduce the concept of collinear-
ity to the concept of betweenness, in the way of Veblen. On the other hand
it is important for some considerations to separate the consequences of the
incidence axioms which are independent of the concept of ordering. So it is
desirable to realize the independence of the foundation of the line segment
calculus on the incidence axioms from the ordering axioms. In the theory of
ordering itself one has again realized the possibility of replacing the axioms
of linear ordering by applications of the axiom of Pasch; on the other hand in
some respect a formulation of the axioms is preferable in which those axioms
are separated which characterize the linear ordering.

The multiplicity of the goals that are possible, and are also pursued in
fact, is not exhausted in the least by these examples of alternatives. Indeed it
is a possible and plausible, but not obligatory, regulative viewpoint that the
axioms should be formulated in such a way that they refer only to a limited
part of space respectively. This thought is implicitly at work already in
Euclidean axiomatics; and it may also be that the offense that has been taken
so early at the parallel axiom relies precisely on the fact that the concept of
a sufficiently long extension occurs in the Euclidean formulation. The first
explicit realization of the mentioned program happened with Moritz Pasch,
and it was followed by the introduction of ideal elements by intersection
theorems, which is a method for the foundation of projective geometry that
has been successively developed since.

A different kind of possible additional task is to imitate conceptually the

bVide [?].
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blurriness of our pictorial imagination as it was done by Hjelmslev.c This re-
sults not only in a different kind of axiomatization, but in a variant relational
system, which has not found much approval because of its complication. But
also without moving so far from the customary manner in this direction it
is possible to aim at something similar, in some respects, by avoiding the
concept of point as a basic term as it is done in various interesting newer
axiomatizations, in particular in Huntington’s.d

One thus sees in a great number of ways that there is no definite optimum
for the formulation of a geometric axiom system. As regards the reductions
with respect to the basic concepts and the sorts of things, it must always be
recalled that, regardless of the general interest any such possibility of reduc-
tion may have, a real application of such a reduction is only recommended
when it leads to a clear formulation of the axiom system.

Certain directives for reductions which are generally acceptable can, how-
ever, be stated. Let us take for example the Hilbertian version of axiomatics.
In it, on the one hand, lines are taken as a kind of things, on the other hand
the rays are introduced as point sets and afterwards the angles are explained
as ordered pairs of two rays that originate in the same point, thus as a pair of
sets. Here real possibilities of simplifying reductions are given. One may be
of different opinion whether one wants to start with only one sort of points
instead of the different sorts “point, line, plane,” whereby the the relations
of collinearity and coplanarity of points replace the relations of incidence. In
the lattice theoretical treatment the lines and planes are taken to be on par
with points as things. Here again there is an alternative. Whereas to intro-
duce the rays as point sets transcends in any case the scope of elementary
geometry and is not necessary for it. Generally we can take as a directive that
higher types should not be introduced without need. This can be avoided
in the case of the definition of angle by reducing the statements about an-
gles by statements about point triples, as was carried out by R. L. Moore.1

∗

An even further reduction is achieved here by explaining the congruence of
angles using congruence of line segments, but here again a certain loss takes
place. Namely, the proofs rest substantially on the congruence of differently
oriented triangles. Thus this kind of axiomatization is not suitable for the

1∗Vide [?]. (Footnotes 1* to 6* were added later [to the reprint in the Abhandlungen].)

cVide [?].
dVide [?].
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kind of problems of the Hilbertian investigations, which refer to the relation-
ship between oriented congruence and symmetry. This remark concerns also
most other axiomatizations, which turn on the concept of reflection .

Besides the general viewpoints, I want to mention as something partic-
ular a special possibility of the formulation of an elementary axiom system,
namely one in which the concept “the triple of points a, b, c forms a right
angle at b” is taken as the only basic relation and the points are the only ba-
sic sort, a program which has recently been called attention to in a paper by
Dana Scott.2

∗
The mentioned relation satisfies the necessary condition ascer-

tained by Tarski for a single sufficient basic predicate for plane geometry.3
∗

In comparison with Pieri’s technique,4
∗

which has become exemplary for an
axiomatic of this kind, and which took an axiomatization of the relation “b
and c have the same distance from a” as basic predicate, it seems to permit
a simplification, inasmuch the concept of the collinearity of points is closer
to that of a right angle than Pieri’s basic concept. As respects the concept of
congruence there seems to be no simplification for the axioms of congruence
from the relation considered. By the way, this axiomatization is one of those,
like the one by Pieri, which do not distinguish oriented congruence.1

For an elementary axiomatization of geometry the special question presents
itself of obtaining completeness, in the sense of categoricity. In most axiom
systems this is obtained by the continuity axioms. But the introduction
of these axioms involves, as is known, a transgression of the usual frame-
work of concepts of predicates and sets. We have, however, learned from
Tarski’s investigations that completeness, at least in the deductive sense,
can be obtained in an elementary framework, where it is noteworthy that
the [Dedekind] cut axiom is preserved in a particular formalization, whereas
the Archimedean axiom is omitted. The Archimedean axiom is insofar for-
mally unusual, in that in logical formalization it has the form of an infinite
disjunction, whereas the cut axiom is representable by an axiom schema, due
to its general form. Thus it can be adapted in its use to the formal framework,
whereby for the elementary framework of predicate logic the provability of

2∗Vide [?].
3∗Vide [?].
4∗Vide [?].
1Some details on the definitions of the concepts of incidence, ordering, and congruence

from the concept of a right angle, as well as of part of the axiom system, follow in the
appendix.
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the Archimedean axiom from the cut axiom is then lost. Of course, such a re-
striction to the framework of predicate logic has as a consequence that some
considerations are possible only meta-theoretically, for example, the proof of
the theorem that a simple closed polygon decomposes the plane, and also the
considerations about equality of supplementation and decomposition of poly-
gons. Here one is again faced with an alternative, namely whether to begin
with the viewpoint of an elementary logical framework, or then again not to
restrict oneself with respect to the logical framework, whereby incidentally
different gradations can be considered.

With respect to the application of a second-order logic I only want to
recall here that it can be made precise in the framework of axiomatic set
theory, and that no noticable restriction of the methods of proof result. Also
the Skolem paradox does not present a real inconvenience in the case of
geometry, since it can be eliminated in the model theoretic considerations by
equating the concept of set which occurs in one of the higher axioms with
the concept of set of model theory.

Finally I want to emphasize that the fact, which I have stressed in my
remarks, that there is no definite optimum for the systems of axiomatics,
does not at all mean that the results of geometric axiomatics necessarily
have an imperfect or fragmentary character. As you know, in this field a
number of systems of great perfection and elegance have been achieved. The
multiplicity of possible goals is responsible for the older systems not generally
being simply outdated by newer ones, and at the same time every perfection
attained still leaves room for further efforts.

Appendix. Remarks on the task of an axiomatizing Euclidean plan geom-
etry with a single basic relation R(a, b, c): “the triple of points a, b, c forms a
right angle at b.” The axiomatization succeeds as it does, in a simple way,
because only the relations of collinearity and parallelism are considered. The
following axioms suffice for the theory of collinearity:

A1 ¬R(a, b, a)

A2 R(a, b, c) → R(c, b, a) & ¬R(a, c, b) 2

A3 R(a, b, c) & R(a, b, d) & R(e, b, c) → R(e, b, d)

2Already this axiom excludes elliptic geometry.
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A4 R(a, b, c) & R(a, b, d) & c �= d & R(e, c, b) → R(e, c, d)

A5 a �= b → (Ex)R(a, b, x).5
∗

The definition of the relation Coll(a, b, c) is added: “the points a, b, c are
collinear:”

Definition 1. Coll(a, b, c) ↔ (x)(R(x, a, b) → R(x, a, c)) ∨ a = c.

Then the following theorems are provable:

(1) Coll(a, b, c) ↔ a = b ∨ a = c ∨ b = c ∨ (Ex)(R(x, a, b) & R(x, a, c))

(2) Coll(a, b, c) → Coll(a, c, b) & Coll(b, a, c)

(3) Coll(a, b, c) & Coll(a, b, d) & a �= b → Coll(b, c, d)

(4) R(a, b, c) & Coll(b, c, d) & b �= d → R(a, b, d)

(5) R(a, b, c) → ¬Coll(a, b, c)

(6) R(a, b, c) & R(a, b, d) → Coll(b, c, d)

(7) R(a, b, c) & R(a, b, d) → ¬R(a, c, d).
Proof: Coll(c, d, b) & c �= b → (R(a, c, d) → R(a, c, b))

(8) R(a, b, c) & R(a, b, d) & R(a, e, c) & R(a, e, d) → c = d ∨ b = e.
Proof: Coll(b, c, d) & Coll(e, c, d) & c �= d → Coll(b, c, e)

Coll(b, c, e) & b �= e & R(a, b, c) → R(a, b, e)
Coll(e, c, b) & b �= e & R(a, e, c) → R(a, e, b)
R(a, b, e) → ¬R(a, e, b).

For the theory of parallelism, we add two further axioms:

A6 a �= b & a �= c → (Ex)(R(x, a, b) & R(x, a, c)) ∨
(Ex)(R(a, x, b) & R(a, x, c)) ∨ R(a, b, c) ∨ R(a, c, b)

In plain language, the axiom says that it is possible to draw a perpendic-
ular to a line bc from a point a lying off from it. The unique determination
of a perpendicular depending on a point a and a line bc results with the help
of (4) and (8).

5∗Paul de Witte hat darauf aufmerksam gemacht, daß A3 als Axiom entbehrlich ist,
da die Formel aus A2, A4, A5 abgeleitet werden kann. (vide [?])
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A7 R(a, b, c) & R(b, c, d) & R(c, d, a) → R(d, a, b)

This is a form of the Euclidean parallel axiom in the narrower, angular met-
rical sense.

Parallelism is now defined by:

Definition 2. Par(a, b; c, d) ↔ a �= b & c �= d & (Ex)(Ey)(R(a, x, y) &
R(b, x, y) & R(c, y, x) & R(d, y, x))

As provable theorems the following arise:

(9) Par(a, b; c, d) → Par(b, a; c, d) & (c, d; a, b)

(10) Par(a, b; c, d) → a �= c & a �= d & b �= c & b �= d

(11) Par(a, b; c, d) ↔ a �= b & c �= d & (Ex)(Eu)(
(R(a, x, u) ∨ x = a) & (R(b, x, u) ∨ x = b) &

(R(x, u, c) ∨ u = c) & (R(x, u, d) ∨ u = d) )

For the proof of the implication from right to left one has to show that
there are at least five different points lying on the line a, b, which succeeds
with the help of axioms A1–A6.

(12) Par(a, b; c, d) → (x)((R(a, x, c) ∨ x = a) & (R(b, x, c) ∨ x = b) →
R(x, c, d))

(13) Par(a, b; c, d) & Coll(a, b, e) & b �= e → Par(b, e; c, d)

and thus in particular:

(14) Par(a, b; c, d) → ¬Coll(a, b, c);

moreover

(15) Par(a, b; c, d) & Coll(a, b, e) → ¬Coll(c, d, e)

(16) ¬Coll(a, b, c) → (Ex)Par(a, b; c, x)

(17) Par(a, b; c, d) & Par(a, b; c, e) → Coll(c, d, e)

(18) Par(a, b; c, d) & Par(a, b; e, f) →
Par(c, d; e, f) ∨ (Coll(e, c, d) & Coll(f, c, d)).
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The concept of vector equality is also tied up with the concept of paral-
lelism: “a, b and c, d are the opposite sides of a parallelogram.”

Definition 3. Pag(a, b; c, d) ↔ Par(a, b; c, d) & Par(a, c; b, d)

Herewith one can prove:

(19) Pag(a, b; c, d) → Pag(c, d; a, b) & Pag(a, c; b, d)

(20) Pag(a, b; c, d) & Pag(a, b; c, e) → d = e

(21) Pag(a, b; c, d) → ¬Coll(a, b, c).

For the proof of the existence theorem

(22) ¬Coll(a, b, c) → (Ex)Pag(a, b; c, x)

one needs a further axiom:

A8 R(a, b, c) → (Ex)(R(a, c, x) & R(c, b, x)).

It is generally provable with the help of this axiom that two different,
non-parallel lines have a point of intersection:

(23) ¬Coll(a, b, c) & ¬Par(a, b; c, d) →
(Ex)(Coll(a, b, x) & Coll(c, d, x)). − 6∗

It is left open whether it is possible to achieve altogether a clear axiom
system using the basic concept R. Here we content ourself with stating
definitions for the fundamental further concepts. For these it is in any case
possible to attain a certain clarity.

The following two different definitions of the relation “a is the center of
the line segment b, c” are related to the figure of the parallelogram:

Definition 41. Mp1(a; b, c) ↔ (Ex)(Ey)(Pag(b, x; y, c) &
Coll(a, b, c) & Coll(a, x, y))

Definition 42. Mp2(a; b, c) ↔ (Ex)(Ey)(Pag(x, y; a, b) & Pag(x, y; c, a)).

According to the second definition one can prove the possibility of dou-
bling a line segment:

6∗Das Vorderglied ¬Coll(a, b, c) ist, wie man leicht einsieht, entbehrlich.
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(24) a �= b → (Eu)Mp2(a; b, u).

The existence of the center of a line segment according to Df. 41, i. e.,

(25) b �= c → (Eu)Mp1(u; b, c),

is provable if one adds the axiom:

A9 Par(a, b; c, d) & Par(a, c; b, d) → ¬Par(a, d; b, c).
(In a parallelogram the diagonals intersect.)

By specializing the figure pertaining to the definition of Mp1 we obtain
the definition of the relation: “a, b, c form a isosceles triangle with the peak
at a:”

Definition 51. Ist1(a; b, c) ↔ (Eu)(Ev)(Pag(a, b; c, v) & R(a, u, b) &
R(a, u, c) & R(b, u, v)).

With the help of Mp1 and Ist1 we can define Pieri’s basic concept: “a has
the same distance from b and c:”

Definition 6. Is1(a; b, c) ↔ b = c ∨ Mp1(a; b, c) ∨ Ist1(a; b, c).

A different kind of definition of the concept Is is based on the use of
symmetry. The following auxiliary concept is used for this: “a, b, c, d, e form
a ‘normal’ quintuple:”

Definition 7. Qn(a, b, c, d, e) ↔ R(a, c, b) & R(a, d, b) & R(a, e, c) &
R(a, e, d) & R(b, e, c) & c �= d.

With the help of Qn we obtain a further way of defining Mp and Is :

Definition 43. Mp3(a; b, c) ↔ (Ex)(Ey)Qn(x, y, b, c, a)

Definition 52. Ist2(a; b, c) ↔ (Ex)(Ey)Qn(a, x, b, c, y),

from which Is2 can be defined respectively like Is1.
Moreover also the definition of the reflection of points a, b with respect

to a line c, d follows:

Definition 8. Sym(a, b; c, d) ↔ c �= d & (Ex)(Ey)(Ez)(Coll(x, c, d) &
Coll(y, c, d) & Qn(x, y, a, b, z)).−



289

Finally, for the definition of congruence of line segments we still need the
concept of oriented congruence on a line: “the line segments ab and cd are
collinear, congruent, and oriented in the same direction:”

Definition 91. Lg1(a, b; c, d) ↔ Coll(a, b, c) &
(Ex)(Ey)(Pag(a, x; b, y) & Pag(c, x; d, y)),

or also:

Definition 92. Lg2(a, b; c, d) ↔
Coll(a, b, c) & a �= b & (Ex)(Mp(x; b, c) & Mp(x; a, d)) ∨

(a = d & Mp(a; b, c)) ∨ (b = c & Mp(b; a, d)),

(where any of the three definitions above can be taken for Mp.) Now the
congruence of line segments can be defined altogether (with any of the two
definitions of Lg):

Definition 10. Kg(a, b; c, d) ↔ Lg(a, b; c, d) ∨ Lg(a, b; d, c) ∨
(a = b & Is1(a; b, d)) ∨ (Ex)(Pag(a, b; c, x) & Is1(c; x, d)).

