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About 35 years ago, on the occasion of a congress in Helsingfors, Thoralf

Skolem pointed out a paradoxical consequence of a theorem by Löwenheim,

for which he had presented a simplified proof two years earlier using the

logical normal form named after him.

This well-known theorem by Löwenheim says that for every mathemati-

cal theory axiomatized in the framework of elementary predicate logic—i.e.,

without bound variables for predicates—there exists a model in which the

individuals are natural numbers, provided that there is a model that satisfies

it at all. The theorem can be extended to the case in which one or more

axiom schemata occur in the axiom system besides the proper axioms. In

the axiom schema an arbitrary predicate that can be constructed using the

formation rules of the axiom system, resp. a set or function that is arbitrary

in the same sense, occurs as parameter.
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Now Skolem realized that this theorem can be applied to axiomatic set

theory, provided it has been sharpened by a more precise concept of definite

property over the original formulation of Zermelo. That it is possible to

sharpen it in such a way, whereby the axiom system can be represented as a

calculus by axioms and schemata, had been realized shortly before by Skolem

and, in a different way, by A. Fraenkel. By the way, J. v. Neumann even

succeeded in setting up a system of finitely many axioms (without schemata)

for set theory.

Thereby the possibility of such models for set theory arose in which sets

are represented by natural numbers. This possibility is quite paradoxical,

because the cardinal numbers of the sets that occur rise to such dizzying

heights according to the theorems of set theory that the infinity of the number

sequence (the countably infinite) is exceeded by far.

That this does not constitute a proper contradiction follows, as is well-

known, from the fact that the enumerations which work as such in the ax-

iomatic framework do not yet exhaust all possible enumerations. The concept

of set is restricted by the axiomatic specification in such a way that one can

speak of “set” only relative to a particular framework, if one generally insists

on the requirement of axiomatic precision. This relativization is extended

to a series of other concepts that are closely connected to the concept of

set, in particular the concept of a uniquely invertible mapping between two

totalities and thereby also the concept of cardinality (generalized concept of

number), and especially that of denumerability.

At first the impression arises that the detected paradox shows above all

that differences of magnitudes are apparent and especially that the properly
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uncountable is an illusion. At the same time the thought is suggested that an

operative construction of mathematics, and in particular of analysis, might

be preferable to an axiomatic formulation, in the light of the ascertained

relativity.

An operative understanding of mathematics is championed by many. It is

characteristic that it does not regard the object of mathematics as something

that is given in advance and that should be made accessible to our thought by

formation of concepts and axiomatic descriptions, but that the mathematical

operations themselves and the objects that are brought about by them are

regarded as the topic of mathematics. Mathematics should, to some extent,

create its own objects. Thereby the character of arithmetic is prescribed eo

ipso, since the structures of the operative creation are not fundamentally

more general than those of the number sequence.

Herein lies a strength of this standpoint on the one hand, and a weakness

on the other. It possesses a strength insofar arithmetical (constructive, com-

binatorial) thinking has the methodical distinction of being elementary and

intuitive. However, it is doubtful whether we can get by with it for math-

ematics and whether a, so to speak, monistic conception of mathematics in

the sense of the operative view can do full justice to its content—even as it

is now.

This idea is especially reinforced when we consider the enterprises of an

operative construction of analysis as they have been pursued in more recent

times, following different programmatic points of view. All these kinds of

constructions have in common that we are hindered by distinctions which

are of no relevance for the geometrical idea of the continuum and are not
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necessary for the consistent functioning of the concepts. The usual procedure

of classical analysis proves to be vastly superior in this respect; and if the

treatment of analysis had historically begun with an operative procedure, the

detection of the possibility of the so much simpler classical methods would

have been an eminent discovery, hardly less as it meant a de facto eminent

progress in a different direction, namely compared to the vagueness of the

former operations in analysis.

The sense of an appropriate formation of concepts for analysis apparently

lies in a suitable compromise. We can make that plausible by the following.

The conflicting aspects of the concept to be determined are, on the one

hand, the intended homogeneity of the idea of the continuum and, on the

other hand, the requirement of conceptual distinctness of the measures of

magnitudes. From an arithmetical point of view, every element of the number

sequence is an individual with its very specific properties; from a geometric

point of view we have here only the succession of repeating similar things.

The task of formulating a theory of the continuum is not simply descriptive,

but a reconciliation of two diverging tendencies. In the operative treatment

one of them is given too much weight, so that homogeneity comes up short.

The investigations about the effectiveness and the fine structure in the for-

mation of number series and sets of numbers have an unquestionable impor-

tance for their specific aspects of the general question. But the insights that

have been gained here do not constitute a definite indication that the usual

procedure of analysis should be replaced by the more arithmetical methods.

The method on which the procedures in classical analysis are based con-

sists, in its logical means, in the application of a contentful “second-order”
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logic, in which the general concepts like “proposition,” “set,” “series,” “func-

tion” etc. are used in an unbounded way that is not further specified. This

second order logic shows its strength not only in its application to the the-

ory of the continuum, but that it generally allows for the characterization of

mathematical structures, that may even be uncountable, by explicit defini-

tions. Namely, to what is usually called an “implicit definition” of mathe-

matical objects there corresponds an explicit definition of a whole structure

wherein those objects occur as dependent components. The model theoretic

concepts of satisfiability and categoricity also find here their unproblematic

application.