By a definition analogous to that of Lg2 it is possible to introduce the
congruence of angles with the same vertex as a six-place relation, after one
has already introduced the concept of angle bisection: “d (�= a) lies on the
bisection of the angle b a c:”

Definition 11. Wh(a, d; b, c) ↔ ¬Coll(a, d, c) &
(Ex)(Ey)(Ez)(Coll(a, c, x) & Coll(a, d, y) & Qn(a, y, b, x, z)).

In consideration of the composite character of this congruence relation
Kg, one will reduce the laws about Kg in the axiomatization to the concepts
that occur as parts of the defining expression. Because of the variety of
definitions for Mp, Ist, Is there are alternatives depending on whether one
employs the relations of parallelism or of symmetry more. In any case, the
axiom of vector geometry

A10. Pag(a, b; p, q) & Pag(b, c; q, r) →
Pag(a, c; p, r) ∨ (Coll(a, c, p) & Coll(a, c, r))

or an equivalent one should be useful. On the whole one could set oneself as
a goal to represent the interaction of parallelism and reflection that occurs
in Euclidean plane geometry in a most symmetric way.

Finally, with respect to the betweenness relation, the form of the defini-
tion of the relation “a lies between b and c” is already contained as a part in
that of Qn. Namely, we can define:
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Definition 12. Bt(a; b, c) ↔ (Ex)(R(b, a, x) & R(c, a, x) & R(b, x, c)).

For this concept, at first, is provable:

(26) ¬Bt(a; b, b)

(27) Bt(a; b, c) → Bt(a; c, b)

(28) Bt(a; b, c) → Coll(a, b, c)

and also using A5, A6, and A8

(29) a �= b → (Ex)Bt(x; a, b) & (Ex)Bt(b; a, x).

To obtain further properties of the betweenness concept the following
axioms can be used:

A11 R(a, b, c) & R(a, b, d) & R(c, a, d) & R(e, c, b) → ¬R(b, e, d)

A12 R(a, b, d) & R(d, b, c) & a �= c → Bt(a; b, c) ∨ Bt(b; a, c) ∨ Bt(c; a, b)

A13 Bt(a; b, c) & Bt(b; a, d) → Bt(a; c, d)

A14 R(a, b, d) & R(d, b, c) & R(a, c, e) & Bt(d; a, e) → Bt(b; a, c)

From this axiom it is possible to obtain the more general theorem in a
few steps:

(30) Bt(b; a, c) & Coll(a, d, e) & Par(b, d; c, e) → Bt(d; a, e)

This succeeds using the theorem

(31) R(a, b, e) & R(e, b, c) & R(b, a, d) &
R(b, c, f) & R(b, e, d) & R(b, e, f) & Bt(b; a, c) → Bt(e; d, f).

which can be derived from the aforementioned axiom A10.
With the help of (30) and axiom A13 one can prove:

(32) ¬Coll(a, b, c) & Bt(b; a, d) & Bt(e; b, c) →
(Ex)(Coll(e, d, x) & Bt(x; a, c)).

i. e., Pasch’s axiom in the narrower formulation of Veblen.—
In conclusion, I want to mention the following definition of Kg using the

concepts Is and Bt, which is based on a construction of Euclid:
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Definition 13. Kg*(a, b; c, d) ↔ (Ex)(Ey)(Ez)(Is(x, a; c) &
Bt(y; a, x) & Bt(z; c, x) & Is(a; b, y) & Is(c; d, z) & Is(x; y, z)).

(For Is either Is1 or Is2 can be taken.)
One surely can not demand from an axiomatic system like the one de-

scribed here, in which the collinearity and the betweenness relation are cou-
pled with orthogonality, that it provides a derivation of the axioms of linear-
ity. Moreover the formulation is limited from the outset to plane geometry,
since the definition of collinearity is not applicable in the multi-dimensional
case. The restriction to Euclidean geometry is also introduced at an early
stage. On the other hand this axiomatization may be particularly suited
to showing the great simplicity and elegance of the lawfulness of Euclidean
plane geometry.
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The book The Logical Syntax of Languagea occupies a central place in
the philosophy of Rudolph Carnap. The conception that is there developed
of the logic of science as the investigation of the language of science together
with its concepts forms, so to speak, the initial framework for Carnap’s fur-
ther investigations. In the course of these investigations, he has significantly
revised the views expressed in the Logical Syntax. The framework for the

aVide [?].
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considerations itself and its associated concept formations have also under-
gone significant changes. Discussions with philosophers working in related
areas have contributed substantially to this.

These stepwise revisions of Carnap’s philosophy represent a successive dis-
sociation from the exclusive and reductive tendencies of the initial program
of the Vienna school. The Logical Syntax had already introduced significant
corrections to its overly simplified theses. But there Carnap still defended
the view that every epistemology, insofar as it claims to be scientific, has
to be understood as being nothing other than the syntax of the language of
science, resp. the language itself. Since then he has essentially extended the
aim of scientific philosophy by adding semantics and pragmatics (following
C. W. Morris) and, furthermore, by comparing the distinction between the
logical and the descriptive with that between theoretical and observational
language. In the following, the significance of the introduction of these ex-
tensions of the methodological framework for the shaping of Carnap’s philos-
ophy, and also for its partial reconciliation with more familiar philosophical
views, will be elucidated from several points of view; at the same time, certain
questions that naturally suggest themselves in this context will be indicated.

1

The general tendency of the Logical Syntax can be said to be an extension
of the approach of Hilbert’s proof theory. For Hilbert the method of formal-
ization is applied only to mathematics. However, in his lecture “Axiomatic
thinking” Hilbert also said: “Everything at all that can be the object of
scientific thinking falls under the axiomatic method, and thereby indirectly
under mathematics, when it becomes mature enough to form into theory.”b

Carnap goes a step further in this direction in the Logical Syntax, by con-
sidering science as a whole as an axiomatic deductive system which becomes
a mathematical object through formalization: the syntax of the language of
science is metamathematics that is directed towards this object.

But the idealizing scheme of science that is used here is certainly not
sufficient for epistemology. First of all, it of course represents only the finished
result of science, not the entire process of scientific research. For the great
mathematical theories an axiomatic deductive presentation of the finished

bVide [?], p. .
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disciplines might display sufficiently well what is significant in them. But
the circumstances are already fundamentally different in theoretical physics,
since here the supreme principles of the theory in their mathematically precise
formulation are not the starting point of the research, but the final result.

Moreover, emphasizing the deductive form does violence to many areas
of research. In these areas one does not proceed deductively at all; rather,
logical reasoning is applied almost exclusively for heuristic considerations,
which motivate the formulations of hypotheses or statements of fact.

By the addition of pragmatics, all of the above can be taken into account.
It is clearly a task for pragmatics to consider the development of the sciences,
not with regard to what is historical or biographical, to be sure, but in
the sense of working out the methodologically significant ideas. Thus, here
heuristic considerations find their appropriate place.

Parenthetically I want to note that heuristics play a role not only in the
empirical sciences, but also in purely mathematical research, as has been
pointed out lately particularly emphatically by Georg Pólya. There exists
a methodical analogy between research in mathematics and in the natural
sciences, in the sense that also in mathematics there is a kind of empirical
approach and guessing of laws based on a series of particular cases. But such
a formulation of a law is only of provisional character in mathematics, as in
number theory, where the individual case never can be singled out by inessen-
tial conditions (like place and time in physics), but rather each number has
its own specific properties. That it is possible even in number theory to gain
convictions based on our use of numbers, however, is shown by the example
of the statement of the unique factorization into prime factors, which one
tends to regard as completely self-evident (when one has not yet come across
number theoretic proofs) from ones experiences with calculations. Only at
an advanced level is the need for a proof for this statement acknowledged,
which is then satisfied accordingly.

2

It is useful for the consideration of the relation between syntax and se-
mantics to recall that, from the usual point of view, it is fundamental for
a language as such that its words and sentences are directly connected to a
sense. When the structure of a language is considered independently of the
meaning of its expressions, this is an intended, modifying abstraction.
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In Carnap’s Logical Syntax the exclusion of what is meaningful is com-
pensated for in part by stating “rules of transformation” as well as “rules
of formation” as rules of the language. He not only counts those rules ac-
cording to which a statement is transformed into a logically equivalent one
as belonging to these transformation rules of a formalized theory, but, more
generally, all those that determine logical dependencies, and moreover, also
the stipulations of particular statements as logically universal propositions
or formalized axioms.

Shortly afterwards, under the influence of Alfred Tarski’s investigations
and in connection with the extension of his methodological program, Carnap
relocated the concept of logical consequence from syntax to semantics.

The logical symbols obtain their meaning in semantics through the “rules
of truth,” and the semantic concept of entailment is tied to these rules of
truth. The formal deductions can be introduced from there by first noting
the relations of consequence partly as propositions and partly as rules of
inference, and then by axiomatizing the manifold of the obtained propositions
and rules. In this way, the concept of rules of transformation as primary rules
of the language becomes basically dispensable, while the “rules of truth”
should be seen as belonging to the characterization of the language.

The suggestive contrast between the semantic and the syntactic concepts
of entailment that is hereby obtained has great advantages for the presenta-
tion of mathematical logic — insofar as this is not directed towards a con-
structive methodology from the outset — and Heinrich Scholz in particular
has emphasized this point of view.

It is often felt to be a shortcoming of semantics that it is based on non-
constructive concept formation. But being non-constructive is not specific to
semantics. One can in principle also pursue semantics within an elementary
framework of concept formation. On the other hand, it will hardly be possible
to avoid transcending elementary concepts, with or without a semantics, if
one wants to fix a concept of “validity,” as Carnap intends, such that for
every purely logical proposition A (i. e., a proposition without extra-logical
components) not only the alternative “A or not-A” is valid (in the sense of
the principle of excluded middle), but in addition also that either the logical
validity of A or of not-A holds.

Semantics is also criticized with regard to a different point, namely insofar
as it goes beyond the logic of extensions and addresses questions regarding
sense and in particular regarding the relation between the extensional and
the intensional. In particular Willard Quine claims that a scientifically in-



297

admissible hypostasis is performed by the introduction of senses (intensions)
of expressions as objects, and that even by the reduction of questions about
sense to those about sameness and difference of sense, one is still in a domain
of terms that are difficult to make precise. In this discussion Quine agrees
with Carnap by tending to explain the sameness of the sense of two state-
ments as their logical equivalence, and accordingly to reduce the sameness of
the sense of predicates and characterizations and definitions to logical equiv-
alences. Thereby the concept of synonymy comes into close relation with the
analytic.

But such a definition of synonymy yields unwanted consequences, pro-
vided, as Carnap and many contemporary philosophers do, that the matters
of fact of pure mathematics are regarded as logical laws. From this point of
view, any two valid statements of pure mathematics are logically equivalent
and thus, if sameness of sense was the same as logical equivalence, any correct
statements of pure mathematics, for example the statements that there exits
infinitely many prime numbers and that the number π is irrational, would
have the same sense. Or, to take a simpler example: the statement 3×7 = 21
would have the same sense as the statement that 43 is a prime number.

For this consideration, however, we can even eliminate the dependence
on the question of the purely logical character of arithmetic. Let us take
an axiom system A and two totally different theorems, S and T , that are
provable from these axioms. We would hardly be prepared to say that the
claim “S follows logically from A” has the same sense as “T follows logically
from A,” even when both statements are true, thus both are logically valid,
and so both are logically equivalent.

Therefore, the sameness of sense by no means always coincides with logical
equivalence. On the other hand, in many cases, including mathematics, one
surely would consider a logical transformation as not changing the sense. For
example, one would consider the two statements “if a, b, c, n are numbers of
the sequence of numbers beginning with 1 and an + bn = cn, then either
n = 1 or n = 2” and “there do not exist numbers a, b, c, n of the sequence
of numbers beginning with 1, such that n > 2 and an + bn = cn” to be
formulations of the same mathematical claim (Fermat’s theorem).

In these examples, we are confronted with the difficulty of determining
what must be considered as having the same sense. But at the same time
we notice that this difficulty is based on the distinction between the kinds
of abstraction that are peculiar to different domains of inquiry. We will
declare two theoretical physical assertions to have the same sense when one
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is obtained from the other by a conversion of a mathematical expression it
contains; but this is not permissible in general with mathematical assertions.
We will say of a formulation of a mathematical proposition that its sense is
not changed by an elementary logical transformation; but this will no longer
hold when the elementary logical relations themselves are considered. We
have only considered the sameness of sense for statements; but the same
can be said for predicates and definitions. Thereby the consideration of
mathematical definitions yields many examples in which the contrast between
extension and intension agrees with our usual scientific way of thinking. Let
us take the representation of a positive real number by an expression of
analysis, e. g., an infinite series or a definite integral. The extension of this
definition is the real number itself, and the intension is a rule to determine this
number, i. e., for it being contained in arbitrary small intervals. As is well-
known, one and the same real number can be determined by very different
such rules; then we have the same extension with different intensions.

To mention also a mathematical example of a predicate having the same
extension with different intensions, the prime numbers among the numbers
different from 1 can be characterized in two different ways: On the one hand,
as those that have no proper divisor other than 1, on the other hand, as those
that only divide a product if they divide at least one factor. This results in
two different intensions of a predicate with the same extension: the extension
is the class of prime numbers, the intensions are the two definitions of the
concept “prime number” that correspond to the characterizations. Analogous
examples can also be found in the empirical sciences, e. g., when it is possible
to characterize an animal species in different ways, so that different definitions
result in the same concept of species, and thus the name of the species has
different intensions and the same extension.

On the one hand, our considerations show that there are large classes of
cases in which the concept of intension has a natural scientific application.
On the other hand, we have become aware of the difficulties with the concept
of sameness of sense, which are related to different viewpoints in the different
areas of research, whereby it does not suffice to contrast the logical with the
extra-logical in order to account for the differences.

We can approach the relevant point by calling to mind the type of ab-
straction that is involved in the concept of intension. Here one does not start
with the distinction between the form of the expressions of the language and
their expressive function, but rather this latter is consciously retained. What
is abstracted away are the particularities of the means of expression that are
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irrelevant for this function, and the variety of formulations that are based
on them, which can be used for the same expressive purpose. This mani-
fold of possibilities consists, from a conventional point of view, on the one
hand, in the multiplicity of languages, and on the other hand, in conceptual
and factual equivalences that can hold between definitions, properties, and
relations. Such an equivalence warrants the substitution of an expression by
another only if it is totally unproblematic in the framework of the exposition
or investigation in which the expression is used, i. e., if it belongs to the do-
main that is not under discussion, but which is taken for granted. In fact,
our search for knowledge, at least at the stage of developed reflections, is
based on a certain supply (of which we are more or less conscious) of ideas,
opinions, and beliefs, to which we, either consciously or instinctively, hold
on in our questions, considerations, and methods. Following Ferdinand Gon-
seth’s concept of “préalable,” such ideas, opinions, and beliefs may be called
“antecedent.”

The assumption of certain antecedent ideas and premises for any scientific
discipline and also for our natural attitude in day-to-day life, is not subject to
the same problems as the assumption of a priori knowledge. It is not claimed
that the antecedent ideas are irrevocable. A science that is initially based
on a premise can lead us to abandon this premise in its further development,
whereby we may be compelled to change the language of the science. The
scientific method also requires that we make ourselves aware of the antecedent
premises, and even make them the object of an investigation, resp., include
them in the subject matter of an investigation.

These premises thereby lose their antecedent character for the research
area in question. In the course of development of the theoretical sciences,
this leads to the situation that more and more of the premises are subjected
to investigation, so that the domain of what is antecedent becomes narrower
and narrower. The specially formulated initial concepts and principles then
take the place of the earlier, spontaneously formulated antecedents.

In contrast to the concept of the a priori , the concept of the antecedent
is related either to a state of knowledge or to a discipline; nothing is assumed
that is antecedent in an absolute sense.

Given the notion of antecedent, one can formulate the following defini-
tion of synonymy: two statements of a disciple have the same sense if the
equivalence between them is antecedent to the discipline. The synonymy of
predicates and definitions would have to be explained correspondingly. In the
definition, the discipline can also be replaced by a state of knowledge, with
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respect to which one can speak of an antecedent in a sufficiently determinate
way.

It appears that the observed difficulties with the determination of the
sameness of sense can be removed in this way. To be sure, in this explanation
one has to accept that the synonymy of sentences depends on the discipline
or state of knowledge in which it is considered. But on closer inspection this
turns out not to be so paradoxical.

3

Let us now turn to the extension of the methodological framework of the
Logical Syntax that Carnap obtains by contrasting the theoretical language
with the observation language.

When considering the method of natural science, we usually contrast
theory and experiment. But in the initial form of logical empiricism, the
theoretical aspect was not really recognized; only the course of discussions
about the initial position, in which Karl Popper in particular was involved,
has the preference emerged for the revised point of view of the Logical Syntax,
in which formulations of laws of nature figure as proper sentences of the
language of science.

One can understand that there was initially some resistance to this when
it is realized that, with the acknowledgment of the role of statements of
physical laws as proper sentences, the dualism of “relations of ideas” and
“matters of fact,” which was originally proposed by David Hume and which
the Vienna school strived to maintain in a somewhat more precise form,
turns out not to be exhaustive. On the one hand, the statements of laws
of the natural sciences are not statements about “relations of ideas,” i. e.,
not sentences of pure logic or pure mathematics; on the other hand, neither
are they statements of matters of fact, since they have the form of general
hypothetical sentences.

In Carnap’s terminology, this result says that the domain of the descrip-
tive (the extra-logical) does not coincide with that of the factual, but rather
that the domain of the factual is narrower.

The same situation can be elucidated also from a different point of view.
Carnap explains the concept of logical truth using “state description” in his
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book Meaning and Necessity.c He thereby follows Leibniz’s idea of “possible
worlds”: what is necessary must hold in all possible worlds; and the “state
descriptions” schematically represent the constitutions of the possible worlds.
Thus, Carnap now defines: a sentence is logically true, if it holds for every
“state description.” In this approach, the concepts of necessity and possibil-
ity occur. But nowhere is it said that one can speak of necessity and pos-
sibility only in the logical sense. Carnap himself mentions the investigation
of the non-extensional operators expressing physical and causal modalities
under the open problems for semantics in the appendix to his Introduction to
Semantics (vide [?], § 38d, S. 243). Physical and causal modalities concern
what is possible within natural laws and what is necessary in nature. Now if
the laws of nature are stipulated as valid in the framework of the language
of science, and, furthermore, it is acknowledged that the laws of nature are
not logically necessary, then a distinction between between what is necessary
and what is actual follows which is different from that between what is logi-
cal and what is descriptive. Then we can consider “state descriptions” in a
narrower sense by admitting only those that conform to the laws of nature,
and we thereby obtain a narrower range of possible worlds.

Thus, not only are factual statements contrasted with the statements of
logical laws, but more generally with any statements of laws. We can now
express this more general contrast using the concept of the theoretical, by
comparing the statements about what is actual with theoretical statements.
Then the domain of what is theoretical contains what is logical as a proper
subset.

What is specific to the theoretical surely consists not only in the totality of
statements that are recognized as valid, but above all in a world of concepts,
in the framework of which the theoretical statements occur. Within the
language of science, the theoretical formation of concepts finds its place in
what Carnap calls the “theoretical language.”1

1By following Carnap in speaking here simply of “the theoretical language,” the idea of
a universal science should not be implied. Nor is this the case in Carnap’s own discussions
of the theoretical language. He speaks for instance of “methodological problems, that are
connected to the construction of a theoretical system, like one for theoretical physics”
(vide [?], pp. 241–242).

cVide [?].
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Let us now take a closer look at the role that Carnap assigns to the the-
oretical language. In his view the theoretical language is not immediately
interpreted, but rather the theoretical terms obtain their significance only in
connection with the “correspondence postulates,” which establish the rela-
tions between the theoretical terms and the observational terms. However,
these relations are not thought to be so extensive that they define all the
theoretical terms in the observational language. Instead, Carnap agrees with
the view that the requirement that every theoretical term be experimentally
definable and its use be bound by such a definition is too restrictive for the-
oretical research, and that it is not in accordance with actual practice in
the theoretical sciences, as has been expressed in neo-positivist circles, in
particular by Herbert Feigl and Carl Hempel.

A fundamental requirement for the freedom of the theoretical formation
of ideas is hereby acknowledged. But it remains the fact that the theory is
not seen as a world of ideas, but only as a linguistic apparatus, so to speak.
The reduction to the purely mathematical is added as another characteristic
feature to this more technical aspect that Carnap attributes to the theoretical
language. Whenever possible Carnap strives to reduce theoretical entities
to mathematical ones. This possibility is shown in the domain of physics
in a particular way by the presentation of field theory, whereby physical
events consist of a succession of states in the space-time continuum. The
determination of states is given by scalars, vectors, and tensors.

For example, the description of physical state in the pure field theory of
gravitation and electricity employs both the symmetric tensor of the metric
field, from which the measurement of length and time and the forces of inertia
and gravitation are determined, as well as the antisymmetric electro-magnetic
tensor, which determines the electrical and magnetic forces. Particles of
matter, either charged or uncharged, are understood here as particularly
concentrated distributions of the field magnitudes in a spatially confined
part of the world. The components of the tensors are functions of space-time
positions, and when a coordinate system is introduced and units are chosen,
the magnitudes of the components become mathematical functions of the
space-time coordinates;2 let us call them “field-functions.” The physical laws
of the field are formulated by the differential equations for these mathematical
functions (in a way that is invariant with respect to the coordinate system),

2[1] Initially the components of the metric field are unspecified numbers.
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and the field-functions which represent the sequence of states of the system
form a solution for this system of differential equations.

The connection between the theory and the world of actual experience is
given through various kinds of relations:

1. those on which the introduction of space-time coordinate systems and
the possibilities of the values of the field-functions are based,

2. those which concern the effects of system states partly on our direct
perceptions and partly on our experimental observations,

3. those which yield the instructions for the theoretical translation of a
case that is observationally given (either only schematically or in a precise
experimental determination) and is to be investigated using the theory.

Carnap thinks that all these relations are axiomatizable by the corre-
spondence postulates in which the links between the field-functions and our
observations are expressed. Such a system of correspondence postulates can
only be formulated if the manifold of possible applications of field theory (of
the differential equations of the field) to observations is axiomatizable.

With these reservations, the possibility is therefore given to wholly restrict
the theoretical language of physics to mathematical concepts, transferring
everything that is specific to physics either into the observational language
or into the correspondence postulates. Then the theory of physics no longer
makes statements about something that exists in the physical nature, it does
not even state anything at all by itself, but only yields a mathematical tool
for the predictions of observations on the basis of given observations. Strictly
speaking, one should not talk here of a theoretical language at all.

But a kind of theoretical language can still be regained by introducing
suitable physical names for certain often recurring mathematical relations
and expressions according to the meanings that they have in the interpreted
theory; then the procedure is analogous to interpreting geometrically the
arithmetical relations and objects of an (analytical) geometry that is consti-
tuted purely arithmetically.

What is perplexing in the described method of eliminating theoretical
entities is the fact that it can be applied to any treatment of natural objects.
If the assumption of natural objects is appropriate in the familiar cases of
daily life and, furthermore, if we extrapolate familiar methods of orientation
in place and time to the notion of the four-dimensional space-time manifold,
then it does not seem appropriate to discontinue, so to speak, the treatment
of natural objects at a certain point and to replace the objects there by their
mathematical descriptions.
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However, Carnap can reply to this consideration that the difference of
the methodical treatment does not relate to the differences of positions in
the space-time manifold, but rather to the different theoretical levels. What
is meant by such a difference of level can be exemplified with the distinction
between macro- and micro-physics. In general, a further theoretical level is
present in the treatment of a domain of knowledge where the formation of
concepts forces a further remove from the intuitively familiar. Such a step of
increased theoretical character can be successful and prove satisfactory, and a
practical confidence can arise in the course of applying the initially unfamiliar
concept. But here the difference remains between what is methodologically
more or less elementary, i. e., between what is closer and farther away from
concrete observations.

It is obvious that quantum physics involves an increased theoretization,
in the sense described above, compared with the previous “classical” physics.
But the method for the elimination of entities described above cannot be ap-
plied directly to quantum physics, since here the idea of a definite sequence
of states in the space-time manifold that is determined objectively and in-
dependently of experiments is lost. In a different respect quantum physics
is well-suited to the aims of the method of elimination, since here the idea
of objecthood is already weaker, and mathematical considerations dominate
the concept formations. Quantum physics also shows us how the different
methodological treatments of diverse theoretical entities can be implemented
without objectionable disruptions, by giving the role of the observation lan-
guage, so to speak, to the theoretical language of the previous physics.

At the same time it is hereby suggested that it is reasonable to relate the
distinction between the observation and theoretical languages to the level of
the concept formations, instead of taking it to be absolute. If we consider the
role of the observation language in scientific practice this idea is confirmed.
When physicists talk about their experiments they surely do not speak only
of objects of immediate perception. One talks maybe of a piece of wood, of an
iron rod, of a rubber band or of a mercury column. But the language in which
physicists report their experiments goes much farther in this respect.3 It is

3[1] Indeed, the claim has been made that all experiments in physics turn out to be
statements about coincidences. But surely this claim has to be taken only cum grano
salis: The statement of coincidence (or non-coincidence) is in each case only the last
decisive step in the overall process of an experiment. Moreover this requires that the
person conducting the experiment understands the equipment and handles it correctly,
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also noteworthy that many terms for the concepts of physics (like “barometric
pressure,” “electrical current”) have entered into everyday language.

On the whole, the situation can be characterized by saying that an obser-
vational language of a science that is at a certain level refers to an antecedent
world of ideas and concepts—“antecedent” in the sense introduced in our sec-
tion 2. The antecedent theoretical concepts also obtain their terms in the
observational language at this level. We do not need to separate the ob-
servational language from the colloquial language at all. The observational
language can instead be understood as a colloquial language that has been
augmented by a larger set of terms.

The relativization of the observational language to a conceptual level is
also appropriate to the kind of opposition between what is empirical and what
is theoretical that is intended by Ferdinand Gonseth’s principle of duality.
What is meant here is that there are no distinct empirical and theoretical
domains, but that both aspects come into play in every domain and in every
stage of knowledge. The different points of view in the above considerations:
the elimination of abstract entities, the distinction between theoretical levels,
and the relativization of the observational language to a conceptual level, all
have their application in particular to mathematical proof theory. The latter
assumes a distinction between the “classic” method of mathematics that is
applied in analysis, set theory, and the newer abstract mathematical disci-
plines, and the more elementary methods that are characterized as “finitist,”
“constructive,” or “predicative,” depending on the restrictions at issue. In
the proof-theoretic investigation of classical mathematics, an elimination of
abstract entities is made possible by the method of formalizing propositions
and proofs using logical symbolism. One attempts to use this elimination
to prove the formal consistency of classical theories from one of the more
elementary standpoints. So far formal consistency proofs using constructive
methods have been obtained only for such formal systems as can be inter-
preted at least predicatively. Recently, it appears that a consistency proof
for formalized impredicative analysis is possible from a broad view of the
constructive standpoint, by a method developed by Clifford Spector.

also that this apparatus has been set up appropriately. Moreover the scientist should
have sufficiently confirmed that no interferences occur, etc. It is hardly the case that
everything that has to be understood and done in order to achieve this can be reduced to
simple statements about coincidences. But this is surely not intended by that thesis.
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The elementary “meta-language” in which such a consistency proof is
carried out has the role of an observation language, as has been noted by
Carnap. Originally it was Hilbert’s idea that this language should remain
totally within the framework of concrete considerations, i. e., should be an
observation language in the absolute sense. But gradually one has been
forced to include more and more theoretical terms. The “finitist standpoint”
already uses strictly more than Hilbert originally wanted to allow; but even
this standpoint turned out to be insufficient for the intended purpose, ac-
cording to the results of Kurt Gödel. The consequences of this result appear
not to be as fatal to proof theory as it initially seemed, if one accepts the
idea of relating the observation language to a conceptual level. The acknowl-
edgment of the methodological importance of proof-theoretic investigations,
and in particular those concerning formal consistency, is not tied to the view
that conventional, classical mathematics is dubious, or to the standpoint of
“formalism” according to which classical mathematics is justified only as a
purely formal technique. Hilbert essentially never thought of this, despite
some remarks that point in this direction. The task of constructive con-
sistency proofs is motivated by the high theoretical level that is present in
classical mathematics.

In any case, an adherent of the constructive proof-theoretic direction of
research can very well have the point of view also favored by Carnap, that the
concept formations of classical mathematics have justified application when
taken as interpreted. But whether it is reasonable to accept all entities that
are introduced by set theory as real is open for discussion from this stand-
point as well. Nor is one inclined to withhold the positive status from the
theoretical concepts, awarding that privilege only to mathematical concept
formation; what is just for mathematical classes and functions is equitable
for the entities of the natural sciences, insofar as they are used in a way that
promotes understanding.
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When we compare mathematics with logic in regard to the role assigned
to these two domains of knowledge within philosophical thinking, we find a
disagreement among philosophers.

For some logic is singled out; for them, logic in the broader sense is the
λóγoς, that what is rational, and logic in the narrower sense is the inventory
of elementary insights which should lie beneath all considerations, i. e., the
inventory of those truths that hold independently of any particular factual
content. Thus, logic in the narrower sense (“pure logic”) has a primary
epistemological status.
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A different starting point takes the method of mathematics as exemplary
for all scientific thinking. While for the first point of view the logical is what is
the obvious and unproblematic, for the second point of view the mathematical
is what is epistemologically unproblematic. Accordingly, understanding is
ultimately mathematical understanding. The idea that all rational insight
must be of a mathematical kind plays a fundamental role particularly also
in the arguments of David Hume.

For this point of view Euclid’s Elements counted for a long time as a
paradigm of the mathematical method. But often it was not sufficiently clear
that from the standpoint of axiomatics the Euclidean axiom system is special
(the fact that early commentators had already come up with suggestions for
replacing axioms by equivalent ones was an indication of this). Obviously
many were of the opinion—although probably not the authors of the Greek
work—that the possibility of a strict and successful proof in geometry is
based on the evidence of the axioms.

Those who philosophized according to the axiomatic method, in partic-
ular in the school of Christian Wolff, at times understood evidence as con-
ceptual evidence, so that they did not distinguish between the logical and
the mathematical. The principle of contradiction (which mostly included the
principle of excluded middle was regarded as a magic wand so to speak, from
which all scientific and metaphysical knowledge could be obtained with the
help of suitable concept formations.

As you know, Kant has emphasized in opposition to this philosophy the
moment of the intuitive in mathematics in his theory of pure intuition. But
also for Kant the possibility of geometry as a successful deductive science
is based on the evidence of the axioms, that is in his case, on the intuitive
clarity and certainty of the postulates of existence. That the discovery of non-
Euclidean, Boyai-Lobatschefskian geometry had such a revolutionary effect
on philosophical doctrines is explained by the unclarity in epistemological
judgment about Euclid’s geometry.