To be sure, second order logic is reproached for having a certain impre-

cision in the concepts, and it is the aim of the new sharper form of the

axiomatic approach to repair this defect. Logic and axiomatic set theory

have developed the methods for this. The phenomena of the relativity of

the higher general concepts discussed above is evidence that this has not

succeeded in a completely adequate way to make the concepts precise.

Let us again consider this with an example. The property that an ordering

has no gaps is expressed in second-order logic by the condition that every

proper initial segment of the ordering which has no last element possesses

an immediately succeeding one. The general concept of set appears here by

means of the proper initial segment. If this is now made precise by giving

certain conditions on how to obtain sets, the manifold of the initial segments

under consideration is narrowed, and thereby the condition is weakened. This

means that some orderings are admitted as being gapless that can no longer

count as being such if the concept of set is sufficiently expanded (i.e., if
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further processes are admitted for the formation of sets).

The difficulty considered here which, is related to the task of making a

theory formally precise, not only occurs in the characterization of uncount-

able structures, but especially also in the characterization of the structure

of the sequence of numbers. We can explain, in Dedekind’s sense, that a set

M has the structure of the sequence of numbers with regard to a mapping ϕ

(from M to itself) if ϕ is uniquely invertible and there is an element a of M

which is not in the image of ϕ, and which has the property that no proper

subset of M exists that contains a as well as ϕ(c) for every element c. Here

again to stipulate a narrower concept of subset can have the consequence that

the above condition is satisfied by models to which we would not attribute

the structure of the number sequence based on the unrestricted condition.

This state of affairs results likewise if we use an axiom system to characterize

the number sequence instead of the explicit definition of structure. In the

usual form of such an axiom system one has the axiom of complete induction

in which the general concept of proposition (or predicate) occurs. If the ax-

iomatics are formally sharpened this axiom is replaced by a formal inference

principle in which the range of the allowed predicates is formally delimited

by a substitution rule. This restriction also allows for the possibility of mod-

els for number theory that satisfy all statements provable within the formal

framework, but that deviate from the structure of the number sequence when

they are considered on their own. Again it was Skolem who pointed out this

state of affairs of the “non-characterizability” of the number sequence by a

formalized axiom system, using drastic examples.

On the whole, after what has been said so far the success of attempt-
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ing to make a theory sharper and more precise using axioms might appear

highly questionable. But the circumstance is not taken into consideration

thereby that there are frameworks that classical mathematics has no reasons

to transgress – as has been shown by the axiomatic and logical analysis of

mathematical theories. The domain of sets and functions, e.g., as it is pro-

vided by the axioms of set theory, is closed in such a way that the formal

axiomatic restriction is hardly palpable when forming concepts and conduct-

ing proofs.

Furthermore, the set theoretic theorems are not affected by the relativity

that holds for the general concepts. This relativism surely does not mean

that the continuum is shown to be uncountable in framework of set theory

and countable in. The discrepancy consists rather only in the fact that the

totality of things that are represented in a set theoretic system, e.g., the set of

subsets of the number sequence, can be countable in a more comprehensive

system; but then it does not act there as a representation of that set of

subsets, and thus it is impossible to map the numbers uniquely to the sets

of numbers. In such a way the cardinality theorems of Cantor’s set theory

are invariant with respect to the axiomatic framework, despite the relativity

of the set concepts.

Of course, it must be conceded that this relativity brings the circumstance

more forcefully into our consciousness that the higher cardinalities in set

theory are only intended, so to speak, but not properly constructed. In this

sense the levels of cardinalities are in a certain way unreal.

The awareness of this state of affairs is often explained by saying that

everything in mathematics is countable in “actuality.” But this formulation

7



is misleading in so far as it does not take into account the fundamental fact

which is expressed both in operative mathematics and in the consideration

of formal axiom systems, namely that mathematical thinking in principle

transcends every countable system. The framework for the mathematical

formation of concepts is the open, contentual second number class both when

proceeding constructively and within a theory of types, if these are not re-

stricted in an arbitrary fashion, or also in the sequence of the ascending sys-

tems of axiomatic set theory. It represents something that is in the proper

sense uncountable, and sure enough it cannot be addressed as a particular

mathematical structure.

We are reminded here of the fact that also the number sequence is pre-

sented to us originally as an open domain compared to which the number

sequence that we address as a structure is somehow unreal. The difference

with respect to the second number class is that the openness of the num-

ber sequence is only due to the incompletedness of the iterations of a single

process, whereas the openness of the second number class is due to the in-

completedness of the formations of concepts.

That the unreal character of particular uncountable structures is much

more noticeable than the unreal character that lies in the conception of the

number sequence as a structure is due to the fact that our concept of a

formal theory intends exactly the same kind of infinity as that of the number

sequence.
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