But a fundamental change of aspect resulted also for the first of the two
mentioned points of view from the development of mathematical logic. It
became clear that logic as a discipline (which it was already with Aristotle)
does not consist directly in establishing singular logical facts, but rather
in investigating the possibilities of proofs in formally delimited domains of
deduction, and should better be called metalogic. Furthermore, the method
of such a metalogic is typically mathematical.
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Thus it might seem appropriate to classify logic under mathematics. The
fact that this has mostly not been done is explained by the lack of a satis-
factory epistemological view of mathematics. The term “mathematical” was
not, so to speak, a sufficiently familiar philosophical term. One tried to un-
derstand mathematics itself by classifying it under logic. This is particularly
true of Gottlob Frege. You surely know Frege’s definition of cardinal number
in the framework of his theory of predicates. The method employed here
is still important today for the classification of number theory under set
theory. Various objections (which might be discussed in a group of those
interested) can be raised against the view that hereby an epistemological
reduction to pure logic has been achieved.

A different way of approaching the question of the relation between math-
ematics and logic is—as is done in particular by R. Carnap—to regard both
as being analytic. Thereby the Kantian concept of analyticity is fundamen-
tally extended, which has been pointed out especially by E. W. Beth. For
the most part the same character of obviousness that is ascribed to analytic
sentences in the Kantian sense is attributed to analyticity in this extended
sense.

As you know, W. V. Quine has fundamentally opposed the distinction be-
tween the analytic and the synthetic. Although his arguments contain much
that is correct, they do not do justice to the circumstance that by the distinc-
tion between the analytic in the wide sense and the synthetic, a fundamental
distinction is hit upon, namely the distinction between mathematical facts
and facts about natural reality. Just to mention something in this regard:
Mathematical statements are justified in a different sense from statements in
physics. The mathematical magnitudes of analysis are relevant for physics
only approximately. For example, the question whether the speed of light
is measured in the centimeter-second-system by a rational or an irrational
number has hardly any physical sense.

To be sure, the fundamental difference between what is mathematical and
what is natural reality is not a sufficient reason to equate mathematics with
logic. It appears natural to count as logic only what results from the general
conditions and forms of discourse (concept and judgment). But mathematics
is about possible structures, in particular about idealized structures.

Herewith, on the one hand the methodical importance of logic becomes
apparent, but on the other hand also that its role is in some sense anthro-
pomorphic. This does not hold in the same way for mathematics, where we
are prompted to transcend the domain of what is surveyable in intuition in
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various directions. The importance of mathematics for science results al-
ready from the fact that we are concerned with structures in all areas of
research (structures in society, structures in the economy, structure of the
earth, structures of plants, of processes of life, etc.). The methodical im-
portance of mathematics is also due to the fact that a kind of idealization
of objects is applied in most sciences, in particular the theoretical ones. In
this sense F. Gonseth speaks of the schematic character of the scientific de-
scription. What differentiates the theoretically exact from the concrete is
emphasized especially also by Stephan Körner. As you know, science has
succeeded in understanding the connections in nature largely structurally,
and the applicability of mathematics to the characterization and explana-
tion of the processes in nature reaches much further than humanity had once
anticipated.

But the success and scope of mathematics is something entirely different
from its so-called obviousness. The concept of obviousness is philosophically
questionable in general. We can speak of something being relatively obvious
in the sense in which, for example, the mathematical facts are obvious for the
physicist, the physical laws for the geologist, and the general psychological
properties of man for the historian. It may be clearer to speak here of the
procedurally prior (according to Gonseth’s expression “préalable”) instead
of the obvious.

At all events mathematics is not obvious in the sense that it has no
problems, or at least no fundamental problems. But consider for instance,
that there was no clear methodology for analysis for a long time despite
its great formal success, but the researchers had to rely more or less upon
their instinct. Only in the 19th century precise and clear methods have been
achieved here. Considered from a philosophical point of view the theory of
the continuum of Dedekind and Cantor, which brought the justifications of
these methods to an end, is not at all simple. It is not a matter of the
bringing to consciousness of an a priori cognition. One might rather say
that here a compromise between the intuitive and the demands of precise
concepts has been achieved which succeeded very well. You also know that
not all mathematicians agree with this theory of the continuum and that the
Brouwerian Intuitionism advocates a different description of the continuum—
of which one can surely find that it overemphasizes the viewpoint of strict
arithmetization at the expense of the geometrically satisfying.

The problems connected with the antinomies of set theory are especially
well known and often discussed. As you know, different suggestions have
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been brought forward to repair the antinomies. In particular, axiomatic
set theory should be mentioned, which shows that such a small restriction
of the set theoretic procedure suffices to avoid the antinomies that all of
Cantor’s proofs can be maintained. Zermelo’s original axiom system for set
theory has been, as you surely know, on the one hand extended, on the other
hand made formally sharper. The procedure of solving the antinomies using
axiomatic set theory can be interpreted philosophically as meaning that the
antinomies are taken as an indication that mathematics as a whole is not a
mathematical object and therefore mathematics can only be understood as
an open manifold.

The application of the methods of making formally precise to set theory
resulted in a split of the set theoretic considerations into the formulation and
deductive development of formal systems, and a model theory. As a result
of this split the semantic paradoxes, which could be disregarded at first for
the resolution of the purely set theoretic paradoxes, received new formulation
and importance. So today we face a new set of fundamental problems, which,
to be sure, does not bother mathematics in its proper research, just as the
set-theoretic antinomies did not earlier. Rather, mathematics unfolds in the
different disciplines with great success.

The above remarks suggest the following viewpoints for philosophy of
mathematics, which are also relevant for epistemology in general:

1. It appears appropriate to ascribe to mathematics factual content,
which is different from that of natural reality. That other kinds of objec-
tivity are possible than the objectivity of natural reality is already obvious
from the objectivity in the phenomenological regions. Mathematics is not
phenomenological insofar, as has been said before, it is about idealized struc-
tures on the one hand, and on the other hand it is governed by the method
of deduction. With idealization, intuitiveness comes into contact with con-
ceptualization. (Therefore, it is not appropriate to oppose intuitiveness and
conceptualization so heavily as it is done in Kantian philosophy).

The significance of mathematics for theoretical physics consists in the
fact that therein the processes of nature are represented approximatively by
mathematical entities.

2. It does not follow from the difference between mathematics and empir-
ical research that we have knowledge in mathematics that is secured at the
outset (a priori). It seems necessary to concede that we also have to learn
in the fields of mathematics and that we here, too, have an experience sui
generis (we might call it “intellectual experience”). This does not diminish
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the rationality of mathematics. Rather, the assumption that rationality is
necessarily connected with certainty appears to be a prejudice. We almost
nowhere have certain knowledge in the simple, full sense. This is the old So-
cratic insight which is emphasized today especially also in the philosophies
of F. Gonseth and K. Popper.

We have certainly to admit that in mathematical considerations, in par-
ticular in those of elementary mathematics, we possess a particular kind of
security, because on the one hand the objects are intuitively clear and, on the
other hand, almost everything is stripped off by the idealization of the ob-
jects that could lead to subjectivity.—But when we talk about the certainty
of 2 · 2 = 4 in the popular sense, we think at the concrete applications of this
statement. But the application of arithmetical statements to the concrete
is based on empirical conditions, and for their compliance we only have an
empirical, even if practically sufficient certainty.

By dropping the coupling of rationality and certainty we gain, among
other things, the possibility to appreciate the heuristic rationality, which
plays an essential role for scientific inquiry.

The acknowledgment of heuristic rationality provides in particular the
solution to the epistemological difficulty that has been made a problem by
David Hume: we can acknowledge the rational character of the assumption
of necessary connections in nature, without having to claim that the basic
approach of assuming such connections guarantees success; with regard to
this success we depend in fact on experience.
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1.

Among the theses that are characteristic of Ferdinand Gonseth’s philos-
ophy there is one which, at first glance, seems less specific than the others,
but which, on closer inspection, reveals itself to be especially important. It is
the claim that in our theoretical description of nature we do not arrive at an
adequate representation of reality, but only at a schematic correspondence.
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Initially this statement is perhaps open to misunderstanding, and a de-
tailed discussion of its content may not be superfluous. What is definitely
not meant is that any kind of representation of an object or process in nature
as provided by the natural sciences is merely a schematic representation. In
fact, theoretical inquiry in science provides us with a variety of possibili-
ties for letting nature, as it were, work for us, and the depictions obtained
along these lines have a high degree of perfection and are far from schematic;
e. g., the depiction of objects by means of a good photographic image or the
rendering of a sound by means of a good radio reproduction.

What is declared to be schematic is, instead, the representation of a
situation or process in a theoretical “description.” Here the schematic aspect
comes into play from the very beginning insofar as the description is always
fitted to a certain scale of the investigation. It is, in particular, characteristic
that physics, in its continuing exploration of smaller and smaller phenomena,
is led successively to new kinds of objects and laws.

In this development the old idea of atomism has been confirmed in an
impressive way, but not in the sense that with the atoms we have found
something so to speak final, indivisible, and unchangeable. The study of
aggregate states leads to the composition of matter out of molecules; the
study of chemical processes leads to the composition of molecules out of
atoms; and in microphysical research the atoms themselves reveal themselves
to be structured in a complex way, as complexes of even smaller parts which
can be separated if subjected to strong enough forces.

One consequence of discovering smaller and smaller components of phys-
ical entities is that the majority of natural processes are to be conceived
as mass phenomena and, hence, to take many of the usual laws to have a
schematic character insofar as they are based on the explanation of processes
as involving averages.

Another schematic aspect of the laws of physics consists in the following:
During the development of our theories many of the initially formulated and
empirically confirmed laws come to be seen as mere approximations of more
complex, but also more comprehensive laws. Thus even Newton’s law of
gravitation, long regarded as a fundamental law of physics, is now derived
from Einstein’s theory of gravitation as an approximate consequence.

In all these cases the schematic character of the representation does not
by any means signify a deficiency; rather, the realization that a certain more
complex structure can be replaced, to a degree that is perfectly adequate
for the given purposes, by a certain much simpler structure constitutes an
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additional insight. The corresponding approximate representation is also
completely adequate with respect to the given realm of applications; it is
just not adequate absolutely, i. e., for every kind of application.

Let us look at this situation a bit more closely. Most scientific inves-
tigations concern only a limited space-time region, for which the effects of
its further environment are taken into account only as general boundary
conditions, so schematically, or they are neglected altogether. Cosmological
theories, on the other hand, aim at a mathematical-physical description of
nature as a whole; as such they are forced to schematize even more, since
here we are only dealing with global relations.

A kind of neglect that is, as it were, unintentional derives from the fact
that at every level of research only certain kinds of structures, processes, and
dependencies are known to science. Thus for the characterization of, say, a
certain condition only the known aspects can be taken into account.

In spite of the tremendous expansion of human knowledge concerning
law-governed structures and various forms of theoretically comprehensible
connections during the previous and the current century, there is no reason
to assume that we will soon come to an end in that regard.

The principle of the schematic limitation of theoretical description can be
applied especially to the idea of determinism, i. e., the idea that the totality
of natural processes within a sufficiently closed domain is determined in its
development, uniquely and exhaustively, by mathematical laws, if we start
from any fixed momentary state. Organic processes are meant to be included
here as well, as are human life and human actions.

This view depends on the assumption that natural processes can be rep-
resented adequately by the solution to a system of differential equations. As
is well known, this assumption is dropped in contemporary quantum me-
chanics; according to that theory microscopic processes are not determined
uniquely by means of differential laws, these laws provide only determina-
tions of probabilities. But even if one argues that such indeterminacy only
concerns microscopic processes and that for macroscopic processes we never-
theless get deterministic laws as a result, those resulting laws still have the
feature of being schematic; and that feature already constitutes a sufficient
counter-argument against a strict form of determinism.

It should be emphasized here that the rejection of strict determinism does
not at all mean the abandonment of our usual causal thinking. After all, the
principle of causal investigation—which states that if we observe a deviation
from a steady state or from the normal development of a process we can
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expect to find an explanatory cause for that deviation—does not in itself
include determinism.

Furthermore, the deterministic form of physical laws still remains crucial
for the application of these laws in deriving predictions. A rejection of de-
terminism is, thus, only justified with respect to determinism in the sense
mentioned above, i. e., determinism as an extreme philosophical doctrine.

This doctrine plays a role, in particular, in the longstanding debate about
human freedom of the will.1

One can look at this question from many different perspectives. On the
one hand, from the point of view of experience one can point out that es-
pecially with respect to important human decisions, those with respect to
which one is more strongly engaged, emotional drives are usually so domi-
nant that there is no question of an arbitrary choice. The role of the will is
here comparable with that of the executive of a state who is given the more
discretion the less important the decision in question is.

On the other hand, if freedom of the will is called into question from the
point of view of determinism the case is quite different. In that case human
actions are viewed either in terms of physical or physiological laws, in the
sense of psycho-physics, or one imagines psychological research into the mind
to have been brought to such precision that it is capable of exact prediction.
However, an appeal to the principles and methods of psycho-physics or psy-
chology cannot ground a strict form of determinism with respect to human
freedom of the will; this becomes clear as soon as we remember the funda-
mental schematic limitation that is characteristic of the scientific description
of processes and states. Let us assume, e. g., that biology succeeds in deter-
mining the gene structure, thus also the hereditary disposition, of a human
being experimentally; then this determination can still hardly be of a kind in
which the observing researcher or, say, the registering apparatus has access to
all the abilities contained in the hereditary disposition of the corresponding
human being. In other words, the registered data can hardly be equivalent
to the potentialities contained in the hereditary disposition. But that would
be required if one wanted, just on the basis of determining the hereditary
disposition of each human being as well as the influence of environmental
factors, to give a detailed prognosis for someone’s attainments.

1/1∗Gonseth has presented his thoughts on this issue in Determinism and Free Will
(vide [?]). (Footnotes 1* to 3* were added later [to the reprint in the Abhandlungen].)
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2.

So far we have considered the schematic only in the sense of a limitation,
as the merely schematic and abstract as opposed to the richer concrete and
the living. But this is only one side of the story; and it would be an inad-
equate interpretation of schematic correspondence in the sense of Gonseth,
too, if one thought of the schematic eo ipso as a coarsening. Among the
schemata used in scientific description belong, after all, in particular, the
geometric figures, and they have a kind of perfection that can be attained
only approximately by concrete things. A concrete spatial object can only
roughly, but never precisely, have the form of a sphere; similarly, a concrete
length can only approximately be the middle proportional between two dif-
ferent lengths. Thus, there is a kind of reciprocity between the concrete and
the schemata: on the one hand, the schemata do in general represent the
concrete only approximately; on the other hand, the schemata can in general
be realized only approximately by concrete objects.

What reveals itself in this reciprocity is the fact that in the schemata
we are confronted with a kind of objectivity that is sui generis ; it is the
objectivity of the mathematical.

Overall, mathematics can be understood as the science of schemata with
respect to their internal constitution. Seen as such, the essential role played
by mathematics in the theoretical sciences has been acknowledged in terms
of the idea of schematic correspondence, while the fundamental difference
between mathematical objectivity and the objectivity of nature has also been
taken into account.

Mathematical objectivity arises, by means of processes of idealization and
abstraction, out of the phenomenal objectivity of the structural.

Recently the topic of structure has been discussed by Mr. Gonseth with
regard to “structuralism,” namely in connection with the methodological
issues of axiomatization and formalization.2

∗
Let me add a few remarks about

these topics.

a) To begin with, as far as the role of structure in general is concerned
structure can be regarded as that in the phenomena which goes beyond their
qualities. The common opposition between quality and quantity may be
adequate for some purposes in ordinary life, but that between the qualitative

2∗Vide [?].
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and the structural is certainly more fundamental. Assessing the quantitative
comes down to processes of joining together and of observations such as that
one object extends beyond another; both of these have a structural character.
In contrast, a general reduction of the structural to the quantitative can
hardly succeed in a phenomenological sense, i. e., by way of direct description,
but at best in a theoretical sense, say that of Pythagoreanism, whereby
qualitative differences are, however, also reduced to quantitative ones.

In mathematics we are usually not dealing with structures that are given
directly in a phenomenal sense; rather, we are dealing with idealized struc-
tures, where the idealization consists in an adaptation to the conceptual, a
compromise between the intuitive and the conceptual, as it were.

We should note here that in the enterprise of constructive mathematics
the goal is to restrict idealization as much as possible. But this does not
succeed completely; in particular, even constructive mathematics cannot do
without the idea of the unlimited applicability of arithmetic operations (sum,
product, exponentiation, etc.).

b) Mathematical idealization becomes especially pertinent through the
axiomatic treatment of theories. As is well known, there are two different
kinds of axiomatics. Mr. Gonseth, in his book Le Problème du Temps,3

∗
calls

them axiomatisation schématisante and axiomatisation structurante. With
respect to the first, one relies on an already given language, a language in
which the objects and relations under consideration have names; here the
axiomatic aspect consists, on the one hand, in sharpening this language in
the sense of a schematization of the relevant objects and, on the other hand,
in adopting certain claims about these objects that are assumed to hold as
the starting points for logical deductions. With respect to the second kind of
axiomatization, the original objects and relations do not occur independently
any more, but only as links in an overall structure—they occur merely in their
grammatical role, as it were—, and the axiomatic system makes assertions
about this overall structure.

For a number of axiomatic systems of this second kind, a definitional
formulation is the most common, e. g., for the axiomatic system for groups.
Thus one says: a domain of objects for which a composition ab = c is defined
is called a group with respect to this composition if 1. the composition is
associative and 2. the composition is invertible on both sides, i. e., for any

3∗Vide [?].
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two objects a, b (in the domain of objects) there exists an object x in the
domain such that ax = b, as well as an object x such that xa = b.

These conditions can also be formulated as “the group axioms.” It is clear,
then, that we are confronted with a definition, and not an implicit, but an
explicit definition. Of course, what is defined is neither the domain of objects
nor the composition. Those two occur only implicitly in the definition. What
is defined, instead, is what a group is, or better, the condition under which a
domain of objects together with a composition operation defined on it forms
a group.

There are, however, groups with very different structures. Thus what is
characterized by the group axioms is not a determinate structure, but a kind
of structures. The case of an axiomatic system that characterizes a structure
uniquely is only a special case. Such an axiomatic system, one for which
any two realizations (“models”) are structurally identical (“isomorphic”), is
called “categorical.”

On the other hand, one and the same species of structures can in gen-
eral be defined by means of several different axiomatic systems: which of
the theorems holding in the structure are adopted as axioms is not deter-
mined by the structure itself; also, the choice of the basic predicates or basic
operations, respectively, is not determined by the structure: what is a ba-
sic predicate with respect to one axiomatic system can be a (definitionally)
derived predicate for another system that defines the same kind of structures.

In this way there exist equivalence relations between axiomatic systems.
A different relation between such systems that is important methodologically
is that in which one axiomatic system forms an extension of another. Here we
have to distinguish two possibilities: One is that the basic domain remains
the same, but new axioms are added; in this case the characterized kind of
structure is (in general) restricted. The other consists in adding new basic
predicates or operations, in addition to corresponding new axioms; in that
case one moves over to a richer structure. The linear continuum, e. g., if
assumed to be endowed with a measure, is a richer structure than the linear
continuum considered only as an ordered manifold.

c) It is by means of logical inference that axiomatic systems are intended
to be used. The methods of proving things logically have been analyzed by
mathematical logic. The result of this analysis is that for proofs in elemen-
tary theories the predicate logic of “first-order” is sufficient. It consists of
sentential logic, i. e., the rules concerning the sentential connectives “and,”
“or,” “not,” “if, then,” as well as the rules for the universal form and the
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existential form, and the rules for equality. Logical inference within this
framework can be schematized so precisely that, by using symbols for the
sentential connectives and for “all” and “there exists,” all contentual proofs
can be translated into the combined application of a few schematic rules.

This leads to a new kind of structures: the structures of formal deduc-
tions. Between the theorems of an axiomatic theory that can be formulated
within the logical framework mentioned and the sentence-formulas that are
deducible according to the rules of the theory formalized as a calculus there
is a complete correspondence. This harmony between the “semantics” and
the “syntax” of the theory is established by Gödel’s Completeness Theorem,
which says: A sentence of the theory is deducible by means of the formal
rules if and only if it cannot be refuted by means of a “model.”

We are already led beyond the framework of logical deduction described so
far wherever the general concept of a finite number is used. This happens—
just to mention a few elementary examples—in geometry when statements
about arbitrary polygons or arbitrary polyhedra are made, furthermore in
connection with general theorems in formal algebra and in the theory of
finite groups. In all these cases the principle of mathematical induction is
used.

More far reaching than such an arithmetic extension of first-order logic
is the logic of “second-order.” In it general concepts such as those of (one-
or many-place) predicate, function (operation, mapping, sequence), and set
are used, and the rules for universal and existential forms are applied to such
concepts. The inference rules for second-order logic include, among others,
the axiom of choice.

This logic of second order is first used in classical analysis, more exten-
sively in set theory, and then in every domain where the set-theoretic way
of thinking is employed, thus in particular in semantics, i. e., in those inves-
tigations that concern the satisfiability of axiomatic systems by models. In
fact, the concept of satisfiability of an axiomatic system belongs already to
second-order logic, as does the notion of semantic consequence (the semantic
notion of implication). One says that a sentence is implied by an axiomatic
system (in the semantic sense) if it is satisfied in every model of the axioms.
The definition of the concept of “categoricity” requires second-order logic as
well.

d) Second-order logic, i. e., the concepts of set, function, etc. that are
essential for it, has in turn been subjected to analysis; and for a while it may
have looked as if second-order logic could be reduced to first-order logic, by
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treating sets as mathematical objects and the element relation (“a is element
of m”) as a basic axiomatic relation, analogously to the incidence relation in
geometry.

To be sure, in the corresponding axiomatic system formulated by Zermelo
an axiomatic rule (the “Axiom of Separation”) occurs in which, as in the case
of the principle of mathematical induction, there is reference to an arbitrary
predicate (“definite property”). But the employment of this concept of pred-
icate can again be made more precise axiomatically, so that one arrives at
an axiomatization within the framework of first-order logic.

In fact, by means of such an axiomatization all the proofs of classical
analysis and of Cantorian set theory can be carried through, as well as for-
malized in logical symbolism. However, there is no longer a harmony between
syntax and semantics here. The concept of predicate has been restricted by
giving it a precise axiomatic formalization. This does not affect the usual
proofs in number theory, analysis, or set theory; these proofs can, as indi-
cated, be carried out within the framework of the axiomatic system; also,
every sentence that is deducible within the axiomatic framework is true in
the usual (classical) sense. But with respect to applying the Completeness
Theorem we now have the complication that the concepts of “satisfiabil-
ity” and “refutability” have a different sense depending on whether they are
used in accordance with the axiomatic system or from the viewpoint of the
semantics.

Any model of axiomatic set theory or, more generally, any model of a
theory axiomatized first within the framework of second-order logic, but then
reduced to first-order logic by axiomatically restricting the notion of predicate
or, respectively, the notion of set or function, is called a “non-standard”
model, at least if the restriction of the concept of predicate (or, respectively,
of the concepts set or function) makes a difference; otherwise it is called a
standard model.

One obtains a corresponding non-standard model for axiomatic set theory
or analysis by means of Löwenheim’s Theorem, which says that any axiomatic
system that is formalizable in first-order logic and that is consistent has a
model whose elements (individuals) are the natural numbers. Such a model
can certainly not be a standard model, since it is provable in set theory, as
already in analysis, that the number-theoretic functions (i. e., functions with
numbers as arguments and as values)—which here count as individuals—are
not enumerable (by the natural numbers). Thus one obtains a model that
contradicts a theorem provable in the theory as interpreted externally.
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In may seem now that such difficulties arise only in the case where we
are dealing with uncountable manifolds; but in fact such difficulties can al-
ready be found in connection with number theory. Here, too, the restriction
of the principle of mathematical induction to sentences of a certain form
has non-standard models as a result. Here, once more, a number theoretic
sentence that holds in terms of its content can contradict a sentence that
holds in a model (externally). In any case, a non-standard model of number
theory contains, besides the numbers 0, 1, 2, 3, . . ., also infinitely many other
elements that function as “natural numbers” in it.

Then again, these remarks do not refute the view that the presence of
non-standard models has to do with the uncountable: to be sure, the set of
natural numbers is countable, in fact it is the prototype of the countable;
but the properties (sets) of numbers that play a role in the principle of
mathematical induction form an uncountable totality.

It should be noted, by the way, that the number-theoretic non-standard
models cannot be eliminated by integrating number theory into a wider for-
malizable and axiomatic framework. Rather, because of Gödel’s Incomplete-
ness Theorems the following is the case: for any axiomatization of analysis
or set theory that is consistent and can be formalized faithfully, there exist
non-standard models which are already non-standard with respect to number
theory.

e) The difficulties just considered attach to axiomatic mathematics, more
precisely to any axiomatization within the framework of first-order logic that
is of a stronger kind and allows for formalization. By making the deduc-
tive structure of a formalized theory one’s object of study, as suggested by
Hilbert, that theory is, as it were, projected into number theory. The result-
ing number-theoretic structure is, in general, essentially different from the
structure intended by the theory; nevertheless, it can serve to recognize the
consistency of the theory, from a viewpoint that is more elementary than the
assumption of the intended structure.

Hilbert’s idea was to obtain, along such lines, an elementary consistency
proof for all of classical mathematics, thus to resolve the problem of the
foundations of mathematics once and for all.

This program had to be revised in two respects. On the one hand, ex-
pectations with respect to how elementary the proof-theoretic considerations
could be had to be lowered. The “finitist stance” envisioned by Hilbert proved
to be insufficient for the purpose at hand; at the same time, it also became
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clear that this stance is more restrictive than that of Brouwer’s intuitionism.2

The other way in which Hilbert’s program needed to be revised concerns
the idea of a definitive resolution of the foundational problems of mathemat-
ics. So far consistency proofs for formal systems of number theory and for
fragments of analysis have been provided by a variety of methods, methods
that all lie within the scope of intuitionist mathematics. Let us assume we
succeeded in giving, within a suitably extended framework of constructive
mathematics, consistency proofs for formal systems of classical analysis and
for formalized axiomatic set theory; then this would still not provide final clo-
sure. Since, as mentioned above, the semantics of set theory goes essentially
beyond set theory as made precise axiomatically. Moreover, the totality of
mathematics can certainly not be represented exhaustively by one formally
restricted theory. Mathematics as a whole—this is the lesson of the set theo-
retic antinomies—is not a structure in itself, i. e., an object of mathematical
investigation, nor is it isomorphic to one.

Proof-theoretic considerations can, consequently, not encompass mathe-
matics as a whole, but only particular restricted mathematical theories.

Even if the original goals of Hilbert’s proof theory require modification
in the two respects mentioned, this Hilbertian project has still proved very
fruitful. Proof-theoretic investigations form a vibrant area of mathematical
research today. In connection with these investigations, too, we are dealing
with idealized structures, although people like to talk about the “concrete”
in this connection in order to emphasize the difference to those considerations
that lead further away from the concrete.

f) The task here cannot be to discuss and to evaluate all the different
foundational programs that play a role today. Some of them, in particular
Brouwer’s intuitionism, tend towards replacing ordinary mathematics by a
more restricted methodology, one that, compared to analysis, amounts to
a stricter arithmetization. The fruitfulness of such investigations consists

2With regard to evaluating methodological stances in terms of their evidence it is
important to realize the following: We cannot talk about “evident” or “not evident”
simpliciter—even if we disregard individual conditions of evidence. There are, after all,
both degrees and different kinds of evidence. Thus a gain in terms of being more elementary
can be offset by a cost in terms of the degree of evidence; there is no dearth of examples
here. It is hardly adequate, then, to declare any one methodological stance to be the stance
of mathematical evidence absolutely. Of course, the possibility of justifying the methods
of classical analysis (in the sense of establishing consistency) by elementary considerations
is still important.
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mostly in the fact that in them a number of new, mathematically valuable
concepts and methods have been developed. Results obtained along those
lines are to be valued even if one does not share the opinion that the usual
methods of classical analysis should be replaced by others. It also has to
be granted that the classical foundations of the theory of real numbers by
Cantor and Dedekind do not constitute a complete arithmetization. But it
is very doubtful whether a complete arithmetization can do justice to the
idea of the continuum. The idea of the continuum is, originally at least, a
geometric idea.

The monism of arithmetization in mathematics is an arbitrary thesis. It
is by no means clear that mathematical objectivity grows only out of the
idea of number. Instead, concepts such as those of a continuous curve and of
a surface, as developed especially in topology, can probably not be reduced
to the idea of number. This does not mean that we shouldn’t try to make
the idea of number as fruitful as possible for the study of geometric figures,
as is of course already done in analysis.

Based on the conception laid out above, according to which mathematics
is the science of idealized structures, we have a viewpoint on the foundations
of mathematics that saves us from exaggerated perplexities and from forced
constructions, one that will also not be undermined if foundational research
comes up with various new, surprising results.

This conception requires, however, that we accept another kind of objec-
tivity besides the objectivity of natural reality. For Gonseth’s philosophy this
presents no difficulty. In this philosophy it is acknowledged from the begin-
ning that the totality of what is objective divides up into different “horizons,”
which, at the same time, enter into relations to each other, relations such as
those between concrete and idealized structures.

On the other hand, this philosophy provides us with an alternative to
the apriorist view of mathematics, a view for which the following paradox
presents itself: mathematical facts reveal themselves to us only gradually,
in the process of doing research; and concepts appropriate for them are also
only found gradually in that process, in such a way that completely new
constellations occur again and again.

Gonseth proclaims ouverture à l’expérience as a general method; and
as a requirement it is not restricted to research into nature, but is equally
important in the field of intellectual experience.
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Bernays Project: Text No. 28

On a Symposium on the Foundations of

Mathematics
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Zum Symposium über die Grundlagen der
Mathematik1

(Dialectica 25, pp. 171–195;
repr. in Abhandlungen, pp. 189–213)

Translation by: Steve Awodey
Revised by: CMU

Final revision by: Charles Parsons

The following remarks on the problems in the foundations of mathematics
should serve to situate the Symposium on the Foundations of Mathematics
begun in volume 23 of Dialectica,2 which was initiated by Erwin Engeler
and me at the suggestion of Mr. Gonseth, who briefly introduced it in the
editorial of that volume.

1Eine Ankündigung des Symposiums brachte Herr Gonseths Editorial zu Dialectica
Band 22 (1968) (siehe S. 91–95, insbesondere S. 95)

2Verzeichnis der Abhandlungen (nachträgliche Hinzufügung [in den Abhandlungen]):
Dialectica, Vol. 23 (1969)

325



326 CHAPTER 27. A SYMPOSIUM (1971)

Since the discussions in the twenties, in which the problems in the founda-
tions of mathematics received particularl attention in philosophy, the prob-
lems has changed considerably. At that time, the situation was characterized
by the opposition of three positions, which—following L. E. J. Brouwer—were
called Logicism, Intuitionism, and Formalism. The impression was created
that these positions formed a complete disjunction of the possible ones on
the question of the foundations of mathematics. In truth these were three
particular schools, advocating three different approaches with respect to the
foundations of mathematics.

The ideas underlying these approaches have retained their relevance to the
contemporary discussion of questions of foundations of mathematics. Many
of the methods and results that were achieved by these approaches also have
lasting significance, in particular:

1. the realization that it is possible to formalize mathematical theories
using logical symbolism; the use of this symbolism is already familiar to the
present-day mathematician.

2. the application of formalization in metatheoretical considerations. The
Aristotelian theory of the syllogism already contains the beginnings of this;
the investigation of possible mathematical proofs goes far beyond this very
limited framework.

3. the contrast between the constructive way of doing mathematics, with
its emphasis on procedures, as opposed to the classical way, which is more
focussed on relations among objects.

With respect to the problems in the foundations of mathematics, how-
ever, none of the original approaches achieved exclusive success. Instead,
the development was toward a combination of the different points of view,
while some of the positions associated with the different approaches had to

issue 1: Abraham Robinson, “From a formalist’s point of view” (vide [?]). – R. L. Good-
stein, “Empiricism in mathematics” (vide [?]). – Erwin Engeler/Helmut Röhrl, “On the
problem of foundations of category theory” (vide [?]). – Paul Finsler, “On the indepen-
dence of the continuum hypothesis” (vide [?]).

issue 2: Haskell B. Curry, “Modified basic functionality in combinatory logic” (vide [?]).
– Georg Kreisel, “Two notes on the foundations of set-theory” (vide [?]).

issue 3–4: F. William Lawvere, “Adjointness in foundations” (vide [?]).
Dialectica, Vol. 24 (1970)

issue 4: Marian Boykan Pour-El, “A recursion-theoretic view of axiomatizable theories”
(vide [?]). – Richard Montague, “Pragmatics and intensional logic” (vide [?]). – Eduard
Wette, “From infinite to finite” (vide [?]).
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be abandoned.

The initial framework for the formalization of mathematics presented in
Principia Mathematica included unnecessary complications, and it was, on
the suggestion of F. P. Ramsey, replaced by the simple theory of types. A
different, type-free, framework had already been given, of course not formally
at first, in the axiomatic set theory of Zermelo. This was also given a formal
presentation. For that it was necessary to give a restricted, precise specifi-
cation of the notion of a “definite property” used by Zermelo in one of the
axioms, as was done simultaneously by A. A. Fraenkel and Thoralf Skolem.
The systems presented by W. V. Quine mediated, as it were, between type
theory and the systems of axiomatic set theory.

It turned out, however, by the results of Kurt Gödel and Skolem, that
all such strictly formal frameworks for mathematics are unable to represent
mathematics in its entirety. In this connection, even for number theory
treated axiomatically one has that any strictly formalized axiom system pos-
sesses “non-standard models,” which do not have the intended structure of
the series of numbers. In these facts we see that certain concepts do not
admit a fully adequate formalization, such as the concept of finiteness (of a
finite number) and the general notion of a predicate.

With respect to the metatheoretical perspective (as permitted by for-
malization), furthermore, one such for mathematics was intended by Hilbert
(“metamathematics”) as an method of demonstrating the consistency of clas-
sical mathematics by elementary combinatorial methods, thereby answering
the various criticisms, initially mainly from Kronecker, toward the methods
of classical mathematics. In this connection it turned out, again on the ba-
sis on Gödel’s results, that the goals needed to be weakened considerably,
in that one could not limit oneself for the consistency proofs to elementary
combinatorial methods, but rather required the use of stronger methods of
constructive mathematics. Just how much stronger they must be is still not
fully clear.

This difficulty, however, only concerns one particular kind of metatheo-
retical investigation. Such investigations are, however, not only useful for
consistency proofs, but are also important for treating questions of decid-
ability and completeness, as Hilbert also intended. Thus a metatheoretical
investigation of mathematical theories does not necessarily involve a reduc-
tion of the usual methods of proof.
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The first use of conventional (classical) methods in metamathematics was
in the Gödel completeness theorem, which gives the completeness of the
rules of the usual (first-order) predicate logic, and which led to numerous
mathematically fruitful discoveries.

A large field of metamathematical research without any methodological
restrictions was opened up by model theory, cultivated in A. Tarski’s school,
which has been extended to a theory of relational systems. This research
makes strong use of set-theoretic concepts like the transfinite ordinal and
cardinal numbers, not only for the methods of proof, but also in determin-
ing the objects studied. One considers for instance formal languages with
names for infinitely many individuals, and indeed, for totalities of individu-
als of arbitrarily high transfinite cardinality. Infinitely long formulas are also
considered.

This sort of set-theoretical metamathematics shows, among other things,
that the claim of Brouwer’s intuitionism to be the only correct way of doing
mathematics has generally not been accepted. Intuitionistic mathematics
is usually regarded instead as a possible methodological alternative, along-
side of the usual, classical mathematics. As such it has been investigated
metamathematically, after A. Heyting satisfied the need for a more precise
description of intuitionistic methods by giving a formal system of intuition-
istic logic and arithmetic.

In connection with this formalization given by Heyting it also become
clear that the methodological standpoint of intuitionism did not coincide
with the finitist standpoint intended by Hilbert for the purposes of proof
theory, but actually went beyond it, contrary to what had been thought.
This was in particular evident in that it proved possible to establish the
consistency, using intuitionistically acceptable methods, of various formal
systems that had been shown to be out of reach of finite methods. This
difference in the scope of methods rests on the fact that the evidences used
by intuitionism are not only elementary and intuitive ones, but also include
abstract conceptualization. Brouwer uses for instance the general notion of a
proof; these are not, however, proofs according to fixed rules of deduction, but
meaningful proofs, and thus not something delimited intuitively. This general
notion of proof is then used in particular to interpret the Heyting formalism,
with which (by reinterpreting some of the usual logical operations) a very
simple consistency proof can be given for the formalism of (classical) number
theory. Of course, in using this concept of proof, one not only goes beyond
the finitist standpoint, but also beyond conventional mathematics, which
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surely uses the notion heuristically, but not in any systematic way. One can,
of course, replace applications of the general notion of proof in establishing
consistency by other concepts of intuitionistic mathematics. Such concepts
include, on the one hand, Brouwer’s notion of a choice sequence, i. e., an
unending sequence of successive choices of values, and on the other, as Gödel
pointed out, the concept of a functional, i. e., a function taking functions as
arguments.

The constructive use of transfinite ordinal numbers, for example, can be
justified with the help of the concept of a choice sequence, since for cer-
tain ranges of such ordinal numbers, which can be described by elementary
means, it can be shown that any decreasing sequence stops after finitely many
steps. — In applying the notion of a “functional” one ascends to higher levels
(“types”) of functionals: functionals can in turn be arguments to functionals
of a higher type.

Thus there are various ways of extending the finitist standpoint for the
purposes of proof theory.

One direction in research into mathematical foundations has not yet been
mentioned. It was only remarked in passing that the system of Principia
Mathematica included unnecessary complications, which were then overcome
by the system of simple types. The “lack of necessity” resulted, however, only
from repudiating one of the aims of the formulation of the system, expressed
in the form of the “ramified types,” but not enforced, and indeed in effect
rendered superfluous by the later addition of the “axiom of reducibility.”

This aim goes back to a critique of the method of founding analysis (by
Dedekind, Cantor, Weierstraß), as expressed by some French mathemati-
cians. This critique, while not going as far as that of Kronecker and later
Brouwer, has in common with those sorts of views that it aims for a stricter
arithmetization of the continuum. It is objected that in existence proofs in
analysis, such definitions (“impredicative”) are often used as make reference
to the totality of all real numbers, say, for instance when a decision is made
to depend on whether or not there is a real number with a certain property.
According to the arithmetization, however, the totality of real numbers is
supposed to arise from the possible arithmetic definitions.

A more precise formulation of the associated requirement for predicativity
was indeed first given by Bertrand Russell, although, as mentioned, he did
not consistently maintain it. Hermann Weyl returned to it later in his work
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The Continuum.a Since then various ways have been attempted to give a
predicative formulation of analysis and set theory, in particular by Leon
Chwistek, Frederic B. Fitch, Paul Lorenzen, and Hao Wang.b

With respect to the requirement of predicativity there is little unanimity
among mathematicians and researchers in foundations. Here, too, one can
assume a compromise position, similar to that assumed with respect to the
requirements of intuitionism in what has already been said. One can respect
the possibility of a predicative treatment of analysis, i. e., the theory of real
numbers and continuous functions of one or more variables, while at the same
time recognizing that mathematics goes beyond these methods, and that for
research in some areas it is appropriate to use the concepts of general set
theory. In particular, only by using such concepts does the idea of the con-
tinuum receive an adequate theoretical treatment.

A new aspect of the question of mathematical foundations has recently
appeared in the results concerning Cantor’s problem of the continuum. This
is the question whether the cardinal number of the set of subsets of the
sequence of numbers, which is also the cardinal number of the continuum, is
the next larger one after the cardinal number of the set of natural numbers.
The assumption that this is so is called the continuum hypothesis.

After Gödel had proved that the continuum hypothesis is consistent in
the framework of axiomatic set theory (assuming that the latter is itself
consistent), Paul Cohen has recently shown that axiomatic set theory leaves
the cardinal number of the continuum fully undetermined, except for certain
known restrictions, within the range of uncountable cardinal numbers. This
of course holds for the restricted formulation of axiomatic set theory already
mentioned, which makes possible its strict formalization. However, in the
case of the continuum problem it is not apparent, at least up to now, how we
can, by giving up the more precise axiomatic formulation, gain the possibility
of a decision about the power of the continuum.

The situation encountered here is similar to the one resulting from the
imperfection of formalized axiom systems already mentioned, as expressed
by the existence of non-standard models.

The description just given of the current situation in research in math-
ematical foundations is certainly not complete in all aspects. It may serve

aVide [?].
bVide .
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nonetheless as an introduction to the remarks that now follow, referring to
the various contributions to the symposium, and which are intended in part
as elucidation, and in part concern the philosophical discussion. Some fur-
ther elaborations on the forgoing remarks will also be included.

The series of contributions to the symposium is opened by the one from
Abraham Robinson “From a formalist’s point of view,”c in which a position
is presented that the author does not definitely hold, but at least states
for discussion. The position holds that there are no infinite totalities and
that it is strictly speaking nonsense to refer to them, but that, on the other
hand, this should not hinder us from doing mathematics in the classical way,
making free use of the various concepts of the infinite.

This view is obviously problematic in and of itself; it has more the charac-
ter of a problem to be solved than an explanation of something. In searching
for a clarification we should first recognize that the claim that there are no
infinite totalities surely only applies to natural reality, and that accepting
it in no way implies that the idea of an infinite totality — say that of the
lattice points in the plane equipped with coordinate axes and origin — is
nonsensical.

We can admit that we have no real visual representations of infinite to-
talities; but neither do we have any of totalities with very large numbers,
although our experience tells us that such do exist. Full visual representabil-
ity is thus not so critical for our claims and assumptions about existence,
even in the natural world. On the other hand, there is a kind of represen-
tative imagination, in which conceptualization and intuition are combined,
and the scope of which is difficult to determine. The claim that there is a
strict separation of concepts and perceptions in our mental lives — as held
by Kantian philosophy in particular — certainly needs revision.d

Representative imagination makes it in particular possible to go beyond
the finite. The mathematician who considers the infinite is surely not think-
ing only in words. In analysis, in particular, mathematical procedures have
a kind of intuitiveness and certainty that cannot be attained by mere verbal
operations.

If we want to do justice to our mental experiences, we must not be satisfied
with an oversimplified scheme of what is conceivable. Nor will it suffice to

cVide [?].
dThe term Vorstellung is not translated uniformly in this passage.
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recognize only one kind of objectivity. The sensory qualities, for instance,
are of course merely subjective from the standpoint of physics, while a color
as such is something objective, and the relations among colors are objective
states of affairs (to which it is not initially determined how or to what extent
there must correspond physical or physiological states of affairs). Works of
literature and music are also objective entities, whereby this objectivity does
not coincide with that of a particular presentation, which may fail to do
justice to the work.

In light of all this, there is no obstacle in principle to recognizing the
objectivity sui generis of mathematical objects. The objectivity is that of
idealized structures, whereby the idealization consists in mediating between
concepts and intuition. That such idealized structures should have their own
laws is certainly something quite remarkable, but hardly more remarkable
than the fact that mathematics finds such immediate application in the nat-
ural sciences.

What probably bothers many philosophers and mathematicians about
admitting a special objectivity for mathematical objects, about this kind of
“platonism,” is mainly that the objectivity is taken to be to too great an
extent analogous to natural reality.

That mathematical objects and states of affairs have a fundamentally
different character than those of the natural sciences is emphasized and elu-
cidated in the article by R. L. Goodstein “Empiricism in mathematics.”e

On the basis of the difference between the objects of mathematics and
those of the natural world, Goodstein explains mathematics as a mere game,
pointing in particular to the similarities with chess. This clearly Wittgen-
steinian characterization is hardly adequate. The similarities of chess, and
board games in general, with mathematics rest, not on the fact that these
are all games, but on the fact that the games have geometric and arithmeti-
cal properties, resulting from the board configurations and rules for moving
the pieces. Statements and conjectures of a thoroughly mathematical kind
are often made concerning games, particularly chess. To be sure, one can
do mathematics in a playful way, but that is not particular to mathematics;
one can conduct other sciences playfully. (Aspects of play occur in many
intellectual activities in which people have a certain freedom.) The rules of
doing mathematics are not determined with an eye to having fun, but for

eVide [?].
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the characterization and study of distinguished (usually idealized) structures.
The statement of these rules is itself a part of mathematics.

The contributions by Paul Finsler and Georg Kreisel are concerned specif-
ically with questions of set theory.

In his study “On the independence of the continuum hypothesis”f Finsler
emphasizes that the independence of the continuum hypothesis from the
framework of axiomatic set theory, established by Paul Cohen and mean-
while also by Dana Scott using other methods, depends on the axiomatic
restriction of the notion of a subset, and thus does not apply to the contin-
uum (respectively, the set of all subsets of the number series) in the original
sense. In this sense, Finsler speaks of a formal continuum, which does not
posess all of the properties of the real continuum. He gives the example of
a hypercontinuum that he arrives at from Cantor’s first and second num-
ber classes, and which has many properties of the continuum, but can fairly
easily be shown not to have the next cardinality after the countable, in con-
tradiction to the continuum hypothesis. This example is supposed to show
that the possibility of defining a formal continuum that doesn’t satisfy the
continuum hypothesis is nothing surprising.

The example is of course not very convincing, since the constructed hy-
percontinuum exhibits quite clear deviations from the continuum of analysis,
whereas the continuum of axiomatic set theory can be shown to have all the
usual properties (independently of set theoretic axiomatics).

In his “Two notes on the foundations of set theory”g Kreisel provides de-
tailed arguments against those who either would reject set theory entirely or
would advocate restricting the rules of set formation, particularly in response
to the difficulties regarding the continuum hypothesis. His open-mindedness
is not connected with a lack of appreciation for the constructive point of
view, as is the case with some set theorists. Indeed, Kreisel himself has been
deeply involved with research into finitist and intuitionistic mathematics and
its exact characterization. This makes his thoughts all the more relevant for
those who consider awareness of constructive methods important.

The brief introductory summary of the beginnings of set theory provides
an opportunity for further discussion. Kreisel believes that Cantor’s contem-
poraries found the concept of set to be a “mixture of notions,” as a result

f Vide [?].
gVide [?].



334 CHAPTER 27. A SYMPOSIUM (1971)

of its very different kinds of applications (to concrete objects, to numbers,
to geometric points). According to this view, the desire to arrive at a more
precise general concept of set resulted after several unsatisfactory attempts
in the discovery of the cumulative type structure, with which the decisive
clarification was achieved.

To be sure, Kreisel himself remarks in a footnote that he does not feel
competent to judge how things were seen at the time. Some further histori-
cal remarks may not be out of place here, of course, with equally imperfect
knowledge of the full development.

The discovery of the cumulative type structure — today one also speaks
of natural models of the axioms of set theory in this connection — was closely
related to the formulation of the Axiom of Foundation, which does indeed
enforce a sort of type structure on the system of all sets. The idea of the
Axiom of Foundation was probably first due to Dmitri Mirimanoff,3 who in
connection with it found the “independent”4 theory of ordinal numbers (at
about the same time as Zermelo and von Neuman.h

Mirimanoff was led to his observations by consideration of the set theo-
retic paradoxes. These were also responsible for Zermelo’s formulation of his
axiom system for set theory and Russell’s formulation of the theory of types.

The idea of restricting to those sets that can be built from an initial set
(say, the natural numbers) by forming power sets, unions, and separation,
was at one point considered — as was related to me by Hilbert. It led directly
into paradox, however, since the process of forming unions was not sufficiently
regulated, and instead the collection into a set of all the sets arrived at by
the processes mentioned was itself regarded as a legitimate union.

There is really no reason why anyone should object to the different ap-
plications of the concept of set. The elementary concept of cardinality is not
considered a mixture of concepts, even though it can be applied at once to
both concrete things and also to arithmetical and geometric objects.

3The condition expressed by this axiom is of course already implicitly contained in the
intuitive notion of set.

4so-called because the ordinal numbers do not need to be introduced as abstraction
classes of similar well-ordered sets.

hVide .
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For theoretical treatment of number theory one has of course isolated a
structure that can be studied purely purely for itself, prior to its application
for determinations of cardinality, to which it is applied. It should be noted,
however, that the axiomatic formulation of number theory by Dedekind and
Peano, which provided the characterization of the structure of the number
sequence, was only achieved when number theory was in an advanced stage
of development.

Set theory, for its part, had already been developed by Cantor to a con-
siderable degree when it was axiomatized by Zermelo. And even in that
axiomatization, the cumulative type structure mentioned by Kreisel was not
yet worked out. Almost a decade passed until the formulation of the Ax-
iom of Foundation, and it was in that period that Hausdorff’s classic work
Grundzüge der Mengenlehre i appeared. It was path-breaking for the more re-
cent development of set theory and set theoretic topology. In it, however, set
theory is developed without using axiomatics. Hausdorff himself explained
that in his treatment of set theory he wanted to “permit the naive concept of
set, while retaining the restrictions” that block the way to the set theoretic
paradoxes.

It is noteworthy that this approach is still taken today in methodologi-
cally unrestricted metamathematics, i. e., in model theory, and was also used
by Zermelo in his model-theoretic investigation “Über Grenzzahlen und Men-
genbereiche.”j

It is understandable that set theory needs to be treated intuitively in
this way, since it does not merely represent a certain structure, but should
provide our way of thinking about structures in general.

Remark on the “Discussion” (pp. 101–102):k

In light of the examples of restricted methods mentioned here by Kreisel,
some readers might think the proposed concentration on a “relatively re-
stricted system” also refers to one of the restrictions Kreisel mentioned. In
fact, what is intended instead is a contrast with certain approaches using
enormous infinities, going well beyond those usually encountered in math-
ematical theories. The restricted theories mentioned by Kreisel are surely
presented only for the purpose of a methodological comparison.

iVide [?].
jVide [?].
k Zitat/Inhaltsangabe geben?
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Two of the essays in the symposium deal with the theory of “categories:”
that by Erwin Engeler and Helmut Röhrl “On the problem of foundations of
category theory” and that by F. William Lawvere “Adjointness in founda-
tions.”l

Lawvere is one of those responsible for working out the theory of “cat-
egories,” invented by Eilenberg and Mac Lane. This is a general theory of

mathematical mappings. Its basic concept is the relation A
f→ B meaning

“f maps A to B.” Here A is called the “domain,” and B the “codomain,”
of f .5

The basic operation is the composition of mappings fg = h, which is
always possible when the codomain of f agrees with the domain of g. The
domain and codomain are to be thought of as structured sets, although the
elementhood relation is not taken as a basic relation. One refers simply to
“objects” between which there is a mapping.

The concept of a category is tied to these concepts, which concern the
mappings. A category is thereby understood to be a kind of structure, as is
determined by the conditions of an abstract axiom system (i. e., the structures
of such a kind are the models of a system of axioms). The mappings from
one object of a category to another such object are called “morphisms.” The
intention is to characterize structures (categories) through the morphisms
occurring in them.

Not all mappings are morphisms in a category, however. There are also
mappings that lead from one category to another. This is accommodated by
considering “functors,” in addition to morphisms. A functor is regarded as
a mapping from one category into another category. The categories thereby
play the role of objects; the are regarded as the objects of a “category of
categories.”

This leads to problems, however; one is led into the same kind of concept
formation that gave rise to the set theoretic paradoxes. Nor is that surprising.
A category, after all, is a totality only in the sense of being the extension
of a concept, not a mathematical structure. For that reason, it is hardly
legitimate to treat categories as “objects.”

5The mapping need not be onto B. Thus the codomain B need not coincide with the
set of values of f .

lVide [?], resp. [?]
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The essay by Engeler and Röhrl discusses these difficulties and makes a
proposal for their solution, which, however, only partly satisfies the authors
themselves.

I would like to make a simpler proposal here (if only in outline):
1. Mappings occurring between objects of different categories are treated

on a par with morphisms within a category.
2. Functors are replaced by mappings, the domain of which are variable

within a category, and which (with respect to this variability) take the objects
of the given category to ones of some other particular category.

A simple example of such a mapping of a variable object is given by
the transition from an arbitrary Boolean algebra to a ring according to the
method of M. H. Stone.

The intensive study of mappings and the various ways of composing them,
as is done in the theory of categories, has proved to be extremely fruitful and
successful in various fields of mathematical research. In recognizing this suc-
cess, however, we need not subscribe to the tendency, often associated with
presentations of the theory, to eliminate the usual notion of elementhood
from mathematics. This tendency is evident in the practice of intentionally
avoiding the explicit mention of elements of objects, as well as of the argu-
ments and values of morphisms, even if only in the form of bound variables.

To be sure, an element relation of a sort is introduced by postulating a
special object “1” with the property that for every object A there is one and
only one mapping A → 1; the elements of an object C are then taken to be
the mappings from 1 into C. Accordingly, the value of a function (morphism)
f with the domain C and codomain D for an element a of C (as argument)
is given as the composite of f with a, which is indeed a mapping from 1 to
D, and thus an element of D. In this respect, the representation of elements
as mappings seems to be satisfactory. In other respects, however, it turns
out to be inadequate; since an element a of an object C is taken to be a
mapping into C, the object C is uniquely determined by the element a as
its codomain. Two different objects can therefore never have an element in
common. Thus the common boolean algebra operations cannot even arise
here.

The motivation for avoiding the usual elementhood relation is sometimes
said to be that mathematics has nothing to do with substance, but only
with structure. As a statement about mathematics, this is surely correct.
However, the relation of an element belonging to an objective whole, as,
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e. g., a point belongs to a point-set, is indeed a structural relation.
To be sure, there can be no fundamental objection to developing a theory

of functionality in which the elements of the objects represented occur only
implicitly. The general method that is being applied in such a case consists
in taking the objects occurring initially at second order (sets, functions) to
be the immediate objects of the theory, as is already done in boolean algebra.

A theory of this sort will hardly make the usual set theoretic point of
view in mathematics superfluous, however.

A theory of functionality of a very different kind than that of categories is
the object of Haskell B. Curry’s contribution “Modified basic functionality in
combinatory logic.”m The type-free combinatory logic that he formulates is
closely related to the λ-calculus, developed by Alonzo Church, and provides
a formalism for representing constructive functionality by means of combina-
tions of certain atomic combinators. Since the range of values of the variables
to which the combinators are applied is completely unrestricted initially, the
expressions built up out of combinators do not necessarily always represent a
meaningful function. In general, one is led to the further question, whether
a given combinatorial expression is of functional character.

The functionality properties of combinatorial expressions are studied in
depth in the textbook on combinatorial logic by Curry and Feys. The present
article adds to the discussion in the book certain simplifying modifications
and additions regarding the new applications of functionals in research in
foundations of mathematics. In particular Curry proves here a theorem to
the effect that, if for certain “atomic” combinators the functional character
is given, then for every combinatorial expression built from these, it can be
decided whether it has a functional character, and if so, this character can
be determined.

Curry has laid out his general views about mathematics in various other
places: in his monograph Outlines of A Formalist Philosophy of Mathematics,
in his Notre Dame Mathematical Lectures, and in the already mentioned
textbook Combinatory Logic.n

Curry describes mathematics as the science of formal systems. He thereby
understands a formal system to be formalized theory in which it is deter-
mined by stipulations how the sentences are built from predicates and terms,

mVide [?].
nVide [?], [?].
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and the terms from primitive terms, by means of operations, and moreover,
which sentences count as the “elementary theorems.” Just as the terms are
recursively generated from the primitive terms by applications of operations,
so the elementary theorems are recursively generated from “axioms” by ap-
plications of rules of deduction, whereby the axioms are certain sentences
that are simply postulated as valid. Curry regards the determination of the
elementary theorems as part of the formal systems, in contrast to further
considerations about the system, the “επι-theorems.”

Taken together, these definitions do not differ essentially from those of
Hilbert’s proof theory. While proof theory is thought to be a further en-
terprise, beyond existing mathematics, however, Curry’s position takes for-
mal systems themselves to be the actual topic of mathematics. The view is
thereby not that one could arrive at a single formal system for the whole of
mathematics. Rather, Curry emphasizes that what is essential to mathemat-
ics is not to be found in the particular kinds of formal systems, but in the
formal structure as such.

One can also agree in general with this formulation from a non-formalist
standpoint, as long as one takes formal structure to mean, not only the struc-
ture of formal systems of the kind just described, but also idealized structures
in general. It is indeed structures that are the objects of mathematical in-
vestigations.

The structures of formal systems are, however, of interest for us only as a
means to an end. These systems merely serve to put mathematical theories
into a form that is suitable for the application of proof theoretic considera-
tions.6 Mathematics is most certainly not only present where theories of this
kind are have already been produced.

From a proof theoretic point of view, to be sure, most of the mathematical
theories can be regarded and presented as the development of a particular
formal system.

The formal systems all have in common a number theoretic character,
which derives from their recursive construction. This is particularly evident
in the application of the method of Gödel numbering, by which the formu-
las of a formal system, as well as the sequences of formulas, are assigned

6In some situations—as Curry also mentions—proof theoretic considerations seem to
require one to give up the framework of formal systems and move to “semi-formal” systems.
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specific natural numbers.7 This method involves many arbitrary choices, so
that various different numberings of one and the same system are possible.
Moreover, one and the same mathematical theory will have different for-
malizations, which can be translated into each other by sometimes simple,
sometimes complicated transitions.

One can ask in this connection, given any two formal systems, to what
extent is it possible to determine whether they formally represent the same
theory, just on the basis of their Gödel numberings (determined by the same
method). An investigation of just this sort was conducted by John Myhill.
It proceeds from the characterization of a formal system by the set of Gödel
numbers of the provable formulas. Myhill shows that for any two formal
systems, both satisfying a certain condition amounting to a minimum of
expressiveness, the characteristic sets of numbers can be mapped isomorphi-
cally onto each other by means of an effective algorithm which induces a
permutation of the number sequence.

If one then regards any two formal systems satisfying the appropriate
condition as equivalent, then something paradoxical results: Among the sys-
tems satisfying the condition are, on the one hand, very elementary number-
theoretic ones for which consistency can be shown by finitist means, and, on
the other hand, also much stronger formal systems of analysis and set theory,
assuming these are consistent.

This result is surely to be interpreted to say that the existence of an ef-
fective isomorphism between the sets of Gödel numbers of provable formulas
of two formal systems cannot be considered a sufficient condition for their
equivalence. One is led to ask what further restriction on the isomorphism
would lead to a suitable criterion of equivalence of formal systems.

This question is taken up by Marian Boykan Pour-El in her sympo-
sium contribution “A recursion-theoretic view of axiomatizable theories,”o in

7It may be remarked by the way that the more general method of Gödel numbering,
as applied in Foundations of Mathematics (vide [?], pp. ), corresponds to Curry’s more
general kind of formal systems; while the more usual, special method which makes use of
the order of symbols in a formula fits the kind of formal systems that Curry calls “logistic
systems.”

oVide [?].
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which she reports on recent research on the relation between “recursively enu-
merable” sets (i. e., those generated by combinations of elementary processes)
and formalized theories. In a joint paper with Saul Kripke, the attempt was
made to characterize those effective mappings between formal systems that
preserve the proof structure. One condition for such preservation that they
consider is that the mapping preserves not only provability, but also impli-
cation and negation. It turns out that this requirement is, however, not yet
sufficient to provide a suitable characterization of equivalence by means of
such mappings. Some difficulties therefore still remain in this connection,
about which Pour-El formulates a number of more precise questions.p

The contribution of Richard Montague leads us into the field of semantics.
In research in the foundations of mathematics, and in the school of logical
empiricism, semantics is understood to be the investigation of interpreta-
tions of formal languages, such as are used for the formalization of axiomatic
deductive systems. Such interpretations make use of set theoretic concept
formation.

In the case of a formal language of first order with only one sort of vari-
ables and constants for individuals and without symbols for mathematical
functions, the interpretation proceeds by taking as basic a domain (a set)
of individuals, and assigning to each individual constant an element of the
domain of individuals, and to each predicate symbol with k many arguments,
a set of ordered k-tuples of elements of the domain of individuals. A k-place
predicate symbol is then interpreted as a k-place predicate which applies to
a k-tuple of elements of the domain of individuals if and only if that k-tuple
belongs to the set assigned to the predicate symbol.

On this basis the notions of satisfaction and satisfiability of a formula,
with the usual meanings of the logical symbols &, ∨, ¬,

∧
x,

∨
x (and, or,

not, for all x, there is an x), can now be defined recursively:

A prime formula, i. e., a formula without logical symbols, which therefore
consists of a predicate symbol with k arguments, themselves either variables
or constants, is said to be satisfied by a substitution of each of the free
variables (occurring as arguments) by names for elements of the domain of
individuals, in such a way that, taken together with the elements assigned to
the individual constants (occurring as arguments), the result is a k-tuple that

pThe title “Frau” has been omitted.
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is in the set assigned to the predicate symbol. One also says that a prime
formula in which all k arguments are constants is satisfied if the elements
assigned to the constants determine a k-tuple that is in the set assigned to
the predicate symbol.

The conjunction A & B is satisfied when A is satisfied and B is satisfied,
whereby the individual variables occurring in both A and B receive the same
substitution.

The negation ¬A of a formula A is satisfied by a substitution for the free
variables, resp. (if there are none) without any substitution, if and only if the
formula A is not satisfied by the substitution, resp. without any substitution.

The formula
∨

xA(x) (there is an x such that A(x)) is satisfied when the
formula A(b) is, whereby b is any free individual variable not occurring in
A(x).

With this, satisfaction is already defined for arbitrary formulas, since the
logical connectives ∨,→,↔, as well as universality, can be expressed in terms
of conjunction, negation, and the existence operator

∨
.

A formula is called satisfiable if it can be satisfied.
For a formula without free variables, given an interpretation of the formal

language, there are only two possibilities: that it is (simply) satisfied or that
its negation is satisfied. Accordingly, it is said to be “true” (correct) or
“false” (incorrect).

All these notions are relative to the interpretation used, i. e., the basic
domain of individuals and the chosen assignments.

Semantics also makes use of a wider notion of satisfiability, according to
which the predicate symbols are also treated as variables. The interpretation
itself is then regarded as variable, and one defines a formula to be satisfiable
if it is satisfiable, in the previous sense, for a suitable interpretation.

Numerous applications can now be made of these concepts. First of all it
can be shown that applications of the rules of the logical calculus to correct
formulas always results in formulas that are again true, and that is the case
for any interpretation. In particular it follows from this that every provable
formula of the logical calculus (of first order) is true under every possible
interpretation. The converse statement, that in the framework of first-order
logic every formula with this property is provable in the logical calculus, is
asserted by the Gödel completeness theorem.

One can furthermore study the axiom systems formalized in the first-
order framework. The interpretations of such a system under which all the
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axioms (resp. the formulas built according the axiom schemata, if used) are
true are called the “models.” The valid sentences of the formalized theory
are those represented by formulas that are true in every model of the axiom
system. That every formula representing a valid sentence can be derived by
the logical calculus again follows from the completeness theorem. This says,
in other words, that any sentence which can be represented by a formula of
the formal theory and cannot be derived from the axioms can be refuted by
a model which does not make the corresponding formula true.

These facts can be formulated precisely only using the semantic concepts
just introduced. Although these concepts are concerned with first-order logic,
their definitions and applications go beyond it; in particular the general no-
tion of satisfaction of a formula is a concept of second-order logic.

The semantic investigations under discussion are all concerned with ex-
tensional logic, which is of course sufficient for conducting mathematical
proofs. In his essay “Pragmatics and intensional logic”q Richard Montague
attempts to show that the methods of semantics can be applied to formal
languages that go beyond extensional logic, and in particular that the con-
cepts of satisfaction of a formula and that of truth can be defined for such
formal languages.

Montague considers various formal languages, some of which he calls prag-
matic, and some intensional.

The pragmatic languages are characterized by the occurrence of means of
expression that require knowledge of points of reference (in the terminology
of Dana Scott) for their interpretation.

Such means of expression are, in particular, temporal references, e. g.,
the word “now,” and verb tenses. Intensional languages are understood to
be those in which occur expressions for modalities or attitudes of persons to
propositions, such as “B believes that . . . .”

The method of interpretation is one and the same for pragmatic and
intensional languages: a parameter set is fixed, the value of the parameter
determines a point of reference or a possible world (according to the sort of
language in question) and the interpretation then proceeds with a dependence
on the value of the parameter. For this interpretation and each value of the
parameter, a set of individuals is assigned.

qVide [?].



344 CHAPTER 27. A SYMPOSIUM (1971)

The execution of this approach to the definition of semantic concepts is
given in detail for the formal languages considered.

It seems that the scientific application of this method is problematic.
Pragmatic languages are indeed used in science, but mainly for empirical
research, to which a treatment in the form of a formal axiomatic theory is
generally not well suited. In particular, it seems very contrived to assign
each point in time a domain of individuals. Even more questionable is the
assignment relative to possible worlds; we don’t even know in the real world
whether one can speak of the totality of individuals in certain ways. Thus
the methods of extended semantics described by Montague will likely be
applicable only in situations where a very schematic treatment suffices.

Unfortunately, these questions can not be discussed with the author him-
self, since he is no longer living. He did, however, name in his article various
colleagues with whom he has discussed such questions.

In his essay “From infinite to finite”r Eduard Wette takes an extreme
position. He there claims that it is possible to demonstrate the inconsistency
of formalisms for classical mathematics and even for number theory. He has
pursued this idea, and reported on his research in various papers and lectures.

The contradictions he arrives at are of course not of the same sort as
the familiar set theoretic paradoxes, which can be presented relatively easily,
and indeed can even given a popular formulation in some cases. The proofs
involved in Wette’s work are extremely complicated, and are only described
by him, but not actually given. This description provides too little to go on
for an accurate verification.1

∗
Moreover, although Wette’s deliberations make

a strong impression of intense intellectual effort, facility with foundational
techniques, and attention to detail, the possibility of an error cannot be
excluded in such extensive investigations. In this connection it seems sus-
picious that the contradiction does not rest with axiomatic set theory, but
that Wette pursues his arguments to the conclusion that analysis, and even
arithmetic, as already mentioned, are inconsistent.

1∗Such a verification could more plausibly begin with the recently published treatise
“Contradiction within pure number theory because of a system-internal ‘consistency’-
deduction” [?].

rVide [?].
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With analysis and number theory we come to fields in which we have
acquired sufficient trust through our intellectual experience.

Of course, a case can be made that only a small part of the requirements
implicit in the formalization of analysis are applied in the actual proofs, and
that more narrow formal restrictions can be made which suffice to conduct
all the proofs in the theory as it actually stands. Thus the trust we have
acquired through intellectual experience does not really apply to the entire
formalization of analysis. Proposals for such more narrow restrictions have
been made by Paul Lorenzen and Georg Kreisel. According to Wette’s claims,
however, even such restrictions would not suffice to eliminate the possibility
of contradictions.

That these extreme consequences of his investigations do not make Wette
himself suspicious of them is to be explained by the fact that he sees the
results as confirming his philosophical views, on which he bases his opposition
to the usual methods in mathematics, and in particular to indirect proofs and
the use of the infinite.

The opposition to indirect proof, which Wette pursues in the name of
strict finitism, goes beyond Hilbert’s finitist standpoint and well beyond
Brouwer’s intuitionism. According to the finitist standpoint, as well as to
Brouwer, indirect proofs are only to be prohibited when establishing positive
(existence) claims, not when used as a method for proving impossibility, and
certainly not in refuting assumptions. Wette considers even such applications
as these of indirect proof to be “problematic,” as he makes clear in criticizing
the Gödel incompleteness theorem at the very beginning of his paper “From
infinite to finite.” At some points it sounds as though he believes his results
are in opposition with that theorem.8

In fact, Gödel’s proof of the incompleteness theorem is not indirect.9 A
procedure is specified, for any formal system F satisfying certain precon-
ditions, which derives a contradiction from a given proof in F itself of the
consistency of F . The preconditions on F that must be satisfied concern
its expressiveness, deductive strength, and strictly formal character. The re-
quirement that the system F is consistent, on the other hand, is initially not
even used. Only by a subsequent contraposition does one infer that, if the
system F is consistent, then no proof of the consistency of F can be given

8Cf. the remarks in Dialectica 24, 4 p. 315, l. 14–16 and p. 316, l. 22–24.
9A proof is said to be indirect if an assumption is made, which in the course of the

proof is shown to be incorrect.
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within F itself.
Even without the contraposition, however, one has the following result:

if a formal system F satisfies the mentioned preconditions, then from a proof
in F of the consistency of F one can derive a contradiction in F .

It is on this very principle, however, that the proofs rest with which
Wette claims to establish the inconsistency of the formal systems of classical
mathematics. These proofs can therefore lead to no incompatibility with the
incompleteness theorem. This line of reasoning also hardly seems likely to
lead to a rejection of indirect methods of proof.

Turning to Wette’s critique of using the infinite, his arguments here make
use of the formalizability of mathematical theories and the finiteness of sym-
bolic formulas. In a recent lecture “On new paradoxes in formalized mathe-
matics” (Madison, Wisconsin, 1970) he says “Is it not a magnificent joke of
history that our symbolism tries bona fide to express each theorem on math-
ematical infinities and logical generalizations in the form of a string which is
finite as well as particular?”

To this question, one can respond that the single sentence which formal-
izes the statement of a theorem does not achieve this feat in isolation, but
rather in the framework of a formal system, i. e., in connection with the basic
formulas of the system and its rules of deduction. In this way, every formula
of the system corresponds to its “consequence set,” i. e., the unlimited set
of formulas that can be derived from it. Here we see the number-theoretic
structure of formal systems entering in, as is made plain by the application
of the method of Gödel numbering.

The basic question may be asked: why in mathematics, or at least arith-
metic, do we not restrict ourselves to a finite framework? The answer to this
is that, in an essential respect, the infinite is more simple than the numerous
finite. A circle is much easier to characterize than an inscribed many-sided
polygon which approximates it. Number theory in a restricted number field
involves various complications. Moreover, how would the restriction of the
numbers be determined? If we left it arbitrary, then we would again al-
ready be using a general numerical variable as a parameter for the possible
restrictions.

If on the other hand we take a particular restriction, then a certain arbi-
trariness is associated with that particular choice. This approach is problem-
atic from the point of view of applications as well; to be sure, in physics there
are size restrictions, but no sharp boundary. And do we even know that our
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current theoretical physics includes all possible applications of mathematics?
Science is far from having reached its end! As an aside, finite geometries
(geometries with only finitely many points) have been constructed which can
be approximated by euclidean geometry.10,s

A question in the other direction, so to speak, is whether in formalizing
analysis and set theory, the number-theoretic structure of formal systems is
in tension with the uncountable sets occurring in these theories, and whether
this tension might be at fault in the difficulties that have turned up in con-
nection with the existence of non-standard models of formal theories and
the formal undecidability of the continuum hypothesis, as were already men-
tioned.

In recent foundational research, one tries to counter this tension by al-
lowing, on the one hand, infinite expressions (in analogy with infinite sums
and products in analysis) and, on the other, uncountably many constants.
It seems doubtful, however, that this approach will lead to a solution of the
difficulties. These difficulties may well be an expression of the fact that the
potential means of concept formation in mathematics cannot be exhausted
by a formal system—just as was already remarked that axiomatic set theory
cannot completely replace the intuitive use of set theoretic ideas as a way for
us to think about structures.

10Such geometries have been considered by G. Järnefelt, P. Kustaanheimo, and B. Qvist.

sVide ).
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Bernays Project: Text No. 29

Preface
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Vorwort

(Abhandlungen, pp. vii–x)

Translation by: Wilfried Sieg
Revised by: CMU

Final revision by: Charles Parsons, Wilfried Sieg

The Wissenschaftliche Buchgesellschaft has kindly offered to publish a
collection of my essays on the philosophy of mathematics, which have ap-
peared in various journals. I accept this offer gladly, in particular since
several of these essays are not easily accessible.

The present volume can also serve as a temporary substitute for a com-
prehensive treatment of the philosophy of mathematics.1 This is possible
because, during the period in which these articles were published, my views
on the relevant questions have changed almost exclusively in response to new
insights gained from research in the foundations of mathematics.

1A monograph on this topic, to be published by Duncker & Humblot, has long been
planned (but is still not done).
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The collection of these various essays should provide the reader with an
adequate characterization of my views on mathematics.

Especially with regard to what has been called the “foundational crisis”
of mathematics it will become clear, I hope, that according to my view we
cannot justifiably speak of a crisis, at least not in the sense that classical
mathematics has been shown to be questionable. Problematic aspects have,
of course, presented themselves in various respects.

First of all, we have become conscious of the fact that the idea of the
obviousness of mathematics is not justified unless we consider as obvious
simply what has become familiar to us through use and practice. Even ideas
that are not really trivial can become familiar to us in this sense, and in their
use we can acquire practical certainty. The very idea of an absolute certainty
is presumably illusory for human reason in any case.

Going beyond the trivial is involved especially in all those idealizations
which are characteristic for mathematical concept formation. It has become
clear that even the general concept of natural number and the related notion
of the number series are based on an idealization.

Already here, we also meet with an opposition that calls for a restriction
of methods of proof. For instance, the restricted methodology of Brouwer’s
“intuitionism” as well as that of the “finitist” standpoint—as Hilbert called
it—avoid the inference according to which a numerical predicate either ap-
plies to all numbers or else there exists at least one number to which it
does not apply. This kind of application of the tertium non datur is avoided
here, all the more, for predicates of sets and of functions. However, even if
only such a restricted methodology is accepted, the recursive generation of
functions leads beyond what is concretely, computationally feasible.

Avoidance of the above-mentioned application of the tertium non datur
has, incidentally, no essential impact on elementary number theory. For
analysis, however, it amounts to a considerable restriction.

As far as classical analysis is concerned, it was initially believed that its
foundation according to the methods of Dedekind and Cantor provided a
complete arithmetization. However, viewed from the standpoint of the re-
quirement of a strict arithmetization, classical analysis was soon criticized.
And this critique grew under the influence of the demands of finitist and
intuitionistic methodology. Various programs for a more strictly arithmeti-
cal treatment of analysis have since been developed within research in the
foundations of mathematics.
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It would be unjust not to recognize that these various kinds of a more
strongly arithmetized analysis are of definite mathematical interest. Yet, it
should also be admitted that it is a prejudice to believe that it is absolutely
necessary to arithmetize analysis completely. In analysis, geometrical ideas
are made conceptually precise. The methods of Dedekind and Cantor, re-
ferred to above, succeed in connecting analysis to number theory, but not
without the addition of set-theoretical concepts. If one understands clearly
that these concepts are not completely arithmetical, then the procedure in-
volves nothing objectionable.

To be sure, the methods of classical analysis contain strong idealizations.
But these do not detract from practical certainty. Indeed, a kind of intu-
itiveness is gained here that confers great certainty on our considerations.—

Problems have also arisen in connection with the discovery of the formaliz-
ability of mathematical proofs by means of symbolic logic. This formalization
can certainly be viewed as a sharpening of the axiomatic method. Indeed,
formal systems have been successfully set up for number theory, analysis,
and set theory. These formal systems consist of a symbolism and rules of
deduction, and are set up in such a way that, within the framework of such
a system, the known proofs of the respective theory can be formally repre-
sented.

Formal-deductive systems can also be set up independently of already
existing theories, and then we have the reverse situation, namely that we can
try to find contentual interpretations (models) for them. That is a topic for
“semantics” which is generally concerned with the relations between theories
and formal systems.

A different kind of research tied to the formalization of mathematical
theories takes formalized proofs as the object of mathematical investigation.
This is the aim of Hilbert’s proof theory. It is above all a matter of investi-
gating the internal consistency of formalized theories. For this purpose there
arises the possibility of a methodological reduction in the case of the theories
of the infinite, because formalized proofs are, after all, finite objects and be-
cause consistency can be formally characterized. Consistency proofs of this
kind have actually been given successfully for formalized number theory and
formalized analysis, but they do not use means as elementary as Hilbert had
sought. He wanted to restrict the methods of such proofs to combinator-
ial ones in accord with the finitist standpoint. Stronger methods of giving
constructive proofs had to be used.



352 CHAPTER 28. PREFACE (1976)

This necessity of going beyond the elementary “finitist” methods in con-
sistency proofs is related to another difficulty. Both came to light on the
basis of results obtained by Kurt Gödel and Thoralf Skolem: It was shown
that a formal system, if it is to satisfy the conditions of strict controllability,
could not completely express its intended theory. This is particularly shown
by the fact that the formal system, apart from its normal interpretation
by the intended theory, also permits deviant interpretations, the so-called
“non-standard” models.

Within foundational research this fact has been dealt with in different
ways, either by studying non-standard models more closely or by consider-
ing possibilities of excluding non-standard models by an extended kind of
formalization. For number theory two ways of extending the procedure of
formalization have been considered: on the one hand “infinite induction” and
on the other hand the admission of infinite conjunctions and disjunctions. In
either case, the finitist character of proof figures is lost.

As regards fundamental reflections, it emerges that the role of formaliza-
tion is not so simple as was originally intended and, at the same time, that
we do not have to demand formalization so unconditionally. In any case,
semantics, in keeping with its purpose, uses set-theoretic thinking that is not
bound to a formal system.—

As we see, there is no dearth of problems for the philosophy of mathemat-
ics. Nevertheless, what I said in one of my essays2 still holds: “If we . . . take
as basis the view according to which mathematics is the science of idealized
structures, then we have an attitude for research in the foundations of math-
ematics that will save us from exaggerated aporiae and forced constructions
and that is also not contested, even if foundational research brings to light
many astonishing facts.”

2“Schematic correspondence and idealized structures” (vide ch. 26, p. 324).


